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BEM coupling with the FEM-fictitious domain approach
for the solution of the exterior Poisson problem and of

the wave scattering by rotating rigid bodies ∗

S. Falletta†

Abstract

We consider two exterior model problems in 2D: the Poisson equation and the prob-
lem of waves scattered by rotating rigid bodies. The exterior domain is the R2 com-
plement of a bounded rigid obstacle, subject to a rotation in the time dependent case.
By using a fictitious domain approach, we artificially extend the solution in the whole
R2. Then, we propose and study a Finite Element-Boundary Element (FEM-BEM)
coupling method for the solution of the problem in a finite computational domain, de-
limited by an artificial boundary B. The transmission conditions between the interior
and exterior domain are imposed on B by a boundary integral equation coupled first
to the Poisson, and then to the wave equation, these being defined in the interior do-
main. The Dirichlet conditions on the boundary of the physical obstacle are enforced
weakly, by means of Lagrange multipliers. The main advantage of this approach is
that the finite element mesh can be chosen independently of the geometry of the ob-
stacle. Moreover, in the time dependent case, the proposed method allows to use a
given fixed mesh, thus avoiding the complexity of constructing at each time step a new
finite element computational mesh.

For the Poisson problem we obtain convergence results when the space discretization
is performed by standard finite elements in the interior domain and by a Galerkin
boundary element method on B. For the wave equation, we perform a full space
discretization by finite elements, coupled with a Crank-Nicolson time-stepping scheme.
On the boundary B, a boundary element method and a convolution quadrature based
on a BDF method of order 2 are used. We present numerical results for non trivial
data, which validate the proposed numerical approach. In the wave equation case,
these include also rotating obstacles and external sources.

keywords : wave equation; boundary element method; finite element method; fictitious
domain; numerical methods.
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1 Introduction

Boundary element methods provide a very appealing way to deal with problems in un-
bounded exterior domains. They are based on integral operators defined on the boundary of
the physical domain, and they offer the great advantage of describing the solution only by
its boundary values, thus reducing the problem dimensions by one. Hence, only a discretiza-
tion of the boundary is necessary, which significantly reduces the number of unknowns, if
compared, for example, to domain discretization methods such as finite elements. Once the
density function is retrieved (by solving the corresponding boundary integral equation), the
solution of the original problem at any point of the exterior domain is obtained by computing
boundary integrals. This procedure may however result not efficient, especially when the
solution is needed at many points of the infinite domain.

Alternatively, and when, for example, the material of the exterior domain presents vary-
ing characteristics, domain discretization methods such as finite elements can be used. In
this case, having defined the bounded computational domain, where one is interested in
studying the behavior of the solution, a key issue is the introduction of proper (transpar-
ent) boundary conditions. These must guarantee that the solution of the initial-boundary
value problem inside the finite computational domain coincides with the restriction of the
solution of the original problem. This leads to FEM-BEM like coupling strategies. The
finite element method is used as a solver in the finite computational domain; the boundary
element method is used as a Non Reflecting Boundary Condition (NRBC), which defines a
relationship between the solution of the differential problem and its normal derivative on the
chosen artificial boundary that delimits the computational domain.

The finite element method relies on geometry-fitted meshes, meaning that the union of
the mesh cells closely approximates the domain on which the problem is defined. When the
geometry of the domain is complicated, meshes of small size have to be considered in order to
follow exactly the shape of the object. This can be a drawback from the implementation point
of view, because the efficiency of the computation is decreased by the unstructured nature
of the data. As an alternative approach, one can consider the fictitious domain method
(even known as “domain embedding” method). The fictitious domain method consists in
immersing the original physical domain in a geometrically larger and simply-shaped one
(called fictitious domain) and in imposing the boundary conditions on the boundary of
the physical domain in a weak form, by means of Lagrange multipliers. The advantage of
this approach is that the problem is solved in a simpler enlarged domain that contains the
scatterer; the differential and the boundary operators are to some extent separated, so that
the finite element mesh can be chosen independently of the geometry of the obstacle. The
boundary conditions on the scatterer are taken care of by an operator acting on a lower
dimensional space.

The fictitious domain method has been introduced in [21] and successfully applied to
stationary problems with complex geometries ([25]) and to time dependent problems such as
acoustic wave propagation problems ([38]), electromagnetic scattering ([13]) or elastic wave
propagation ([7]). In all the mentioned papers stationary obstacles have been considered and
local absorbing boundary conditions or PML methods have been used for the treatment of
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the unbounded region. The FEM-BEM method has been proposed by Silvester-Hsieh ([36])
and Zienkiewicz et al. ([40]), and analyzed by Johnson and Nedelec in [29] for the Laplace
problem in the standard coupling procedure, that is when the finite computational domain is
bounded internally by the physical obstacle and externally by an artificial boundary. In this
case, the Dirichlet boundary conditions are enforced strongly, incorporating them directly in
the approximation space.

The focus of this paper is twofold. First, we extend the results presented in [29] to
the FEM-BEM fictitious domain method. As a typical example, we consider the Poisson
equation, and we solve it in an enlarged domain that contains the obstacle, by imposing the
homogeneous Dirichlet boundary condition weakly on the boundary of the obstacle (that
turns out to be a curve internal to the enlarged domain). We prove existence, uniqueness
and stability results for the solution of the variational problem by using the theory of saddle
point problems. Moreover, we derive convergence results and error estimates for the standard
Galerkin scheme.

The second aim of the paper is the study of waves propagating in infinite media and
scattered by rotating rigid bodies. Possible applications are radar signals reflected by rotating
aircraft propellers, TV and radio signals reflected by windwills, scattering of electromagnetic
waves by moving plates. Boundary element methods seem difficult to apply to such problems
and standard finite elements, coupled with NRBCs, would require the reconstruction, at
each time step, of the mesh of the computational domain, which changes in time. Moreover,
the change in mesh topology during the re-meshing would require the use of interpolation
techniques to recover history variables on the newly generated mesh. This not only introduces
artificial diffusivity, but it is also difficult and/or time-consuming to perform with sufficient
robustness and accuracy. The FEM-BEM fictitious domain method represents an efficient
alternative strategy. In case of moving bodies, in fact, the method has the great advantage
of working with a given fixed mesh in the enlarged domain, thus avoiding the complexity of
constructing at each time step a new finite element computational mesh. Furthermore, it
requires only the construction of the discrete trace operator to enforce weakly the boundary
conditions. In this case, the transmission conditions on the artificial boundary B are imposed
by a time-dependent boundary integral equation (see [16]).

For the numerical approximation of the proposed method, we present a full discretization
by finite elements in space and a Crank-Nicolson time stepping scheme in the interior of
the computational domain. For the discretization of the NRBC, we construct a numerical
scheme which is based on a second order Lubich discrete convolution quadrature formula
for the discretization of the time integral, coupled with a classical Galerkin (or collocation)
method in space. Among the advantages of this transparent condition we recall the following
ones: it allows the use of (smooth) curves of arbitrary shape for the choice of the artificial
boundary; it can be used also in situations of multiple scattering; it allows the treatment
of sources and initial data that must not be necessarily included in the finite computational
domain; finally, its computational cost is much lower than what it might first appear, thanks
to some special properties of the coefficients of the Lubich convolution quadratures. Indeed,
if in the 2D case we choose a circular B, the CPU required for the solution of some test
problems is similar to that of local NBRCs.

Unfortunately, we do not have yet results concerning the analysis of the coupled FEM-
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BEM fictitious domain approach for the time dependent wave equation, a task which is by no
mean trivial. However, we refer the reader to [5] for the analysis of the standard FEM-BEM
coupling for the 3D acoustic wave equation.

We remark that, for the treatment of rotating obstacles, an alternative approach consists
of embedding the rotating body in a domain that rotates together with the scatterer. Such
a domain is in turn placed inside a stationary residual domain (see, for example, [6] where a
similar strategy is applied for the computation of flows induced by rotating components). By
imposing the continuity of the discrete solution in a weak form on the interface between the
rotating and the stationary subdomains, no compatible discretizations are required at the
interface. With such an approach, no remeshing is required at each step of the time marching
scheme. However, an interpolation technique is needed at each time step to recover the
history of the solution on the rotated mesh. This would increase the computational overhead,
especially when the discretization of the rotating domain must be chosen sufficiently fine to
approximate accurately the boundary of the rotating scatterer.

The paper is organized as follows: in Section 2 we introduce the exterior elliptic model
problem and the standard FEM-BEM formulation. The fictitious FEM-BEM approach, the
existence of the solution and the stability of the corresponding saddle point formulation, as
well as convergence and error estimates are presented in Sections 2.1, 2.2 and 2.3, respectively.
In Sections 3 and 3.1 we present the exterior wave equation and the corresponding fictitious
domain approach. In Section 3.2 we describe the full space-time discretization. Finally,
numerical experiments are reported in Section 4, where we consider waves scattered by
moving (even multiple) obstacles and non trivial external sources.

