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Abstract

In this paper, the static analysis of multilayered shell structure embedding piezoelectric layers is per-
formed using some advanced theories, obtained by expanding the unknown variables along the thick-
ness direction using Equivalent-Single-Layer (ESL) models, Layer-Wise (LW) models, and Variable-
Kinematic models. The Variable-Kinematic models permit to reduce the computational cost of the
analyses grouping some layers of the multilayered structure with ESL models and keeping the LW models
in other zones of the multilayer. This model is here extended to the static analysis of electro-mechanical
problems. The used refined models are grouped in the Unified Formulation by Carrera (CUF), and
they accurately describe the displacement field, the stress distributions, and the electric potential along
the thickness of the multilayered shell. The shell element has nine nodes, and the Mixed Interpolation
of Tensorial Components (MITC) method is used to contrast the membrane and shear locking phe-
nomenon. The governing equations are derived from the Principle of Virtual Displacement (PVD) and
the Finite Element Method (FEM) is employed to solve them. Cross-ply plates and shells with piezo-
electric skins and simply-supported edges, subjected to bi-sinusoidal mechanical or electrical load are
analyzed. Various aspect ratios and radius to thickness ratios are considered. The results, obtained with
different theories within CUF context, are compared with the elasticity solutions given in the literature.
From the results, it is possible to conclude that the shell element based on the CUF is very efficient
in the study of electro-mechanical problems of composite structures. The Variable-Kinematic models
combining the ESL with the LW models, permit to have a reduction of the computational costs, respect
with the full LW theories, preserving the accuracy of the results in localized layers.

1 Introduction

The continuous development of new structural materials, such as layered composite materials and/or
piezoelectric layers, leads to increasingly complex designs that require careful analysis. The use of
piezoelectric components as electro-mechanical transducers in sensor as well as in actuator applica-
tions has been continuously increasing. More recently, piezoelectrics have been considered among
the most suitable materials for extending the structural capabilities beyond the purely passive load
carrying one. Some examples of the most important applications of these “intelligent” structural
components are given in [Inman et al., 2001, Chopra, 2000, Gaudenzi, 2009] for vibration and noise
suppression, controlled active deformation is treated in [Preumont et al., 2009], and health monitor-
ing in [Foster, 2009, Roger, 2009]. Analytical solution for general smart structural problems is a very
tough task, and they exist, only, for very few specialized and idealized cases. Meanwhile, the finite
element method has become the most widely used technique to model various physical processes, in-
cluding piezoelectricity. The introduction of piezoelectric material into a passive structure naturally
leads to a multilayered component, and it has been recognized that classical models are not suit-
able for an accurate design of such structures, see for example the review article of Noor and Bur-
ton [Noor and Burton, 1990]. The analysis of layered composite structures is complicated in practice.
Anisotropy, nonlinear analysis as well as complicating effects, such as the C0

z - Requirements (zig-
zag effects in the displacements and interlaminar continuity for the stresses), the couplings between
in-plane and out-of-plane strains, are some of the issues to deal. In most of the practical problems,
the solution demands applications of approximated computational methods. An overview of several
computational techniques for the analysis of laminated structures can be read in the review articles
[Reddy and Robbins, 1994, Varadan and Bhaskar, 1997, Carrera, 2001]. The Finite Element Method
(FEM) has a predominant role among the computational techniques implemented for the analysis
of layered structures. The majority of FEM theories available in the literature are formulated by
axiomatic-type theories. The most common used FEM theory is the classical Kirchhoff-Love theory,
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and some examples are given in [Koiter, 1970, Ciarlet and Gratie, 2005]. Another classical plate/shell
element is based on the First-order Shear Deformation Theory (FSDT), developed by Pryor and Barker
[Pryor and Barker, 1971], Noor [Noor, 1972], Hughes [Hughes and Tezduyar, 1981] and many others.
A large variety of plate/shell finite element implementations of higher-order theories (HOT) has been
proposed in the last twenty years literature. For multilayered structures, in literature, two kinds of
models can be adopted: the Equivalanet-Single-Layer (ESL) models, or the Layer-Wise (LW) models.
For the ESL models, the variables are independent from the number of layers. Differently, the LW
models permit to consider different sets of variables per each layer. In many cases the LW models are
more accurate than ESL models; meanwhile, LW theories are more expensive than ESL ones concerning
computational costs.
The fundamentals of the modeling of piezoelectric materials have been given in many contributions,
in particular in the pioneering works of Mindlin [Mindlin, 1952], EerNisse [EerNisse, 1967], Tier-
sten and Mindlin [Tiersten and Mindlin, 1962], and in the monograph of Tiersten [Tiersten, 1969].
The embedding of piezoelectric layers into plates and shells sharpens the requirements of an accu-
rate modeling of the resulting adaptive structure due to the localized electro-mechanical coupling,
see e.g. the review of Saravanos and Heyliger [Saravanos and Heyliger, 1999]. Therefore, within the
framework of two-dimensional approaches, layerwise descriptions have been often proposed either for
the electric field only (see e.g. the works of Kapuria [Kapuria, 2004] and of Ossadzow-David and
Touratier [Ossadzow-David and Touratier, 2004]) or for both the mechanical and electrical unknowns
(e.g. Heyliger et al. [Heyliger et al., 1996]). Ballhause et al. [Ballhause et al., 2005] showed that a
fourth order assumption for the displacements leads to the correct closed form solution. They con-
clude that the analysis of local responses requires at least a layer-wise descriptions of the displace-
ments, see also [D’Ottavio et al., 2006]. Benjeddou et al. [Benjeddou et al., 2002] emphasized that a
quadratic electric potential through the plate thickness satisfies the electric charge conservation law
exactly. Some of the latest contributions to the Finite Elements (FEs) analysis of piezoelectric plates
that includes a First-Order Shear Deformation Theory (FSDT) description of displacements and a
Layer-Wise (LW) form of the electric potential was developed by Sheik et al. [Sheikh et al., 2001].
The numerical, membrane and bending behavior of FEs that are based on FSDTs were analyzed by
Auricchio et al. [Auricchio et al., 2001] in the framework of a suitable variational formulation. Some
of the latest contributions to the Finite Elements (FEs) analysis of piezoelectric shells that are based
on exact geometry solid-shell element with the first-order 7-parameter equivalent single layer theory
was developed by Kulikov et al. [Kulikov and Plotnikova, 2011], and a piezoelectric solid-shell element
with a mixed variational formulation and a geometrically nonlinear theory was developed by Klinkel
et al. [Klinkel and Wagner, 2008]. An efficient four-node FE with layer-wise mechanics was presented
in [Yasin and Kapuria, 2014], therefore some important aspects of modeling piezoelectric active thin-
walled structures were treated in [Marinković et al., 2009], and a family of 2D refined equivalent single
layer models for multilayered and functionally graded smart magnetoelectro-elastic plates was presented
in [Milazzo, A, 2014].
In the last years, several efforts have been addressed to make the models more efficient. A possible way
is to combine multiple models in the analysis of laminate problems; the issue is to maximize the accuracy
keeping when it is possible a reduced computational cost. One of the simple types of multiple model
methods, for composite laminates analysis, is the concept of selective ply grouping or sublaminates
[Wang and Crossman, 1978, Pagano and Soni, 1983, Jones et al., 1984]. The approach consists of cre-
ating some local regions, identified by specific ply or plies, within which accurate stresses are desidered.
The rest of the plies are identified as a global region or the domain part lying outside the local region.
In literature, the local region is often modeled by using 3-D finite elements for each material plies, while
the global region can be represented by 3-D finite elements grouped in one or more sublaminates. In
the global region, the grouped sublaminates can be modeled with an ESL finite element model. The
disadvantage of this approach is the use of the 3-D finite elements. Recently this technique of selective
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ply grouping or sublaminates has been employed using only 2-D finite elements for both local region and
global region. The authors of the present paper used a variable description in the thickness direction of
the displacements, [Pagani et al., , Carrera et al., 2017]. The local region can be described with more
accuracy by the use of LW models, meanwhile the global region can be described by ESL models. Both
ESL and LW models are described by the use of Legendre polynomials. The continuity of the primary
variables between local and global region is immediately satisfied using the Legendre polynomials. In
the work by Botshekanan Dehkordi et al. [Botshekanan Dehkordi et al., 2013], a variable description in
the thickness direction for the static analysis of sandwich plates was performed. That model was derived
from the Reisnner-Mixed-Variational-Theorem (RMVT) in order to describe apriori the transverse shear
and normal stresses. The transverse stresses were approximated through a mixed LW/ESL approach.
The same mixed LW/ESL approach with RMVT was then used in [Botshekanan Dehkordi et al., 2016]
for nonlinear dynamic analysis of sandwich plates with flexible core and composite faces embedded with
shape memory alloy wires.
In this work, the electro-mechanical analysis of multilayered composite structures with piezoelectric lay-
ers is performed with an improved shell finite element with a Variable-Kinematic model. It is based on
the Carrera’s Unified Formulation (CUF), which was developed by Carrera for multi-layered structures
[Carrera, 2002, Carrera, 2003]. Many works have been devoted to the extension of CUF to electro-
mechanical problems, see [Robaldo et al., 2006, Carrera et al., 2007, Carrera and Robaldo, 2010, Cinefra et al., 2015a,
Cinefra et al., 2015b]. Among others, the CUF was extended PVD and RMVT variational statements
to piezo-laminated plates, see also [Carrera et al., 2010, Carrera and Nali, 2010b]. Mixed FEs for static
and dynamics analysis of piezo-electric plates have been provided in [Carrera and Boscolo, 2007], where
only transverse stresses were modeled by RMVT. Mixed FEs with direct evaluation of transverse electric
displacement have been provided in [Carrera and Nali, 2010a]. Both Equivalent Single Layer (ESL) and
Layer Wise (LW) theories contained in the CUF have been implemented in the shell finite element. A
Variable-Kinematic model obtained combining the ESL and LW models are developed. The Mixed Inter-
polation of Tensorial Components (MITC) method [Bathe and Dvorkin, 1986, Bathe and Brezzi, 1987,
Bathe et al., 2003, Huang, 1987] is used to contrast the membrane and shear locking. The governing
equations for the electro-mechanical linear static analysis of composite structures are derived from the
Principle of Virtual Displacement (PVD), to apply the finite element method. Cross-ply plates with
simply-supported edges and subjected to bi-sinusoidal mechanical or electrical loads, multilayered cylin-
drical shells with simply-supported edges and subjected to bi-sinusoidal mechanical or electrical loads
are analyzed. The results, obtained with the different models contained in the CUF, are compared with
the exact solution given in literature. This paper is organized as follows: geometrical and constitutive
relations for shells are presented in Section 2. In Section 3, an overview of higher-order and advanced
shell theories developed within the CUF framework is given. Section 4 gives a brief outline of the FEM
approach, whereas, in Section 5, the governing equations in weak form for the electro-mechanical linear
static analysis of composite structures are derived from the PVD. In Section 6 a short outline of the
different modeling approaches is given, and the explanation of the Variable-Kinematic model is drawn.
In Section 7, the results obtained using the proposed CUF theories are discussed. Section 8 is devoted
to the conclusions.

