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Abstract Nowadays, the description of complex phys-5

ical systems, such as biological tissues, calls for highly6

detailed and accurate mathematical models. These, in7

turn, necessitate increasingly elaborate numerical meth-8

ods as well as dedicated algorithms capable of resolv-9

ing each detail which they account for. Especially when10

commercial software is used, the performance of the al-11

gorithms coded by the user must be tested and carefully12

assessed. In Computational Biomechanics, the Spher-13

ical Design Algorithm (SDA) is a widely used algo-14

rithm to model biological tissues that, like articular15

cartilage, are described as composites reinforced by sta-16

tistically oriented collagen fibres. The purpose of the17

present work is to analyse the performances of the SDA,18

which we implement in a commercial software for sev-19

eral sets of integration points (referred to as “spherical20

designs”), and compare the results with those deter-21

mined by using an appropriate set of points proposed in22

this manuscript. As terms for comparison we take the23
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results obtained by employing the integration scheme 24

Integral, available in Matlab R©. For the numerical sim- 25

ulations, we study a well-documented benchmark test 26

on articular cartilage, known as ‘unconfined compres- 27

sion test’. The reported numerical results highlight the 28

influence of the fibres on the elasticity and permeabil- 29

ity of this tissue. Moreover, some technical issues of the 30

SDA (such as the choice of the quadrature points and 31

their position in the integration domain) are proposed 32

and discussed. 33

Keywords Spherical Design Algorithm · Quadrature 34

Methods · Fibre-reinforced Materials · Finite Element 35

Method 36

1 Introduction 37

Soft biological tissues are often described as complex 38

porous media filled with an interstitial fluid. The com- 39

plexity of these media, formed by the co-existence of 40

several structural units with different physical and chem- 41

ical properties, is related to their internal structure and 42

composition, which render them highly heterogeneous 43

and anisotropic materials. Several multiphasic models 44

of biological tissues have been developed (cf. e.g. [3, 45

13,23,26,39,41,45]), in which the Theory of Mixtures 46

is employed to account for the fact that the intersti- 47

tial fluid comprises several constituents (like, for exam- 48

ple, ionic species, nutrients for the cells and byprod- 49

ucts of cellular metabolic reactions), and that differ- 50

ent types of solid materials (e.g. biological proteins, 51

extra-cellular matrix, and collagen fibres) characterise 52

the overall properties of the “solid phase” of a tissue. 53

Among the solid constituents of biological tissues, col- 54

lagen fibres provide a reinforcing function and their dis- 55

tribution and orientation make the tissues anisotropic. 56
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For example, this is the case of tendons, arterial walls57

[24,37,49], articular cartilage [17,41,46], and heart [52].58

It is believed that a different arrangement of the fi-59

bre network, which may result to be either structurally60

organised or not, corresponds to a different function-61

ality of the tissue [5,60]. In fact, this is particularly62

the case of articular cartilage (a sheath of soft con-63

nective tissue covering the opposing ends of bone in64

diarthrodial joints [46]), in which the collagen fibres65

are concentrated throughout the tissue in a nonuni-66

form way and are oriented statistically according to67

some point-dependent probability density distribution68

[19,58]. More precisely, histological experiments per-69

formed on articular cartilage show that three (some-70

times four [46]) zones can be distinguished in the tis-71

sue, roughly layered along the direction of the tissue’s72

depth and determined by the characteristic alignment73

of the collagen fibres in addition to other properties of74

the tissue. In the so-called “deep zone”, which is close75

to the interface, also referred to as “tidemark”, that76

separates the cartilage from the subchondral bone, the77

fibres are principally oriented perpendicularly to the78

tidemark; in the “middle zone” the fibres are oriented79

almost randomly; finally, in the “upper zone” the fi-80

bres tend to be parallel to the articular surface, i.e.,81

the surface on which the sheaths of cartilage cover-82

ing the opposing bones of the diarthrodial joint ex-83

change loads reciprocally. The pattern of fibre orien-84

tation depicted above influences the stiffness of the tis-85

sue as well as its capability of conveying the interstitial86

fluid throughout its pores. In many cases of interest, a87

fair approximation of the material behaviour of artic-88

ular cartilage can be achieved by regarding the tissue89

as transversely isotropic [17,58], which means that its90

material properties are invariant under rotations about91

a given symmetry axis. Moreover, the solid phase of92

articular cartilage is often assumed to be hyperelastic93

with respect to some undeformed configuration, and its94

principal solid and fluid constituents are regarded as95

intrinsically incompressible. The latter hypothesis im-96

plies that the overall tissue’s compressibility is related97

to the evolution of its porosity, which accompanies the98

flow of the interstitial fluid when the tissue is com-99

pressed. Hereafter, the dynamics of the interstitial fluid100

is assumed to be governed by Darcy’s law. Recently,101

however, possible deviations from Darcy’s regime have102

been investigated in [28], on the basis of the theory re-103

ported in [10]. In the sequel, the hyperelastic, inhomo-104

geneous, and transversely isotropic material model of105

articular cartilage studied in [58] will be adopted. This106

model considers a statistical distribution of collagen fi-107

bres and, thus, introduces directional averaging oper-108

ators to determine the overall tissue’s properties from109

those associated with one family of fibres aligned along 110

a given direction of space. More specifically, if the distri- 111

bution of orientations is assumed to be continuous, the 112

averaging operators are integrals defined over the set 113

of all possible spatial directions. In the context of this 114

work, such integrals will be used to obtain the overall 115

strain energy density and the overall permeability of the 116

considered tissue sample. The fibre orientation pattern 117

is described by a point-dependent probability density 118

distribution, which serves as a weight for the averag- 119

ing integrals, thereby modulating the influence of each 120

family of fibres. 121

The description of the mechanical response of artic- 122

ular cartilage, which includes the study of the flow of 123

the interstitial fluid, is often referred to as the “bipha- 124

sic model of cartilage” [46]. Within a purely mechanical 125

framework, and in its standard formulation, the bipha- 126

sic model consists of two coupled equations, which rep- 127

resent the mass and momentum balance laws for the 128

tissue as a whole. The model equations are obtained 129

by means of closure conditions that relate the tissue’s 130

porosity with the volumetric deformation, and the fluid 131

filtration velocity with the pressure gradient inside the 132

tissue. The first relation is a consequence of incompress- 133

ibility, which for porous media does not necessarily re- 134

strict the deformation to be isochoric, whereas the sec- 135

ond relation stems from Darcy’s law and, thus, intro- 136

duces the tissue’s permeability tensor. 137

When the biphasic model of articular cartilage ac- 138

counts for the inhomogeneity and anisotropy of the tis- 139

sue, and the statistical orientation of the collagen fibres 140

is considered in the constitutive relations of the stress 141

and permeability, the model equations become highly 142

nonlinear and coupled with one another. In such situa- 143

tions, Finite Element (FE) methods are usually adopted 144

to search for numerical solutions. Still, besides the tech- 145

niques elaborated for solving the model equations nu- 146

merically, either problem-dependent approximation cri- 147

teria [34] or dedicated quadrature methods must be de- 148

veloped for computing the integrals that determine the 149

directional averages of the constitutive functions defin- 150

ing the mechanical stress and tissue’s permeability. In 151

general, indeed, these quantities depend on the orien- 152

tation of the fibres and on the deformation in a non- 153

separable way [34], so that it is not possible to compute 154

exactly the averaging integrals before starting the FE 155

method. A rather largely employed algorithm, referred 156

to as Spherical Design Algorithm (SDA), is usually cou- 157

pled with the FE method to solve the averaging inte- 158

grals at each time step and linearisation iteration of 159

the solution procedure. The SDA treats the averaging 160

integrals determining the stress and the permeability 161

of articular cartilage as integrals defined over the sur- 162
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face of a unit sphere centred at each point of the region163

of space occupied by the tissue. The implementation164

of the SDA is explained in detail and its reliability is165

tested against a different quadrature scheme, which is166

available in Matlab.167

It must be recalled that the issue of spherical in-168

tegration is “quite old” (see e.g. [6,44]), and it has169

been recently used for fibre-reinforced biological tis-170

sues (see, e.g., [18,57]). Our work aims to contribute, in171

the framework of the constitutive modelling of tissues,172

to the long-standing problem of the integration over173

the surface of the sphere. This is done with the pur-174

pose of determining the constitutive information sup-175

plied by the statistical orientation of the reinforcing176

collagen fibres. However, in other contexts, several au-177

thors have proposed both analytical and numerical ar-178

guments for providing accurate and efficient numeri-179

cal integration schemes [6,44,14,57]. Among those, a180

general method for obtaining conceptually integration181

formulae was demonstrated by Bažant and Oh [6]. Nev-182

ertheless, to our understanding, what in other circum-183

stances makes a numerical scheme better than others184

finds only practical and fortuitous evidences. In [6], it185

is remarked that the integration points should be cho-186

sen in a way to maintain their symmetric and regular187

distribution on the surface of the sphere. For instance,188

a particularly entangling choice of the set of points can189

be obtained by means of a projection of vertices, and,190

more generally, of points lying on the edges of poly-191

hedra inscribed in the sphere [6]. Some collections of192

Spherical t-Designs generated with the aid of this pro-193

jection method are reported also in [38]. In [57], the194

weights and quadrature points obtained by Lebedev195

[44] have been selected as the best choice for perform-196

ing angular integrations, among other quadrature meth-197

ods. Thus, unluckily, as also pointed out in [57], the198

best set of quadrature points for the SDA is extremely199

problem-dependent, possibly related to the symmetries200

of the function to be integrated, and, in general, the201

degree of the formula, i.e., the degree of the polyno-202

mials that can be resolved exactly, is not a sufficient203

condition to ensure the accuracy of the numerical inte-204

gration for a less smooth and regular function. In par-205

ticular, two different Spherical t-Designs with the same206

accuracy could lead to extremely different numerical207

performances when applied to a particular benchmark.208

As we show in the following, the SDA accuracy strongly209

depends not only on the number of points (representing210

the directions of the fibres) by which we approximate211

the integration, but also on the particular way in which212

they are arranged on the domain of integration, whereas213

the Matlab algorithm that has been used for compari-214

son only depends on the user-defined degree of approx-215

imation, and adaptively chooses nodes and points for 216

the quadrature. 217

The paper is organised as follows: The biphasic model 218

of articular cartilage, as formulated in [58], is sum- 219

marised in Section 2. The probability density distri- 220

butions and the constitutive laws specifically adopted 221

for articular cartilage are reported in Section 3. The 222

structure of the considered quadrature schemes, and in 223

particular of the SDA, is presented in Section 4. The 224

integration procedures are tested in Section 5, in which 225

a well-established benchmark problem is analysed. The 226

results of the benchmark test are commented in Sec- 227

tion 6. Finally, some concluding remarks and plans for 228

future work are outlined in Section 7. 229

2 Biphasic Model of Articular Cartilage 230

The non-linear, poroelastic biphasic model of articular 231

cartilage (AC) has been investigated in several publi- 232

cations with different level of complexity, depending on 233

whether the anisotropy and inhomogeneity of the tissue 234

are accounted for (cf., e.g. [28,29,31,58]). Since a de- 235

tailed presentation of the model has been recently given 236

in [58] (although the presence of ions and their influ- 237

ence on the tissue mechanics were neglected), we recall 238

here for the sake of completeness the main hypotheses 239

and logical steps leading to the equations that have to 240

be ultimately solved. Consistently with the approach 241

followed in other articles, and for the sake of generality, 242

we employ the covariant formalism of Continuum Me- 243

chanics [47], along with the modifications put forward 244

in [19]. The theoretical apparatus, on which the bipha- 245

sic model of AC is developed, rests on two pillars: (i) 246

Hybrid Mixture Theory [9,35], and (ii) Poroelasticity. 247

2.1 Microstructure 248

In this section, we summarise the description of the mi- 249

crostructure of AC, as presented in [58]. Within the ap- 250

proximation presented in the following, the ionic phase 251

of AC is not accounted for (cf. e.g. [45,46] for a re- 252

view on the role of electric charges on the mechanics 253

of AC). At a sufficiently coarse level of description, the 254

main constituents of AC are represented by a matrix 255

of proteoglycans, chondrocytes (i.e., cells secreting the 256

extracellular matrix), collagen fibres, and an intersti- 257

tial fluid capable of flowing throughout the tissue [46]. 258

It is assumed that the fluid saturates completely the 259

tissue and, since the focus of the present study is not 260

on the chondrocytes, it is also hypothesised that ma- 261

trix and chondrocytes can be regarded as a single en- 262

tity. Moreover, in the sense explained in [58], the ex- 263
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istence of a Representative Elementary Volume (REV)264

is claimed, in which all considered tissue’s constituents265

coexist. The portion of REV occupied by the fluid is266

described by the volumetric fraction φf . Due to the as-267

sumption of saturation, the volumetric fraction of the268

solid constituents is defined by φs := 1− φf . As in [58],269

φs is given by the sum φs = φ0s +φ1s, where φ0s and φ1s270

denote, respectively, the volumetric fractions of matrix271

and fibres, expressed per unit solid volume of the REV.272

Since the tissue is inhomogeneous and deforms, the vol-273

umetric fractions are generally function of space and274

time. From here one, the complex “matrix-and-fibres”275

existing at each point of the tissue will be referred to276

as “the solid phase” of AC. Analogously, the fluid can277

also be referred to as the “fluid phase” of AC.278

2.2 Kinematics279

Within the framework of Mixture Theory, the kinemat-280

ics of AC can be formulated as in [54,55], and subse-281

quently adapted in [58] to fibre-reinforced porous me-282

dia. The major hypothesis is that the solid phase of283

AC can be associated with a reference configuration B.284

The motion of the solid phase is described by the one-285

parameter family of smooth mappings286

χ( · , t) : B → R3, (1)

which map the point X ∈ B into x = χ(X, t) ∈ R3, at287

each time t ∈ I of the time interval I .288

To define the motion of the fluid, the 3D mate-289

rial manifold Mf is introduced, whose elements, i.e.,290

the fluid particles Xf ∈ Mf , are embedded into R3 by291

means of the one-parameter family of mappings292

f( · , t) : Mf → R3. (2)