2 The Poisson problem

Let Oe = R2 \O be the complement of a bounded rigid obstacle O ⊂ R2, having a Lipschitz-
continuous boundary Γ (see Figure 1, left plot). We consider the following exterior Dirichlet
problem: {

−∆u(x) = f(x), x ∈ Oe

u(x) = 0, x ∈ Γ.
(1)

We assume that the source f ∈ L2(Oe) has a compact support, which means that f is
certainly null in a neighborhood of the boundary Γ, external to O (hence the support of f
does not cross Γ). We consider the asymptotic conditions

u(x) = α +O

(
1

‖x‖

)
and ∇u(x) = O

(
1

‖x‖2

)
for ‖x‖ → ∞,

which guarantee the uniqueness of the solution in the space

W 1(Oe) = {u :
(√

1 + ‖x‖2(1 + log
√

1 + ‖x‖2)
)−1

· u ∈ L2(Oe),∇u ∈ [L2(Oe)]2}

(see [29]).
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To solve (1) by means of a finite element method, we truncate the infinite external domain
by an artificial boundary B, defined by a smooth curve. This boundary divides Oe into two
(open) sub-domains: a finite computational domain Ω, which is bounded internally by Γ and
externally by B, and an infinite residual domain D (see Figure 1, right plot).

Figure 1: Geometry of the problem (left plot) and the finite computational domain Ω delimited
by the artificial boundary B (right plot).

We impose on B the following NRBC (see [16, 19, 20])

1

2
u(x) = V∂nDu(x)−Ku(x) + If (x) x ∈ B, (2)

where

Vψ(x) :=

∫
B
G(x− y)ψ(y)dBy,

and

Kϕ(x) :=

∫
B
∂nDG(x− y)ϕ(y)dBy,

are the single and double layer integral operators. The function

G(x) = −1

2
π log(‖x‖)

is the fundamental solution of the Laplace equation −∆u = 0 and ∂nDu denotes the outward
normal derivative on B = ∂D. Incidentally, we remark that (2) is the trace on B of the
Kirchhoff’s formula u(x) = V∂nDu(x)−Ku(x) + If (x),x ∈ D (see [4]).

We assume that the artificial boundary B is chosen in such a way that the support of f is
included either in Ω or in D, which means that the function f is null in a whole (two-sided)
neighborhood of the boundary B. The term

If (x) =

∫
D
f(y)G(x− y)dy (3)

is the “volume” integral generated by the source f . In particular, it is non-trivial if the
support of f is included in the infinite residual domain D.
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Setting λB(x) = ∂nDu(x) and imposing the strong continuity of the solution u and of
its normal derivative on B, for the coupling of (1) and (2) (see [17]), we consider the new
problem in the finite computational domain Ω:

−∆u(x) = f(x) in Ω

u(x) = 0 on Γ
1
2
u(x)− VλB(x) + Ku(x) = If (x) onB

(4)

Note that f is non-trivial if the support of f is included in Ω. In the following sections we
describe the FEM-BEM coupling method by using the fictitious domain approach for the
solution of Problem (4).

2.1 The fictitious domain-Lagrange multiplier formulation

The fictitious domain method consists in extending artificially the solution of Problem (4)

inside the obstacle, and in solving the new problem in the extended domain Ω̃ := Ω∪O, which
is bounded by the artificial boundary B (see Figure 2). In order to separate the numerical
treatment of the differential operator from the one involving the boundary Γ, we enforce the
Dirichlet boundary conditions on Γ by Lagrange multipliers. The main advantage of this
approach is the possibility of solving the problem in a simpler domain and of choosing a
mesh in the enlarged domain independent of the geometry of the obstacle.

Figure 2: The fictitious domain approach.

For the description of the method we restrict, for simplicity, to the case If = 0, and for
this we assume that the support of the source term f is included in the finite computational
domain Ω̃ rather than in the residual domain D. The case If 6= 0 implies the addition of a
suitable right hand side term, which does not modify the forthcoming analysis.

For a generic function w defined in Ω̃, we denote by γ
Γ
w and γBw its trace on Γ and

on B, respectively. For any w ∈ H1(Ω̃), it is known that its trace γ
Γ
w (resp. γBw) belongs

to H1/2(Γ) (resp. H1/2(B)). We denote by H−1/2(Γ) (resp. H−1/2(B)) the dual space of
H1/2(Γ) (resp. H1/2(B)). Moreover, for notational simplicity, we denote by f the extension

of f ∈ (H1(Ω))′ to Ω̃. Then, recalling the regularity properties of the boundary operators
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V and K (see [35], Section 3.1.2), the variational formulation of Problem (4) reads: find

(u, λΓ, λB) ∈ H1(Ω̃)×H−1/2(Γ)×H−1/2(B) such that
a(u, v) + 〈λΓ, γΓ

v〉Γ + 〈λB, γBv〉B = (f, v)Ω̃ ∀ v ∈ H1(Ω̃),

〈ϕ, γ
Γ
u〉Γ = 0 ∀ϕ ∈ H−1/2(Γ)

2〈µ,VλB〉B − 〈µ, γBu〉B − 2〈µ,KγBu〉B = 0 ∀µ ∈ H−1/2(B).

(5)

where a : H1(Ω̃)×H1(Ω̃)→ R is the bilinear form

a(v, w) =

∫
Ω̃

∇v(x) · ∇w(x)dx, (6)

and (v, w)Ω̃ =
∫

Ω̃
v(x)w(x)dx denotes the L2 scalar product. The bilinear forms 〈·, ·〉Γ and

〈·, ·〉B denote the duality pairing between H−1/2(Γ) and H1/2(Γ), and H−1/2(B) and H1/2(B),
respectively.

2.2 Existence results and stability analysis

The FEM-BEM coupling has been proposed in [36] and [40], and analyzed in [29] for the
solution of the Laplace equation. Here we will analyze the coupling method in the fictitious
domain approach. We remark that, the difference between our approach and the above
mentioned one, consists in the fact that we seek the solution in the whole enlarged domain Ω̃,
while in the mentioned papers the problem is solved in the effective computational domain Ω.
Hence, we impose the homogenenous Dirichlet boundary conditions weakly on the (internal)
closed curve Γ, by using Lagrange multipliers, rather than in imposing them strongly on Γ
(the internal boundary of Ω), by inserting them directly into the variational formulation.
Our approach leads to a saddle point formulation, for which existence results and stability
analysis must be provided. In what follows we analyze the proposed method, by using known
properties of the boundary integral operators that appear in the definition of the NRBC.

Following [29], we introduce the notations

HB :=

{
µ ∈ H−1/2(B) :

∫
B
µ = 0

}
, V := H1(Ω̃)×HB,

and û = (u, λB), v̂ = (v, µ) ∈ V . We consider the bilinear forms B,K,A : V ×V → R defined
by

B(û, v̂) := a(u, v) + 〈λB, γBv〉B + 2〈µ,VλB〉B − 〈µ, γBu〉B,

K(û, v̂) := 2〈µ,KγBu〉B, A := B −K.

The corresponding continuous linear operators are B,K,A : V → V ′ (for simplicity, they
are defined using the same symbols of the bilinear forms), and are defined by

〈Bû, v̂〉V×V ′ = B(û, v̂), 〈Kû, v̂〉V×V ′ = K(û, v̂), 〈Aû, v̂〉V×V ′ = A(û, v̂),

where 〈·, ·〉V×V ′ denotes the duality product between V and its dual V ′.
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Setting λ̂Γ = (λΓ, 0), ϕ̂ = (ϕ, 0), f̂ = (f, 0), and introducing the bilinear form

bΓ(λ̂Γ, v̂) := 〈λΓ, γΓ
v〉Γ,

Problem (5) can be reformulated in the following saddle point form: find û ∈ V and λ̂Γ,
with λΓ ∈ H−1/2(Γ) such that{

A(û, v̂) + bΓ(λ̂Γ, v̂) = (f̂ , v̂)Ω̃ ∀ v̂ ∈ V,
bΓ(ϕ̂, û) = 0 ∀ϕ̂ : ϕ ∈ H−1/2(Γ).

(7)

Existence and uniqueness of the solution of (7) is strictly related to existence and uniqueness
of the solution of the following problem{

B(û, v̂) + bΓ(λ̂Γ, v̂) = (f̂ , v̂)Ω̃ ∀ v̂ ∈ V,
bΓ(ϕ̂, û) = 0 ∀ϕ̂, ϕ ∈ H−1/2(Γ).

(8)

In fact, (7) and (8) differ from each other only by a compact bilinear form (see [29]). There-
fore, we first prove that Problem (8) admits a unique solution.

In the following, the notation Q1 . Q2 (resp. Q1 & Q2) means that the quantity Q1

is bounded from above (resp. from below) by C · Q2, where C is a constant that does not
depend on Q1 and Q2. Denoting by ‖ · ‖V the norm on the product space V defined as

‖v̂‖V :=
√
‖v‖2

H1(Ω̃)
+ ‖µ‖2

H−1/2(B)
,

the following result holds.

Theorem 2.1. Problem (8) has a unique solution. Moreover, the following stability estimate
holds:

‖û‖V + ‖λ̂Γ‖H−1/2(Γ) . ‖f̂‖V ′ . (9)

Proof. We note that the bilinear form a(·, ·) is continuous on H1(Ω̃) and that, by the trace
theorem, |〈λB, γBv〉B|2 ≤ ‖γBv‖2

H1/2(B)
‖λB‖2

H−1/2(B)
. ‖v‖2

H1(Ω̃)
‖λB‖2

H−1/2(B)
. Moreover (see

[29]) the bilinear form

bB : H−1/2(B)×H−1/2(B)→ R, bB(λB, µ) := 〈µ,VλB〉B

is continuous. This ensures the continuity of the bilinear form B, namely |B(û, v̂)| .
‖û‖V ‖v̂‖V .