2 Preliminaries for electro-mechanical problems for shells

Shells are bi-dimensional structures in which one dimension (in general the thickness in the z direction)
is negligible concerning the other two dimensions. The reference system of the shell is indicated in
Figure 1.
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Figure 1: Reference system of the doubly-curved shell.

By considering multilayered structures, the square of an infinitesimal linear segment in the layer,
the associated infinitesimal area and volume are given by:

ds2
k = Hk

α
2
dα2

k + Hk
β

2
dβ2

k +Hk
z

2
dz2
k ,

dΩk = Hk
αH

k
β dαk dβk ,

dV = Hk
α H

k
β H

k
z dαk dβk dzk ,

(1)

where the metric coefficients are:

Hk
α = Ak(1 + zk/R

k
α), Hk

β = Bk(1 + zk/R
k
β), Hk

z = 1 . (2)

k denotes the k-layer of the multilayered shell; Rkα and Rkβ are the principal radii of the mid-surface of

the layer k. Ak and Bk are the coefficients of the first fundamental form of Ωk (Γk is the Ωk boundary).
In this paper, the attention has been restricted to shells with constant radii of curvature (cylindrical,
spherical, toroidal geometries) for which Ak = Bk = 1. Details for shells are reported in [Reddy, 1997].
The geometrical relations enable to express the in-plane εkp and out-plane εkn strains in terms of the
displacement u for each layer k:

εkp = [εkαα, ε
k
ββ , ε

k
αβ]T = (Dk

p +Ak
p) u

k , εkn = [εkαz, ε
k
βz, ε

k
zz]

T = (Dk
nΩ +Dk

nz −Ak
n) uk . (3)

The explicit form of the introduced arrays is:

Dk
p =


∂α
Hk
α

0 0

0
∂β
Hk
β

0

∂β
Hk
β

∂α
Hk
α

0

 , Dk
nΩ =

0 0 ∂α
Hk
α

0 0
∂β
Hk
β

0 0 0

 , Dk
nz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 , (4)

Ak
p =

0 0 1
Hk
αR

k
α

0 0 1
Hk
βR

k
β

0 0 0

 , Ak
n =


1

Hk
αR

k
α

0 0

0 1
Hk
βR

k
β

0

0 0 0

 . (5)

The geometrical relations between electric field E and potential Φ are defined as follows:

Ekp = [Ekα, Ekβ ]T = −Dep Φ ,

Ekn = [Ekz ]T = −Den Φ ,
(6)
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Where the differential operators are defined as follows:

Dep =

[
∂α
Hα
∂β
Hβ

]
, Den =

[
∂z
]
.

The definition of the constitutive equations that permit to express the stresses σ and the electric
displacements D in terms of the strains and the electric fields is defined as follows:

σkpC = [σkαα, σ
k
ββ , σ

k
αβ] = Ck

ppε
k
pG +Ck

pnε
k
nG − ek

T

pp EkpG − ek
T

npEknG

σknC = [σkαz, σ
k
βz, σ

k
zz] = Ck

npε
k
pG +Ck

nnε
k
nG − ek

T

pnEkpG − ek
T

nnEknG

Dk
pC = [Dkα,Dkβ] = ekppε

k
pG + ekpnε

k
nG + εkppEkpG + εkpnEknG

Dk
nC = [Dkz ] = eknpε

k
pG + eknnε

k
nG + εknpEkpG + εknnEknG

(7)

where

Ck
pp =

Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =

0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =

 0 0 0
0 0 0
Ck13 Ck23 Ck36

 Ck
nn =

Ck55 Ck45 0
Ck45 Ck44 0
0 0 Ck33


(8)

ekpp =

[
0 0 0
0 0 0

]
, ekpn =

[
ek15 ek14 0
ek25 ek24 0

]
,

eknp =
[
ek31 ek32 ek36

]
, eknn =

[
0 0 ek33

]
.

(9)

εkpp =

[
εk11 εk12

εk12 εk22

]
, εkpn =

[
0
0

]
,

εknp =
[
0 0

]
, εknn =

[
εk33

]
.

(10)

For the sake of brevity, the expressions that relate the material coefficients Cij to the Young’s moduli
E1, E2, E3, the shear moduli G12, G13, G23 and Poisson ratios ν12, ν13, ν23, ν21, ν31, ν32 are not given
here, they can be found in [Reddy, 1993]. The piezoelectric material is characterized by the piezoelectric
coefficients eij and the permittivity coefficients εij , more details can be found in the book of Rogacheva
[Rogacheva, 1994].

3 Unified Formulation for Shells

Classical shell models grant good results when thin thickness, homogeneous structures are considered.
On the other hand, the analysis of thick shells, multilayered structures may require more sophisticated
theories to achieve sufficiently accurate results. As a general guideline, it is clear that the richer the
kinematic field, the more accurate the 2D model becomes. The CUF has the capability to expand
each displacement variable at any desired order. Each variable can be treated independently from the
others, according to the required accuracy. This procedure becomes extremely useful when multifield
problems are investigated such as thermoelastic and piezoelectric applications [Cinefra et al., 2015c,
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Cinefra et al., 2016, Cinefra et al., 2015a, Cinefra et al., 2015b]. According to the CUF [Carrera, 2003,
Carrera, 1999a, Carrera, 1999b], the displacement field and the electric potential can be written as
follows: 

uk(α, β, z) = F0(z)uk0(α, β) + F1(z)uk1(α, β) + ...+ FN (z)ukN (α, β)

vk(α, β, z) = F0(z) vk0 (α, β) + F1(z) vk1 (α, β) + ...+ FN (z) vkN (α, β)

wk(α, β, z) = F0(z)wk0(α, β) + F1(z)wk1(α, β) + ...+ FN (z)wkN (α, β)

Φk(α, β, z) = F0(z) Φk
0(α, β) + F1(z) Φk

1(α, β) + ...+ FN (z) Φk
N (α, β)

(11)

In compact form:

uk(α, β, z) = Fs(z)u
k
s(α, β); δuk(α, β, z) = Fτ (z)δukτ (α, β) τ, s = 0, 1, ..., N (12)

Φk(α, β, z) = Fs(z)Φ
k
s(α, β); δΦk(α, β, z) = Fτ (z)δΦk

τ (α, β) τ, s = 0, 1, ..., N (13)

where (α, β, z) is the general reference system (see Figure 1), the displacement vector u = {u, v, w}
and the electric potential Φ have their components expressed in this system. δ is the virtual variation
associated to the virtual work, and k identifies the layer. Fτ and Fs are the thickness functions
depending only on z. τ and s are sum indexes and N is the number of terms of the expansion in the
thickness direction assumed for the displacements. For the sake of clarity, the superscript k is omitted
in the definition of the Legendre polynomials.

3.1 Legendre-like polynomial expansions

The limitations, due to expressing the unknown variables in function of the midplane position of the
shell, can be overcome in several ways. A possible solution can be found employing the Legendre poly-
nomials. They permit to express the unknown variables in function of the top and bottom position of a
part of the shell thickness. In the case of Legendre-like polynomial expansion models, the displacements
and the electric potential are defined as follows:

u = F0 u0 + F1 u1 + Fr ur = Fs us, s = 0, 1, r , r = 2, ..., N. (14)

Φ = F0 Φ0 + F1 Φ1 + Fr Φr = Fs Φs, s = 0, 1, r , r = 2, ..., N. (15)

F0 =
P0 + P1

2
, F1 =

P0 − P1

2
, Fr = Pr − Pr−2. (16)

in which Pj = Pj(ζ) is the Legendre polynomial of j-order defined in the ζ-domain: −1 ≤ ζ ≤ 1.
P0 = 1, P1 = ζ, P2 = (3ζ2 − 1)/2, P3 = (5ζ3 − 3ζ)/2, P4 = (35ζ4 − 30ζ2 + 3)/8 .
For the Layer-Wise (LW) models, the Legendre polynomials and the relative top and bottom position
are defined for each layer.

3.2 Refined polynomials with Zig-Zag Function

Due to the intrinsic anisotropy of multilayered structures, the first derivative of the displacement
variables in the z-direction is discontinuous. It is possible to reproduce the zig-zag effects in the
framework of the ESL description by employing the Murakami theory. According to [Murakami, 1986],
a zig-zag term can be introduced into equation(14) as follows:

u = F0 u0 + F1 u1 + Fr ur + (−1)kζku
k
N . (17)

It can be introduce also into equation(15) as follows:

Φ = F0 Φ0 + F1 Φ1 + Fr Φr + (−1)kζkΦ
k
N . (18)
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0 = top, 1 = bottom, r = 2, ..., N − 1

Such theories are called zig-zag theories. The zig-zag function is defined in each layer k, where the
adimensional term ζk takes value 1 and −1 at the top and the bottom respectively of each layer.

4 Finite Element approximation

Independently from the choice of the thickness functions, a Finite Element Model (FEM) can be
formulated. According to the common FEM approximation, the generalized displacements can be
expressed as a linear combination of the shape functions. Considering a 9-node finite element, the
generalized displacement and electric potential and their variation are defined as follows:

us = Njusj δuτ = Niδuτi with i, j = 1, ..., 9

Φs = NjΦsj δΦτ = NiδΦτi with i, j = 1, ..., 9
(19)

where usj , Φsj , δuτi , δΦτi are the nodal displacements, the electric potential and their virtual variations,
and Ni, Nj are the Lagrangian shape functions defined in each node of the finite element. Substituing
the compact form of the FEM approximation (Eq. (19)) in the generalized displacement expansion
(Eq. (12)) and electric potential expansion (Eq. (13)), one has:

u(α, β, z) = Fs(z)Nj(α, β)usj s = 0, 1, ..., N

δu(α, β, z) = Fτ (z)Ni(α, β)δuτi τ = 0, 1, ..., N

Φ(α, β, z) = Fs(z)Nj(α, β)Φsj s = 0, 1, ..., N

δΦ(α, β, z) = Fτ (z)Ni(α, β)δΦτi τ = 0, 1, ..., N

(20)

Therefore, to overcome the numerical problems related to the shear locking, it is possible to use
many computational procedures, such as reduced integration, selective integration [Hughes et al., 1978],
and the mixed interpolation of tensorial components (MITC) [Bathe and Dvorkin, 1986]. In this
paper, a MITC technique is used to overcome the shear locking phenomenon, for more details see
[Cinefra et al., 2015b].