The subset of R3 defined by293

Bt := χ(B, t) ∩ f(Mf , t) (3)

is the region of space occupied at time t ∈ I by the tis-294

sue, viewed as a solid-fluid mixture. In (3), χ(B, t) and295

f(Mf , t) are the images of χ( · , t) and f( · , t) at t ∈ I ,296

respectively. The volumetric fractions φf( · , t), φ0s( · , t),297

and φ1s( · , t) are defined as scalar fields over Bt. More-298

over, at each x ∈ Bt, the vectors vs(x, t) = χ̇(X, t)299

and vf(x, t) = ḟ(Xf , t) denote the velocities of the solid300

phase and of the fluid particle Xf passing through x301

at time t. The superimposed dot means partial differ-302

entiation with respect to time. The two-point, second-303

order tensor F (X, t), definable through the directional304

derivative of χ at (X, t) ∈ B ×I , i.e.,305

(∂Uχ)(X, t) = F (X, t)U , (4)

with U being a vector attached at X, is commonly re- 306

ferred to as the deformation gradient of the solid phase 307

[47]. With respect to an appropriate tensor basis, its 308

components read F aA = ∂χa/∂XA, with a,A = 1, 2, 3. 309

It is important to remark that, as in [58], also in this 310

work matrix and fibres share the same velocity, vs(x, t), 311

at all times and at all points. To complete the kinematic 312

picture, the volumetric ratio J = det(F ) > 0, and the 313

right Cauchy-Green deformation tensor C = FTgF 314

are introduced. Here, g denotes the metric tensor as- 315

sociated with R3. For future use, we also introduce the 316

metric tensor associated with the undeformed configu- 317

ration, G. 318

In the sequel, we adopt a rather standard notation 319

in Continuum Mechanics (cf., e.g., [47]). Let f be a 320

function of space and time expressing a given physical 321

quantity. Without loss of generality, we may assume 322

that f(x, t), with x ∈ R3 and t ∈ I , is a scalar, but 323

it could generally represent a vector or a tensor of any 324

order. A function f of this type is sometimes said to pro- 325

vide the “Eulerian description” of the physical quantity 326

with which it is associated. Since for each X ∈ B and 327

t ∈ I there exists x ∈ Bt ⊂ R3 such that x = χ(X, t), 328

the composition f(L)( · , t) = f( · , t) ◦ χ( · , t) : B → R 329

is introduced, which determines the “Lagrangian de- 330

scription” of the considered physical quantity. Hence, 331

it holds that f(L)(X, t) = f(x, t), with x = χ(X, t). The 332

partial derivative of f(L) with respect to time equals the 333

substantial derivative of f following the solid motion: 334

ḟ(L)(X, t) = Dsf(x, t)

= ∂tf(x, t) + (grad f(x, t))vs(x, t), (5)

where grad f is said to be the spatial gradient of f , and 335

x = χ(X, t). The material gradient of f(L), denoted by 336

Grad f(L), is related to grad f through 337

grad f(x, t) = F−T(X, t)Grad f(L)(X, t). (6)

If q is a spatial vector field, then the divergence of q is 338

given by 339

div q(x, t) = F−T(X, t) : Grad q(L)(X, t)

= tr
[
Grad q(L)(X, t)F

−1(x, t)
]
, (7)

and the symbol “:” stands for “double contraction” be- 340

tween second-order tensors. For the particular case of 341

the solid phase velocity, it holds that 342

div vs(x, t) = F−T(X, t) : Gradvs(L)(X, t)

= J̇(X, t)/J(X, t), (8)

where vs(L) is the Lagrangian counterpart of vs. When 343

q denotes the flux vector associated with a given phys- 344

ical quantity (for example, mass), the material vector 345
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Fig. 1 Graphical representation of a longitudinal section of articular cartilage. The most probable angle of orientation Q,
acting as a mean value for the probability density distribution, and the variance have been reported on the right [17]. For both
the graphs, the ordinate represents a normalised depth ξ = X3/L.

field Q, defined by the equality346

Q(X, t) = J(X, t)F−1(χ(X, t), t)q(χ(X, t), t), (9)

is said to be the Piola transformation of q through the347

motion χ. Hence, recalling Piola’s identity Div(JF−T) =348

0 [47], we obtain the relation349

J(X, t) div q(χ(X, t), t) = DivQ (X, t) (10)

between the spatial divergence of q and the material350

divergence of Q. For example, in a given Cartesian co-351

ordinate system, the material divergence DivQ reads352

DivQ =
∂QA

∂XA
(11)

(here, Einstein’s convention on repeated indices applies).353

2.3 Statistically oriented reinforcing fibres354

The tissues addressed in this work are modelled as fibre-355

reinforced composite materials in which the fibres are356

oriented statistically. To model the arrangement of the357

fibres, one introduces the tangent space of B at X,358

TXB, and considers the set359

S2
XB := {M ∈ TXB : ‖M‖ = 1} (12)

of all unit vectors (directions) M emanating from X.360

This set can be taken as representation of the unit361

sphere centred at X. The probability density distribu-362

tion of finding a fibre aligned along M ∈ S2
XB at X ∈363

B is denoted by ℘ : S2
XB → R+

0 , and must satisfy the364

normalisation condition
∫
S2XB ℘(M) = 1. Furthermore,365

since the phenomena considered in the present context366

are insensitive to reflections of the unit vectors M , ℘367

must also satisfy the parity condition ℘(M) = ℘(−M).368

We emphasise that ℘ is also a function of X. However,369

in order to keep the notation as light as possible, this370

dependence will be omitted but understood throughout 371

this work, unless otherwise specified. 372

Articular cartilage is often modelled as a transversely 373

isotropic material. In particular, in many cases of inter- 374

est, a global symmetry axis, ξ, can be detected, and 375

the material properties of the tissue are invariant un- 376

der rotations about ξ [58]. Each plane orthogonal to ξ 377

is referred to as transverse plane. If the orthonormal 378

vector basis {EA}3A=1 ⊂ TXB is attached to a given 379

X ∈ B in such a way that E3 is parallel to ξ, the unit 380

vector M can be written as 381

M = M̂(Θ,Φ)

= sinΘ cosΦE1 + sinΘ sinΦE2 + cosΘ E3, (13)

where the angles Θ ∈ [0, π] and Φ ∈ [0, 2π[ are the co- 382

latitude and longitude, respectively, and the map M̂ as- 383

sociates pairs (Θ,Φ) ∈ [0, π]×[0, 2π[ with unit vectors of 384

S2
XB. This permits to reinterpret the probability den- 385

sity distribution as a function ℘̂ : [0, π] × [0, 2π[→ R+
0 386

such that 387

℘(M) = ℘(M̂(Θ,Φ)) = ℘̂(Θ,Φ). (14)

The functional dependence of the probability density 388

distribution on M must be consistent with the symme- 389

tries attributed to the material under study. This leads 390

to some restrictions. In particular, due to the transverse 391

isotropy, ℘̂ should be independent of the longitude Φ, 392

i.e., ℘̂(Θ,Φ) ≡ ℘̂(Θ) : [0, π]→ R+
0 . 393

By introducing a function f over S2
XB, the direc- 394

tional average of f is defined by (see [15] for the nota- 395

tion) 396

〈〈 f 〉〉 =

∫
S2XB

℘(M)f(M). (15)

In general, f may represent a scalar-, a vector-, or a 397

tensor-valued quantity. However, for the sake of sim- 398

plicity, we will consider only scalars in the remainder of 399
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this section. In the following, f shall identify a consti-400

tutive function describing, for instance, the elasticity or401

the permeability of articular cartilage. Moreover, as we402

will see in Section 3, the dependence of such constitu-403

tive functions on the fibre orientation requires f to be404

an even function of M , i.e., it holds f(M) = f(−M),405

for all M ∈ S2
XB. Since the probability density enjoys406

the same property, the product ℘f is itself an even func-407

tion of M ∈ S2
XB, which means that the directional408

average of f can also be performed by integrating on a409

half of S2
XB only. For instance, if ℘ and f are restricted410

to the northern hemisphere411

S2+
X B := {M ∈ TXB : ‖M‖ = 1, M .E3 ≥ 0}, (16)

then the directional average of f can be computed as412

〈〈f〉〉 = 2

∫
S2+X B

℘(M)f(M). (17)

In order to be compliant with the normalisation condi-413

tion, ℘ is usually written as414

℘ =
p

Z
, Z =

∫
S2XB

p(M), (18)

where p : S2
XB → R+

0 is the non-normalised density,415

and Z is referred to as the normalisation factor. In this416

case, by restricting p to S2+
X B, and introducing the ad-417

ditional quantities418

γ := p| S2+X B : S2+
X B → R+

0 , (19a)

Z+ :=

∫
S2+X B

γ(M) = 1
2Z, (19b)

one can define the new probability density419

Ψ : S2+
X B → R+

0 , Ψ =
γ

Z+
= 2℘|S2+X B, (20)

and reformulate the average (17) as420

〈〈f〉〉 =

∫
S2+X B

Ψ(M)f(M). (21)

We emphasise that the procedure leading to (21) from421

(15) can be applied only when a given probability den-422

sity ℘, that is naturally defined over S2
XB, can be ap-423

propriately renormalised onto S2+
X B to obtain Ψ . For424

example, this is the case of the von Mises distribution425

introduced in Section 3. However, we will also consider426

the case in which the probability density is defined only427

on S2+
X B, and is not prolongated to S2

XB (this oc-428

curs, for example, when the pseudo-Gaussian distribu-429

tion (35b) is used). In these situations, the directional430

average of a given physical quantity is defined by (21),431

which cannot be deduced from (15), and the probabil-432

ity density, being defined only on a hemisphere, cannot433

be claimed to enjoy any parity symmetry.434

2.4 Balance laws and constitutive relations 435

In this section, we review the balance laws that are rel- 436

evant for the poroelastic model of articular cartilage 437

and the hypotheses on which it relies. The presentation 438

follows that reported in [58]. The first assumption is 439

that the mass-exchange processes occurring among the 440

constituents of the tissue can be disregarded over the 441

time-scales that characterise the experiments investi- 442

gated in this work. Accordingly, in local form, the mass 443

balance laws of the tissue’s constituents are written as 444

Ds(φ0sρ0) + φ0sρ0 div vs = 0, (22a)

Ds(φ1sρ1) + φ1sρ1 div vs = 0, (22b)

Ds(φfρf) + φfρf div vs + div(ρfq) = 0, (22c)

where ρ0, ρ1, and ρf are the mass densities of the ma- 445

trix, fibres, and interstitial fluid, respectively, and q = 446

φf(vf − vs) is the filtration velocity of the fluid. 447

The second hypothesis is that ρ0, ρ1, and ρf are 448

constant in space and time, which allows to divide the 449

balance law of each constituent by the corresponding 450

mass density. By multiplying the resulting expressions 451

by J , and using (8)–(10), (22a)–(22c) become 452

φ̇0sR = 0, (23a)

φ̇1sR = 0, (23b)

φ̇fR + DivQ = 0. (23c)

In (23a)–(23c), φ0sR, φ1sR, and φfR are the Piola trans- 453

forms of φ0s, φ1s, and φf , respectively, and read 454

φαsR(X) = J(X, t)φαs(χ(X, t), t), α ∈ {0, 1}, (24a)

φfR(X, t) = J(X, t)φf(χ(X, t), t). (24b)

Equations (23a) and (23b) imply that φ0sR and φ1sR 455

are constant in time, which means that the Piola trans- 456

form of the volumetric fraction of the solid phase as a 457

whole, φsR = φ0sR + φ1sR, is constant in time, too. In 458

particular, coherently with (24a), φsR is given by 459

φsR(X) = J(X, t)φs(χ(X, t), t). (25)

The results (24a) and (25) are equivalent to (22a) and 460

(22b), respectively, and constrain φ0s, φ1s, and φs to 461

vary as the reciprocal of the volumetric ratio. This means 462

that the mass density of the solid phase, defined by 463

the equality φsρs = φ0sρ0 + φ1sρ1, has zero substan- 464

tial derivative. Consequently, the solid phase behaves 465

as an incompressible material, even though J need not 466

be constrained to be equal to 1. Moreover, by enforc- 467

ing the saturation condition into (24b), φfR can be ex- 468

pressed as φfR = J − φsR, which yields φ̇fR = J̇ and, 469

from (23c), 470

J̇ + DivQ = 0. (26)
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The third hypothesis is that both inertial forces and471

external body forces applied to the tissue can be disre-472

garded. Consequently, the momentum balance laws for473

the solid and fluid phase read474

divσs +ms = 0, (27a)

divσf +mf = 0, (27b)

where σs and σf are the Cauchy stress tensors of the475

solid and fluid phase, respectively, and the internal body476

force mk, with k = f, s, represents the gain or loss of477

momentum of the αth phase due to the interactions478

with the other one. It should be noted that, since the479

matrix and the fibres share the same velocity, only one480

equation is written for the solid phase as a whole. Since481

the tissue as a whole experiences neither production nor482

loss of linear momentum, the body forces ms and mf483

must satisfy the closure condition mf +ms = 0. Thus,484

by summing together (27a) and (27b), one obtains485

div(σf + σs) = 0, (28a)

divσf +mf = 0. (28b)

The Piola transform of (28a) and (28b) is given by486

Div(P f + P s) = 0, (29a)

DivP f + Jmf = 0, (29b)

where P k, k = f, s, is the first Piola-Kirchhoff stress487

tensor of the kth phase and, with abuse of notation, mf488

in (29b) is expressed as a function of time and X ∈ B.489

Equations (29a) and (29b) are obtained by multiplying490

(28a) and (28b) by J , and using the identities [47]491

J(X, t)divσk(χ(X, t), t) = DivP k(X, t), (30a)

P k(X, t) = J(X, t)σk(χ(X, t), t)F−T(X, t). (30b)

Hereafter, it is assumed that the fluid is macroscopically492

inviscid and that the solid phase is hyperelastic with493

respect to the configuration B. Accordingly, σf and σs494

are expressed as [9,35]495

σf = −φfp g
−1, (31a)

σs = −φsp g
−1 + σsc. (31b)

In (31a) and (31b), p is the pore pressure, whereas σsc496

is said to be the “constitutive part” of σs, since it is497

determined by the hyperelastic constitutive law498

σsc = σ̂sc(F ) =
1

J
F

(
2
∂Ŵ

∂C
(C)