Let us now define the kernel

Ker(bΓ) := {v̂ ∈ V : 〈ϕ, γ
Γ
v〉Γ = 0, ∀ϕ ∈ H−1/2(Γ)}.

It is easy to prove that Ker(bΓ) ≡ H1
0,Γ(Ω̃) × HB, where H1

0,Γ(Ω̃) = {v ∈ H1(Ω̃) : γ
Γ
v =

0 on Γ}. The operator V is known to be elliptic (see [29]), that is, there exists β > 0 such
that:

〈µ,Vµ〉B ≥ β‖µ‖2
H−1/2(B), ∀µ ∈ HB. (10)
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Hence, from (10), and using the coercivity of the bilinear from a(·, ·) on H1
0,Γ(Ω̃) (see [11]),

it follows that, for all v̂0 = (v0, µ) ∈ Ker(bΓ), we have

B(v̂0, v̂0) = a(v0, v0) + 〈µ, γ
Γ
v0〉B − 〈µ, γΓ

v0〉B + 2〈µ,Vµ〉B
≥ α0‖v0‖2

H1(Ω̃)
+ 2β‖µ‖2

H−1/2(B) & ‖v̂0‖2
V ,

that is, B is coercive on Ker(bΓ). Moreover, the following inf-sup condition holds (see [21]):

inf
ϕ∈H−1/2(Γ)

sup
v∈H1(Ω̃)

〈ϕ, γ
Γ
v〉Γ

‖ϕ‖H−1/2(Γ)‖v‖H1(Ω̃)

= C > 0. (11)

Therefore, according to the theory of saddle point problems (see [9]), and to the surjectivity
of the trace operator γ

Γ
, we can conclude that Problem (8) admits a unique solution (û, λ̂Γ).

The stability estimate (9) directly follows (see [9]).

Theorem 2.1 states that the operator B : V → V ′ is invertible on Ker(bΓ). Since
A = B −K, Problem (7) can be rewritten as follows: find (û, λ̂Γ) ∈ Ker(bΓ) such that(

I −B−1K
)

(û)(v̂) =
(
B−1f̂

)
(v̂) ∀ v̂ ∈ Ker(bΓ). (12)

In [29] (Lemma 1 and following remarks), the authors prove that, setting H1
0,Γ(Ω) = {w ∈

H1(Ω) : γΓw = 0 on Γ}, the operator B−1K : H1
0,Γ(Ω)×HB → H2(Ω)×H1/2(B) is continuous.

Moreover, since H2(Ω) × H1/2(B) is compactly embedded in H1
0,Γ(Ω) × HB, the operator

B−1K : H1
0,Γ(Ω)×HB → H1

0,Γ(Ω)×HB is compact.

Replacing H1
0,Γ(Ω) by H1

0,Γ(Ω̃) and H2(Ω) by H2(Ω̃), and noting that in our case Γ is a

(closed) regular curve included in Ω̃ rather than the internal boundary of the computational

physical domain Ω, similarly to [29] we can prove that the operator B−1K : H1
0,Γ(Ω̃)×HB →

H1
0,Γ(Ω̃) × HB is compact. According to the remark that Ker(bΓ) ≡ H1

0,Γ(Ω̃) × HB, we
conclude that B−1K : Ker(bΓ) → Ker(bΓ) is compact and hence (12) is a second kind
Fredholm equation. Therefore, for the existence of a solution of (12), it is sufficient to prove
the following uniqueness result, whose proof can be found, again, in [29].

Lemma 2.2. There exists only one û ∈ Ker(bΓ) such that Aû = f̂ . Moreover A : V → V ′

is invertible on Ker(bΓ).

We summarize the global result in the following Theorem (see [9]):

Theorem 2.3. The operator A : V → V ′ is continuous and invertible on Ker(bΓ); further-
more, the continuous linear form bΓ : V → (H−1/2(Γ))′ satisfies the inf-sup condition (11).
Thus, Problem (7) admits a unique solution (û, λ̂Γ) that satisfies the stability bound (9).

2.3 Approximation and error estimates

We consider a decomposition of Ω̃ ≈ Ω̃∆ = ∪Ki∈ThKi into triangular elements. We assume
that the mesh is quasi-uniform and we denote by h the spatial mesh size of the decomposition,
defined as

h = max
Ki∈Th

hKi ,
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where hKi denotes the diameter of the triangle Ki. For the approximation of H1(Ω̃), we
introduce the finite dimensional space

Xh = {vh ∈ C0(Ω̃) : vh|Ki ∈ Pk(Ki), Ki ∈ Th},

where Pk denotes the space of polynomials of degree k ≥ 1. We assume that the curve Γ is
given by a smooth parametric representation. In this case, we consider a partitioning of Γ
into curvilinear elements Γ = ∪MΓ

i=1Si, where MΓ denotes the number of subintervals of the
parametrization interval. Denoting by δ the maximum mesh size on Γ, we define

Φδ = {ϕδ : ϕδ|Si ∈ Pk−1(Si), Si ∈ Γ} ⊂ H−1/2(Γ),

the finite dimensional subspace of H−1/2(Γ) of piecewise polynomials of degree k − 1, with
respect to the curvilinear abscissas, on every Si. Note that the discretization of the Lagrange
multipliers is a priori completely independent of the trial space Xh. Moreover, since the
Lagrange multiplier λΓ plays the role of the normal derivative of the solution along Γ, it is
natural to approximate it by means of polynomials of local degree k − 1. We also assume
that the artificial boundary B is given by a smooth parametric representation. Hence, we
decompose the artificial boundary B into curvilinear elements B = ∪MBi=1Bi, where MB denotes
the number of subintervals of the parametrization interval. In this case, the nodes defined
on B are those inherited by the triangulation of the entire domain Ω̃ (see Figure 3, right
plot). Therefore, we define

Wh = {ψh : ψh|Bi ∈ Pk(Bi),Bi ∈ B} ⊂ H−1/2(B),

the finite dimensional subspace of H−1/2(B) of continuous piecewise polynomials of degree
k, with respect to the curvilinear abscissas, defined on the mesh induced by the triangular
decomposition of Ω̃ on B. We remark that, since the unknown λB represents the normal
derivative on B of the solution, the discrete space Wh could be chosen as the space of poly-
nomials (not necessarily continuous) of degree k − 1. However, as already remarked in [16],
since the role of the NRBC is to define on B a relationship between the (outgoing/incoming)
wave and its normal derivative, which prevents the raising of spurious incoming/outgoing
waves, the more accurate is the discretized relationship the more transparent this will be.
To this end, we use the same degree for the polynomial approximation of the unknown u as
well as of λB.

The discrete spaces satisfy the following well known approximation properties:
for any v ∈ Hs(Ω̃) with 2 ≤ s ≤ k + 1

inf
vh∈Xh

‖v − vh‖H1(Ω̃) . hs−1‖v‖Hs(Ω̃); (13)

for any ϕ ∈ Hr(Γ) with −1/2 ≤ r ≤ k

inf
ϕδ∈Φδ

‖ϕ− ϕδ‖H−1/2(Γ) . δr+1/2‖ϕ‖Hr(Γ); (14)

for any ψ ∈ Hr(B) with −1/2 ≤ r ≤ k + 1

inf
ψh∈Wh

‖ψ − ψh‖H−1/2(B) . hr+1/2‖ψ‖Hr(B). (15)
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Figure 3: The meshes of the enlarged domain Ω̃ and of the boundaries Γ and B.

We refer to [34] for the approximation estimates with negative indexes (14) and (15), that
are obtained by standard duality arguments.

Denoting by Vh := Xh ×Wh ⊂ V , we consider the discrete problem:

find ûh = (uh, λB,h) ∈ Vh and λ̂Γ, δ = (λΓ, δ, 0), λΓ, δ ∈ Φδ such that{
A(ûh, v̂h) + bΓ(λ̂Γ, δ, v̂h) = (f̂ , v̂h)Ω̃ ∀ v̂h ∈ Vh,
bΓ(ϕ̂δ, ûh) = 0 ∀ϕ̂δ = (ϕδ, 0), ϕδ ∈ Φδ.

(16)

To prove existence and uniqueness of the solution of (16) we first establish some preliminary
results. We denote by

Ker(bΓ,h) = {v̂h ∈ Vh : 〈ϕδ, γΓvh〉Γ = 0, ∀ϕδ ∈ Φδ}.

Remark 2.4. Since Φδ contains the constant functions, it follows that a function ûh ∈
Ker(bΓ,h) satisfies

∫
Γ
uh = 0.

Lemma 2.5. For all u ∈ H1(Ω̃) such that
∫

Γ
u = 0, the following Poincaré inequality holds

(see [39]):
‖u‖L2(Ω̃) ≤ C‖∇u‖L2(Ω̃),

where C is a constant that depends only on Ω̃.

Lemma 2.6. The bilinear form a(·, ·) is coercive on Ker(bΓ,h), that is

a(uh, uh) & ‖uh‖2
1,Ω̃

∀uh ∈ Ker(bΓ,h).

Proof. The proof immediately follows from Remark 2.4 and Lemma 2.5.