5 Governing FEM equations for electro-mechanical problems

The PVD for a multilayered shell structure reads:∫
Ωk

∫
Ak

{
δεkpG

T
σkpC + δεknG

T
σknC − δEkpG

TDk
pC − δEknG

TDk
nC

}
HαHβ dΩkdz = δLe (21)

where Ωk and Ak are the integration domains in the plane and the thickness direction, respectively. The
left-hand side of the equation represents the variation of the internal work, while the right-hand side is
the virtual variation of the external work. Substituting the constitutive equations (7), the geometrical
relations written via the MITC method and applying the CUF (12,13) and the FEM approximation
(19), one obtains the following governing equations:

δukτi : Kkτsij
uu uksj +Kkτsij

uΦ Φksj = P k
usj (22)

δΦkτi : Kkτsij
Φu uksj +Kkτsij

ΦΦ Φksj = P k
Φsj (23)
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In compact form:
δqkτi : Kkτsij qksj = P k

sj (24)

where

Kkτsij =

[
Kuu KuΦ

KΦu KΦΦ

]kτsij
(25)

where Kkτsij is a 4× 4 matrix, called fundamental nucleus of the mechanical stiffness matrix, and its
explicit expression is given in [Cinefra et al., 2015a]. The mechanical part Kkτsij

uu is a 3× 3 matrix, the

coupling matrices Kkτsij
uΦ , Kkτsij

Φu have dimension 3 × 1 and 1 × 3 respectively, and the electrical part

Kkτsij
ΦΦ is a 1× 1 matrix. The nucleus is the basic element from which the stiffness matrix of the whole

structure is computed. The fundamental nucleus is expanded on the indexes τ and s to obtain the
stiffness matrix of each layer k. Then, the matrixes of each layer are assembled at the multi-layer level
depending on the approach considered. P k

sj is a 3×1 matrix, called fundamental nucleus of the external

load. qksj and δqkτi are the nodal displacements and electric potential and its variation respectively.

6 Modeling Approaches

Two different types of modeling approaches are usually used in literature:

• The Equivalent Single Layer models, here referred to as ESL

• The Layer Wise models, here referred to as LW

In this paper a third modeling approaches is taken into account. It is a variable kinematic model
obtained as a combination of the ESL and LW models. The choice of the modeling approach is
independent of the type of the used polynomials.

6.1 ESL models

In an ESL model, a homogenization of the properties of each layer is conducted by summing the
contributions of each layer in the stiffness matrix. This process leads to a model that has a set of
variables that is assumed for the whole multilayer. In this work the ESL model is employed using
both Taylor and Legendre polynomials. The ESL assembly procedure of the stiffness matrix in the
framework of CUF is shown in Figure 2.

Figure 2: Equivalent-Single-Layer behaviour of the primary variables {u, v, w,Φ} along the thickness
of the shell.

6.2 LW models

LW considers different sets of variables per each layer, and the homogenization is just conducted at
the interface level. The LW assembly procedure is presented in Figure 3. In this work the LW model
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is employed using the Legendre polynomials. The Legendre polynomial F0 and F1 interpolate the
displacements at the top (t) and bottom (b) position of the layer, respectively. The unknown variables
at the top (t) and bottom (b) position are used to impose the following compatibility conditions:

ukt = uk+1
b , k = 1, Nl − 1. (26)

Φk
t = Φk+1

b , k = 1, Nl − 1. (27)

Figure 3: Layer-Wise behaviour of the primary variables {u, v, w,Φ} along the thickness of the shell.

6.3 Variable-Kinematics

In this paper, a different model is taken into account. This Variable-Kinematic model is obtained as a
combination of the ESL and LW models. In order to combine these two different models, the Legendre
polynomials have been taken into account. In a multilayered structure, some layers can be modeled with
a homogenization of the properties and modeled with an ESL assembling procedure, whereas for some
layers the homogenization is conducted just at the interface level. This homogenization at the interface
level between the ESL and LW models is performed by the use of the Legendre polynomials. The
Variable-Kinematic assembling, developed in the framework of the CUF, is very simple to integrate, for
example in a FORTRAN code, with few lines of programming. The programming lines of the nucleus
equations remain unchanged both for ESL, for LW and Variable Kinematic assembling. The Variable-
Kinematic assembly procedure of the stiffness matrix in the framework of CUF is shown in Figure 4.
An overview of the assembling scheme of the ESL, LW and Variable-Kinematics approaches is given in
Figure 5.

Figure 4: Variable-Kinematics behaviour of the primary variables {u, v, w,Φ} along the thickness of
the shell.
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Figure 5: Overview of assembling scheme of the three different approaches.

Acronyms

Depending on the variables description and the number of terms N of the various expansion of kine-
matics plate theories can be obtained. A system of acronyms is given to denote these models. The first
letters indicate the used approach in this work which is Equivalent Single Layer (E). The second letter
indicates the type of polynomial adopted, (L) for the Legendre’s polynomials. Sometimes a reference
solution is given with a layer-wise approach, so the first letters become LW. The number N indicates
the number of terms of the expansion used in the thickness direction. If the Navier analytical method
is employed the subscript (a) is used. The letter Z is added if the zig-zag function of Murakami is
employed.

7 Numerical results

To assess these theories the following reference problems have been considered:

• A four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric external skins

• A three-layer cylindrical shell with a composite core and piezoelectric external skins

• A four-layer cylindrical shell with a cross-ply composite core [90◦/0◦] and piezoelectric external
skins

7.1 Four-layer plate

A four-layer cross-ply square plate, see Figure 6, with a cross-ply Gr/Ep composite core [0◦/90◦] and
PZT-4 piezoelectric external skins, simply-supported boundary condition is considered. The static
analysis of the plate structure is evaluated in sensor and actuator configuration.

11



Figure 6: Reference system of the composite plate with piezoelectric skins.

For the sensor case, a bi-sinusoidal transverse normal pressure is applied to the top surface of the
plate:

p (x, y, ztop) = poz sin(mπx/a)sin(nπy/b) (28)

with amplitude poz = 1 and wave numbers m = 1, n = 1. The potential at top and bottom position is
imposed Φt = Φb = 0.
For the actuator case, a bi-sinusoidal electric potential is imposed at top surface:

Φ (x, y, ztop) = φoz sin(mπx/a)sin(nπy/b) (29)

with amplitude φoz = 1 and wave numbers m = 1, n = 1. The potential at bottom position is imposed
Φb = 0. No mechanical load is applied.
In respect to the total thickness, a single piezoelectric skin is thick hp = 0.1htot, while the single core
layer is thick hc = 0.4htot. The material properties of the plate are given in Table 1.
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Table 1: Material data for multilayered plate and shell.

Properties PZT-4 Gr/EP

E11 [GPa] 81.3 132.38
E22 [GPa] 81.3 10.756
E33 [GPa] 64.5 10.756
ν12 [−] 0.329 0.24
ν13 [−] 0.432 0.24
ν23 [−] 0.432 0.49
G12 [GPa] 30.6 5.6537
G13 [GPa] 25.6 5.6537
G23 [GPa] 25.6 3.606
e15 [C/m2] 12.72 0
e24 [C/m2] 12.72 0
e31 [C/m2] -5.20 0
e32 [C/m2] -5.20 0
e33 [C/m2] 15.08 0
ε̃11/ε0 [−] 1475 3.5
ε̃22/ε0 [−] 1475 3.0
ε̃33/ε0 [−] 1300 3.0
ε0 [C/V m] 8.85 ∗ 10−12 8.85 ∗ 10−12

The results are calculated for different thickness ratios a/h = 2, 100, and they are evaluated in the
following positions with the following form for the sensor cases:
ŵ(x, y, z) = w(a/2, b/2, 0) ∗ 1011 , σ̂xx(x, y, z) = σxx(a/2, b/2,+h/2)
σ̂xz(x, y, z) = σxz(a, b/2, 0) , σ̂zz(x, y, z) = σzz(a/2, b/2,+h/2)
Φ̂(x, y, z) = Φ(a/2, b/2, 0) ∗ 103 , D̂z(x, y, z) = Dz(a/2, b/2,+h/2) ∗ 109

For the actuator cases the variables are evaluated in the same way as the sensor cases, except for the
electric potential:
Φ̂(x, y, z) = Φ(a/2, b/2, 0)
First, a convergence study on the plate element was performed. A composite plate with thickness ratios
a/h = 100 is evaluated. For the sensor case a mesh grid of 40 × 40 elements ensures the convergence
of both the mechanical and electrical variables except for the transverse electric displacement Dz that
has a very slow convergence rate. For the actuator case a mesh grid of 24 × 24 elements ensures the
convergence for all the variables, see Table 2.
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Table 2: Convergence study. Composite four layered plate with thickness ratio a/h = 100.

Sensor Case

Mesh 4× 4 8× 8 12× 12 16× 16 20× 20 24× 24 28× 28 32× 32 36× 36 40× 40 Analytical [Ballhause et al., 2005]

LW4

ŵ 4678433 4675324 4675148 4675117 4675109 4675106 4675104 4675104 4675104 4675103 4675300
σ̂xx 3302.4 3182.6 3160.1 3152.3 3148.7 3146.7 3145.5 3144.7 3144.2 3143.8 3142.1
σ̂xz -20.154 -19.167 -18.975 -18.909 -18.879 -18.863 -18.854 -18.849 -18.845 -18.842 -18.832
σ̂zz 18.210 2.306 1.284 1.101 1.047 1.025 1.015 1.009 1.006 1.003 -

Φ̂ 4780.7 4636.5 4605.7 4594.6 4589.5 4586.7 4585.1 4584.1 4583.5 4583.0 4580.2

D̂z -1.2691 -0.1006 -0.0307 -0.0193 -0.0165 -0.0154 -0.0149 -0.0144 -0.0140 -0.0136 0.0136

Actuator Case

Mesh 4× 4 8× 8 12× 12 16× 16 20× 20 24× 24 Analytical [Ballhause et al., 2005]

LW4

ŵ -1.3486 -1.3492 -1.3493 -1.3493 -1.3493 -1.3493 -1.3493
σ̂xx -0.0238 -0.0244 -0.0245 -0.0245 -0.0246 -0.0246 -0.0246
σ̂xz 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ̂zz 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 -

Φ̂ 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999

D̂z -0.0370 -0.0370 -0.0370 -0.0370 -0.0370 -0.0370 -0.0370

Therefore a locking study has been performed evaluating different types of integration methods
[Hughes et al., 1978] for the same plate structure to prove that the element is locking free, see Table 3.
The plate element with the MITC9 method ensures accuracy on both the transverse displacement and
the shear stress.