)
FT, (32)

with the superimposed hat standing for “constitutive499

function”, and Ŵ being the hyperelastic strain energy500

density function of the solid phase [31,58]. In (32) and501

in the following, σf , σs, and σsc are regarded as a func- 502

tions of time and points X ∈ B. It should be noted 503

that the pore pressure, p, cannot be determined con- 504

stitutively, because the mass density of the fluid, ρf , is 505

assumed to be constant, which implies that the fluid is 506

regarded as incompressible. Rather, p constitutes, to- 507

gether with the motion of the solid phase, χ, one of the 508

unknowns of the problem. 509

It can be proven that the momentum exchange rate, 510

mf , splits additively asmf = p g−1gradφf +mfd, where 511

mfd is the “dissipative part” of mf [9,35]. The term 512

mfd can be expressed constitutively by supposing that 513

Darcy’s law is valid. Hence, mfd is written as a func- 514

tion of F and the filtration velocity q. In particular, this 515

function is assumed to be nonlinear in F and linear in q. 516

We set, thus, mfd = m̂fd(F , q) = −φfg
−1k−1q, where 517

k is the permeability tensor of the medium. These re- 518

sults allow to rephrase the momentum balance law (28b) 519

in terms of Darcy’s law: 520

q = −k grad p. (33)

In the literature on hydrogeological porous media, k is 521

usually referred to as hydraulic conductivity, and it is 522

expressed as the ratio of the medium’s permeability (in 523

fact, a quantity depending on the structure of the pore 524

space) to the fluid’s viscosity [7]. In the present con- 525

text, however, we prefer to stick to the nomenclature 526

adopted in Biomechanics, in which k is known as “tis- 527

sue’s permeability”, and depends both on the tissue’s 528

microstructure and the flow properties of the interstitial 529

fluid. 530

By performing the Piola transform of (31a), (31b), 531

and (33), the first Piola-Kirchhoff stress tensors P f and 532

P s, and the filtration velocity Q take on the form 533

P f = −(J − φsR)p g−1F−T, (34a)

P s = −φsRp g
−1F−T + P sc, (34b)

Q = −KGrad p, (34c)

where P sc = JσscF
−T is the constitutive part of the 534

first Piola-Kirchhoff stress and K = JF−1kF−T is re- 535

ferred to as the tissue’s “material permeability” [4,25]. 536

To close the model, constitutive expressions for P sc 537

and K are sought for. Since P sc is defined through the 538

relation P sc = F (2∂CŴ (C)), it can be determined by 539

prescribing the strain energy density function Ŵ (C). 540

3 Constitutive model of Articular Cartilage 541

In the sequel, a cylindric sample of AC of height L and 542

circular cross section will be used for the benchmark 543

tests. The upper and lower boundaries of the sample 544
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represent, respectively, the articular surface of cartilage,545

and the surface at which it is attached to the subchon-546

dral bone [46]. The specimen is assumed to be trans-547

versely isotropic with respect to the axis of the cylinder,548

which thus coincides with ξ. The direction of ξ is also549

said to be the “direction of the tissue depth” [58]. If550

the cartesian basis of orthonormal vectors {EA}3A=1 is551

chosen as the global reference frame for the whole sam-552

ple, with its unit vectors emanating from the centre of553

the lower boundary, and E3 ≡ ξ, then the coordinate554

associated with ξ, X3, can be normalised as ξ = X3/L,555

thereby identifying the lower boundary with ξ = 0 and556

the upper one with ξ = 1.557

Histological studies performed by Guilak et al. [32]558

show that AC can be roughly divided into three zones,559

which can be related to the variability of the fibre ori-560

entation with the axial (normalised) coordinate ξ [2,561

50]. More specifically, the fibres appear to be almost562

parallel to the symmetry axis in the deep zone, ran-563

domly oriented in the middle zone, and parallel to the564

articular surface in the upper zone. This feature of the565

tissue’s microstructure suggests the approximation ac-566

cording to which the material properties of AC vary567

with ξ, but are constant on each transverse plane. Con-568

sequently, we write Ψ̂(X,Θ) ≡ Ψ̂(ξ,Θ) where, with a569

slight abuse of notation, we refer to Ψ̂ as to a function570

of the axial coordinate ξ and the co-latitude Θ. Among571

other possible choices, we employ the pseudo-Gaussian572

distribution [17,30]573

Ψ̂1(ξ, · ) : [0, π2 ]→ R+
0 , (35a)

Ψ̂1(ξ,Θ) =
1

Z1+(ξ)
exp

(
− [Θ −Q(ξ)]2

2[σ(ξ)]2

)
, (35b)

and the von Mises distribution574

Ψ̂2(ξ, · ) :
[
0, π2

]
→ R+

0 , (36a)

Ψ̂2(ξ,Θ) =
2

π

√
b(ξ)

2π

exp(b(ξ)[cos(2Θ) + 1])

erfi(
√

2b(ξ))
. (36b)

Note that the von Mises distribution (36b) is already575

normalised over the hemisphere S2+
X B. Indeed, given576

the probability density Ψ2(ξ, · ) : S2+
X B → R+

0 , such577

that Ψ2(ξ,M) = Ψ̂2(ξ,Θ), it holds that578

1 =

∫
S2+X B

Ψ2(ξ,M)

= 2π

∫ π/2

0

Ψ̂2(ξ,Θ) sinΘ dΘ . (37)

In (35b), Z1+(ξ) is the normalisation factor, Q(ξ) is579

the most probable angle, and [σ(ξ)]2 is the variance,580

whereas the parameter b(ξ) in (36b) is referred to as581

concentration parameter. Here, we prescribe Q(ξ) and582

σ(ξ) as in [17], and we take b(ξ) as an affine function of 583

ξ, i.e., 584

Q(ξ) =
π

2

[
1− cos

(
π

2

(
−2

3
ξ2 +

5

3
ξ

))]
, (38a)

σ(ξ) = 103[ξ(1− ξ)]4 + 3 · 10−3, (38b)

b(ξ) = −16ξ + 8. (38c)

We remark that the general theory exposed in the fol- 585

lowing and the proposed algorithms, A1 and A2, hold 586

for both choices of the probability density. 587

As shown in Figure 1, Q(ξ) grows monotonically 588

from Q(0) = 0 to Q(1) = π/2. Indeed, at the bone- 589

cartilage interface, the most probable fibre alignment is 590

along the direction of the symmetry axis, while at the 591

articular surface fibres lie in the transverse plane and, 592

due to transverse isotropy, they are randomly oriented 593

on it. In terms of fibre alignment, the tissue experiences 594

a “transition” between two ordered configurations (the 595

one at ξ = 0 being more ordered than that at ξ = 1), 596

passing through a highly disordered configuration. This 597

is reflected by the standard deviation, σ, which tends 598

towards zero (for simulation purposes, it is kept “small 599

enough”) for ξ approaching ξ = 0 and ξ = 1, and at- 600

tains a global maximum at ξ = 1/2, where the ran- 601

domness in the fibre orientation is maximal (i.e., in the 602

limit of perfectly randomly oriented fibres, the variance 603

should tend towards infinity). In the case of the von 604

Mises probability density, the dispersion in the fibres’ 605

alignment is represented by the depth-dependent pa- 606

rameter b(ξ), which is prescribed in (38c) to capture 607

the arrangement of the collagen fibres sketched in Fig- 608

ure 1. In particular, since the concentration parameter 609

describes fibres aligned vertically when it diverges pos- 610

itively, a random arrangement of fibres when it is zero, 611

and fibres oriented horizontally when it diverges nega- 612

tively, we take b(ξ) as a monotonously increasing func- 613

tion of ξ ∈ [0, 1] and, as done in previous works [58,34], 614

we assume that its range is [−8, 8]. Hereafter, we shall 615

indicate the probability density by Ψ̂ whenever there is 616

no need to specify whether it has to be Ψ̂1 or Ψ̂2. 617

3.1 Constitutive Model 618

Coherently with the model put forward in [18,19,21,24, 619

43], Ŵ is specified by superimposing the strain energy 620

density of the matrix, Ŵ0, with that of the fibres, Ŵe. 621

Moreover, following [19], a penalty term, is added to 622

account for the incompressibility of the solid phase at 623

compaction: 624

Ŵ (C) = φsRÛ(J) + φ0sRŴ0(C) + φ1sRŴe(C). (39)
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The term Û depends on C only through the volumetric625

ratio, J =
√

det(C), and takes on the form [19]626

Û(J) = H(Jcrit − J)
(J − Jcrit)

2q

(J − φsR)r
, (40)

where H is the Heaviside function, Jcrit ∈]φsR, 1] is a627

“critical” value of the volumetric ratio, below which the628

potential Û is switched on, while q ≥ 2 and r ∈]0, 1] are629

material parameters (q is an integer). In this work, the630

strain energy density of the matrix, Ŵ0, is assumed to631

be of Neo-Hookean type [11], i.e.,632

Ŵ0(C) = 1
8λ0 (ln[det(C)])

2 − 1
2µ0 ln[det(C)]

+ 1
2µ0

(
G−1 :C − 3

)
, (41)

with λ0 and µ0 being the Lamé first modulus and the633

shear modulus of the matrix, respectively. Nevertheless,634

other choices of Ŵ0 are possible. Usually, for articular635

cartilage, the Holmes-Mow strain energy is used [36].636

The strain energy density associated with the fibres,637

Ŵe, is said to be the “ensemble fibre potential” [20],638

and may be written as (see [18–20,22] for details)639

Ŵe(C) = Ŵ1i(C) + Ŵ1a(C)

= Ŵ1i(C) +

∫
S2+X B

Ψ(M)ŵ1a(C,M). (42)

In (42), Ŵ1i and Ŵ1a are the isotropic and the anisotropic640

contributions of the fibres to the overall strain energy641

density. More specifically, Ŵ1i is assumed to have the642

same functional form as Ŵ0, the only difference being643

in the elastic constants, which are given by λ1 and µ1 in644

the case of Ŵ1i. The summand Ŵ1a, instead, is defined645

by the integral on the right-hand-side of (42), and is646

constructed in two steps: For each X ∈ B, one consid-647

ers the anisotropic strain energy density ŵ1a(C,M),648

which is associated with the fibres oriented along the649

unit vector M emanating from X. Then, ŵ1a(C,M)650

is multiplied by the probability density Ψ(M) of find-651

ing a family of fibres aligned along M , and the result652

is integrated over the material unit hemisphere S2+
X B.653

Here, ŵ1a(C,M) is chosen as654

ŵ1a(C,M) = H(I4 − 1) c2 [I4 − 1]2, (43)

where the short-hand notation655

I4 ≡ I4(C,M) := tr[C(M ⊗M)] = tr[CA] (44)

has been introduced to express the fourth invariant of656

the deformation, c is a material parameter, andH is the657

Heaviside function. The fourth invariant extracts the658

component of C in the direction of M , and expresses659

whether the fibre oriented along M is stretched, i.e.,660

I4 > 1, contracted, i.e., I4 < 1, or neutral, in which case661

I4 = 1. The Heaviside function selects only stretched 662

fibres as contributors to the ensemble fibre potential. 663

The tensor A = M ⊗M is referred to as structure 664

tensor. 665

When the penalty term Û(J) is not active, the con- 666

stitutive part of the first Piola-Kirchhoff stress tensor, 667

P sc = P̂ sc(F ), is given by 668

P̂ sc(F ) = 1
2λ ln[det(C)]g−1F−T + µF

(
G−1 −C−1

)
+ FSa, (45)

where λ := φ0sRλ0 + φ1sRλ1 and µ := φ0sRµ0 + φ1sRµ1 669

are the elastic moduli of the solid phase, and Sa is 670

the anisotropic part of the constitutive second Piola- 671

Kirchhoff stress tensor, i.e., 672

Sa = 2φ1sRc

∫
S2+X B

Ψ(M)H(I4 − 1)[I4 − 1]A. (46)

To complete the constitutive framework, the tissue’s 673

permeability has to be specified. In this work, we use 674

the model presented in [19,58], which extends the re- 675

sults obtained in [21,22] to the case of finite deforma- 676

tions. In [21,22], a Representative Elementary Volume 677

(REV) is claimed to exist, which consists of one segment 678

of fibre, the matrix, and the fluid. The REV perme- 679

ability is determined through an upscaling procedure, 680

based on techniques put forward in [42,48,51,53]. By 681

construction, it depends on the direction of the fibre in 682

whose neighbourhood the REV is constructed. Thus, 683

the permeability of the tissue, k, is computed by per- 684

forming the directional average of the REV permeabil- 685

ity. Hence, the Piola transform of k yields the “material 686

permeability”, K, whose constitutive form is given by 687

K = K̂(F ) =k̂0(J)
(J − φ1sR)2

J
C−1

+ k̂0(J)
(J − φ1sR)φ1sR

J
Ẑ(C), (47)

where the scalar permeability k̂0(J) is defined on the 688

basis of experimental data, and 689

Z = Ẑ(C) :=

∫
S2+X B

Ψ(M)
M ⊗M

I4
. (48)

According to the Holmes-Mow permeability model, k̂0(J) 690

reads 691

k̂0(J) = k0R

[
J − φsR

1− φsR

]κ
exp

(
M

2
[J2 − 1]

)
, (49)

where k0R, κ, and M are material parameters gener- 692

ally depending on the point of the tissue at which they 693

are evaluated. Note that a different formulation of the 694

deformation-dependent permeability in anisotropic me- 695

dia was proposed in [4]. 696
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3.2 Model Equations697

By exploiting the constitutive expressions (45) and (47),698

the balance laws (26) and (29a) become699

J̇ + Div
(
−K̂(F ) Grad p

)
= 0, (50a)

Div
(
−Jp g−1F−T + P̂ sc(F )

)
= 0. (50b)

Equations (50a) and (50b) constitute the set of coupled700

partial differential equations that have to be solved to701

determine the motion of the solid phase, χ, and the702

pressure, p. We remark that the terms in parentheses703

in (50b) express the overall first Piola-Kirchhoff stress704

tensor P̂ (p,F ) := −Jpg−1F−T + P̂ sc(F ) as a function705

of pressure and deformation. We emphasise that, since706

P sc = P̂ sc(F ) and K = K̂(F ) depend solely on F ,707

P̂ (p,F ) is an affine function of p, and Darcy’s law (34c)708

constitutes a linear relation between Q and p, through709

Grad p. Moreover, the model equations (50a) and (50b)710

are nonlinear in χ because they feature J = det(F ),711

and also because P̂ sc(F ) and K̂(F ) depend on F in712

nonlinear way.713

The approximated solution to (50a) and (50b) is714

usually sought for by having recourse to Finite Element715

methods. For example, in the case of zero Neumann716

boundary conditions, and non-zero Dirichlet boundary717

conditions, the following weak formulation [27,31] ap-718

plies719

Fp :=−
∫

B

{
(Grad p̃)K̂(F )Grad p+ p̃J̇

}
= 0, (51a)