Lemma 2.7. Suppose that the spaces Xh and Φδ are chosen in such a way that there exists
a constant β such that δ > βh. Then the following uniform discrete inf-sup condition holds:

inf
ϕ∈Φδ

sup
v∈Xh

〈ϕ, γΓv〉Γ
‖ϕ‖H−1/2(Γ)‖v‖H1(Ω̃)

= C > 0. (17)
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Remark 2.8. The inf-sup condition (17) states that a compatibility relation, between the

triangular mesh defined on Ω̃ and the mesh defined on Γ, must be satisfied. This means
that the two meshes can not be chosen completely independent one from each other. In [21],
where uniform structured triangular grids are used, the value of the constant β is 3. For what
concerns more generic quasi-uniform grids, the result holds for a constant β that depends,
among other factors, on the regularity of the grid. For major details, we refer to [14], where
the validity of the Ladyzhenskaya-Babuska-Brezzi (LBB or inf-sup) condition (17) is proved
for discretized second order elliptic boundary value problems. There, as here, the boundary
conditions are enforced by using Lagrange multipliers.

We remark that, in all the performed numerical tests, we have noticed that the factor β
is slightly larger than one.

The following Corollary, concerning the convergence of the FEM-BEM approximation of
the solution of Problem (5), is an immediate consequence of Lemma 2.6 and of the discrete
inf-sup condition (17).

Corollary 2.9. Let (û, λΓ) ∈ V × H−1/2(Γ) be the solution of (5). Under the condition of
Lemma 2.7, there exists one and only one solution (ûh, λΓ, δ) ∈ Vh×Φδ of (16) such that the
following error estimate holds

‖û− ûh‖V + ‖λΓ − λΓ, δ‖H−1/2(Γ) .

(
inf
v̂h∈Vh

‖û− ûh‖V + inf
µδ∈Φδ

‖λΓ − µδ‖H−1/2(Γ)

)
.

Before showing the error estimate let us make some remarks on the smoothness of the
solution (û, λΓ) of equation (5). Assume that f ∈ Hs−2(Ω̃) for some s ≥ 2. Then, it is not
difficult to realize that u|Ω ∈ Hs(Ω) and u|O ∈ Hs(O). However, unless we do not choose
the extension to O of the right hand side f in a compatible way with the Dirichlet boundary
condition on Γ, we will not in general have u ∈ Hs(Ω̃), since the normal derivative will jump
across Γ. The maximum overall regularity that we can in general expect is u ∈ H t(Ω̃), for
t < 3/2. On the other hand, since λΓ is the jump on Γ of the normal derivative of u, we will
have that λΓ ∈ Hs−3/2(Γ). Note that u will have an higher regularity if and only if λΓ = 0.
In view of these observations, by standard arguments, we have the following error estimate.

Lemma 2.10. Let (û, λΓ) ∈ V × H−1/2(Γ) be the solution of (5). Let us assume that
f ∈ Hs−2(Ω̃) with 2 ≤ s ≤ k + 1. Then the following error estimate holds for all ε > 0

‖û− ûh‖V + ‖λΓ−λΓ,δ‖H−1/2(Γ) . h1/2−ε‖u‖H3/2−ε(Ω̃) +hs−1‖λB‖Hs−3/2(B) + δs−1‖λΓ‖Hs−3/2(Γ).

Moreover, if the extension of the right hand side f is chosen in such a way that u ∈ Hs(Ω̃),
it holds

‖û− ûh‖V + ‖λΓ − λΓ,δ‖H−1/2(Γ) . hs−1‖u‖Hs(Ω̃) + hs−1‖λB‖Hs−3/2(B).

Remark 2.11. The choice of the extension f in such a way that it is compatible with
the boundary conditions on Γ is far from being a trivial problem and has until now no
satisfactory solution. As a consequence, the a priori error estimates for most fictitious
domain methods suffer from the limitation deriving from the lack of regularity of the extended

12



solution (u 6∈ H3/2(Ω̃)). In order to overcome this limitation one could resort to more
sophisticated methods in the fictitious domain class (see for instance [33], [8], [2]). These
approaches are of course possible also in our framework, but their study is beyond the scope
of this paper.

3 Waves scattered by rotating rigid bodies

In this section we extend the fictitious domain FEM-BEM coupling to the case of waves
scattered by moving obstacles.

Let Oe(t) = R2\O(t) be the complement of a rotating bounded rigid obstacle O(t) ⊂ R2,
having a smooth boundary Γ(t). We denote by Oe0 the initial configuration of the obstacle
at t = 0. We consider the following exterior model problem:

utt(x, t)−∆u(x, t) = f(x, t) inOe(t)× (0, T )

u(x, t) = 0 in Γ(t)× (0, T )

u(x, 0) = u0(x) inOe0
ut(x, 0) = v0(x) inOe0.

(18)

We assume that the data are smooth and satisfy the required compatibility conditions,
which guarantee that the solution u(x, t) is at least C2 with respect to both variables. That
is, we assume (see [19]) f ∈ C([0, T ], C2(Oe(t))), u0 ∈ C3(Oe0), v0 ∈ C2(Oe0). We also
assume, as it often occurs in practical situations, that the initial data u0, v0 and the source
term f have local supports; in particular, we assume that the functions u0, v0 are null in a
neighborhood of the boundary Γ0 := Γ(t = 0), and that f is null in a neighborhood of the
boundary Γ(t) for all t ∈ [0, T ] (which implies that the support of f does not intersect the
boundary Γ(t) throughout the time). From these properties, we immediately deduce that
u(x, 0) = ut(x, 0) = utt(x, 0) = 0 if x ∈ Γ0.

We choose a fixed artificial boundary B, in such a way that the rotating obstacle is
included in the region surrounded by B in the whole time interval [0, T ]. The finite compu-
tational domain, bounded internally by Γ(t) and externally by B, is denoted by Ω(t). On B,
we impose a time dependent NRBC.

Many time dependent NRBCs have been proposed in the last two-three decades, and
most of them are local, both in time and space. For a review, see for example [22], [23],
[24]. All these papers, except for [1], [37], [27], [28], [16], [5], deal with the construction
of NRBC with the property of absorbing only outgoing waves, and not also the incoming
ones. Therefore, the sources must necessarily be included in the computational domain,
and this represents a severe drawback when, for example, sources are far away from the
physical domain. Moreover, most of the local NRBCs works only for a single convex artificial
boundary having a special shape, like a circle (sphere in 3D) or ellipse (ellipsoid in 3D).

We consider here the fully non local NRBC proposed in [16] (see also [17] and [18]).
With abuse of notation, we denote by the same letters V and K used in Section 2 the time
dependent single and double layer integral operators

Vψ(x, t) :=

∫ t

0

∫
B
G(x− y, t− τ)ψ(y, τ)dBydτ,
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and

Kϕ(x, t) :=

∫ t

0

∫
B
∂nDG(x− y, t− τ)ϕ(y, τ)dBydτ,

where

G(x, t) =
1

2π

H(t− ‖x‖)√
t2 − ‖x‖2

is the fundamental solution of the wave equation (18) (being H(·) the Heaviside function).
Then, we impose on B the exact time dependent NRBC given by the following BIE:

1

2
u(x, t) = V∂nDu(x, t)−Ku(x, t) x ∈ B. (19)

Here we have assumed, for simplicity, that the supports of the data are included in Ω(t).
In the case that these supports were included in D := R2 \ Ω(t) ∪ O(t), extra volume terms
should be added to (19) (see [16]). With the above assumptions, the functions u0, v0, f
are null in a whole (two-sided) R2 neighborhood of the boundary B. This implies that
u(x, 0) = ∂nDu(x, 0) = 0 if x ∈ B.

For convenience of the reader, we recall here the mapping properties of the operators V
and K. We set Hr

0(0, T ) = {h|(0,T )
: h ∈ Hr(R) withh ≡ 0 on (−∞, 0)}, where Hr(R) denotes

the classical Sobolev space of order r defined on the real line. When r is an integer, this
space consists of those functions g whose r-th distributional derivative is in L2(0, T ) and
which have h(0) = . . . h(r−1)(0) = 0. Then:
• Hr

0(0, T ;X) is the space of Hr
0(0, T ) functions of t, φ(x, t), such that, setting φ(x, t) =

φ(t)(x), we have φ(t) ∈ X, with ‖‖φ(t)‖X‖Hr(0,T ) <∞.
•H1/2(B) andH−1/2(B) are the trace space on the artificial boundary, ofH1(Ω) functions,

and the corresponding dual space, respectively.
Recalling that u(x, 0) and ∂nDu(x, 0), together with their first time derivatives, vanish

at t = 0, we obtain (see also [31], p.368) the following mapping properties for the bounded
operators V and K:

V : Hr+1
0 (0, T ;H−1/2(B))→ Hr

0(0, T ;H1/2(B)), r ≥ 0 (20)

and

K : H
r+3/2
0 (0, T ;H1/2(B))→ Hr

0(0, T ;H1/2(B)), r ≥ 0. (21)

Recalling the well known embedding property: Hr(0, T ) ⊂ Cm[0, T ] for r > m + 1/2,
from (20) and (21) we deduce that the assumption r > 3/2 guarantees that

V : Hr
0(0, T ;H−1/2(B))→ C([0, T ];H1/2(B)).