Table 3: Locking study. Composite four layered plate with thickness ratio a/h = 100. The Sensor
cases are computed with a mesh of 40× 40 elements, the Actuator cases are computed with a mesh of
24× 24 elements.

Sensor Case Actuator Case

Reduced Selective MITC9 Analytical [Ballhause et al., 2005] Reduced Selective MITC9 Analytical [Ballhause et al., 2005]

LW4

ŵ 4675103 4675003 4675103 4675300 -1.3493 -1.3496 -1.3493 -1.3493
σ̂xz -23.096 -22.018 -18.842 -18.832 0.0000 0.0000 0.0000 0.0000

Φ̂ 4581.9 4582.7 4583.0 4580.2 0.4999 0.4999 0.4999 0.4999

D̂z -0.1511 0.0340 -0.0136 0.0136 -0.0366 -0.0370 -0.0370 -0.0370

An assessment of the Legendre polynomials with a full ESL approach has been performed for the
pure mechanical case in [Pagani et al., ] for plates and in [Carrera et al., 2017] for shells. All the results
presented in [Pagani et al., , Carrera et al., 2017], for thick and thin plates and shells, show that the
Legendre polynomials lead to the same results of the Taylor polynomials. The use of either polynomial
is invariant respect to the solution accuracy.
Hereafter Legendre polynomials have been employed for the structure analyzes. Different Variable
Kinematic models have been used to perform the analysis of the plate structures, see Figures 7. The
acronyms have been modified adding a subscript to them, for the sake of clarity the list of subscripts
is given below:

• Case1 = {layer1} {layer2, layer3, layer4}

• Case2 = {layer1, layer2, layer3} {layer4}

• Case3 = {layer1} {layer2, layer3} {layer4}
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Figure 7: Variable Kinematic Cases. Compact example of assembling scheme.

The results are listed in Table 4 for the sensor case, and in Table 5 for the actuator case. For the plate
structures analysed the following considerations can be drawn for the sensor cases:

• Regarding the transverse displacement w, for thin plates a/h = 100, the theories EL4,Case1,
EL4,Case2 and EL4,Case3 lead an improvement of the solution respect to the EL4 without appre-
ciable differences whithin them, see Figure 8a. For thick plates a/h = 2, the variable kinematic
theories show different levels of accuracy. The EL4,Case3 theory is able to approximate very well
the full layer-wise reference solution LW4. It has to be noticed that the EL4,Case1 theory has
a better behaviour than the EL4,Case2 theory due to the layer-wise approximation of the upper
loaded layer, see Figure 8b.

• For both the transverse shear stress σxz, see Figure 9a, and the transverse normal stress, see
Figure 9b, the theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory
only in the layer with a layer-wise description. The EL4,Case3 theory is able to approximate very
well along the entire thickness of the plate the full layer-wise reference solution LW4.

• Regarding the electric potential Φ, for thin plates a/h = 100, the theories EL4,Case1, EL4,Case2
and EL4 theories overestimate the reference solution, see Figure 10a. For thick plates a/h = 2,
the variable kinematic theories can underestimate and overestimate the solution, see Figure 10b.
For both thin and thick plates only the EL4,Case3 theory is able to approximate very well the
full layer-wise reference solution LW4.

• For the electric transverse displacement Dz, for both thin plates a/h = 100, see Figures 11a, and
thick plates a/h = 2, see Figures 11b, the theories EL4,Case1 and EL4,Case2 improve the results
respect to the EL4 theory only in the layer with a layer-wise description. The EL4,Case3 theory
is the best approximating theory respect to the full layer-wise reference solution LW4.

For the plate structures analysed in actuator configuration, the following considerations can be drawn:

• Regarding the transverse displacement w, for thin plates a/h = 100, the variable kinematic
theories show different levels of accuracy, see Figure 12a, the EL4,Case3 solution is closer than
EL4,Case1 and EL4,Case2 theories to the full layer-wise reference solution LW4. For thick plates
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a/h = 2 the EL4,Case1 and EL4,Case3 theories are able to approximate very well the full layer-wise
reference solution LW4, see Figure 12b.

• For both the transverse shear stress σxz, see Figure 13a, and the transverse normal stress, see
Figure 13b, the same considerations as the sensor cases can be depicted. The theories EL4,Case1
and EL4,Case2 improve the results respect to the EL4 theory only in the layer with a layer-wise
description. The EL4,Case3 theory is able to approximate very well along the entire thickness of
the plate the full layer-wise reference solution LW4.

• Regarding the electric potential Φ, for thin plates a/h = 100, see Figure 14a, the theories
EL4,Case1, EL4,Case2 and EL4 theories can underestimate and overestimate the solution in the
central composite layers. The EL4,Case3 theory is able to approximate very well the full layer-wise
reference solution LW4.

• For the electric transverse displacement Dz, for thick plates a/h = 2, see Figures 14b, the theories
EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory only in the layer with a
layer-wise description. The EL4,Case3 theory is the best approximating theory respect to the full
layer-wise reference solution LW4.

Therefore, the euclidean norm of the error of primary variables ( mechanical displacements, and
eletric potential ), and secondary variables ( mechanical stresses, and electric displacements ), is evalu-
ated along the plate thickness by mono-models and variable-kinematic models, respect to the adopted
reference solution ref = LW4. The euclidean norm of the error ‖fE‖2 is calculated for a generic
mechanical or electric variables f along the plate thickness z as follows:

‖fE‖2 =

√∫ z2

z1

(fref (z)− f(z))2 dz (30)

for a multilayered structure, the integral is splitted, along the thickness direction z, in the integral sum
of each layer k. Equation 30 changes into:

‖fE‖2 =

√√√√Nlayers∑
k=1

∫ zk2

zk1

(
fkref (z)− fk(z)

)2
dzk (31)

The euclidean norms are listed in Table 6 for various aspect ratios, and both sensor and actuator case are
taken into account. Here, the norm is a global indicator of the solution accuracy along the multilayer
thickness, it is not distinguishing the local layer approximation. For the Sensor case ( mechanical
load applied ), the mechanical variables have almost the same solution accuracy independently of the
used kinematic model. The variable-kinematic model Case 3, where the piezoelectric skins have to be
modeled by a layer-wise description, permits to have an huge reduction of the error

(
103 : 104 times

)
respect to the others mono-models and variable-kinematic models, for the description of the electric
potential Φ, and for the electric transverse displacement Dz. For the Actuator case ( electrical load
applied ), the variable-kinematic model Case 3, where the piezoelectric skins have to be modeled by
a layer-wise description, permits to have better results for both mechanical and electrical variables.
The mechanical variables show an error reduction of

(
103 : 105 times

)
respect to the other kinematic

models. The accuracy of the electric variables is improved more than mechanical ones, the error is(
103 : 108 times

)
lower than the other kinematic models.

For the multilayered plate structures, in conclusion, it is clear that to have more accurate results,
the piezoelectric skins have to be modeled by a layer-wise description. The Variable-Kinematic model
permits to improve globally the results, and at the same time permits to reduce the computational cost
of the analysis, assembling the composite core with an equivalent-single-layer model.
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Table 4: Four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric external
skins. Mechanical and electrical variables described by Mono-models and Variable kinematic models
for various aspect ratios a/h. Sensor case.

a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a[Ballhause et al., 2005] 4675300 3142.1 -18.832 - 4580.2 0.0136

LW4 4675103 3143.8 -18.842 1.004 4583.0 -0.0136 446148
LW1 4647068 3268.7 -18.909 342.0 4555.3 -23.863 131220
EL3Z 4674435 3142.2 -26.188 43.85 6967.9 -21.051 131220
EL4 4674758 3133.9 -27.238 -37.15 12122 7.9569 131220
EL3 4674453 3153.0 -26.719 23.08 12658 -1.5890 104976
EL2 4669551 3152.5 -10.677 23.56 12660 -1.0612 78732
EL1 3719168 3657.9 -10.203 2727 0.0000 -190.38 52488

EL4Case 1 4674882 3143.9 -25.668 1.004 9320.7 0.2112 236196
EL4Case 2 4674874 3141.3 -25.386 -19.59 9308.7 6.5076 236196
EL4Case 3 4674870 3143.8 -24.713 1.004 4582.9 -0.0135 341172
EL3Case 1 4674914 3144.0 -26.972 1.004 10412 0.3304 183708
EL3Case 2 4674905 3151.0 -25.839 -38.11 10396 23.176 183708
EL3Case 3 4674740 3143.8 -24.463 1.004 4582.8 -0.0135 262440
EL2Case 1 4673789 3143.2 -17.418 1.029 12620 0.3017 131220
EL2Case 2 4673770 3159.6 -21.524 38.19 12613 -2.8657 131220
EL2Case 3 4674702 3143.8 -23.057 1.029 4582.7 -0.0139 183708
EL1Case 1 4405952 3105.1 -14.014 324.3 2521.9 14.873 78732
EL1Case 2 4405007 3483.4 -14.290 1742 2522.2 -360.17 78732
EL1Case 3 4560604 3214.1 -22.118 335.6 4472.9 -23.419 104976

a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a[Ballhause et al., 2005] 4.9113 3.2207 -0.26995 - 0.9103 0.0256

LW4 4.9112 3.2220 -0.27556 1.0002 0.9106 0.0257 446148
LW1 4.8087 3.5198 -0.31619 2.1220 0.8600 -0.0663 131220
EL3Z 4.3973 3.3894 -0.45298 1.5681 23.803 -0.0579 131220
EL4 4.5038 2.3684 -0.46102 -0.3149 -6.0143 -0.0938 131220
EL3 4.6282 3.1386 -0.45210 1.6818 2.9967 -0.1295 104976
EL2 2.9334 2.3985 -0.19243 2.1722 4.1979 0.3281 78732
EL1 2.8907 2.1141 -0.19247 2.4231 0.0000 0.1730 52488