Fχ :=

∫
B

P̂ (p,F ) : gGradũ = 0, (51b)

where p̃ and ũ are the test functions of the problem,720

and belong to the sets721

P̃ = {p̃ ∈ H1
0 (B) : p̃|ΓpD = 0}, (52a)

Ṽ = {ũ ∈H1
0(B) : ũ|ΓχD = 0}, (52b)

with Γ pD and ΓχD being, respectively, the portions of the722

boundary of B on which Dirichlet conditions are im-723

posed. Physically, p̃ and ũ represent a virtual pressure724

and a virtual velocity, respectively. Note that the func-725

tionals Fp =: F̂p(χ, p, p̃) and Fχ := F̂χ(χ, p, ũ) are linear726

in p̃ and ũ, affine in p, and highly nonlinear in χ.727

As pointed out in [16,34], the main difficulty in solv-728

ing (51a) and (51b) is due to the constitutive laws ex-729

pressing P̂ sc(F ) and K̂(F ), which necessitate the so-730

lution of integrals of functions, defined over S2+
X B, for731

which the deformation cannot be factorised (cf. (45)732

and (47)). This is due to the presence of the Heavi-733

side function of (I4(C,M)− 1) in the case of P̂ sc(F ),734

and to the division by I4(C,M) in the case of K̂(F ).735

To circumvent these problems, dedicated algorithms are 736

required. The rest of this work is devoted to a com- 737

parative study of some of these algorithms and to the 738

evaluation of their features. 739

4 The Spherical Design Algorithm (SDA) 740

Let f be any (scalar, vector, or tensor) function defined 741

over S2+
X B. By using the identification (13), it holds 742

that f(M) = f̂(Θ,Φ) for all M ∈ S2+
X B, and (Θ,Φ) ∈ 743

D = [0, π/2]× [0, 2π]. If f is integrable over S2+
X B, one 744

can write 745∫
S2+X B

f(M) =

∫∫
D

f̂(Θ,Φ) sin(Θ)dΘdΦ. (53)

The Spherical t-Design [33] is a numerical method used 746

to solve integrals of the same type as (53). After se- 747

lecting two positive integers, m and n, and a proper 748

set of pairs Xij = (Θi, Φj) ∈ D , with i = 1, . . . ,m and 749

j = 1, . . . , n, the integrals in (53) are approximated by 750∫∫
D

f̂(Θ,Φ) sin(Θ)dΘdΦ '
m∑
i=1

n∑
j=1

w(Xij)f̂(Xij)

=
2π

N

m∑
i=1

n∑
j=1

f̂(Xij), (54)

with N = mn. Formula (54) is exact when f(M) is a 751

polynomial of degree t andN = mn is a sufficiently high 752

number of integration points [38]. Here, m denotes the 753

dimension of the set of co-latitudes, whereas n stands 754

for the dimension of the set of longitudes. It is worth- 755

while to notice that the factor 2π/N is the Nth part of 756

the area of the surface of the unit hemisphere, and rep- 757

resents the area of a generic element of the grid covering 758

D . Since, for every X ∈ B, each Xij ∈ D corresponds 759

univocally to the unit vector M ij = M̂(Xij) ∈ S2+
X B 760

and, thus, to the point Yij on the surface of the unit 761

hemisphere, such that Yij−X = M ij , the grid covering 762

D is mapped onto the surface of the unit hemisphere. 763

We remark that the SDA relies on the fact that, if 764

the integration points are properly chosen, the weights 765

w(Xij) in (54) are all equal to 2π
N for each point Xij , 766

with i = 1, . . . ,m and j = 1, . . . , n. For other choices 767

of the integration points, instead, non-trivial weights 768

should be determined [8,12]. 769

4.1 Proper choice of the integration points 770

The first important numerical issue related to the SDA 771

is the appropriate choice of the discrete set of points 772

in the domain D . As shown in Figure 2, if we pick the 773
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points Xij , i = 1, . . . ,m, j = 1, . . . , n, homogeneously774

in D , they cluster close to the poles, as the integral775

measure depends on sin(Θ). To skip this problem, we776

perform the change of variables [59],777

Θ = acos(2v − 1), Φ = 2πu, (v, u) ∈ E , (55)

with E =
[

1
2 , 1
]
× [0, 1]. Clearly, the area of the surface778

of the unit hemisphere is preserved by (55), i.e.,779

|S2+
X B| =

∫∫
D

sin(Θ)dΘdΦ = 4π

∫∫
E

dvdu = 2π, (56)

and the integrals (53) and (54) can be rephrased as780 ∫
S2+X B

f(M) = 4π

∫∫
E

f̃(v, u) dvdu

' 2π

N

m∑
i=1

n∑
j=1

f̃(vi, uj). (57)

Hereafter, we say that points chosen according to (55)781

are “equidistributed” in the sense that, quoting from782

[59], “any small area on the [hemi]sphere is expected783

to contain the same number of points”. A number of784

suitable sets of points for the Spherical t-Design has785

been produced by Sloane [38], and is freely available786

online. We refer to such integration points as to “Sloane787

points”. We remark, however, that any set of “Sloane788

points”, hereafter denoted by S, is defined as a discrete789

subset of [0, π]× [0, 2π]. Thus, to apply the approxima-790

tion formula (54) (or (57), in the case of equidistributed791

points), it is necessary to determine a subset S ′ ⊂ S of792

Sloane points such that793

S ′ ={Xij ∈ S| 0 ≤ Θi ≤ π
2 ,

i = 1, ...,m, j = 1, ..., n} (58)

(and its counterpart in E , if (57) is invoked). In the fol-794

lowing, we shall calculate the directional averages fea-795

turing in the expressions of Z and Sa by using S ′ in796

(54). For example, in the case of Z, we obtain797

Z =

∫
S2+X B

Ψ(M)
M ⊗M

I4

≈ 2π

N

m∑
i=1

n∑
j=1

Ψ̂(Xij)
M̂(Xij)⊗ M̂(Xij)
I4(C,M̂(Xij))

, (59)

where Xij ∈ S ′ for all i = 1, . . . ,m, and j = 1, . . . , n,798

and Ψ̂ can be either the pseudo-Gaussian distribution799

Ψ̂1 in (35b) or the von Mises distribution Ψ̂2 in (36b).800

As we will show in discussing the results of the present801

work, depending on the type of function to be averaged,802

a given set of points of S ′ may, or may not, deliver803

acceptable results.804

As it will be seen in the computation of the tissue’s805

permeability (cf. Figure 3), an appropriate choice of the806

integration points strongly influences the evaluation of807

the integrals over S2+
X B by means of the SDA.808

Fig. 2 Points Xij ∈ D mapped onto the surface of the sphere
(blue dots). (a) Points corresponding to homogeneously cho-
sen Xij . (b) Points corresponding to Xij chosen according to
(55).

4.2 Preliminary test of the SDA 809

The SDA, as sketched in algorithm A1, is often used 810

for the numerical evaluation of the integrals over S2+
X B 811

that appear in the constitutive expressions of stress and 812

permeability (cf. (45) and (47), respectively). It comes 813

into play after (51a) and (51b) are discretised in time 814

and space, and is invoked within each time step and 815

each iteration of the adopted linearisation procedure. 816

As shown in A1, three nested loops have to be per- 817

formed to run the SDA: One of them is on the chosen 818

grid vertices, while the second two refer to the set of 819

points Xij selected in D . In this work, the SDA is com- 820

pared with an integration scheme available in Matlab, 821

which has been sketched in the algorithms A2 and A3. 822

In particular, we specify in A3 the functions used for 823

the implementation of A2. 824

The Heaviside function in (46) is taken into ac- 825

count by means of an If cycle both in the SDA routine 826

(line 18 of algorithm A1) and in the Matlab subroutine 827

“STRESS” (line 11 of algorithm A2). Indeed, since for 828

a given Cauchy-Green deformation tensor C, the inte- 829

grand of (46) is different from zero only if I4 > 1, only 830

stretched fibres contribute to the stress Sa, which can 831
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thus be computed as (recall that A = M ⊗M)832

Sa = 2φ1sRc

∫
HX(C)

Ψ(M)[I4 − 1]A, (60)

where the integration domain HX(C) is given by833

HX(C) =
{
M ∈ S2+

X B| C : (M ⊗M) > 1
}
. (61)

We remark that the integrand of (60) is bounded and834

C∞(HX(C)), for all C. The numerical evaluation of835

(60), performed by means of the SDA, yields836

Sa = 2φ1sRc

∫
HX(C)

Ψ(M)[I4 − 1]A

≈ 2φ1sRc

 2π
N

∑
ij

′
Ψ̂(Xij)[Î4(Xij)− 1]Â(Xij)

 , (62)

where Â(Xij) = M̂(Xij) ⊗ M̂(Xij), and
∑′
ij means837

that the sum is performed only for the values of i and838

j such that C :Â(Xij) > 1.839

In this preliminary set of tests that we present, we840

investigate the reliability and the convergence of the841

SDA in response to the chosen set of integration points842

only, i.e., without implementing it in any Finite Ele-843

ment software. For this purpose, we consider the un-844

deformed state of the tissue, in which it holds that845

C = G, Z = Z0 ≡ Ẑ(G) (see (48)), and the stress846

tensor Sa vanishes identically. Indeed, since M is a847

unit vector in the norm induced by G, it holds that848

I4(G,M) = tr[G(M ⊗M)] = 1. Hence, Z0 can be849

evaluated as850

Z0 =

∫∫
D

Ψ̂(ξ,Θ)Â(Θ,Φ) sin(Θ)dΘdΦ, (63)

with Â(Θ,Φ) = M̂(Θ,Φ)⊗ M̂(Θ,Φ). We remark that851

Z0 is the averaged structure tensor. By expressing M852

as in (13), the components of Z0 become853

(Z0)11 = (Z0)22 = π

∫ π/2

0

Ψ̂(ξ,Θ)[sin(Θ)]3dΘ, (64a)

(Z0)12 = (Z0)13 = (Z0)23 = 0, (64b)

(Z0)33 = 1− 2(Z0)11. (64c)

Since the deformation is not involved in this calcula-854

tion, the evaluation of (Z0)11 need not be coupled with855

the FE code, and serves as a preliminary analysis of the856

reliability of the SDA, thereby helping understand how857

the considered quadrature methods work. We compute858

(Z0)11 by using both the SDA and the algorithm A2,859

and compare the results delivered by the two proce-860

dures.861

It must be noticed that, in (64a), the integration862

with respect to Φ is computed exactly. Thus, only the863

integral with respect to Θ needs to be approximated. 864

This is done by invoking the SDA and the Matlab rou- 865

tine. 866

As anticipated in section 4.1, and shown in Figure 3, 867

if the values of Θ and Φ are taken homogeneously, the 868

corresponding points on the unit hemisphere gather in 869

the neighbourhood of the poles, and the radial compo- 870

nent (Z0)11 of the averaged structure tensor produced 871

by the SDA (cf. algorithm A1) does not converge to 872

the effective value of the integral (black, bold curve in 873

Figure 3, evaluated by means of A2). The same con- 874

siderations apply to the axial component (Z0)33. Note 875

that the points on the hemisphere corresponding to a 876

homogeneous distribution of pairs (Θ,Φ) ∈ D are also 877

said to be equispaced. We remark that the arrow cross- 878

ing the curves in Figure 3 indicates the direction of 879

ascending m. We see that, by increasing the value of 880

m, the result of the numerical computation of (64a), 881

done by means of the algorithm A1, converges to the 882

one obtained with the algorithm A2, if equidistributed 883

points are used to discretise the integration domain. 884
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Fig. 3 Preliminary results of the algorithms A1 and A2
for the undeformed configuration. The solutions obtained by
means of equispaced and equidistributed points are compared
with the numerical outcome of the routine A2 (see also [22]
for comparison).

In Figure 4, we show the results of the calculation 885

of (Z0)11 as in (64a) according to the numerical inte- 886

gration scheme A2 and to different sets of integration 887

points used for the SDA. The first two sets are S ′120 ⊂ 888

S240 and S ′21 ⊂ S41. They represent the subsets of the 889

spherical designs S240 and S41 comprising 240 and 41 890

points, respectively [38], and obtained by selecting the 891

pairs Xij = (Θi, Φj), with Θi ∈ [0, π2 ] and Φj ∈ [0, 2π]. 892

In fact, the spherical designs in [38] are conceived to 893

perform the quadrature over S2
XB, whereas we need to 894

integrate over S2+
X B, only. Three sets of equidistributed 895
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points, with m = 10, 30, 50, respectively, have been con-896

sidered. Moreover, in this work, we propose and test a897

further set of points distributed as shown below898

Θ ∈ I =

{
0,
π

6
,
π

4
,
π

3
,

2π

5
,
π

2

}
, (65a)

Φ ∈ J =

{
0,
π

4
,
π

2
,

3π

4
, π,

5π

4
,

3π

2
,

7π

4

}
. (65b)