Furthermore, if r > 2 we also have

K : Hr
0(0, T ;H1/2(B))→ C([0, T ];H1/2(B)).

14



Here, C(I;X) denotes the space of C0 functions of t ∈ I, such that for each value of t
the corresponding function of x belongs to the space X.

Note that in our case we have u ∈ Hr
0(0, T ;Hr(B)), ∂nDu ∈ Hr

0(0, T ;Hr−1(B)), where
r is at least 2. This is a straight consequence of the assumptions we have made on the
problem data. These assumptions also guarantee that all terms of our NRBC (19) are, in
particular, continuous functions of x ∈ B. Thus, the NRBC it is well defined at any point
of the boundary B.

Setting λB(x, t) = ∂nDu(x, t), the new problem in the finite computational domain Ω(t)
reads: 

utt(x, t)−∆u(x, t) = f(x, t) in Ω(t)× (0, T )

u(x, t) = 0 in Γ(t)× (0, T )
1
2
u(x, t)− VλB(x, t) + Ku(x, t) = 0 inB × (0, T )

u(x, 0) = u0(x) in Ω0

ut(x, 0) = v0(x) in Ω0,

(22)

where Ω0 := Ω(t = 0) is the initial configuration of the finite computational domain.
The application of a standard finite element method to Problem (22) is not a simple task;

furthermore, this approach would, in any case, require the reconstruction of the computa-
tional mesh at each time step. To avoid such complexity, the fictitious domain approach
seems to be a very attractive solution. Moreover, the main advantage of this approach, in
the time dependent case, is the possibility of solving the problem in a simpler domain and
of choosing a fixed mesh in the enlarged domain independent of the geometry of the obsta-
cle (and hence of t), thus avoiding the complexity of constructing at each time step a new
computational mesh.

It is worth mentioning here the recent papers [15] and [32], for the application of standard
finite element methods to PDEs on evolving surfaces.

3.1 The fictitious domain approach

For a generic time dependent function w defined in Ω̃, we set w(t)(x) := w(x, t). Recalling
the regularity properties (20) and (21) of the boundary operators V and K, the problem

defined in the domain of interest Ω̃ consists in the following weak formulation:

for any t > 0, given f(t) ∈ (H1(Ω̃))′, find the triad of unknown functions (u(t), λΓ(t), λB(t)) ∈
H1(Ω̃) × H−1/2(Γ(t)) × H−1/2(B) such that ∀ v ∈ H1(Ω̃), ∀ϕ(t) ∈ H−1/2(Γ(t)) and ∀µ ∈
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H−1/2(B), the following generalized saddle-point evolution problem

d2

dt2
(u(t), v)Ω̃ + a(u(t), v) + 〈λΓ(t), γ

Γ(t)
v〉Γ(t) + 〈λB(t), γBv〉B = (f(t), v)Ω̃

〈ϕ(t), γ
Γ(t)
u(t)〉Γ(t) = 0

2〈µ,VλB(t)〉B − 〈µ, γBu(t)〉B − 2〈µ,KγBu(t)〉B = 0

u(0) = u0 in Ω̃

du

dt
(0) = v0 in Ω̃

(23a)

(23b)

(23c)

(23d)

(23e)

holds in the distributional sense in (0, T ), where a(·, ·) is defined in (6) and γ
Γ(t)

denotes
the time dependent trace operator on Γ(t). As we have already mentioned, this approach
allows to decouple the differential operator from the boundary conditions so that the change
of the boundary Γ(t) with respect to time can be treated adequately by simply modifying
the bilinear form 〈·, ·〉Γ(t) that appears in (23a) and (23b). Moreover, for the numerical

solution, the main amount of work, that is the mesh generation for the whole domain Ω̃, the
construction of the stiffness matrix associated to the bilinear form a(·, ·) and of the mass
matrix associated to the L2 scalar product, is performed once for all on a simpler domain.
It is worth noting that the additional unknown function, namely the Lagrange multiplier
λΓ(t), turns out to be the normal derivative of u at Γ(t) (see [3]).

As already mentioned, the analysis of the coupled problem (23) is still under study. In
the next sections we present the full space-time discretization of (23) and several numerical
tests that we have performed to validate the proposed scheme.

3.2 Full space-time formulation: approximation and implementa-
tion details

3.2.1 Discretization of the time dependent NRBC

We start by briefly recalling the main steps of the Lubich-Galerkin method for the discretiza-
tion of the NRBC (23c), namely of the integral operators appearing in it (for more details we
refer to [30] and [19]). We recall that equation (23c) represents the natural relation that u
and its normal derivative have to satisfy on the artificial boundary B at each time t, and that
(23c) has not to be solved independently of the remaining equations of (23) (neither u nor λB
are given on B). The coupling of the discretization of this equation with the discretization
of the full FEM-BEM fictitious method will be detailed in the next section.

The Lubich convolution quadrature formulas have the fundamental property of using the
Laplace transform of the kernel of the integral equation they are applied to, instead of its
explicit expression. In particular, the discretization in time is based on the splitting of the
interval [0, T ] into N steps of equal length ∆t = T/N and in the collocation of the equation
(23c) at the discrete time levels tn = n∆t, n = 0, . . . , N .

The time integrals appearing in the definition of the single and double layer operators are
discretized here by means of the convolution quadrature formula associated with the second
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order Backward Differentiation Method (BDF) for ordinary differential equations (see [19]
for details). In particular

VλB(·, tn) ≈
n∑
j=0

∫
B
ωV
n−j(∆t; || · −y||)λB(y, tj) dBy, n = 0, . . . , N (24)

KγBu(·, tn) ≈
n∑
j=0

∫
B
ωK
n−j(∆t; || · −y||)γBu(y, tj) dBy, n = 0, . . . , N. (25)

The coefficients ωJn ,J = V ,K, are given by

ωJn (∆t; ||x− y||) =
1

2πı

∫
|z|=ρ

KJ
(
||x− y||, γ(z)

∆t

)
z−(n+1) dz, (26)

where in this case KV = Ĝ is the Laplace transform of the kernel G appearing in the

definition of the single layer operator V , and KK = ∂̂G/∂n is the Laplace transform of
∂G/∂n appearing in the double layer operator K. In particular,

KV(r, s) =
1

2π
K0(rs), KK(r, s) = − 1

2π
sK1(rs)

∂r

∂n
,

where K0(z) and K1(z) are the second kind modified Bessel functions of order 0 and 1,
respectively. The function γ(z) = 3/2 − 2z + 1/2z2 is the so called characteristic quotient
of the BDF method of order 2. The parameter ρ is such that for |z| ≤ ρ the corresponding
γ(z) lies in the domain of analyticity of KJ . Inserting (24) and (25) in (23c), we obtain the
semi-discrete boundary integral relation

2
n∑
j=0

〈µ,
∫
B
ωV
n−j(∆t; || · −y||)λB(y, tj) dBy〉B − 〈µ, γBu(tn)〉B

−2
n∑
j=0

〈µ,
∫
B
ωK
n−j(∆t; || · −y||)γBu(y, tj) dBy〉B = 0.

(27)

For the space discretization of (27), recalling that we assume that the artificial bound-
ary B is given by a parametric representation, at each time instant tj we approximate the
unknown function u(x, tj) on B and its normal derivative λB(x, tj) by continuous piecewise
linear interpolants (with respect to the curvilinear abscissas), defined on curvilinear elements
and associated with the partition {xm,m = 1, . . . ,MB} into MB segments, inherited on B
by the triangular decomposition Ω̃∆. We remark that, as in the time independent case, this
choice allows to have a discretization of the NRBC more accurate than the one obtained by
choosing a piecewise constant approximation of λB.

Therefore, denoting by uB the trace of u on B, uB := γBu, at each time instant tj the
unknown functions uB(·, tj) and λB(·, tj) are approximated by

uB,h(x, tj) :=

MB∑
k=1

ujB,kN
B
k (x) and λB,h(x, tj) :=

MB∑
k=1

λjB,kN
B
k (x) (28)
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where ujB,k ≈ uB(xk, tj), λ
j
B,k ≈ λB(xk, tj) and {NBi }

MB
i=1 is the basis of the space Wh, that is

the set of the continuous piecewise linear basis functions defined on curvilinear elements and
associated with the partition {xm}MBm=1. Replacing (28) into (27), we write the full (Galerkin)
space-time discrete boundary integral relation as follows:

2
n∑
j=0

MB∑
k=1

(Vn−j)mkλ
j
B,k −

MB∑
k=1

MB
mku

n
B,k − 2

n∑
j=0

MB∑
k=1

(Kn−j)mku
j
B,k = 0, m, k = 1, . . . ,MB,

where the matrices Vn−j and Kn−j are given by

(Vn−j)mk =

∫
B

∫
B
ωV
n−j(∆t; ||x− y||)NBk (x)NBm(y)dBxdBy, m, k = 1, . . . ,MB,

(Kn−j)mk =

∫
B

∫
B
ωK
n−j(∆t; ||x− y||)NBk (x)NBm(y)dBxdBy, m, k = 1, . . . ,MB,

and

MB
mk =

∫
B
NBk (y)NBm(y)dBy, m, k = 1, . . . ,MB.