EL4Case 1 4.6885 3.1302 -0.42763 1.0002 2.4015 0.0252 236196
EL4Case 2 4.7123 2.4890 -0.40574 -0.4832 -9.0305 0.0531 236196
EL4Case 3 4.8731 3.2003 -0.40012 1.0002 0.9037 0.0256 341172
EL3Case 1 4.6374 3.1506 -0.45238 1.0048 4.1069 0.0255 183708
EL3Case 2 4.6556 3.0310 -0.44481 0.8657 -10.643 -0.0182 183708
EL3Case 3 4.8779 3.1923 -0.40117 1.0050 0.9049 0.0258 262440
EL2Case 1 4.1357 2.5720 -0.30963 1.0249 6.9886 0.0227 131220
EL2Case 2 4.1730 3.0466 -0.32652 2.2611 1.8004 0.0260 131220
EL2Case 3 4.8895 3.1797 -0.39916 1.0325 0.8674 0.0272 183708
EL1Case 1 4.2378 3.1781 -0.29120 1.8672 0.8329 0.0204 78732
EL1Case 2 3.2987 1.8259 -0.24482 2.0088 1.0888 0.1602 78732
EL1Case 3 5.0470 3.2388 -0.40237 2.0573 1.4450 -0.0620 104976
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Table 5: Four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric external
skins. Mechanical and electrical variables described by Mono-models and Variable kinematic models
for various aspect ratios a/h. Actuator case.

a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a[Ballhause et al., 2005] -1.3493 -0.0246 0.0000 - 0.4999 -0.0370

LW4 -1.3493 -0.0246 0.0000 0.0000 0.4999 -0.0370 163268
LW1 -1.3970 -0.0210 0.0000 0.0035 0.4999 -0.0353 48020
EL3Z -3.6123 1.8546 -0.0154 -4.8765 0.4969 3.7228 48020
EL4 -3.2153 1.8587 -0.0087 -4.8932 0.5000 3.7332 48020
EL3 -3.1556 1.8607 -0.0117 -4.8929 0.5000 3.7340 38416
EL2 -13.288 -8.2308 0.0186 5.4440 0.5000 -13.546 28812
EL1 -14.415 -8.2361 0.0198 5.4391 0.5000 -13.544 19208

EL4Case 1 -23.806 -0.0362 -0.0002 0.0000 0.3220 -0.0452 86436
EL4Case 2 19.359 0.0934 -0.0046 -0.0148 0.6780 0.0516 86436
EL4Case 3 -1.3493 -0.0246 0.0000 0.0000 0.4999 -0.0370 124852
EL3Case 1 35.698 -0.0417 -0.0002 0.0000 0.2554 -0.0525 67228
EL3Case 2 30.710 0.5397 -0.0140 -1.4381 0.7445 1.0801 67228
EL3Case 3 -1.3492 -0.0246 0.0000 0.0000 0.4999 -0.0370 96040
EL2Case 1 -32.853 -0.0398 -0.0001 0.0000 0.2810 -0.0529 48020
EL2Case 2 23.714 0.6197 0.0102 -1.9831 0.7190 1.3987 48020
EL2Case 3 -1.3492 -0.0246 0.0000 0.0000 0.4999 -0.0370 67228
EL1Case 1 -3744.8 -2.0834 -0.0001 -0.2717 0.5487 -1.6144 28812
EL1Case 2 3725.0 -6.0577 0.0262 10.138 0.4513 -14.470 28812
EL1Case 3 -1.3711 -0.0210 0.0000 0.0035 0.5000 -0.0353 38416

a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz Φ̂ D̂z
LW4a[Ballhause et al., 2005] -1.7475 3.8162 0.0864 - 0.3330 -9.4085

LW4 -1.7475 3.8329 0.0928 0.0006 0.3330 -9.4093 163268
LW1 -2.1030 12.452 0.0215 8.1858 0.3241 -5.2964 48020
EL3Z -1.4360 5.9403 -0.4065 10.264 -1.5893 -8.2244 48020
EL4 -4.4070 10.954 -0.1212 -0.2279 0.5118 -4.0866 48020
EL3 -4.0468 13.687 -0.1547 -0.5378 0.4615 -2.0398 38416
EL2 -12.428 -3.0088 1.0887 7.3130 0.4674 -16.882 28812
EL1 -14.415 -11.286 1.1108 0.6048 0.5000 -14.549 19208

EL4Case 1 -1.6859 3.8635 0.1467 0.0006 0.2387 -9.4124 86436
EL4Case 2 -4.2234 8.0541 0.0733 4.8358 0.6467 -8.9133 86436
EL4Case 3 -1.7323 3.8406 0.1339 0.0006 0.3330 -9.4092 124852
EL3Case 1 -1.7082 3.8931 0.1402 0.0269 0.2076 -9.4088 67228
EL3Case 2 -5.3533 10.947 -0.4043 4.5420 0.7964 -6.1619 67228
EL3Case 3 -1.7510 3.8810 0.1413 0.0268 0.3310 -9.4034 96040
EL2Case 1 -1.2439 4.4452 0.0248 0.0604 0.2687 -9.3855 48020
EL2Case 2 -10.423 7.5934 1.0047 -0.9364 0.6714 -3.6157 48020
EL2Case 3 -1.7733 4.0563 0.0847 0.0549 0.3311 -9.3809 67228
EL1Case 1 -5.3835 8.8014 0.2170 6.9842 0.5340 -6.7681 28812
EL1Case 2 -13.537 -7.9884 1.3111 5.4393 0.4493 -15.734 28812
EL1Case 3 -2.0311 12.943 0.1103 8.1694 0.4858 -5.2979 38416
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Figure 8: Four-layered plate, Sensor case, transverse mechanical displacement ŵ, a/h = 100 (a), a/h = 2
(b).

-50

-40

-30

-20

-10

 0

 10

 20

 30

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

xz

z

LW4

EL4

EL4 Case 1

EL4 Case 2

EL4 Case 3

(a)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

zz

z

LW4

EL4

EL4 Case 1

EL4 Case 2

EL4 Case 3

(b)

Figure 9: Four-layered plate, Sensor case, transverse mechanical stresses, σ̂xz for a/h = 100 ratio (a),
σ̂zz for a/h = 2 ratio (b).
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Figure 10: Four-layered plate, Sensor case, Electric Potential Φ̂, a/h = 100 (a), a/h = 2 (b).
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Figure 11: Four-layered plate, Sensor case, transverse electric displacement D̂z, a/h = 100 (a), a/h = 2
(b).
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Figure 12: Four-layered plate, Actuator case, transverse mechanical displacement ŵ, a/h = 100 (a),
a/h = 2 (b).
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Figure 13: Four-layered plate, Actuator case, transverse mechanical stresses, σ̂xz for a/h = 100 ratio
(a), σ̂zz for a/h = 2 ratio (b).
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Figure 14: Four-layered plate, Actuator case, electric potential and electric transverse displacement, Φ̂
for a/h = 100 ratio (a), D̂z for a/h = 2 ratio (b).
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Table 6: Four-layer square plate with a cross-ply composite core [0◦/90◦] and piezoelectric external
skins. Euclidean norm of the error respect to the reference solution LW4 for mechanical and electrical
variables described by Mono-models and Variable kinematic models for various aspect ratios a/h. Sensor
and Actuator cases.

Sensor Case

a/h ŵ Φ̂ σ̂xx σ̂xz σ̂zz D̂z

100

EL4 0.3410 E+03 0.4954 E+04 0.5481 E+01 0.6929 E+01 0.1552 E+02 0.2390 E+01
EL4Case 1 0.2155 E+03 0.3164 E+04 0.3934 E+01 0.6697 E+01 0.1039 E+02 0.2182 E+01
EL4Case 2 0.2238 E+03 0.3157 E+04 0.3399 E+01 0.3995 E+01 0.1078 E+02 0.2177 E+01
EL4Case 3 0.2278 E+03 0.1310 E+00 0.1955 E+01 0.1513 E+01 0.4410 E+01 0.2100 E-04

2

EL4 0.4228 E+00 0.3996 E+01 0.2865 E+00 0.1367 E+00 0.3652 E+00 0.4461 E-01
EL4Case 1 0.1870 E+00 0.1211 E+01 0.7011 E-01 0.1131 E+00 0.6709 E-01 0.6323 E-02
EL4Case 2 0.2424 E+00 0.5773 E+01 0.2423 E+00 0.1136 E+00 0.3874 E+00 0.1095 E-01
EL4Case 3 0.3376 E-01 0.7868 E-02 0.4050 E-01 0.2977 E-01 0.6621 E-02 0.2712 E-04

Actuator Case

a/h ŵ Φ̂ σ̂xx σ̂xz σ̂zz D̂z

100

EL4 0.1886 E+01 0.4020 E-01 0.5294 E+00 0.2824 E-01 0.1361 E+01 0.1099 E+01
EL4Case 1 0.2244 E+02 0.1142 E+00 0.5039 E-01 0.1077 E-03 0.9711 E-01 0.8997 E-01
EL4Case 2 0.2069 E+02 0.1143 E+00 0.4999 E-01 0.2882 E-01 0.9694 E-01 0.9004 E-01
EL4Case 3 0.4251 E-04 0.1880 E-08 0.5106 E-06 0.3669 E-05 0.1276 E-05 0.6322 E-08

2

EL4 0.2345 E+01 0.1261 E+00 0.1669 E+01 0.1458 E+01 0.6965 E+00 0.1454 E+01
EL4Case 1 0.6071 E-01 0.6160 E-01 0.5113 E-01 0.3643 E-01 0.5155 E-01 0.6265 E-01
EL4Case 2 0.2097 E+01 0.2057 E+00 0.1147 E+01 0.1469 E+01 0.7718 E+00 0.2346 E+00
EL4Case 3 0.8899 E-02 0.1470 E-03 0.2288 E-01 0.1462 E-01 0.4666 E-02 0.6206 E-04

7.2 Three-layer cylindrical shell

A three-layer composite cylindrical shell, see Figure 15, with a Gr/Ep composite core and PZT-4
piezoelectric external skins, simply-supported boundary condition is considered. The static analysis of
the shell structure is evaluated in sensor and actuator configuration.