The set I × J ⊂ D consists of 48 points. However, by899

combining each Θ in (65a) with all the longitudes Φ in900

(65b), and noticing that for Θ = 0 all directions defined901

by varying Φ “condense” in the north pole, the set I×J902

determines only 41 different elements of S2+
X B.903

In Figure 4a we can see that, if the pseudo-Gaussian904

distribution is used, i.e., if it holds Ψ̂ = Ψ̂1 for all the905

sets of points discretising the hemisphere, the results of906

the numerical integration of (64a) are in good agree-907

ment with those of the Matlab integration. In Figure908

4b, we show the same results as in Figure 4a, but ob-909

tained by employing the von Mises probability density910

distribution, i.e., for Ψ̂ = Ψ̂2. In this case, we see that911

the set S ′120 captures better the Matlab curve, and that,912

in general, the other sets of points fail for positive and913

increasing values of the concentration parameter b (we914

recall that b describes the dispersion of the fibres from915

the direction of most probable alignment). For exam-916

ple, this can be deduced by inspecting Figure 4b for917

ξ = 0, which corresponds to b(0) = 8. This inaccuracy918

could be attributed to the fact that the performance of919

some spherical designs deteriorates when the denomi-920

nator of Ψ̂2 is sufficiently big. For instance, at b(0) = 8,921

erfi(
√

2b(0)) returns a value that is about 1 · 106.922

In Figure 5, we reported the integral error of the923

SDA with respect to the Matlab integration924

errint =

∫ 1

0

∣∣[(Z0)11
]
SDA
−
[
(Z0)11

]
Matlab

∣∣dξ, (66)

which is computed numerically by means of a trape-925

zoidal quadrature formula. The orange, green, and ma-926

genta circles in the figure represent errint in the discreti-927

sation of (64a) by means of S ′21, S ′120, and the new set928

I ×J , respectively, and for Ψ̂ = Ψ̂1. From Figure 5, we929

notice that the error in the computation with equidis-930

tributed points decreases exponentially with increasing931

m (we recall that m is the number of values of Θ taken932

in [0, π2 ]). If the integration with respect to the variable933

Φ is performed analytically (as is the case in (64a)), the934

degree of accuracy of the sets S ′21 and S ′120, in this pre-935

liminary analysis, is almost equal to the one obtained936

with m = 21 and m = 120 equidistributed points, re-937

spectively, whereas the outcomes of the new set I × J938

is less accurate than the one obtainable with the same939

number of equidistributed points. The coloured squares940

represent, respectively, the errors errint computed by 941

employing I × J (magenta), S ′21 (orange), and S ′120 942

(green), for Ψ̂ = Ψ̂2. Differently from the case of the 943

pseudo-Gaussian distribution, the magenta square rep- 944

resenting errint for the new set I × J lies under the 945

blue, squared curve obtained for the case of equidis- 946

tributed points, thereby producing a better result in the 947

evaluation of (Z0)11. Concerning S ′21, we obtain a less 948

accurate result than in the case of 21 equidistributed 949

points, whereas the result obtained by employing S ′120 950

is almost exact, as the corresponing value of the error 951

is smaller than the one obtained with the same num- 952

ber of equidistributed points. We can notice that, for 953

both the probability densities considered in the present 954

study, the new set of points returns almost the same 955

degree of accuracy, whereas the two considered sets of 956

Sloane points (S ′21 and S ′120, respectively) are more in- 957

fluenced by the nature of the integrand. 958

Finally, we compare the computational time required 959

for the algorithms A1 and A2. We see from Figure (6) 960

that, by increasing the number of integration points, 961

the SDA necessitates linearly increasing computational 962

time, while the elapsed time for algorithm A2 increases 963

almost linearly with the refinement of the grid ver- 964

tices (which, at this stage, consist of the points needed 965

to evaluate the depth dependent probability density 966

distribution). We remark that the computational time 967

reported in Figure 6 has been determined for a one- 968

dimensional grid, represented by a given discrete set of 969

values of the normalised axial coordinate ξ. Thus, it is 970

not the overall time required for a full simulation. In- 971

deed, in the full FEM model of (51a) and (51b), the 972

routines shown in the algorithms A1 and A2 will be 973

called for each point of the computational grid, and for 974

each of the six independent components of Z and Sa. 975

Thus, we may conclude from this first analysis that less, 976

but properly chosen, integration points are preferable to 977

an arbitrary big set of equidistributed points. The latter 978

ones, however, lead to a solution that converges to the 979

exact one, whereas the equispaced points do not, un- 980

less non-trivial weights are determined (see Figure 2). 981

In the following, we present results of the routines A1 982

and A2. Afterwards, an internal implementation of the 983

SDA is presented for the set of equidistributed points, 984

for S ′21 and S ′120, and for the set of points proposed in 985

I ×J . We will say that the implementation is internal, 986

if no call to a Matlab routine is needed. 987
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Fig. 4 Results of the evaluation of (Z0)11 with different spherical designs. (a) Pseudo-Gaussian probability density distribu-
tion. (b) von Mises probability density distribution. The curves corresponding to the 41 and 240 Sloane points have been found

by using, respectively, 21 and 120 points on the hemisphere S2+X B. All other sets of points refer to integrations on S2+X B.

Algorithm 1 –A1– SDA (Spherical Design Algortihm)

1: procedure SDA
2: for k = 1, . . . ,M do (M is the number of grid ver-

tices)
3: Initialise (Sa)k = 0, Zk = 0, and Zk = 0 (partial

sums)
4: Load the point set {Xij ∈ D}N=mn

i,j=1 (chosen in a

proper way)
5: Load Q(ξk) and σ(ξk)
6: for i = 1, . . . ,m do (inner cycle to evaluate the

normalisation factor)

7: Evaluate γ̂1(ξk, Θi) = exp
(
−(Θi−Q(ξk))

2

2[σ(ξk)]2

)
8: (Z1)k = (Z1)k + 2π

N
γ̂1(ξk, Θi)

9: end for
10: Calculate

(Ψ̂1)ik = Ψ̂1(ξk, Θi) =
γ̂1(ξk, Θi)

(Z1)k
, i = 1, . . . ,m

11: Given Ck at time t:
12: for i = 1, . . . ,m do
13: for j = 1, . . . , n do
14: Evaluate (I4)ijk = tr(CkAij), and

15: Aij = M ij⊗M ij , with M ij = M̂(Θi, Φj)

16: if (Ψ̂1)ik > tol(Ψ) then

17: (Zpar)ijk = (Ψ̂1)ik
Aij

(I4)ijk

18: Zk = Zk + 2π
N

(Zpar)ijk (Partial sum
has to be uploaded)

19: if (I4)ijk > 1 then

20: (S
(0)
par)ijk = (Ψ̂1)ik[(I4)ijk − 1]Aij

21: (Spar)ijk = 2φ1sRc (S
(0)
par)ijk

22: (Sa)k = (Sa)k + 2π
N

(Spar)ijk (Par-
tial sum has to be uploaded)

23: end if
24: end if
25: end for
26: end for
27: end for
28: end procedure
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Fig. 5 Discrepancy errint (see equation (66)), expressed as a
function of the increasing number of equidistributed values of
Θi, between the values of (Z0)11 corresponding to the Matlab
integration and the values of (Z0)11 corresponding to a set of
equidistributed points. The green, yellow, and magenta dots
and squares correspond to the discrepancy obtained between
the Matlab and the SDA outcomes for 21 and 120 Sloane
points, and for the new set I × J , respectively.

Algorithm 2 –A2– Matlab Integration Algorithm

1: procedure Matlab Integration Algorithm (needs
the call to the functions in algorithm (A3))

2: for k = 1, . . .M do (M is the number of grid vertices)
3: Zk = Integral(@(Θ)γ̂1(Θ, ξk), 0, π)

4: Calculate Ψ̂1(Θ, ξk) = 1
(Z1)k

γ̂1(Θ, ξk).

5: if Ψ̂1(Θ, ξk) > tol(Ψ) then
6: Zk = Integral2(@(Θ,Φ)Zpar(Ck, Θ, Φ), 0, π

2
, 0, 2π)

7: (Sa)k = Integral2(@(Θ,Φ)Spar(Ck, Θ, Φ), 0, π
2
, 0, 2π)

8: end if
9: end for

10: end procedure
11: (Note that, here, we employ the standard Matlab nota-

tion. In particular, the symbol @ represents the function
handle constructor.)
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Fig. 6 Required computational time for the SDA algorithm (a) and for the algorithm A2 (b).

Algorithm 3 –A3– Functions for the Matlab Integra-

tion
1: procedure Probability Density
2: Load Q(ξk) and σ(ξk)

3: Set γ̂1(Θ, ξk) = exp
(
−(Θ−Q(ξk))

2

2[σ(ξk)]2

)
4: end procedure
5: ————————————————————————–
6: procedure HYDRAULIC CONDUCTIVITY
7: Evaluate I4(Ck,M) = Î4(Ck, Θ, Φ), Â(Θ,Φ)

8: Set Zpar(Ck, Θ, Φ) = Ψ̂1(Θ, ξk) Â(Θ,Φ)

Î4(Ck,Θ,Φ)

9: end procedure
10: ————————————————————————–
11: procedure STRESS
12: Evaluate Î4(Ck, Θ, Φ), Â(Θ,Φ)

13: if (Î4)k := Î4(Ck, Θ, Φ) > 1 then
14:

Spar(Ck, Θ, Φ)[(Î4)k > 1]

= 2φ1sRc Ψ̂1(ξk, Θ)(Î4(Ck, Θ, Φ)− 1)Â(Θ,Φ)[(Î4)k > 1]

15: end if
16: (the “If” condition on the fourth invariant should be con-

sidered in the function that evaluates Spar. The present
code returns a tensor Spar whose components for which

(Î4)k ≤ 1 are set equal to zero by means of the term

[(Î4)k > 1] in square brackets)
17: end procedure

5 Solution of a benchmark test988

5.1 The unconfined compression test989

Equations (51a) and (51b) are now solved for a specific990

benchmark test, along with appropriate boundary and991

initial conditions, and the constitutive functions defined992

in (45)–(49). In the inhomogeneous model of articular993

cartilage considered hereafter, these depend on material994

points through the volumetric fractions φ0sR and φ1sR,995

and the referential permeability k0R, which are assumed996

Fig. 7 Computational grid and boundary conditions of the
unconfined compression benchmark.

to vary with the normalised axial coordinate ξ as [58] 997

φ0sR(ξ) = −0.062ξ2 + 0.038ξ + 0.046, (67a)

φ1sR(ξ) = +0.062ξ2 − 0.138ξ + 0.404, (67b)

k0R(ξ)

k0R,hom
=

(
eR(ξ)

eR,hom

)κ
e

(
M
2

[(
1+eR(ξ)

1+eR,hom

)2
−1

])
, (67c)

where eR := (1 − φsR)/φsR, with φsR = φ0sR + φ1sR, 998

is referred to as “referential void ratio” (i.e., the ratio 999

between the referential volumetric fraction of the voids, 1000

1 − φsR, and the referential volumetric fraction of the 1001

solid phase as a whole, φsR), and eR,hom is a homo- 1002

geneous value of the void ratio, taken as reference for 1003

the simulations. All the model parameters have been 1004

defined in Table 1. 1005

The simulated benchmark problem is an unconfined 1006

compression test, performed on a cylindric sample of 1007
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Table 1 Constant values in the considered benchmark.

Name Description Value

µ0 Matrix Shear Modulus 0.2716 [MPa]
µ1 Fibres Shear Modulus 7.2727 [MPa]
λ0 Matrix First Lamé’s Constant 0.0556 [MPa]
λ1 Fibres First Lamé’s Constant 2.4828 [MPa]

c Material Parameter in Ŵ1a(C) 7.5062 [MPa]
k0R,hom Reference scalar hydraulic conductivity 3 · 10−15 [m4/(Ns)]
κ Material parameter in (67c) 0.0848
M Material parameter in (67c) 4.638
eR,hom Homogeneous void ratio 4
R0 Radius of the cylinder 0.5 [mm]
L Height of the cylinder 1.0 [mm]
tolΨ Tolerance on the probability density 5 · 10−5

articular cartilage of height L and circular cross sec-1008

tion of radius R0 in the undeformed configuration B.1009

The specimen is put between two parallel, impermeable1010

plates, which are kept in contact with its top and bot-1011

tom surfaces. During compression, the interstitial fluid1012

flows out of the specimen through its lateral wall. The1013

lower plate is held fixed and, in this work, the specimen1014

is assumed to be clamped at this end in order to sim-1015

ulate the attachment of the tissue to the subchondral1016

bone. The upper plate is moved axially either in force1017

or in displacement control to mimic the load that the1018

tissue has to bear in physiological or pathological con-1019

ditions (for testing purposes, the experimental protocol1020

sometimes imposes loading conditions far beyond the1021

physiological range). In this work, a linearly increasing1022

axial displacement w is applied to the upper plate by1023

means of a loading ramp ending at 20% compression of1024

the sample after T = 20 s, i.e.,1025

w(t) = −0.2L
t

T
. (68)

In formulae, the boundary conditions describing the1026

simulated experimental setting are given by:1027

χ3 = L+ w, Q.E3 = 0, ∀X ∈ Γu,

(69a)

− p = 0, P .N = 0, ∀X ∈ Γw,

(69b)

χ(X, t)− χ(X, 0) = 0, Q.(−E3) = 0, ∀X ∈ Γl,

(69c)

where Γu, Γl, and Γw denote the upper, lower and lat-1028

eral boundaries of the specimen, respectively, and the1029

conditions (69a)–(69c) are intended to apply at all times1030

t ∈ [0, T ]. The unit vectors N and E3 represent the1031

radial and axial directions of the sample, respectively.1032

Usually, the height of the tissue at the end of the load-1033

ing ramp, i.e., LT = L + w(T ) = 0.8L (w(T ) ≤ 0), is1034

maintained constant over a given time interval, during1035

which the fluid filtration velocity and the pore pressure 1036

relax, while the constitutive part of the stress reaches 1037

a constant value that depends on the degree of com- 1038

pression to be maintained. Since in this work we are 1039

interested in the numerical performances of the SDA, 1040

and not in the way in which the system relaxes towards 1041

its stationary state, we present simulations referred to 1042

the loading ramp only. 1043

5.2 The Finite Element setting 1044

A schematic representation of the chosen mesh, and the 1045

above described boundary conditions are reported in 1046

Figure 7. Equations (51a) and (51b) were solved nu- 1047

merically, along with the boundary conditions (69a)– 1048

(69c) and the initial condition J(X, 0) = 1, by means 1049

of a damped Newton method and a Backward Differen- 1050

tiation Formula (BDF) for the time discretisation. The 1051

BDF is a multi-step generalisation of the Backward Eu- 1052

ler scheme. It is characterised by an integer number s, 1053

normally ranging between 1 and 6, and thereby deter- 1054

mining the order of the scheme (for further details, the 1055

Reader is referred to [1,40]). When s = 1, the BDF 1056

coincides with the Backward Euler method. In our sim- 1057

ulations, s ranges between 1 and 5, and the damping 1058

coefficient used in the Newton method is automatically 1059

chosen by the solvers of our commercial software. 1060

In the remainder of this section, we describe how 1061

the quadrature method used to determine the direc- 1062

tional averages couples with the FE implementation of 1063

the model equations. To this end, we sketch the time 1064

and space discretisation of the functionals (51a) and 1065

(51b). This is, in fact, an extension of the discretisation 1066

presented in [27,31] to the case of anisotropic, biphasic 1067

media. Notice that, from here on, the quantities with 1068

a superimposed tilde pertain to the test functions as- 1069

socited with the sets defined in (52a) and (52b). More- 1070

over, for any function f defined on B×I , the notation 1071
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f j ≡ f(X, tj) applies, for all j. With reference to (51a),1072

in which the time-derivative of J features explicitly, we1073

suppose for demonstrational purposes that the time dis-1074

cretisation reduces to a first order BDF, and we write1075

J̇ ≈ Jj − Jj−1

τj
, τj = tj − tj−1, j ≥ 1, j ∈ N, (70)

with τj > 0 being the width of the jth time step. At1076

the jth time step, the time-discrete version of the func-1077

tionals (51a) and (51b) takes on the form1078

0 = Fjχ =

∫
B

P j : gGrad ũ, (71)