The integration over B is reduced to an equivalent integration over the parametrization
interval. The absorbing condition at time tn is then written in matrix notation as:

2V0λλλ
n
B −

(
MB + 2K0

)
unB = 2

n−1∑
j=0

Kn−ju
j
B − 2

n−1∑
j=0

Vn−jλλλ
j
B, n = 1, . . . , N, (29)

in the unknown vectors ujB = (ujB,1, . . . , u
j
B,MB) and λλλjB = (λjB,1, . . . , λ

j
B,MB).

Since, in the numerical section, we will couple the FEM scheme also with the strong
form of the NRBC, we describe here, for completeness, the expression of the NRBC in the
spatial collocation case. By collocating the discretized equation (27) at the points xm,m =
1, . . . ,MB, the generic element of the matrices Vn−j and Kn−j are defined by∫
B
ωV
n−j(∆t; ‖xm − y‖)NBk (y)dBy and

∫
B
ωK
n−j(∆t; ‖xm − y‖)NBk (y)dBy, m, k = 1, . . . ,MB,

respectively, and the collocation space-time NRBC takes the form (29), where the matrix
MB is replaced by the (square) identity matrix of order MB.

We remark that the integrals in the expression (26) of the coefficients ωJn of the quadrature
formula are efficiently computed by using the trapezoidal rule with L ≥ N equal steps of
length 2π/L. Moreover, they are computed simultaneously by using the FFT algorithm,
with O(N logN) flops (see [19] for details).

3.2.2 Finite element approximation and time discretization of the complete
scheme

We now consider the discretization in space of the equations (23a) and (23b). By using the
notations introduced in Section 2.3, we consider the discretization spaces Xh and Wh with
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k = 1. In particular, Xh is the finite element space of piecewise linear continuous functions
and Wh is the boundary element space of piecewise linear continuous functions. We denote
by {N Ω̃

i }i∈S and {NBi }i∈SB (SB = {1 . . . ,MB}, see Section 3.2.1) the chosen basis functions
for these spaces, respectively. Moreover, we introduce

Φδ(t) = {ϕδ(·, t) : ϕδ(·, t)|Si(t) ∈ P0(Si(t)), Si(t) ∈ Γ(t)}

the boundary element space of piecewise constant functions on a partition of the boundary
Γ(t) = ∪MΓ

i=1Si(t) into curvilinear elements Si(t). We remark that, since the boundary Γ(t)
is only subject to a rotation, but does not modify its shape in time, it is reasonable to
consider a fixed number MΓ for its partitioning. As a consequence, each element Si(t) has
a fixed length that does not change in time. The (time independent) parameter δ denotes

the maximum mesh size on Γ(t), as in the time independent case. We denote by {NΓ(t)
i }i∈SΓ

(SΓ = {1 . . . ,MΓ}) the chosen basis functions for the space Φδ(t). The semi-discretized (in
space) equations (23a) and (23b) read: find uh(·, t) ∈ Xh, λΓ,δ(·, t) ∈ Φδ(t), λB,h(·, t) ∈ Wh

such that
d2

dt2
(uh, wh)Ω̃ + a(uh, wh)− 〈λΓ,δ, γΓ(t)

wh〉Γ(t) − 〈λB,h, γBwh〉B = (f(t), wh) ∀wh ∈ Xh

〈ϕδ, γΓ(t)
uh〉Γ(t) = 0 ∀ϕδ ∈ Φδ(t).

Denoting by u the (time dependent) unknown vector of the nodal values at the vertices of

the triangularization of Ω̃, and by λλλΓ and λλλB the (time dependent) unknown vectors whose
components represent the unknown values of the approximants of λΓ and λB associated with
the nodes defined on Γ(t) and B respectively, we obtain the following system of ordinary
differential equations {

MFü + AFu−B(t)λλλΓ −QλλλB = f

BT (t)u = 0.
(30)

The (square) matrices MF and AF are the mass and stiffness matrices associated to the

L2-scalar product of the basis functions {N Ω̃
i }i∈S of Xh and to the bilinear form a(N Ω̃

i , N
Ω̃
j ),

respectively:

MF
ij =

∫
Ω̃

N Ω̃
i (x)N Ω̃

j (x)dx, AF
ij =

∫
Ω̃

∇N Ω̃
i (x) · ∇N Ω̃

j (x)dx, i, j ∈ S,

where S denotes the set of the total number of degrees of freedom (DOF) in Ω̃. The set S
can be naturally split as S = SI ∪SB, where SI is the set of the internal DOF and SB is
the set of the mesh nodes lying on the artificial boundary B, respectively.

The (rectangular) matrices

Qij =

∫
B
γBN

Ω̃
i (x)NBj (x)dx, i ∈ S, j ∈ SB

and

B(t)ij =

∫
Γ(t)

γ
Γ(t)
N Ω̃
i (x)N

Γ(t)
j (x)dx, i ∈ S, j ∈ SΓ
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represent the discrete trace operators defined on B and Γ(t), respectively. We remark that,
for simplicity, the computation of the matrices MF, AF, Q and B has been performed
by approximating the domain Ω̃ and the curves Γ(t) and B with the polygon Ω̃∆ and the
polygonal functions Γ∆(t) and B∆, associated to the corresponding approximation meshes

defined on Ω̃, Γ(t) and B, respectively. In this case, the approximation error should also take
into account the approximation of the geometry (see [12]).

For the time discretization of (30), we consider a uniform partition of the interval [0, T ]
into N subintervals; we denote by tn, n = 0, . . . , N the time instants, by ∆t the temporal
step size of the decomposition and by Bn = B(tn). Introducing the new variable v = u̇, we
apply the Crank-Nicolson integration method to the first equation of (30), thus obtaining


MF

(vn+1 − vn

∆t

)
+ AF

(un+1 + un

2

)
−
(Bn+1λλλn+1

Γ + BnλλλnΓ
2

)
−Q

(λλλn+1
B + λλλnB

2

)
=

fn+1 + fn

2
vn+1 + vn

2
=

un+1 − un

∆t

(Bn+1)Tu = 0.

From the above second relation we get vn+1 =
2

∆t

(un+1 − un)− vn which, inserted in the

first relation, leads to

(
MF +

∆2
t

4
AF
)

un+1 − ∆2
t

4
Bn+1λλλn+1

Γ − ∆2
t

4
Qλλλn+1
B =

(
MF − ∆2

t

4
AF
)

un

+
∆2
t

4
BnλλλnΓ +

∆2
t

4
QλλλnB + ∆tM

Fvn +
∆2
t

4

(
fn+1 + fn

)
(Bn+1)Tun+1 = 0

vn+1 = 2
∆t

(un+1 − un)− vn.

(31)

By properly reordering the unknown elements of un, we can write the unknown vector
un = [unI ,u

n
B]T , whose two components unI and unB represent the unknowns associated with

the internal nodes and with those on the boundary B, respectively. Similarly it can be done
for the vector vn and for the matrices MF, AF, Q and Bn. These latter can be rewritten in
the following block forms:

MF =

[
MF

II MF
IB

MF
BI MF

BB

]
, AF =

[
AF

II AF
IB

AF
BI AF

BB

]
, Q =

[
QIB
QBB

]
, Bn =

[
Bn
IΓ

Bn
BΓ

]
.

Equation (31) is finally coupled with the discretized NRBC equation (29) (or with (??) if
the collocation method is used for the spatial discretization of the NRBC). To summarize,
the final scheme reads:

starting from the initial values u0, v0, λλλ0
Γ and λλλ0

B, compute the unknowns un+1 =
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[un+1
I ,un+1

B ]T , vn+1 = [vn+1
I ,vn+1

B ]T , λλλn+1
Γ and λλλn+1

B such that

(
MF +

∆2
t

4
AF
)

un+1 − ∆2
t

4
Bn+1λλλn+1

Γ − ∆2
t

4
Qλλλn+1
B =

(
MF − ∆2

t

4
AF
)

un

+
∆2
t

4
BnλλλnΓ +

∆2
t

4
QλλλnB + ∆tM

Fvn +
∆2
t

4

(
fn+1 + fn

)
(Bn+1)Tun+1 = 0

vn+1 = 2
∆t

(un+1 − un)− vn

2V0λλλ
n+1
B −

(
MB + 2K0

)
un+1
B = 2

∑n
j=0 Kn−ju

j
B − 2

∑n
j=0 Vn−jλλλ

j
B.

for n = 0, . . . , N − 1.

Remark 3.1. The boundary matrix Bn depends on the time instant tn since the boundary
Γn changes its position at each time step. From the computational point of view, this implies
that at each time step tn the intersections between the triangular (fixed) mesh of Ω̃ with
the boundary segments of Γ(tn) have to be recomputed. To this aim, we refer the reader
to the recent papers [10] and [26], where the authors present algorithmic details concerning
the intersection of triangular and boundary grids. This computational overhead is however
negligible, if compared to a global re-meshing of the bidimensional domain in a standard finite
element approach. Finally, we remark that condition (17) guarantees that the rank of the
matrix Bn is maximum.

Remark 3.2. Since the boundary Γ(tn) represents the contour of a physical obstacle, it is
natural, from the computational point of view, to set equal to zero the numerical solution
un (which is computed in the whole enlarged domain) at those grid points that at the time
step tn are internal to the boundary Γ(tn). Such a procedure may cause, in principle, strong
discontinuities of the solution in those points that at time tn are covered by the obstacle,
while at time tn+1 are no more internal to it.