Figure 15: Reference system of the composite cylinder with piezoelectric skins.

For the sensor case a mechanical load pressure is applied, for the whole cylinder, at the inner surface
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of the shell, defined as follows:

p (α, β, zbottom) = po sin
(mπα

a

)
cos

(
nπβ

b

)
(32)

with amplitude po = 1 and wave numbers m = 1 and n = 8. The potential at top and bottom position
is imposed Φt = Φb = 0.
For the actuator case a bi-sinusoidal electric potential, for the whole cylinder, is imposed at outer
surface:

Φ (α, β, ztop) = φo sin
(mπα

a

)
cos

(
nπβ

b

)
(33)

with amplitude φo = 1 and wave numbers m = 1, n = 8. The potential at bottom position is imposed
Φb = 0. No mechanical load is applied.
The material properties of the cylinder are given in Table 1. For all the cases the geometrical data
are a = 40, b = 2πRβ, Rβ = 10. In respect to the total thickness, a single piezoelectric skin is thick
hp = 0.1htot, while the single core layer is thick hc = 0.8htot. The results are presented for different
radius to thickness ratios Rβ/h = 2, 4, 10, 100. Due to the geometrical symmetry of the cylinder, the
symmetry of the load pressure and boundary condition, and the symmetry of the lamination stacking
sequence, an octave of the cylinder is analyzed, half cylinder along the α axis direction and a quarter
along the β circumferential axis direction. The applied mechanical load for an octave of the cylinder is
defined as follows:

p (α, β, zbottom) = po cos
(mπα

a

)
cos

(
nπβ

b

)
(34)

and the electric load for an octave of the cylinder is defined as follows:

Φ (α, β, ztop) = φo cos
(mπα

a

)
cos

(
nπβ

b

)
(35)

where m = 0, 5 and n = 2. The results are calculated in the following positions with the following form
for the sensor cases:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 1011 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0) , σ̂zz(α, β, z) = σzz(a/2, 0, 0)
Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 1011

For the actuator cases the variables are evaluated in the following form:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 1011 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0) ∗ 104 , σ̂zz(α, β, z) = σzz(a/2, 0, 0) ∗ 104

Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 1011

First a convergence study on the shell element was performed. A composite shell with radius to thick-
ness ratio Rβ/h = 100 is evaluated. For the sensor case a mesh grid of 20 × 80 elements ensures the
convergence of both the mechanical and electrical variables except for the transverse electric displace-
ment Dz that has a very slow convergence rate. For the actuator case a mesh grid of 14× 56 elements
ensures the convergence for all the variables, see Table 7.
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Table 7: Convergence study. Composite three layered cylindrical shell with radius to thickness ratio
Rβ/h = 100.

Sensor Case

Mesh 2× 8 4× 16 6× 24 8× 32 10× 40 12× 48 14× 56 16× 64 18× 72 20× 80 Analytical[Cinefra et al., 2015a]

LW4

ŵ 403698 403225 403194 403188 403187 403186 403186 403186 403186 403186 403190
σ̂αα 2706.1 2612.6 2594.4 2587.9 2585.0 2583.4 2582.4 2581.7 2581.3 2581.0 -
σ̂αz -3.5070 -3.2390 -3.1880 -3.1722 -3.1656 -3.1622 -3.1604 -3.1592 -3.1585 -3.1579 -3.1560
σ̂zz -3.9198 -4.0225 -4.0154 -4.0109 -4.0082 -4.0063 -4.0048 -4.0035 -4.0024 -4.0016 -3.997

Φ̂ 0.3263 0.3164 0.3143 0.3136 0.3132 0.3131 0.3129 0.3129 0.3128 0.3128 0.3127

D̂z -121.54 -16.278 -9.6342 -8.5184 -8.2038 -8.0807 -8.0178 -7.9754 -7.9386 -7.9020 -5.495

Actuator Case

Mesh 2× 8 4× 16 6× 24 8× 32 10× 40 12× 48 14× 56 Analytical[Cinefra et al., 2015a]

LW4

ŵ 5.5422 5.5420 5.5419 5.5418 5.5418 5.5418 5.5418 5.5418
σ̂αα -0.2048 -0.2119 -0.2132 -0.2137 -0.2140 -0.2141 -0.2141 -
σ̂αz -0.6069 -0.5559 -0.5466 -0.5439 -0.5427 -0.5422 -0.5419 -0.5423
σ̂zz 0.0390 -0.3508 -0.3370 -0.3438 -0.3742 -0.4104 -0.4417 -0.5571

Φ̂ 0.5009 0.5009 0.5009 0.5009 0.5009 0.5009 0.5009 0.5009

D̂z -36.201 -36.203 -36.207 -36.208 -36.209 -36.209 -36.209 -36.209

Different Variable Kinematic models have been used to perform the analysis of the shell structures.
The acronyms have been modified adding a subscript to them, for the sake of clarity the list of subscripts
is given below:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

The results are listed in Table 8 for the sensor case, and in Table 9 for the actuator case. For the
plate structures analyzed the following considerations can be drawn for the sensor cases and actuator
cases. For both mechanical and electrical variables the variable kinematic configurations EL4Case 1,
EL4Case 2 show an improvement of the solutions respect to the full equivalent single layer theory EL4.
As demonstrated in the previous numerical example, it is preferable to model the piezoelectric skins of
a multilayered structure with a layer-wise approach to obtain more accurate results. For this numerical
example, the two possible variable kinematic theories Case 1 and Case 2 cannot be as accurate as
the configuration with the piezoelectric skins modeled with a layer-wise approach, that for this three-
layered structure is coincident with the full-layer wise model. The more accurate variable kinematic
configuration is that which takes into account the layer-wise description of the layer subject to the
mechanical or electrical load. For the sensor cases the Case 2 configuration is more accurate, for the
actuator cases the Case 1 configuration is more close to the reference solution.
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Table 8: Three-layer cylinder with a composite core and piezoelectric external skins. Mechanical and
electrical variables described by Mono-models and Variable kinematic models for various radius to
thickness ratios R/h. Sensor case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Cinefra et al., 2015a] 403190 - -3.1560 -3.997 0.3127 -5.495

LW4 403185 2581.0 -3.1579 -4.0016 0.3128 -7.9020 343252
LW1 397196 2638.2 -2.9309 -3.8980 0.3081 -1600.8 105616
EL3Z 403237 2582.2 -3.1637 -3.9975 0.8662 -112.76 132020
EL4 403251 2580.8 -3.5091 -2.5532 0.8378 3648.5 132020
EL3 403251 2581.7 -3.5069 -2.5495 0.8664 3003.5 105616
EL2 405108 2546.2 -1.5952 -27.979 0.8724 -12631 79212
EL1 355114 3094.8 -1.6844 -25.846 0.0000 -25607 52808

EL4Case 1 403170 2580.9 -3.4019 -3.1394 0.4913 0.6731 237636
EL4Case 2 403214 2561.5 -3.1384 -2.7264 0.7887 513.47 237636
EL3Case 1 403164 2580.9 -3.7731 -2.1040 0.5107 3.0502 184828
EL3Case 2 403235 2580.9 -3.0706 -1.9132 0.9247 2531.1 184828
EL2Case 1 403131 2580.7 -2.2146 -6.0200 0.6671 0.3341 132020
EL2Case 2 403186 2592.1 -2.8999 -7.3777 1.0618 972.84 132020
EL1Case 1 388319 2575.6 -2.1355 102.05 0.2198 -213.08 79212
EL1Case 2 393626 2843.8 -2.0230 -147.95 0.1272 -38700 79212

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Cinefra et al., 2015a] 30.225 - -0.1193 -0.415 0.00497 0.752

LW4 30.225 1.2065 -0.1194 -0.4150 0.00497 0.7348 343252
LW1 31.598 1.4335 -0.1143 -0.4047 0.00714 -2.5374 105616
EL3Z 30.162 1.4929 -0.1163 -0.3957 0.01110 -9.9503 132020
EL4 27.653 1.0410 -0.1275 -0.5243 -0.02601 16.025 132020
EL3 27.839 1.9639 -0.1246 -0.4625 0.01396 13.033 105616
EL2 16.090 0.3806 -0.0500 -0.1429 0.02323 -12.100 79212
EL1 16.373 0.5292 -0.0506 -0.1539 0.00000 -31.931 52808

EL4Case 1 28.508 1.1485 -0.1211 -0.4757 -0.0577 0.6670 237636
EL4Case 2 29.402 1.3944 -0.1208 -0.4218 0.0165 2.2707 237636
EL3Case 1 27.943 1.0920 -0.1256 -0.5498 -0.0586 0.6076 184828
EL3Case 2 29.292 1.4955 -0.1248 -0.4048 0.0246 3.9826 184828
EL2Case 1 24.031 0.8845 -0.0835 -0.1615 0.0035 0.5862 132020
EL2Case 2 27.241 1.4981 -0.0956 -0.4982 0.0320 8.6203 132020
EL1Case 1 18.060 1.0674 -0.0632 -0.1374 0.0050 -1.5134 79212
EL1Case 2 25.976 0.0759 -0.0801 -0.3057 0.0046 -55.425 79212
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Table 9: Three-layer cylinder with a composite core and piezoelectric external skins. Mechanical and
electrical variables described by Mono-models and Variable kinematic models for various radius to
thickness ratios R/h. Actuator case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Cinefra et al., 2015a] 5.5418 - -0.5423 -0.5571 0.5009 -36.209

LW4 5.5418 -0.2141 -0.5419 -0.4417 0.5009 -36.209 170404
LW1 5.4331 -0.1833 -0.5080 -0.4459 0.5000 -34.865 52432
EL3Z 1.8837 -0.9776 -0.4124 830.44 0.5000 -141.81 65540
EL4 92.747 19.424 -202.29 -15334 0.5010 3724.6 65540
EL3 92.691 19.534 -203.24 -15337 0.5002 3745.2 52432
EL2 2520.2 -64.432 486.90 -141817 0.5066 -14300 39324
EL1 2250.4 -61.527 483.72 -141707 0.5000 -14451 26216