0 = Fjp =−
∫

B

(Grad p̃)Kj(Grad pj)

−
∫

B

p̃
Jj − Jj−1

τ j
, (72)

with P j ≡ P̂ (pj ,F j), and Kj ≡ K̂(F j). Next, we1079

consider the overall first Piola-Kirchhoff stress tensor,1080

P̂ (p,F ), whose expression we rearrange as1081

P̂ (p,F ) = −Jpg−1F−T + P̂ 0(F ) + P̂a(F ), (73)

with1082

P̂ 0(F ) = λ ln(J)g−1F−T + µF
(
G−1 −C−1

)
, (74)

P̂a(F ) = F Ŝa(C), (75)

and Ŝa(C) being defined in (46). Analogously, by in-1083

voking the expression of the material permeability in1084

(47), we split K̂(F ) as1085

K̂(F ) = K̂0(F ) + κ̂(F )Ẑ(C), (76)

where we have set1086

K̂0(F ) = k̂0(J)
(J − φ1sR)2

J
C−1, (77a)

κ̂(F ) = k̂0(J)
(J − φ1sR)φ1sR

J
, J = det(F ). (77b)

The decompositions (73) and (76) are done in order1087

to highlight the presence of the anisotropic summands,1088

P̂a(F ) and κ̂(F )Ẑ(C), and their implementation in the1089

Finite Element method. Indeed, by accounting for (73)1090

and (76), the time-discrete version of the functionals Fχ1091

and Fp at the instant of time tj reads1092

0 = Fjχ =

∫
B

{
−Jjpjg−1(F j)−T : gH̃

}
+

∫
B

P j
0 : gH̃ +

∫
B

F jSja : gH̃, (78a)

0 = Fjp =−
∫

B

(Grad p̃)Kj
0(Grad pj)

−
∫

B

(Grad p̃)κjZj(Grad pj)

−
∫

B

p̃
Jj − Jj−1

τ j
, (78b)

in which H̃≡Grad ũ, and P j
0≡ P̂ 0(F j),Kj

0 =K̂0(F j), 1093

κj= κ̂(F j), and 1094

Sja ≡Ŝa(Cj)

=2φ1sRc

∫
S2+X B

Ψ(M)H(Ij4 − 1)[Ij4 − 1]A, (79a)

Zj ≡Ẑ(Cj) =

∫
S2+X B

Ψ(M)
M ⊗M

Ij4
. (79b)

It should be noticed that, because of the integral over 1095

S2+
X B in (79a) and (79b), the third summand on the 1096

right-hand-side of (78a) and the second summand on 1097

the right-hand-side of (78b) feature two integrations, 1098

which have to be performed hierarchically: First, one 1099

has to solve at each time step the integral over S2+
X B, 1100

and then the integral over B. Since the problem is 1101

nonlinear, we look for solutions by invoking Newton 1102

method. Hence, at the jth time step, and within the 1103

kth Newton iteration (k ≥ 1, k ∈ N), we solve the lin- 1104

earised equations 1105

Fj,k−1
χ + DχF

j,k−1
χ [hj,k] + DpF

j,k−1
χ [ϑj,k] = 0, (80a)

Fj,k−1
p + DχF

j,k−1
p [hj,k] + DpF

j,k−1
p [ϑj,k] = 0, (80b)

in which we adopted the notation 1106

Fj,k−1
χ = Fχ(χj,k−1, pj,k−1), (81a)

Fj,k−1
p = Fp(χ

j,k−1, pj,k−1), (81b)

Dχ and Dp indicate Gâteaux differentiation with re- 1107

spect to χ and p, respectively, and hj,k and ϑj,k are the 1108

incremements associated with the motion and the pres- 1109

sure, respectively, along which the Gâteaux derivatives 1110

are computed, i.e., 1111

χj,k = χj,k−1 + hj,k, (82a)

pj,k = pj,k−1 + ϑj,k. (82b)

The explicit computation of the Gâteaux derivatives 1112

in (80a) and (80b) trasforms the linearised variational 1113

problem (78a)–(78b) into the abstract form [31] 1114

A(hj,k, ũ)−B(ϑj,k, ũ) = −Fj,k−1
χ , ∀ ũ ∈ Ṽ , (83a)

−C(hj,k, p̃)−D(ϑj,k, p̃) = −Fj,k−1
p , ∀ p̃ ∈ P̃, (83b)
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which should be solved for the increments hj,k and θj,k.1115

In (83a) and (83b) we define the bilinear forms [31]1116

A(hj,k, ũ) = DχF
j,k−1
χ [hj,k]

=

∫
B

gH̃ : Aj,k−1 : Hj,k, (84a)

−B(ϑj,k, ũ) = DpF
j,k−1
χ [ϑj,k]

=

∫
B

{
−Jj,k−1ϑj,kg−1(F j,k−1)−T : gH̃

}
, (84b)

− C(hj,k, p̃) = DχF
j,k−1
p [hj,k]

= −B(hj,k, p̃)

τj

−
∫

B

(Grad p̃)
(
Kj,k−1 : Hj,k

)
(Grad pj,k−1), (84c)

−D(ϑj,k, p̃) = DpF
j,k−1
p [ϑj,k]

= −
∫

B

(Grad p̃)Kj,k−1(Gradϑj,k), (84d)

where Hj,k = Gradhj,k, Aj,k−1 is the algorithmic first1117

elasticity tensor [47], and Kj,k−1 in (84c) is given by1118

Kj,k−1 ≡ ∂K̂

∂F
(F j,k−1). (85)

The SDA (or the Matlab integration) comes into play1119

in the computation of Aj,k−1, Kj,k−1, and Kj,k−1. Let1120

us consider, for instance, the expression of the elasticity1121

tensor, and let us split it into a “standard”, isotropic1122

part, Aj,k−1
st , and a “non-standard”, anisotropic part1123

pertaining to the fibres, Aj,k−1
e , i.e.,1124

Aj,k−1 = Aj,k−1
st +

∂P̂a

∂F
(F j,k−1)

= Aj,k−1
st + Aj,k−1

e . (86)

The standard elasticity tensor Aj,k−1
st contains all the1125

terms stemming from the incompressibility constraint,1126

the energetic contribution of the penalty term (40), and1127

the terms pertaining to the isotropic part of the model,1128

whereas the non standard contribution is such that the1129

following identity holds1130

gH̃ : Aj,k−1
e : Hj,k = sym(H̃

T
.Hj,k) : Sj,k−1

a

+ [(F j,k−1)T.H̃] : Cj,k−1
e : [(F j,k−1)T.Hj,k], (87)

where Sj,k−1
a is obtained from (79a) by substituting Ij41131

with the value of the invariant at the (k− 1)th Newton1132

iteration, i.e., with Ij,k−1
4 , and1133

Cj,k−1
e = 4φ1sRc

∫
S2+X B

Ψ(M)H(Ij,k−1
4 − 1)A⊗A. (88)

Analogously, Kj,k−1 = K̂(F j,k−1) splits as follows1134

Kj,k−1 =Kj,k−1
0 + κj,k−1Zj,k−1, (89)

where 1135

κj,k−1 ≡ k̂0(Jj,k−1)
(Jj,k−1 − φ1sR)φ1sR

Jj,k−1
, (90a)

Kj,k−1
0 = k̂0(Jj,k−1)

(Jj,k−1 − φ1sR)2

Jj,k−1
(Cj,k−1)−1, (90b)

Zj,k−1 =

∫
S2+X B

Ψ(M)
M ⊗M
Ij,k−1
4

, (90c)

and Kj,k−1 is such that 1136

Kj,k−1 : Hj,k =Kj,k−1
0 : Hj,k

+

[
∂κ̂

∂F
(F j,k−1) : Hj,k

]
Zj,k−1

+ κj,k−1

[
∂Ẑ

∂F
(F j,k−1) : Hj,k

]
, (91)

with 1137

Kj,k−1
0 =

∂K̂0

∂F
(F j,k−1). (92)

Note, in particular, that the term between brackets in 1138

the third summand on the right-hand-side of (91) is 1139

given by 1140[
∂Ẑ

∂F
(F j,k−1) : Hj,k

]

= −2

∫
S2+X B

Ψ(M)
A

(Ij,k−1
4 )2

[
A :

(
(F j,k−1)T.Hj,k

)]
,

(93)

with A = M ⊗M and Ij,k−1
4 = A : Cj,k−1. The inte- 1141

gral in (93) is nontrivial due to the presence of highly 1142

oscillating functions, which manifest themselves when 1143

polar coordinates are used. 1144

Both the SDA and the Matlab integration come into 1145

play at each time step and within each Newton itera- 1146

tion performed to construct A(hj,k, ũ), C(hj,k, p̃), and 1147

D(ϑj,k, p̃) (cf. (84a), (84c), and (84d)). In particular, 1148

they are adopted to compute the integrals over S2+
X B 1149

that appear in the evaluation of Sj,k−1
a , Cj,k−1

e , Zj,k−1, 1150

and ∂F Ẑ(F j,k−1). For this purpose, the quadrature 1151

methods are invoked at each integration point of each 1152

grid element, during the assembly of the “stiffness ma- 1153

trix”. The computational effort of this procedure is re- 1154

lated to the number of integration points within each el- 1155

ement of the FE discretisation. Thus, if, for instance (in 1156

a 2D mesh), each element features 4 integration points, 1157

then 4×(number of elements) calls to the algorithms A1 1158

(or A2) per time step and per linearisation iteration are 1159

required. 1160

It is worthwhile to mention that the basis functions 1161

of the Finite Element discretisation are necessary to 1162

determine Sj,k−1
a , Cj,k−1

e , Zj,k−1, and ∂F Ẑ(F j,k−1). 1163
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This occurs because each of these quantities depends1164

on Ij,k−1
4 , which, in turn, requires the interpolation of1165

Cj,k−1 = (F j,k−1)TgF j,k−1 and, thus, of F j,k−1. To1166

highlight the relation between the basis functions and1167

Ij,k−1
4 , let us first introduce the grid function hχ ap-1168

proximating the motion at the jth instant of time and1169

at the (k − 1)th Newton iteration:1170

(hχa)j,k−1 =

N∑
i=1

(χa(i))j,k−1ϕ(i), (94)

where {ϕ(i)}Ni=1 is the set of basis functions, and N is1171

the number of nodes. Consequently, the generic com-1172

ponents of the grid functions hF j,k−1 and hCj,k−1 are1173

given by1174

(hF aA)j,k−1 =

N∑
i=1

(χa(i))j,k−1 ∂ϕ(i)

∂XA
, (95a)

(hCBD)j,k−1 =gab(
hF aB)j,k−1(hF bD)j,k−1, (95b)

which implies that Ij,k−1
4 is approximated by the grid1175

function1176

(hI4)j,k−1 = (hCBD)j,k−1ABD

= gab

N∑
i,l=1

(χa(i))j,k−1(χb(l))j,k−1 ∂ϕ(i)

∂XB

∂ϕ(l)

∂XD
ABD (96)

(note that in (95b) and (96) Einstein’s convention on1177

repeated indices is used to denote the summation over1178

a, b = 1, 2, 3 and A,B = 1, 2, 3). It follows from (96)1179

that (hI4)j,k−1 necessitates the derivatives of the basis1180

functions, as well as the coefficients (χa(i))j,k−1. These1181

are, in fact, the inputs that a quadrature scheme (be it1182

the SDA or the Matlab routine) receives from the FE1183

discretisation at the (k − 1)th Newton iteration within1184

the jth time step.1185

In our simulations, polynomial basis functions of de-1186

gree one, two, and three are tested. Due to the element-1187

wise smoothness of the basis functions, the presence of1188

their derivatives in (96) does not worsen in a signifi-1189

cant way the integration procedure. However, varying1190

the degree of the polynomials may yield to apprecia-1191

bly different performances, as we could see by running1192

a FE simulation of a simplified, isotropic version of1193

the model in which the fibres are absent (in this case,1194

K = K0 = k̂0(J)JC−1 and Sa = 0, so that neither1195

the SDA nor the Matlab integration scheme are nec-1196

essary). We found that quadratic Lagrangian polyno-1197

mials are the optimal choice for discretising both the1198

displacements and the pressure. Indeed, if linear basis1199

functions are used, an oscillatory solution is obtained1200

for some components of the stress and the permeability1201

of the system.1202

Concerning the grid convergence of the mesh re- 1203

ported in Figure 7, we compared three different quad- 1204

rangular meshes to a finer one (1250 elements). 1205

In Table 2, the relative integral errors in the output 1206

curves representing the components of Z, and those of 1207

Sa, are reported. To compute such errors, we applied 1208

the following formulae 1209

errξ =
|
∫ 1

0
Qidξ −

∫ 1

0
Qfinerdξ|

|
∫ 1

0
Qfinerdξ|

, (97)

errt =
|
∫ T

0
Qidt−

∫ T

0
Qfinerdt|

|
∫ T

0
Qfinerdt|

, (98)

where the index i denotes the type of mesh, i.e., i = 1210

Coarse, Intermediate,Fine,Q is one of the generic quan- 1211

tity of the model, and T represents the final instant of 1212

the loading ramp. 1213

The pressure p, the norm of the displacement u, 1214

and the von Mises equivalent stress σVM, to which Ta- 1215

ble 2 refers, are the results of a pointwise evaluation, 1216

in the point X1 = (0, 0, L2 ), for the pressure, and X2 = 1217

(R2 ,
R
2 ,

L
2 ), for the velocity and the stress. The compo- 1218

nents of the tensors Z and Sa used to evaluate the 1219

errors are, instead, taken over the depth of the sample. 1220

As visible from the reported errors, the discrepancy 1221

between the results obtained with progressively finer 1222

grids are small. Thus, with the grid represented in Fig- 1223

ure 7 (fine grid of Table 2), we already reached the mesh 1224

convergence. Note that the integrations for computing 1225

the errors in (97) have been performed by means of a 1226

trapezoidal numerical integration. 1227

As previously specified, the simulations were run by 1228

adopting two different methods for the solution of the 1229

integrals over S2+
X B. The first method, outlined in A1, 1230

is the SDA, while the second method is the integration 1231

routine A2. For the SDA (either internal or in Matlab), 1232

at each X ∈ B, an appropriate set of points was cho- 1233

sen on S2
XB. The algorithm A2 is performed with fixed 1234

absolute and relative tolerances in the Matlab quadra- 1235

ture. 1236

6 Results 1237

6.1 Matlab validation 1238

Before presenting the results of the inhomogeneous and 1239

transversely isotropic model of articular cartilage (see 1240

sections 2.1, 2.4, and 3.2), we show a second set of pre- 1241

liminary results to evaluate the performances of the rou- 1242

tine A2 in the context of FEM simulations. This is done 1243

because the algorithm A2 is the basis for comparison 1244
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Table 2 Grid Convergence