This drawback is avoided by considering a rotation velocity of the obstacle smaller than
that of the wave propagation, as it is natural to assume in many realistic situations. To give
an idea, we consider three examples in which the scatterers consist of blades rotating in air
or in water. It is known that the velocity of propagation of acoustic waves in air and in water
is c ≈ 343m/sec and c ≈ 1500m/sec, respectively. The periferic velocity vp of a rotor, whose
blades have radius R, is given by vp = 2π · nr · R, where nr is the number of revolutions of
the rotor.

i) The periferic velocity vp of the rotor blades of an helicopter, with R = 4m and nr =
600 revolutions per minute (rpm) (10 revolutions per second), is vp = 2π · 10 · 4m/sec ≈
251m/sec, while a signal in air propagates, approximately, at 343m/sec.

ii) An eolic aerogenerator, with R = 45m, and performing nr = 15 rpm, has a periferic
velocity vp = 2π · 15/60 · 45m/sec ≈ 71m/sec.

iii) An aircraft rotor, with R = 0.5m, and performing nr = 5700 rpm has a periferic
velocity vp = 2π · 5700/60 · 0.5m/sec ≈ 300m/sec, while a signal in water propagates,
approximately, at 1500m/sec.

We further note that, in case i), the ratio vp/c ≈ 0.73 (see Example 4).
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4 Numerical results

In this section we present five numerical tests. In the first example we consider the Pois-
son problem and we study the convergence in space of the FEM-BEM fictitious domain
approach in a case where the exact solution is known. This test is performed to validate
the analysis carried out in Section 2 where, we recall, the weak formulation in space of
the NRBC is considered. For completeness, we compare the results with those obtained
when the strong formulation of the NRBC is considered, and a collocation method is used
instead of the Galerkin one for the spatial approximation. We remark that the latter formu-
lation is certainly more appealing from the computational point of view, since its numerical
approximation makes it highly competitive with existing NRBCs of local type.

In the Examples 2–5 we consider the time dependent wave equation. In particular,
in Example 2, we consider a fix scatterer and, to test the accuracy of the approximation
obtained by the fictitious domain approach, we construct a reference “exact” solution by
applying the standard Lubich-collocation boundary element method described in [19] with
a very fine space and time discretizations. Once the density function is retrieved on the
physical obstacle, the solution at any point in the infinite domain is computed by means of
the associated potential (see [19] for details). This solution will be denoted by the acronym
BEM. In Examples 3 and 4 we apply the proposed scheme to the diffraction of a wave by
single or multiple rotating bodies. In the last Example 5, we consider two rotating bodies
and a wave that impinges upon them, and is generated by two sources that are located out
of the finite computational domain. The test is performed to simulate those situations where
one is interested in knowing the solution at points that are far away from sources; in this
case, the NRBC that we propose allows to choose a computational domain that does not
include the sources, and easily allows to treat such external contributions.

Example 1. Let Γ and B be the circles centered at the origin and having radius 2 and 10,
respectively. Let Ω be the domain bounded internally by Γ and externally by B. We denote
by u(x) = u(x, y) = e−5((x−5)2+y2) the exact solution of the Laplace equation{

−∆u(x, y) = f(x, y) in Ω

u(x, y) = g(x, y) on Γ,

where the source f(x, y) = −e−5((x−5)2+y2)(100(x−5)2 +100y2−20) and g = u|Γ . We remark
that, in principle, the source f does not have a compact support and g 6= 0, which contradicts
our assumptions. However, since f decays exponentially fast away from its center x = (5, 0),
it can be regarded as compactly supported from the computational point of view, and g can
be treated as zero along Γ. Moreover, the compatibility conditions of the data along Γ are
satisfied, and the solution u is regular in the whole enlarged domain.

We consider the enlarged domain Ω̃ represented by the disk bounded by B. We discretize
it by a uniform triangulation, and we denote by hΩ̃ its mesh size and by nT,Ω̃ the number of
triangles of the decomposition. Starting from the initial mesh corresponding to the choice
hΩ̃ ≈ 0.3, the successive triangulations are obtained by halving the mesh size hΩ̃ (which
implies that the number of triangles nT,Ω̃ is multiplied by a factor 4 at each refinement).
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We denote by uFict
h

Ω̃
the approximate solution obtained by applying the fictitious FEM-BEM

coupling method, using the Galerkin approach for the approximation in space of the NRBC.
Being the exact solution known, we compute the relative H1 error defined by

ErrFict
H1 =

‖u− uFict
h

Ω̃
‖H1(Ω̃)

‖u‖H1(Ω̃)

.

We also compute the relative L2 error defined by

ErrFict
L2 =

‖u− uFict
h

Ω̃
‖L2(Ω̃)

‖u‖L2(Ω̃)

.

In Table 1 we report the relative errors and the associated expected orders of convergence
(EOC) corresponding to the decomposition of the boundary Γ into MΓ = 32 segments.

Table 1: Example 1. Relative H1 and L2 errors for the Galerkin method associated to the
fictitious FEM-BEM method and corresponding EOC.

hΩ̃ nT,Ω̃ ErrFict
H1 EOCFict

H1 ErrFict
L2 EOCFict

L2

3.06E-01 4272 4.58E-01 1.95E-01
0.98 1.92

1.53E-01 17088 2.32E-01 5.18E-02
0.99 1.96

7.65E-02 68352 1.17E-01 1.33E-02
1.00 1.99

3.82E-02 273408 5.87E-02 3.35E-03

We have applied the fictitious FEM-BEM coupling method also using the collocation
approach for the approximation in space of the NRBC, and the errors we have obtained are
very similar to those obtained in Table 1.

For completeness, we compare the above errors with the ones obtained by applying the
standard FEM-BEM coupling method, where the problem is solved in the effective computa-
tional domain Ω, and the Dirichlet boundary condition on Γ is enforced strongly. We denote
by

ErrStrong
H1 =

‖u− uStrong
hΩ

‖H1(Ω)

‖u‖H1(Ω)

and ErrStrong
L2 =

‖u− uStrong
hΩ

‖L2(Ω)

‖u‖L2(Ω)

,

where uStrong
hΩ

denotes the corresponding approximate solution obtained by applying the
Galerkin method for the spatial approximation of the NRBC. These errors are shown in
Table 2. We remark that the effective computational domain Ω is different from the en-
larged one Ω̃ of the fictitiuos domain approach. Consequently, the triangular meshes are
different, as well as the corresponding number of triangles nT,Ω and nT,Ω̃ and of the mesh
sizes hΩ and hΩ̃. Therefore, we compare the errors obtained by the two approaches for com-
parable values of the mesh refinement parameters hΩ̃ and hΩ. As it can be seen, the fictitious
domain method and the strong formulation provide the same accuracy for comparable values
of the mesh size.
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Table 2: Example 1. Relative errors for the Galerkin method associated to the FEM-BEM
method where the Dirichlet conditions on Γ are enforced strongly, and the corresponding
EOC.

hΩ nT,Ω ErrStrong
H1 EOCStrong

H1 ErrStrong
L2 EOCStrong

L2

3.04E-01 4166 4.69E-01 2.92E-01
0.95 1.97

1.52E-01 16664 2.40E-01 7.47E-02
0.99 2.03

7.59E-02 66656 1.21E-01 1.83E-02
1.00 2.01

3.80E-02 266624 6.06E-02 4.60E-03

Example 2. In this second test we solve Problem (18) in a case of a fix obstacle, represented
by a disk of radius 2. In this case the boundary Γ (the circumference of radius 2) and Oe
do not depend on t. The wave propagates radially, starting from an initial configuration
u0(x, y) = e−5((x−5)2+y2), with null initial velocity and without external source (v0 = 0,
f = 0). Even if the exact solution in this case is not known, this is a good test to validate
the fictitious FEM-BEM coupling method, since the numerical solution can be compared
to the solution obtained by using well known and reliable methods. In particular we use
here the reference solution obtained by applying the BEM. For the comparison with other
methods, see [16].

Although u0 does not have a local support, it decays exponentially fast away from its
center x = (5, 0), in such a way that, from the computational point of view, it can be
regarded as compact and supported in a disk with radius smaller than 3 (at distance 2.7
from its center it assumes approximately values of the order 1.0E-16). We choose the artificial
boundary B as a circle of radius R = 10, so that Ω is the domain bounded internally by
Γ and externally by B, and the enlarged domain Ω̃ is the disk bounded by B. In Figure
4 we show the snapshots of the solution obtained by using the fictitious domain approach
at some time instants. In Figure 5, left plot, we show the good agreement of the solution
obtained by the fictitious approach with the reference one (BEM) at P ≈ (10, 0) ∈ B and for
t ∈ [0, 20]. The approximate solution has been obtained by a decomposition of the domain

Ω̃ into 68724 triangles and by choosing a uniform partition of Γ into 128 segments. With
such a choice the spatial step sizes are h ≈ 7.6e − 02 and δ ≈ 9.8e − 02. Here and in the
following numerical tests, we have noticed that the factor β of Lemma 2.7 is approximately
1. The time interval has been decomposed into N = 256 time steps. We note that the
solution, represented in Figure 5, is zero until the initial data reaches the artificial boundary
(around t = 4). Approximately at time t = 2.5, the wave reaches the boundary Γ and is
reflected back, so that around t = 9 we see another outgoing wave at the artificial boundary
B. After that time, the wave is completely out of the annulus, as the reference solution and
the approximate solution with the exact NRBC show. In the right plot we show the energy of
the system. Since the system is a conservative one, the energy remains constant for the time
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instants t ∈ [0, 4] after which it dissipates because the wave reaches the artificial boundary
and leaves the finite computational domain. It is worthwhile noting that the wave hits the
obstacle approximatively at t = 2.5 but, since the obstacle is fix, the energy is perfectly
preserved up to t ≈ 4.