EL4Case 1 -3.1798 -0.2202 -2.6406 -1.6166 0.3224 -44.401 117972
EL4Case 2 26.953 0.9671 -124.78 15.979 0.6785 50.273 117972
EL3Case 1 -5.6162 -0.1922 -4.0188 -2987.5 0.2561 -51.697 91756
EL3Case 2 41.196 5.4375 -293.32 -2943.7 0.7453 1073.7 91756
EL2Case 1 -2.4141 -0.1676 -3.1852 -1083.3 0.2810 -52.076 65540
EL2Case 2 37.439 6.2793 337.58 -1117.0 0.7191 1400.4 65540
EL1Case 1 -1364.0 0.6154 -72.913 -113980 0.5516 -1636.7 39324
EL1Case 2 4140.8 -59.763 736.08 -125596 0.4490 -15022 39324

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Cinefra et al., 2015a] -1.306 - 19.176 -116.36 0.4058 -106.61

LW4 -1.306 -0.1759 19.208 -116.49 0.4058 -106.64 170404
LW1 -1.366 0.8046 11.078 -79.83 0.4916 -61.79 52432
EL3Z -0.425 -0.5514 12.571 1044.0 0.4675 -211.86 65540
EL4 -3.137 0.5679 -156.43 -255.73 0.5486 -36.31 65540
EL3 -1.861 1.0151 -217.99 -622.17 0.4778 3.62 52432
EL2 -12.84 -0.9158 571.77 -3914.7 0.5395 -254.03 39324
EL1 -12.62 -1.9369 606.79 -3745.8 0.5000 -301.24 26216

EL4Case 1 -1.249 -0.1742 19.120 -116.75 0.2831 -106.72 117972
EL4Case 2 -3.281 0.1703 -73.019 -136.42 0.6549 -103.57 117972
EL3Case 1 -1.199 -0.1714 18.647 -155.50 0.2518 -106.74 91756
EL3Case 2 -3.728 0.5372 -279.71 174.84 0.7918 -69.74 91756
EL2Case 1 -0.949 -0.1750 -6.798 -106.46 0.2743 -107.49 65540
EL2Case 2 -7.025 0.6781 346.93 -1318.3 0.6902 -33.85 65540
EL1Case 1 -5.393 0.5046 104.25 -2031.9 0.5432 -80.87 39324
EL1Case 2 -11.69 -1.6581 643.28 -3892.4 0.4521 -319.48 39324
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7.3 Four-layer cylindrical shell

A four-layer composite cylindrical shell with a Gr/Ep composite core [90◦/0◦] and PZT-4 piezoelectric
external skins, see Figure 15, simply-supported boundary condition is considered. The static analysis
of the shell structure is evaluated in sensor and actuator configuration. The material properties of
the cylinder are given in Table 1. For all the cases the geometrical data are the same of the previous
numerical subsection. In respect to the total thickness, a single piezoelectric skin is thick hp = 0.1htot,
while the single composite core layer is thick hc = 0.4htot. The results are presented for different
radius to thickness ratios Rβ/h = 2, 4, 10, 100. The applied load is the same of the previous numerical
example, due to the geometrical symmetry of the cylinder, the symmetry of the load pressure and
boundary condition, an octave of the cylinder is analyzed, half cylinder along the α axis direction and
a quarter along the β circumferential axis direction. For the sensor case a mesh grid of 20 × 80, and
for the actuator case a mesh grid of 14 × 56 elements are employed as the previous example of the
three-layered cylinder.
The results are calculated in the following positions with the following form for the sensor cases:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 109 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0

−) , σ̂zz(α, β, z) = σzz(a/2, 0,−h/2)
Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 1011

For the actuator cases the variables are evaluated in the following form:
ŵ(α, β, z) = w(a/2, 0, 0) ∗ 1011 , σ̂αα(α, β, z) = σαα(a/2, 0,+h/2)
σ̂αz(α, β, z) = σαz(a, 0, 0

−) , σ̂zz(α, β, z) = σzz(a/2, 0,+h/2)
Φ̂(α, β, z) = Φ(a/2, 0, 0) , D̂z(α, β, z) = Dz(a/2, 0,+h/2) ∗ 109

Different Variable Kinematic models have been used to perform the analysis of the shell structures. The
acronyms have been modified adding a subscript to them, for the sake of clarity the list of subscripts
is given below:

• Case1 = {layer1} {layer2, layer3, layer4}

• Case2 = {layer1, layer2, layer3} {layer4}

• Case3 = {layer1} {layer2, layer3} {layer4}

The results are listed in Table 10 for the sensor case, and in Table 11 for the actuator case. For the
cylindrical shell structures analysed the following considerations can be drawn for the sensor cases:

• For big radius to thickness ratios R/h = 100 regarding the transverse displacement w, the theories
EL4,Case1, EL4,Case2 and EL4,Case3 lead an improvement of the solution respect to the EL4 with
different levels of accuracy, see Figure 16a. For small radius to thickness ratios R/h = 2, the in-
plane stress σαα is well described along the thickness, except from the EL4,Case1 and the full
equivalent-single-layer theory EL4, those theories have a loss in accuracy for the description of
the loaded lower layer, see Figure 16b.

• For both the transverse shear stress σαz, see Figure 17a, and the transverse normal stress σzz, see
Figure 17b, the theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory
only in the layer with a layer-wise description. The EL4,Case3 theory is able to approximate very
well along the entire thickness of the plate the full layer-wise reference solution LW4.

• Regarding the electric potential Φ, for big radius to thickness ratios R/h = 100, the theories
EL4,Case1, EL4,Case2 and EL4 theories overestimate the reference solution, see Figure 18a. For
the electric transverse displacement Dz, for small radius to thickness ratios R/h = 2, see Figures
18b, the theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory only in
the layer with a layer-wise description. The EL4,Case3 theory is the best approximating theory
respect to the full layer-wise reference solution LW4.
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For the cylindrical shell structures analysed in actuator configuration, the following considerations can
be drawn:

• Regarding the transverse displacement w, for big radius to thickness ratiosR/h = 100, the variable
kinematic theories show different levels of accuracy, see Figure 19a, the EL4,Case3 solution is closer
than EL4,Case1 and EL4,Case2 theories to the full layer-wise reference solution LW4. For small
radius to thickness ratios R/h = 2 the in-plane stress σαα is well described along the thickness
only from the EL4,Case3 theory, the other theories have a loss in accuracy expecially in loaded
upper layer, see Figure 19b.

• For both the transverse shear stress σαz, see Figure 20a, and the transverse normal stress σzz, see
Figure 20b, the same considerations as the sensor cases can be depicted. The theories EL4,Case1
and EL4,Case2 improve the results respect to the EL4 theory only in the layer with a layer-wise
description. The EL4,Case3 theory is able to approximate very well along the entire thickness of
the plate the full layer-wise reference solution LW4.

• Regarding the electric potential Φ, for big radius to thickness ratios R/h = 100, see Figure 21a,
the theories EL4,Case1, EL4,Case2 and EL4 theories can underestimate and overestimate the
solution in the central composite layers. The EL4,Case3 theory is able to approximate very well
the full layer-wise reference solution LW4.

• For the electric transverse displacement Dz, for small radius to thickness ratios R/h = 2, see
Figures 21b, the theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory
only in the layer with a layer-wise description. The EL4,Case3 theory is the best approximating
theory respect to the full layer-wise reference solution LW4.

The euclidean norm, as defined in equation 31, is a global indicator of the solution accuracy, it
can be related to the reduction of degrees of freedom (dofs) of the structure model, in other words
the euclidean norm can be related to the computational cost of the used models. In Figure 22 various
mono-models and variable-kinematic models with different expansion order are related to the reduction
dofs % respect to the adopted reference solution LW4 with the following definition:

reduction dofs % =
100 (DOFSLW4 −DOFS)

DOFSLW4
(36)

It is taken into account the error norm of the transverse mechanical displacement ŵ for the actuator
case of the shell with R/h = 2 ratio. It is evident, from figure 22, that as expected the solution
accuracy grows with the increasing of the polynomial order with a convergence to the fourth-order.
The ESL mono-models have the biggest dofs reduction coupled with large solution errors. Differently
LW models have the biggest solution accuracy coupled with low dofs reductions. It is noticeable that
variable-kinematic Case 1 models are able to have reduced solution errors because they are describing
with layer-wise approach the loaded top layer. Differently variable-kinematic Case 2 models represent
the worst solution for both accuracy and dofs reduction. Therefore, variable-kinematic Case 3 models
describe very accurate results comparable with the LW models, with noticeable dofs reduction.
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Table 10: Four-layer cylinder with a composite core and piezoelectric external skins. Mechanical and
electrical variables described by Mono-models and Variable kinematic models for various radius to
thickness ratios R/h. Sensor case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Carrera and Brischetto, 2007] 4403.2 - - -32549 0.3414 227910
LW4Ma[Carrera and Brischetto, 2007] 4403.2 - - -1.0000 0.3414 227910
LW4FMa[Carrera and Brischetto, 2007] 4403.2 - - -0.9999 0.3414 -2.4676

LW4 4403.1 2716.7 -0.6654 -0.9985 0.3416 -4.0092 448868
LW1 4387.1 2812.3 -2.5224 -260.44 0.3403 -1764.8 132020
EL3Z 4401.8 2710.2 -2.3028 -46.243 0.5404 -154.76 132020
EL4 4402.1 2741.2 -2.1376 -57.284 0.9333 2141.3 132020
EL3 4401.9 2715.0 -2.2215 -20.875 0.9488 1407.3 105616
EL2 4403.5 2684.2 -1.1480 55.766 0.9506 -5722.9 79212
EL1 3813.1 3256.8 -1.3543 -2176.7 0.0000 -20590 52808

EL4Case 1 4402.2 2716.3 -1.6024 -89.931 0.6519 10.560 237636
EL4Case 2 4402.4 2725.2 -1.5633 -0.9991 0.7804 522.82 237636
EL4Case 3 4402.6 2716.4 -1.3976 -0.9987 0.3415 -4.0166 343252
EL3Case 1 4401.4 2715.9 -2.2183 24.322 0.6849 15.898 184828
EL3Case 2 4402.6 2734.7 -1.7344 -0.9988 0.8974 2304.4 184828
EL3Case 3 4402.2 2716.3 -1.3883 -0.9986 0.3415 -4.0260 264040
EL2Case 1 4400.6 2715.2 -1.7809 7.2858 0.8519 13.417 132020
EL2Case 2 4402.3 2712.3 -1.9502 -1.2046 1.0438 315.94 132020
EL2Case 3 4401.8 2715.9 -2.0836 -1.2042 0.3415 -3.5428 184828
EL1Case 1 4226.9 2724.1 -1.6474 -1249.3 0.2146 478.46 79212
EL1Case 2 4246.2 2975.9 -1.5025 -252.10 0.1699 -33077 79212
EL1Case 3 4323.2 2773.2 -2.2237 -256.67 0.3354 -1739.1 105616