Coarse (50 elem.) Intermediate (120 elem.) Fine (392 elem.)

errξ(Z11
0 (t = 0)) 7.5 · 10−7 3.8 · 10−7 4.9 · 10−8

errξ(Z11
0 (t = 20)) 5.8 · 10−4 4.4 · 10−4 3.9 · 10−4

errξ(Z33
0 (t = 0)) 4.7 · 10−7 1.1 · 10−7 1.6 · 10−8

errξ(Z33
0 (t = 20)) 2.7 · 10−4 8.7 · 10−5 4.4 · 10−4

errξ((Sa)11) 6.6 · 10−3 5.2 · 10−3 4.8 · 10−3

errξ((Sa)33) 4.5 · 10−3 4.5 · 10−3 5.5 · 10−3

errt(p) 6.2 · 10−3 3.8 · 10−3 3.0 · 10−4

errt(|u|) 7.1 · 10−4 9.0 · 10−4 3.0 · 10−4

errt(σVM ) 2.2 · 10−3 1.1 · 10−3 3.0 · 10−4

with the SDA. More specifically, it has been checked1245

for no error propagation in time due to the coupling1246

between the FEM solver and the routine A2. We re-1247

mark that the Matlab routine “Integral” (cf. Algorithm1248

A2) chooses the numerical quadrature method depend-1249

ing on the kind of function that has to be integrated. A1250

control on the quality of the integration can be done by1251

manipulating the absolute and the relative tolerances in1252

the error associated with the quadrature results. Here,1253

the considered default values for these tolerances, de-1254

noted in Matlab by AbsTol and RelTol, respectively,1255

are AbsTol = 1 · 10−10 and RelTol = 1 · 10−6. In fact,1256

although (Z0)11 is decoupled from deformation, the in-1257

tegral in (64a) cannot be performed exactly.1258

For the purposes outlined above, we consider in this1259

section the simple case of a homogeneous and isotropic1260

material model, with the probability density (35b). In1261

particular, we set φ0sR = 0.1 and φ1sR = 0.3 everywhere1262

in the computational domain, and we assume that the1263

probability density distribution reduces to Ψ̂1(ξ,Θ) =1264

1/2π for all values of ξ ∈ [0, 1] and for all Θ ∈ [0, π2 ].1265

This means that the normalisation factor is Z1+ = 2π ≈1266

6.2832. Note that the values φ0sR = 0.1 and φ1sR =1267

0.3 are not taken from (67a) and (67b), and do not1268

correspond to a value of ξ ∈ [0, 1].1269

Furthermore, in order to make the integral defining1270

Z in (48) exactly solvable, we enforce the (strong) as-1271

sumption that Z, in a neighbourhood of I4(C,M) = 1,1272

reduces to1273

Z =

∫
S2+X B

Ψ1(M)
M ⊗M
I4(C,M)

≈ 1

2π

∫
S2+X B

M ⊗M .

(99)

Accordingly, the components of Z are given by1274

Z12 = Z13 = Z23 = 0, (100a)

Z11 = Z22 = Z33 = Z, (100b)

in which all the three diagonal components of Z are1275

set equal to Z = 1
3 , the material being isotropic in this1276

preliminary study. Finally, to solve exactly the integral 1277

in the definition (46) of Sa, we allow the fibres to con- 1278

tribute to the stress even when I4(C,M) is smaller 1279

than unity. Note, however, that this simplification is 1280

sometimes physically sound in those situations in which 1281

the collagen fibres contribute to the overall compressive 1282

stiffness of cartilage [56]. In these cases, the Heaviside 1283

function can be eliminated from the expression of Sa, 1284

which becomes 1285

Sa =
2φ1sRc

2π

∫
S2+X B

[I4(C,M)− 1]M ⊗M . (101)

Consequently, the diagonal components of Sa are given 1286

by 1287

(Sa)11 =
2φ1sRc

15
(3C11 + C22 + C33 − 5), (102a)

(Sa)22 =
2φ1sRc

15
(C11 + 3C22 + C33 − 5), (102b)

(Sa)33 =
2φ1sRc

15
(C11 + C22 + 3C33 − 5). (102c)

We compare now the components of Z computed by 1288

means of the algorithm A2, ZA2, with the components 1289

of Z determined in (100a) and (100b). We compute, 1290

thus, the mean relative deviation 1291

Err(Z) =
ZA2 − Z
ZA2

, (103)

which turns out to be O(10−6). For the stress, we define 1292

the mean relative error associated with the diagonal 1293

components of Sa 1294

Err(Sa)= max
J=1,2,3

{
1

Vol(B)

∫
B

(Sa)JJA2 − (Sa)JJ

(Sa)JJA2

}
,

(104)

where (Sa)JJA2 is the JJ-component of Sa evaluated 1295

with the aid of the algorithm A2. Also in this case, 1296

we obtain Err(Sa) = O(10−6). We notice that both 1297

Err(Z) and Err(Sa) are of the same order of magni- 1298

tude as the Matlab input RelTol. We remark that, in 1299
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the simplified model discussed in this section, Z is con-1300

stant in time and, since material inhomogeneities have1301

been disregarded, it is constant also in space. The stress1302

Sa, instead, depends on time through the deformation.1303

From the estimated errors we can see that the Mat-1304

lab quadrature method defines a proper approximation1305

of the integrals. Thus, in the following, the results of1306

algorithm A2 can be used as a basis for comparison.1307

6.2 Inhomogeneous and anisotropic model1308

In this section, the numerical simulations done with the1309

setting in Table 3 for the simulations with the pseudo-1310

Gaussian distribution, and in Table 6, for the von Mises1311

distribution, are reported and compared one with each1312

other in terms of accuracy and computational time.1313

First, in order to understand the mechanical re-1314

sponse to external stimuli of a biological tissue like1315

articular cartilage, we propose here a Finite Element1316

description of an unconfined compression test (a test1317

that is widely used to estimate the material properties1318

of soft tissues).1319

In Figure 8, the 2D snapshots of pore pressure, ra-1320

dial filtration velocity, and equivalent von Mises stress1321

are reported in the case of an isotropic tissue without1322

fibres (i.e., with φ1sR = 0 in (46) and (47)). The re-1323

quired computational effort of such FEM simulation,1324

for which no fibres are considered, consists of a com-1325

putational time of about 13 seconds, and a memory1326

allocation of about 1.44 Gb. The response of the tis-1327

sue to the applied incremental compression manifests1328

itself with an increasing pore pressure, which assumes1329

its higher value at the bottom of the sample, whereas1330

the higher velocity is observed at the top external wall1331

of the cylinder. The stress, finally, has its peak at the1332

bottom of the sample, where the tissue is constrained.1333

As we will see in Figure 12, the addition of fibres1334

as a constituent of the solid phase has the consequence1335

of lowering the maximum value of the pore pressure1336

attained in the domain, and, on the other hand, of in-1337

creasing the solid stress at the bottom of the sample1338

and the fluid flux at the escaping wall at the top zone1339

of the tissue. The latter behaviour is due to the pres-1340

ence, in that zone, of horizontal fibres. The results of1341

the simulations obtained for an inhomogeneous (both1342

in material properties and probability density distribu-1343

tion) and fibre-reinforced sample of articular cartilage1344

are reported. All the results were obtained from simu-1345

lations being equipped on an Intel Xeon E5-2620 pro-1346

cessor.1347

In Tables 4 and 5, the computational time and the1348

memory allocation required for the simulations listed1349

in Table 3 and 6 are reported. A comparison of the 1350

performances of the FEM simulations in Tables 3 and 1351

6 with the computational effort required by the model 1352

with no fibres could give a rough estimate of the time 1353

spent by each routine for the only integration. 1354

6.2.1 Results with the pseudo-Gaussian distribution 1355

Table 3 Numerical Tests -pseudo-Gaussian distribution

Name Integration N

Sim-1G SDA, external (A1) 900 equidistributed points
Sim-2G SDA, internal 200 equidistributed points
Sim-3G SDA, internal 120 Sloane points
Sim-4G SDA, internal 21 Sloane points
Sim-5G SDA, internal 625 equidistributed points
Sim-6G SDA, internal 41, (Θ,Φ) ∈ I × J

In Table 4, the computational time, the memory 1356

allocation, and the absolute errors of the SDA simu- 1357

lations, obtained by employing Ψ1 in the calculations, 1358

(both with internal and external implementations) are 1359

reported. The absolute errors listed in the table refer 1360

to the maximum discrepancies between the values of a 1361

given physical quantity, evaluated by using the SDA, 1362

and the values of the same quantity obtained by using 1363

the algorithm A2. Moreover, the normalised coordinate 1364

along the symmetry axis, ξ, for which such absolute 1365

discrepancy is maximum is also reported. 1366

Firstly, we notice that both the computational time 1367

and the memory allocation are higher if the FEM solver 1368

needs to call the external Matlab function. Indeed, we 1369

can notice that, in the case of Sim-1G, both the com- 1370

putational time and the memory allocation are higher 1371

than in the other five considered cases. In fact, as ar- 1372

guable from the algorithm A1, in the SDA implementa- 1373

tion, three nested cycles are required to perform the nu- 1374

merical integration. The first one is on the nodes of the 1375

Finite Element mesh, the second and the third are, re- 1376

spectively, on the pairs (Θi, Φj) ∈ D , with i = 1, . . . ,m 1377

and j = 1, . . . , n. However, the simulations Sim-2G— 1378

Sim-6G are referred to as internal, since the sums over 1379

the integration points (Θi, Φj) ∈ D are already per- 1380

formed, and an explicit expression of them is provided 1381

to the FEM software. On the other hand, the simula- 1382

tion Sim-1G is referred to as external because a Matlab 1383

code representing the algorithm A1 has been written. 1384

From Figures 9, 10, and 11, obtained by setting 1385

Ψ̂ = Ψ̂1, we notice that the Sloane sets (Sim-3G and 1386

Sim-4G) produce a less accurate result, especially at 1387

the top and the bottom zones of the sample, in which 1388
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Fig. 8 2D plot of the pore pressure [MPa] (a), norm of the filtration velocity [m/s] (b), and equivalent von Mises stress [MPa]
(c) for the model without fibres, respectively.

Table 4 Comparison of the performances, Full model - pseudo-Gaussian distribution

Sim-1G Sim-2G Sim-3G Sim-4G Sim-5G Sim-6G

Comp. Time 9 h 44 min 4 min 45 s 45 s 2 min 42 s 11 min 30 s 15 s

Memory [Gb] 3.75 2.27 2.53 1.97 3.67 1.47

|Z11
SDA − Z11

A2| 0.0168 0.0502 0.2103 0.1246 0.0202 0.0250
(t = 0) ξ = 0.8884 ξ = 1 ξ = 1 ξ = 1 ξ = 0.8839 ξ = 0.1473

|Z11
SDA − Z11

A2| 0.0134 0.0398 0.1639 0.1007 0.0161 0.0283
(t = 20) ξ = 0.8661 ξ = 1 ξ = 1 ξ = 1 ξ = 0.8661 ξ = 0.1473

|Z33
SDA − Z33

A2| 0.0211 0.0318 0.9982 0.0545 0.0253 0.0500
(t = 0) ξ = 0.1473 ξ = 0.1473 ξ = 0 ξ = 0.1205 ξ = 0.1473 ξ = 0.1473

|Z33
SDA − Z33

A2| 0.0419 0.0618 1.2370 0.1094 0.0419 0.0894
(t = 20) ξ = 0.1384 ξ = 0.1384 ξ = 0.0268 ξ = 0.1250 ξ = 0.1384 ξ = 0.1473

|(Sa)11SDA − (Sa)11A2| 0.01106 0.03165 0.14390 0.07200 0.01292 0.00885
[MPa] ξ = 0.9821 ξ = 0.9911 ξ = 1 ξ = 1 ξ = 0.9866 ξ = 0.8527

|(Sa)33SDA − (Sa)33A2| 0.0003870 0.0005079 0.0006323 0.0029116 0.0004852 0.0040588
[MPa] ξ = 0.8795 ξ = 0.3214 ξ = 0.9107 ξ = 0.7902 ξ = 0.8750 ξ = 0.9196

fibres are horizontally and vertically aligned, respec-1389

tively. This is possibly due to the fact that, to apply1390

the SDA with such sets of points, we need to select a1391

subset of each spherical design proposed by Sloane to1392

restrict the integration to S2+
X B rather than to S2

XB.1393

Moreover, in contrast to what has been done in Section1394

4.2, where the integration with respect to Φ was exact,1395

here the SDA implementation inside the FE discretisa-1396

tion solves numerically also the integration with respect1397

to Φ. Thus, the lack in accuracy of Sim-3G and Sim-1398

4G, which can be registered in Figures 9, 10, and 11,1399

is influenced by the choice of the longitudes Φj in the1400

pairs (Θi, Φj) ∈ D , with i = 1, . . . ,m and j = 1, . . . , n.1401

In Sim-1G, Sim-2G and Sim-5G, which refer to sets1402

of equidistributed points, it can be noticed that the1403

computed discrepancy between Matlab and the SDA1404

outcomes decreases, as expected, while increasing the1405

number of points in D . Sim-1G, in particular, has the1406

highest number of points in the spherical design, ob- 1407

tained with m = n = 30, and returns the smallest er- 1408

rors (see Table 4) for all the required integrals. Unfor- 1409

tunately, the computational effort that such simulation 1410

requires is three times higher than the one performed 1411

with the Matlab routine. Indeed, concerning the com- 1412

putational time and the memory allocation required by 1413

the Matlab integration coupled with the FEM, we reg- 1414

istered, on the same workstation and with the same 1415

numerical setting, an elapsed time of about 3 h and 40 1416

min, with a memory allocation of about 2.6 Gb. Also in 1417

this case, this was due to the external Matlab call. To 1418

obtain the curves in Sim-2G and Sim-5G, respectively, 1419

we set m = 20 and m = 25. 1420

Finally, the simulation performed with the set pro- 1421

posed in this manuscript, I × J (Sim-6G), can be ex- 1422

pressed as 1423
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Fig. 9 Radial component Z11 of the averaged structure ten-
sor Z vs the normalised depth. (a) Evaluation at t = 0 s
(see also [22] for comparison). (b) Evaluation at t = 20 s.
The probability density is the pseudo-Gaussian distribution
in both cases.