Figure 4: Example 2: Snapshots of the solution at different times.

t = 0 t ≈ 2.6 t ≈ 4.2 t ≈ 4.6

t ≈ 8.5 t ≈ 9.8 t ≈ 12 t ≈ 13

Figure 5: Example 2. Behavior of the solution at P ≈ (10, 0) (left plot) and energy dissipation
(right plot).

In the next three examples we apply the proposed scheme to the diffraction of a wave
by rotating bodies, so that the state of the obstacles depends on t. We recall that boundary
element methods seem difficult to apply to such types of problem and standard finite elements
would require the reconstruction of the computational mesh at each time step. To avoid such
complexity, the fictitious domain approach seems a very attractive solution. In this case in
fact, the computational overhead, with respect to the case of a fix obstacle, is simply given
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by the computation of the boundary matrix Bn, which has to be recomputed at each time
step because the boundary Γ changes its position.

Example 3. We consider a soft ellipsoidal obstacle whose boundary Γ0 = Γ(t = 0) is the
ellipse given by the parametric representation{

x0 = 2 cos(θ) θ ∈ [0, 2π)
y0 = sin(θ).

The scatterer rotates anticlockwise around its center, with a constant angular velocity equals
to ω = 2π/20. Therefore Γ(t) has the following parametric representation:[

x(t)
y(t)

]
=

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

] [
x0

y0

]
with t ∈ [0, T ]. We consider a wave with the initial configuration u0 as in Example 2 and
that impinges upon the rotating obstacle with null initial velocity. The transparent artificial
boundary B is the circle of radius 10. In Figure 6 we show the snapshots of the solution
at different time instants. In Figure 8 we show the behavior of the solution at a point
P ≈ (10, 0) that belongs to the artificial boundary B (left plot) and the energy behavior of
the system with respect to time (right plot). The space/time discretization parameters are
the same of Example 2. The wave hits the rotating obstacle around t = 3.5, and the energy
is preserved up to the time instant t ≈ 5, when the wave reaches the transparent boundary
and leaves the computational domain. We remark that, even if in this case the system is not
a conservative one, the velocity of rotation of the obstacle is small if compared to the speed
of propagation of the wave, so that the energy remains constant until the wave leaves the
computational domain.

We have proposed the fictitious FEM-BEM coupling method in the case of a single
obstacle and when the non vanishing data are included in the finite computational domain.
In the following two examples we show that the proposed approach can be easily extended
to the case of multiple obstacles and multiple sources, where the latter are not included in
the finite computational domain, rather they are treated by the NRBC.

Example 4. We consider two scatterers, both having helicoidal shape, that rotate around
their own center with constant angular velocity ω = 2π/20 and in opposite directions (clock-
wise direction for the left obstacle and anticlockwise direction for the right one). The initial
configuration of the two obstacles is given by the parametric representations{

x0 = ci + ρ(θ) cos(θ − π/2) θ ∈ [0, 2π]
y0 = ρ(θ) sin(θ − π/2),

where

ρ(θ) =
1

3

1√∣∣∣ cos
(

3
4
θ
)∣∣∣13

+
∣∣∣ sin(3

4
θ
)∣∣∣13

,
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Figure 6: Example 3: Snapshots of the solution at different times.

t = 0 t ≈ 3.8 t ≈ 4.6 t ≈ 5.7

t ≈ 6.2 t ≈ 7.4 t ≈ 10 t ≈ 14

Figure 7: Example 3. Behavior of the solution at P ≈ (10, 0) (left plot) and energy dissipation
(right plot).
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c1 = 6 and c2 = −6 for the right and the left obstacles, respectively. We note that the lenght
of the blades of the scatterers is R ≈ 2.24 (= ρ(π)), and that the number of revolutions per
second is nr = 1/20. Therefore, the periferic velocity vp = 2πnrR ≈ 0.71m/sec. Since the
velocity of the (scaled in time) problem is c = 1, the ratio vp/c ≈ 0.71 (see Remark 3.2, i)).

The two obstacles are surrounded by an artificial circular boundary of radius 10. The
initial configuration of the wave is given by the function u0 of Examples 2 and 3, now centered
at the origin of the axis. In Figure 8 we show the snapshots of the propagation of the wave
at some instants. In Figure 9, left plot, we show the behavior of the solution at a point
P ≈ (0, 4) for t ∈ [0, 20] and in the right plot the energy of the system. The solution has

been obtained by a decomposition of Ω̃ into 69176 triangles, by choosing a uniform partition
of the two boundaries of the obstacles into 60 segments and with N = 256 time steps. In
this case, since the system is not a conservative one, we observe that the energy increases
after the wave hits the two obstacles (around t = 4) and is reflected back.

Figure 8: Example 4. Snapshots of the solution at different times.

t = 0 t ≈ 3.8 t ≈ 5.4 t ≈ 7.4

t ≈ 7.7 t ≈ 10 t ≈ 12.4 t ≈ 15.5

Example 5. To conclude our numerical tests, we consider the two helicoidal scatterers
of Example 4, rotating with constant angular velocity ω = 2π/40. We solve Problem (18)
with initial null configuration and initial null velocity. The wave is generated by two sources
f1(x, t) = h(t)δ(x− x1) and f2(x, t) = h(t)δ(x− x2), where

h(t) = e−t sin(100t).

The two sources are concentrated at the points x1 = (0, 12) and x2 = (0,−24). We choose,
as artificial boundary, the circumference of radius 10. Therefore, the two sources are located
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Figure 9: Example 4. Behavior of the solution at P ≈ (0, 4) (left plot) and energy dissipation
(right plot).

out of the finite computational domain, and the corresponding contribution to the wave
propagation is taken into account in the NRBC, which assumes the following form

1

2
u(x, t)− VλB(x, t) + Ku(x, t) = If (x, t) in B × (0, T ].

Because of the presence of the Dirac function in f1 and f2, the integration in space in the
volume term (see [17])

If (x, t) =

∫ t

0

∫
supp(f)

f(y, τ)G(x− y, t− τ)dydτ, (32)

disappears and If has the following simple form:

If (x, t) = If1(x, t) + If2(x, t) =

∫ t

0

h(τ)G(x− x1, t− τ)dτ +

∫ t

0

h(τ)G(x− x2, t− τ)dτ.

For the computation of the volume integral If , we apply the Lubich convolution technique.
We recall that, if the sources are much more far from the area of interest, the approach that
consists in choosing an artificial boundary sufficiently large to include them, thus wasting
computational time and space memory. In Figure 10 we show the snapshots of the wave
propagation at some instants. In Figure 11, left and middle plot, we show the behavior of
the solution at the points P ≈ (0, 4) and P ≈ (0,−4) for t ∈ [0, 80], respectively, and in the

right plot the energy of the system. The solution has been obtained by a decomposition of Ω̃
into 69176 triangles, by choosing a uniform partition of the two boundaries of the obstacles
into 64 segments and with N = 512 time steps. We note that the energy of the system is
null until t ≈ 2.5, that is when the wave produced by the source f1 enters the computational
domain. Then the energy starts increasing and is also influenced by the wave generated by
the source f2, whose contribution apprears around t ≈ 13, after which the waves produced by
the two sources start overlapping and mixing to the waves reflected back by the scatterers.
Then, the energy decreases and vanishes because the two sources have and exponential decay
to zero. Therefore, after t ≈ 60 the waves are completely out of the computational domain
and the system is at rest.
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Figure 10: Example 5. Snapshots of the solution at different times.

t = 0 t ≈ 4 t ≈ 8 t ≈ 13

t ≈ 14 t ≈ 15.5 t ≈ 20 t ≈ 23

t ≈ 28 t ≈ 31 t ≈ 35 t ≈ 48

Figure 11: Example 5. Behavior of the solution at P ≈ (0, 4) (left plot), P ≈ (0,−4) (middle plot)
and energy dissipation (right plot).
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5 Conclusions

We have considered a fictitious domain method for the solution of wave propagation problems
in unbounded domains, treating also the presence of rotating rigid obstacles, coupled with
a NRBC on a suitably chosen artificial boundary. For its solution, we have used a standard
finite element method coupled with an unconditionally stable time marching scheme for
the approximation of the domain method, and a Galerkin (collocation) method in space in
space coupled with a convolution quadrature technique in time for the approximation of the
NRBC. We have presented the analysis and convergence results for the Poisson problem.
The coupling of the two schemes is new and, although fictitious domain methods have been
successfully applied to time dependent problems with stationary obstacles, there is no much
work on numerical methods for the treatment of moving scatterers. At the moment the
theory to justify the validity of the presented approach in the full space-time formulation is
still at an early stage, but the numerical results we have obtained are very promising. We
have presented the application of such an approach to a wide range of problems, treating
also multiple rotating obstacles and multiple sources that are located far away from the
computational domain of interest.
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