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Carrera and Brischetto, 2007] 0.2633 - - -2.2444 0.0039 9.8912
LW4Ma[Carrera and Brischetto, 2007] 0.2633 - - -1.0013 0.0039 9.8858
LW4FMa[Carrera and Brischetto, 2007] 0.2633 - - -1.0013 0.0039 0.6092

LW4 0.2633 1.0152 -0.0765 -1.0010 0.0038 0.5929 448868
LW1 0.2582 1.1101 -0.0706 -2.6056 0.0035 -2.4079 132020
EL3Z 0.2369 1.8632 -0.1103 -2.1548 0.1037 22.094 132020
EL4 0.2415 0.8268 -0.1152 -0.3013 -0.0269 14.010 132020
EL3 0.2371 1.6585 -0.1075 -2.1536 0.0107 8.5755 105616
EL2 0.1416 0.1893 -0.0385 -2.2960 0.0147 -5.8960 79212
EL1 0.1468 0.0882 -0.0391 -2.3340 0.0000 -22.409 52808

EL4Case 1 0.2471 0.9560 -0.1028 0.2054 -0.0547 0.5236 237636
EL4Case 2 0.2569 1.1699 -0.1071 -1.0010 0.0129 1.6966 237636
EL4Case 3 0.2617 1.0081 -0.1010 -1.0010 0.0038 0.5880 343252
EL3Case 1 0.2377 0.9327 -0.1044 -1.4773 -0.0512 0.5090 184828
EL3Case 2 0.2577 1.2839 -0.1177 -1.0131 0.0196 2.9519 184828
EL3Case 3 0.2622 1.0222 -0.1010 -1.0133 0.0039 0.6057 264040
EL2Case 1 0.1860 0.5272 -0.0664 -2.4012 0.0079 0.2537 132020
EL2Case 2 0.2448 1.2798 -0.0804 -1.0996 0.0234 7.6853 132020
EL2Case 3 0.2631 0.9789 -0.0974 -1.1102 0.0035 0.6479 184828
EL1Case 1 0.1631 0.8048 -0.0544 -2.1771 0.0031 -1.4746 79212
EL1Case 2 0.2167 -0.4708 -0.0564 -2.1445 0.0050 -36.727 79212
EL1Case 3 0.2702 1.0339 -0.0951 -2.5063 0.0054 -2.2854 105616
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Table 11: Four-layer cylinder with a composite core and piezoelectric external skins. Mechanical and
electrical variables described by Mono-models and Variable kinematic models for various radius to
thickness ratios R/h. Actuator case.

R/h = 100 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Carrera and Brischetto, 2007] 2.4869 - - -0.1835 0.5009 -0.3494
LW4Ma[Carrera and Brischetto, 2007] 2.4869 - - 0.0000 0.5009 -0.3494
LW4FMa[Carrera and Brischetto, 2007] 2.4869 - - 0.0000 0.5009 -0.3622

LW4 2.4872 -0.2902 0.0000 0.0000 0.5009 -0.3621 222836
LW1 2.4452 -0.2596 -0.0001 0.0318 0.5009 -0.3485 65540
EL3Z 43.5403 18.077 -0.0018 -48.670 0.4959 37.190 65540
EL4 44.3032 18.006 -0.0163 -48.710 0.5009 37.136 65540
EL3 44.8222 18.157 -0.0098 -48.878 0.5001 37.343 52432
EL2 1124.5 -91.270 0.0690 53.830 0.5034 -133.35 39324
EL1 1029.2 -90.429 0.0657 59.038 0.5000 -134.39 26216

EL4Case 1 -12.287 -0.4031 -0.0003 0.0000 0.3224 -0.4440 117972
EL4Case 2 22.269 0.7975 -0.0120 -0.1312 0.6784 0.5026 117972
EL4Case 3 2.4880 -0.2902 0.0000 0.0000 0.5009 -0.3621 170404
EL3Case 1 -17.722 -0.4577 -0.0004 0.0000 0.2562 -0.5169 91756
EL3Case 2 34.832 5.1907 -0.0214 -14.279 0.7452 10.731 91756
EL3Case 3 2.4889 -0.2902 0.0000 0.0000 0.5009 -0.3621 131080
EL2Case 1 -14.717 -0.4399 -0.0003 0.0000 0.2811 -0.5207 65540
EL2Case 2 29.364 6.0191 0.0441 -19.827 0.7190 13.997 65540
EL2Case 3 2.4880 -0.2903 0.0000 0.0000 0.5009 -0.3621 91756
EL1Case 1 -2200.3 -18.715 -0.0044 -1.2398 0.5494 -15.798 39324
EL1Case 2 3493.6 -75.394 0.1000 97.022 0.4510 -143.38 39324
EL1Case 3 2.4558 -0.2596 0.0000 0.0318 0.5000 -0.3485 52432

R/h = 2 DOFs

ŵ σ̂αα σ̂αz σ̂zz Φ̂ D̂z
LW4a[Carrera and Brischetto, 2007] -1.1542 - - 0.1416 0.4064 -1.0754
LW4Ma[Carrera and Brischetto, 2007] -1.1542 - - 0.0000 0.4064 -1.0754
LW4FMa[Carrera and Brischetto, 2007] -1.1542 - - 0.0000 0.4064 -1.0654

LW4 -1.1534 -0.0894 -0.0022 0.0000 0.3962 -1.0659 222836
LW1 -1.2820 0.8799 0.0008 0.9183 0.3900 -0.6169 65540
EL3Z -1.0226 0.3370 0.0031 1.1361 -1.1287 -0.9830 65540
EL4 -3.0789 0.7162 -0.0242 -0.2791 0.5529 -0.3374 65540
EL3 -0.8279 1.2289 -0.0318 -0.5882 0.4804 0.1053 52432
EL2 -12.269 -1.2000 0.0698 1.1274 0.5332 -2.4689 39324
EL1 -12.680 -2.6283 0.0818 0.0327 0.5000 -2.7931 26216

EL4Case 1 -1.0742 -0.0860 -0.0029 0.0000 0.2769 -1.0667 117972
EL4Case 2 -2.9077 0.3489 -0.0195 0.5244 0.6574 -1.0222 117972
EL4Case 3 -1.1401 -0.0887 -0.0027 0.0000 0.3962 -1.0659 170404
EL3Case 1 -1.1021 -0.0847 -0.0028 0.0022 0.2478 -1.0668 91756
EL3Case 2 -3.6975 0.7041 -0.0351 0.3716 0.8013 -0.6621 91756
EL3Case 3 -1.1377 -0.0849 -0.0028 0.0022 0.3967 -1.0654 131080
EL2Case 1 -0.6215 -0.0647 -0.0062 -0.0171 0.2741 -1.0740 65540
EL2Case 2 -7.1876 0.5386 0.0363 -0.4764 0.6981 -0.2952 65540
EL2Case 3 -1.1572 -0.0937 -0.0041 -0.0173 0.3943 -1.0729 91756
EL1Case 1 -4.6472 0.4951 0.0103 0.8077 0.5429 -0.8084 39324
EL1Case 2 -12.137 -2.2188 0.0890 0.9437 0.4528 -2.9806 39324
EL1Case 3 -1.0557 0.9225 -0.0045 0.9191 0.4924 -0.6172 52432
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Figure 16: Four-layered cylinder, Sensor case, transverse mechanical displacement and in-plane stress,
ŵ for R/h = 100 (a), σ̂αα for R/h = 2 (b).
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Figure 17: Four-layered cylinder, Sensor case, transverse mechanical stresses, σ̂αz for R/h = 100 ratio
(a), σ̂zz for R/h = 2 ratio (b).
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Figure 18: Four-layered cylinder, Sensor case, electric potential and transverse electric displacement,
Φ̂ for R/h = 100 (a), and D̂z for R/h = 2 (b).

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

w-

z

LW4

EL4

EL4 Case 1

EL4 Case 2

EL4 Case 3

(a)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

αα

z

LW4

EL4

EL4 Case 1

EL4 Case 2

EL4 Case 3

(b)

Figure 19: Four-layered cylinder, Actuator case, transverse mechanical displacement and in-plane stress,
ŵ for R/h = 100 (a), σ̂αα for R/h = 2 (b).
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Figure 20: Four-layered cylinder, Actuator case, transverse mechanical stresses, σ̂αz for R/h = 100
ratio (a), σ̂zz for R/h = 2 ratio (b).
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Figure 21: Four-layered cylinder, Actuator case, electric potential and transverse electric displacement,
Φ̂ for R/h = 100 (a), and D̂z for R/h = 2 (b).
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Figure 22: Four-layered cylinder, Actuator case, Euclidean Norm Error of the transverse mechanical
displacement, ŵ for R/h = 2.

8 Conclusions

This paper has dealt with the static analysis of composite plates and shells embedded with piezoelectric
layers using a two-dimensional finite element based on the Unified Formulation. The element has been
assessed by analyzing cross-ply plates with piezoelectric skins under bi-sinusoidal mechanical or electri-
cal loads and simply-supported boundary conditions, multilayered composite shells with piezoelectric
skins under bi-sinusoidal mechanical or electrical loads and simply-supported boundary conditions.
The results have been presented in terms of both transverse displacement, in-plane stresses, transverse
shear stresses, transverse normal stress, electric potential and transverse electric displacement for var-
ious thickness ratios and radius to thickness ratios. The performances of the shell element have been
tested, and the different theories (classical, refined, and Variable-Kinematic models) within the CUF
framework have been compared. The following conclusions can be drawn:

1. The shell element with the MITC technique is locking free, for all the considered cases and all the
chosen models. The results converge to the reference solution by increasing the order of expansion
of the displacements in the thickness direction, independently from the employed function type.

2. For multilayered composite plate and multilayered shells, Variable-Kinematic models permit to
improve the results with a reduction of computational costs, with respect to a full Layer-Wise
solutions.

3. The piezoelectric skins have to be modeled by a layer-wise description. The Variable-Kinematic
model permits to improve globally the results, and at the same time permits to reduce the
computational cost of the analysis, assembling the composite core with an equivalent-single-layer
model.
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4. For multilayered structures, the shear stresses can be modelized, in specific layers, by Variable-
Kinematic models with the same accuracy of Layer-Wise theories, whereas strong reduction of
computational costs can be obtained in the other layers.
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