∫
S2+B

f(M) ' 2π

N

 6∑
i=2

8∑
j=1

f(Xij) + f(0, Φ)

 . (105)

We can notice from Table 4 that I ×J produces er-1424

rors in capturing the radial and axial components of Z1425

that are comparable with the ones obtained with Sim-1426

1G and Sim-5G, and even a better estimate of (Sa)11.1427

Moreover, since I × J contains a smaller number of1428

pairs Xij , its implementation produces the fastest re-1429

sults. Indeed, even if an internal implementation of the1430

points employed in Sim-1G is performed, its computa-1431

tional effort would be greater than, or equal to, the one1432

registered for Sim-5G. Thus, the set I ×J gives us, for1433

the considered set of numerical tests in Table 3, results1434

that are comparable with those of Sim-1G, but with a1435

faster and lighter implementation. A less acceptable re-1436

sult, however, is obtained for (Sa)33 (see Figure 11b),1437

for which the computed error is one order of magnitude1438
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Fig. 10 Axial component Z33 of Z vs the normalised depth.
(a) Evaluation at t = 0 s (see also [22] for comparison). (b)
Evaluation at t = 20 s. The probability density is the pseudo-
Gaussian distribution in both cases.

bigger than the one obtained for Sim-1G. In particular, 1439

for that component of the tensor Sa, the smaller er- 1440

ror is obtained with the set S ′120. Such set of points, as 1441

visible from Figures 13, 14, and 15, is the one that, co- 1442

herently with the preliminary analysis done in Section 1443

4.2, returns the better result if Ψ̂2 is employed. 1444

As a consequence of a different outcome of the SDA, 1445

depending on the choice of the spherical design, the 1446

characteristic values of pore pressure, fluid filtration ve- 1447

locity and stress of the whole solid could change more or 1448

less remarkably. In analysing the mechanical response 1449

of articular cartilage, it is important to have a good es- 1450

timate of the pressure and the stresses that accumulate 1451

in the tissue undergoing a finite deformation. In the fol- 1452

lowing, the consequences of the addition of the fibres in 1453

the model, and the consequences that a less accurate 1454

SDA could yield, are discussed. 1455

In Figure 12 the time evolution of the pore pressure, 1456

the filtration velocity (radial component) and the von 1457

Mises equivalent stress have been reported, respectively, 1458
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Fig. 11 Radial (a) and axial (b) components of Sa vs the
normalised depth. Evaluation at t = 20 s. Pseudo-Gaussian
distribution.

from left to right. All these quantities are evaluated in1459

those points of the domain in which they attain the1460

maximum value. Thus, as visible also from Figures 8,1461

for the pressure we take the origin of the coordinate1462

system, for the filtration velocity we take the upper1463

external point, and for the solid stress the maximum1464

value is at the bottom external point, where the sample1465

is fixed.1466

As we can see from Figure 12, the pressure (Figure1467

12a) obtained without adding the fibres in the model1468

is greater than the one obtained by considering them.1469

Conversely, the filtration velocity (Figure 12b) is in-1470

creased by the presence of horizontally aligned fibres.1471

This is due to the fact that, in the top zone of the do-1472

main, the fibres facilitate the radial flow going outward1473

the sample. Finally, the equivalent von Mises stress1474

(Figure 12c) is amplified by the presence of the fibres.1475

The artifacts arising due to unsatisfactory results of1476

the SDA are visible particularly in Figure 12b. Indeed,1477

since in the upper part of the domain the Sloane sets1478

of points do not capture in a proper way the values of1479

Z11, we see that the profile of the filtration velocity ob- 1480

tained as an outcome of Sim-3G and Sim-4G shows a 1481

strong discrepancy with respect to the other employed 1482

spherical designs and the Matlab outcomes. The inac- 1483

curacy of the SDA is less evident in the plots of the 1484

pore pressure and the solid stress (Figure 12a and 12c, 1485

respectively), possibly because the order of magnitude 1486

of such quantities (MPa), evaluated in their maximum 1487

points, are greater than the ones registered for the re- 1488

lated errors, as shown in Tables 4 and 5 for the solid 1489

stress. Finally, the pale blue, marked curve, which cor- 1490

responds to Sim-6G, is almost overlapped to the black 1491

one, representing the Matlab outcome in all the three 1492

plots in Figure 12. 1493

6.2.2 Results with the von Mises distribution 1494

The performed simulations with the von Mises distri- 1495

bution aim principally to verify the goodness of the set 1496

S ′120, and to compare the results obtained by employ- 1497

ing it with the ones obtained with the entire set S240, 1498

i.e., with the integration over S2
XB. Indeed, differently 1499

from the pseudo-Gaussian distribution, it holds that 1500

Ψ̂2(ξ,Θ) = Ψ̂2(ξ,Θ + π). Thus, first we aim to com- 1501

pare the solutions obtained with 240 and 120 Sloane 1502

points in Sim-2VM and Sim-3VM, respectively. A set 1503

of equidistributed points is considered in Sim-1VM, to- 1504

gether with the set S ′21 (Sim-4VM) and our set I × J 1505

(Sim-5VM). In Table 5, the computational time, allo- 1506

cated memory, and the absolute errors in computing 1507

the values of Z11, Z33, (Sa)11 and (Sa)33 are reported. 1508

Due to the symmetry properties of Ψ̂2, the perfor- 1509

mances of Sim-2VM and Sim-3VM are perfectly equiv- 1510

alent. Indeed, as visible from Figures 13, 14, and 15, 1511

their results overlap completely. 1512

Again, as visible from Figures 13, 14, and 15a, the 1513

set of points proposed in the present work performs well 1514

in capturing Z and the radial component of the stress. 1515

Indeed, for such curves, the outcomes of the spherical 1516

design I×J almost overlap, or are relatively less distant 1517

from the outcomes of the Matlab routine and the SDA 1518

with S ′120, or S240, equivalently. However, the set of 1519

points is not properly capturing, also in the case of the 1520

von Mises distribution, the axial component of Sa. The 1521

less accurate results are, instead, obtained by means of 1522

the 500 equidistributed points, which show the same 1523

degree of accuracy as the set S ′21, but require a greater 1524

computational effort. 1525

We omit the graphs related to the pore pressure, ve- 1526

locity and stress in the present case, since the amount of 1527

error registered for the numerical tests here discussed, 1528

i.e., the ones in Table 6, are not sufficiently big, as in 1529
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Fig. 12 (a) Pointwise evaluation (in the point P = (0, 0, 0) mm) of the pore pressure over the time. (b) point-wise evaluation
(in the point P = (0.5, 0.5, 1) mm of the filtration velocity over the time. (c) Pointwise evaluation (in the point P = (0.5, 0.5, 0)
mm) of the equivalent von Mises stress over the time. A zoom of the same curve is reported, due to the strong vicinity of each
curve in the graph.

Table 5 Comparison of the performances, Full model - von Mises distribution

Sim-1VM Sim-2VM Sim-3VM Sim-4VM Sim-5VM

Comp. Time 13 min 39 s 3 min 11 s 2 min 42 s 42 s 16 s

Memory [Gb] 3.45 2.71 2.06 1.66 1.61

|Z11
SDA − Z11

A2| 0.0489 0.0046 0.0046 0.0487 0.0217
(t = 0) ξ = 0.9464 ξ = 0.4062 ξ = 0.4062 ξ = 1.0000 ξ = 0.3125

|Z11
SDA − Z11

A2| 0.0401 0.0034 0.0034 0.0401 0.0220
(t = 20) ξ = 0.7500 ξ = 0 ξ = 0 ξ = 0.9911 ξ = 0.3214

|Z33
SDA − Z33

A2| 0.0455 0.0092 0.0092 0.0625 0.0433
(t = 0) ξ = 0.3929 ξ = 0.4062 ξ = 0.4062 ξ = 0.0223 ξ = 0.3125

|Z33
SDA − Z33

A2| 0.1050 0.0233 0.0233 0.1339 0.0732
(t = 20) ξ = 0.2143 ξ = 0.1786 ξ = 0.1786 ξ = 0.1786 ξ = 0.0.3304

|(Sa)11SDA − (Sa)11A2| 0.0289 0.0051 0.0051 0.0265 0.0138
[MPa] ξ = 0.9821 ξ = 0.5357 ξ = 0.5357 ξ = 0.8973 ξ = 0.5670

|(Sa)33SDA − (Sa)33A2| 0.0013 0.0009 0.0009 0.0038 0.0043
[MPa] ξ = 0.5446 ξ = 0.5179 ξ = 0.5179 ξ = 0.5045 ξ = 0.8170

Table 6 Numerical Tests - von Mises distribution

Name Integration N

Sim-1VM SDA, internal 500 equidistributed points
Sim-2VM SDA, internal 240 Sloane points
Sim-3VM SDA, internal 120 Sloane points
Sim-4VM SDA, internal 21 Sloane points
Sim-5VM SDA, internal 41, (Θ,Φ) ∈ I × J

the previous case, to produce strong discrepancies in 1530

such physical quantities of the model. 1531

7 Conclusions and future work 1532

In this work, we analysed the performances of a numer- 1533

ical procedure, the SDA, which is often employed to 1534

compute the permeability and the mechanical stresses 1535

in highly anisotropic, fibre-reinforced, composite mate- 1536

rials. In particular, we addressed composite materials of 1537
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Fig. 13 (a) Radial component Z11 and (b) axial component
Z33 of Z versus the normalised depth at time t = 0 s. For
these simulations, the probability density is the von Mises
distribution.

biomechanical interest, in which the fibre-reinforcement1538

is due to the presence of collagen fibres, as is the case1539

for articular cartilage. The mathematical model, within1540

which the SDA has been implemented, has been taken1541

from [58], and leads to a set of coupled and highly non-1542

linear partial differential equations, whose weak form is1543

written in (51a) and (51b) [31]. These equations have to1544

be solved in conjunction with the constitutive expres-1545

sions defining the mechanical stress and the permeabil-1546

ity of the tissue. The core issue of the problem is given,1547

in fact, by the integrals associated with the anisotropic1548

parts of these two properties of the tissue (cf. (46) and1549

(47)), in which the coupling between the directional-1550

ity of the material response, expressed by the structure1551

tensor A, and its evolution with the deformation are1552

accounted for by the invariant I4 = tr(CA). In the ma-1553

jority of the cases, these integrals cannot be evaluated1554

analytically. More importantly, due to the coupling be-1555

tween A and C, they cannot be even solved numeri-1556

cally once for all, since they have to be updated at each1557
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Fig. 14 (a) Radial component Z11 and (b) axial component
Z33 of Z versus the normalised depth at time t = 20 s. For
these simulations, the probability density is the von Mises
distribution.

step of the deformation evolution. This calls for the im- 1558

plementation in a FEM code of dedicated quadrature 1559

schemes, such as the SDA, on the fly. 1560

With the motivation outlined above, we underlined 1561

some problematic issues of the SDA, such as the strong 1562

dependence on the choice of both the number and the 1563

placement of the quadrature nodes that this scheme 1564

requires. After a first analysis on the performance of 1565

the SDA against a comparative quadrature method, 1566

the SDA (see algorithm A1) has been implemented in 1567

a way to be coupled with a commercial FEM software. 1568

This has been done with the aim of testing the software 1569

through the simulation of a well-established benchmark 1570

problem, employed for studying the hydraulic and me- 1571

chanical properties of hydrated soft tissues: namely, the 1572

unconfined compression test in displacement control of 1573

a cartilage sample. The results of the FE simulations 1574

have been performed with the goal of comparing re- 1575

ciprocally different point sets adopted for the SDA. 1576

Their reliability has been tested by comparison with 1577
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Fig. 15 Radial (a) and axial (b) components of Sa vs the
normalised depth. Evaluation at t = 20 s. The probability
density is the von Mises distribution.

the quadrature scheme A2, available in Matlab. After1578

such analysis, we designed a set of points, i.e., the one1579

represented in (65a) and (65b), which, in this work,1580

gave us the best feedback in computing the anisotropic1581

part of permeability and mechanical stress.1582

From the analysis of the performances reported in1583

Tables 4 and 5, we deduce that, if the quadrature points1584

are properly chosen, an internal implementation of the1585

SDA is in general preferable to an external Matlab call.1586

However, the latter is faster and more accurate than1587

the SDA, if the points on the hemisphere are chosen in1588

a way to be equidistributed. We discuss here the perfor-1589

mances of the set of points I × J for which, as visible1590

throughout the present work, we obtain a small com-1591

putational effort, with acceptable results in capturing1592

the main quantities of interest for the problem at hand.1593

The set of points I×J is easy to implement by writing1594

a relatively small list of summands, and by perform-1595

ing the sums required in the SDA routine without a1596

recursive and nested procedure. This is due to the fact1597

that I × J has only 41 points, which in turn are con-1598

ceived for the integration over the hemisphere, thereby 1599

addressing the material and geometrical symmetries of 1600

the considered problem. As discussed in Section 6, the 1601

performances of such set are, in most of the cases, com- 1602

parable to those returning acceptable, even if heavier, 1603

results. 1604

To validate the set I×J for a more general compu- 1605

tational and mathematical setting, we need to test it on 1606

a wider range of benchmark problems and constitutive 1607

laws. Moreover, we remark that there might be cases 1608

in which the choice of the point set, which is necessary 1609

to achieve the best approximation of a given physical 1610

quantity, has to be done adaptively. These tasks shall be 1611

the subject of our future investigations on this theme. 1612

For the sake of completeness, we finally notice that 1613

the reduced 2D model studied in this work (justified 1614

by the geometric and material symmetries of the con- 1615

sidered medium) should be extended to realistic three- 1616

dimensional geometries. This is important also in view 1617

of generalising the presented framework to biomechan- 1618

ical problems in which the fluid flow may deviate from 1619

the Darcian regime or growth and remodelling occur. 1620
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