
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A General-Purpose Graphics Processing Unit (GPGPU)-Accelerated Robotic Controller Using a Low Power Mobile
Platform / Rizvi, SYED TAHIR HUSSAIN; Cabodi, Gianpiero; Patti, Denis; Gulzar, Muhammad. - In: JOURNAL OF LOW
POWER ELECTRONICS AND APPLICATIONS. - ISSN 2079-9268. - 7:2(2017), pp. 1-16. [10.3390/jlpea7020010]

Original

A General-Purpose Graphics Processing Unit (GPGPU)-Accelerated Robotic Controller Using a Low
Power Mobile Platform

Publisher:

Published
DOI:10.3390/jlpea7020010

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2670401 since: 2017-05-05T18:56:39Z

MDPI

Journal of

Low Power Electronics
and Applications

Article

A General-Purpose Graphics Processing Unit
(GPGPU)-Accelerated Robotic Controller Using a Low
Power Mobile Platform †

Syed Tahir Hussain Rizvi 1,*, Gianpiero Cabodi 1, Denis Patti 1,* and Muhammad Majid Gulzar 2

1 Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, 10129 Turin, Italy;
gianpiero.cabodi@polito.it

2 Department of Electrical Engineering, University of Central Punjab, 54770 Lahore, Pakistan;
majid.gulzar@ucp.edu.pk

* Correspondence: syed.rizvi@polito.it (S.T.H.R.); denis.patti@polito.it (D.P.)
† This paper is an extended version of our paper published in Proceedings of the International Conference on

Development and Application Systems (DAS’16) as S. T. H. Rizvi, G. Cabodi, D. Patti and M. M. Gulzar,
“Comparison of GPGPU based robotic manipulator with other embedded controllers”, 2016 International
Conference on Development and Application Systems (DAS’16), Suceava, Romania, 19–21 May 2016;
pp. 10–15.

Academic Editor: Alexander Fish
Received: 9 March 2017; Accepted: 29 April 2017; Published: 5 May 2017

Abstract: Robotic controllers have to execute various complex independent tasks repeatedly.
Massive processing power is required by the motion controllers to compute the solution of these
computationally intensive algorithms. General-purpose graphics processing unit (GPGPU)-enabled
mobile phones can be leveraged for acceleration of these motion controllers. Embedded GPUs
can replace several dedicated computing boards by a single powerful and less power-consuming
GPU. In this paper, the inverse kinematic algorithm based numeric controllers is proposed and
realized using the GPGPU of a handheld mobile device. This work is the extension of a desktop
GPU-accelerated robotic controller presented at DAS’16 where the comparative analysis of different
sequential and concurrent controllers is discussed. First of all, the inverse kinematic algorithm is
sequentially realized using Arduino-Due microcontroller and the field-programmable gate array
(FPGA) is used for its parallel implementation. Execution speeds of these controllers are compared
with two different GPGPU architectures (Nvidia Quadro K2200 and Nvidia Shield K1 Tablet),
programmed with Compute Unified Device Architecture (CUDA) computing language. Experimental
data shows that the proposed mobile platform-based scheme outperforms the FPGA by 5× and
boasts a 100× speedup over the Arduino-based sequential implementation.

Keywords: concurrent computing; manipulators; mobile computing; performance analysis; inverse
kinematic; microcontroller; field-programmable gate array (FPGA); general-purpose graphics
processing unit (GPGPU)

1. Introduction

Motion control system is a vital component of robotic manipulator and numeric controller.
GPGPUs can play a pivotal role in accelerating these motion controllers [1]. Motion control
systems need to quickly and precisely perform many complicated tasks required for real-time
applications [2,3]. These tasks may include inverse kinematics, velocity profile generation,
proportional-integral-derivative (PID) control and interpolation [4]. These requirements may lead to
a complex hardware setup, increased system size, expensive arithmetic operations and a lot of power
consumption [5–7]. Mostly, these motion controllers contain microcontrollers, digital signal processors

J. Low Power Electron. Appl. 2017, 7, 10; doi:10.3390/jlpea7020010 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
http://dx.doi.org/10.3390/jlpea7020010
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2017, 7, 10 2 of 16

(DSPs) or field-programmable fate array (FPGA) kits to compute the solution of these algorithms.
These controllers have their own processing limitations [8,9].

In microcontrollers like DSP and Arduino, the limitations are in terms of their sequential
architectures, where all the instructions execute in a pipeline fashion. Although FPGAs can execute
the algorithm in a concurrent way, the performance limitations are their clock frequency and memory
bandwidth. Moreover, except the recently available intellectual property (IP) cores based on FPGA,
the remaining FPGAs do not even support the operations of square root, division, floating point and
inverse trigonometric functions.

The massive development of computing technology has led to improvement of the extraordinary
performance of general-purpose graphics processing units (GPGPUs) to accelerate the computationally
intensive applications [10,11]. Therefore, recently this has been one of the hottest research topics,
receiving substantial attention. As GPGPUs are suitable for parallel computations, they are also
an interesting solution for accelerating high precision arithmetic to use stream processing of general
data [12,13]. Recent GPGPUs typically hold hundreds of processors and can execute thousands of
parallel threads on the same device with minimum execution time, where the hardware threads
are organized into warps [14]. In addition, GPGPUs offer high performance for computationally
intensive algorithms with superior power efficiency in a compact design [15]. Therefore, using
GPGPUs, performing computationally intensive tasks has been very successful in accelerating the
diverse domains of applications. The programming languages for GPGPU are Open Computing
Language (OpenCL) and Compute Unified Device Architecture (CUDA) [16]. Nowadays, low power
programmable GPGPUs have proven their feasibility for handheld devices, such as in tablets and
smartphones [17,18].

Driven by the insatiable demand for 3D games and applications, handheld devices have evolved
into highly parallel heterogeneous platforms with tremendous computational power. A rapidly
growing and virtually ubiquitous mobile phone technology field is giving rise to many applications
in the fields of robotics, control and image processing [19]. Complex control algorithms involving
trigonometric equations, transformations matrices and their computations can be accelerated using
concurrency of GPGPUs. There are also various proposed approaches for vision-based pose estimation
that can be realized using the cameras and GPGPUs of portable mobile devices to control the robotic
manipulator [20,21]. Object recognition and classification in natural visual scenes also have numerous
practical applications that can be physically realized using powerful portable mobile devices [22].
Adaptation of existing desktop-based GPU implementations on portable mobile devices is a challenging
task because of their fewer cores and reduced memory resources [23]. However, lower power
consumption, portability and integration of other resources (like the camera) on a single chipboard of
handheld devices motivate their usage in practical applications.

A GPGPU within a handheld device is typically integrated into the multiprocessor system on
chip (MPSoC) which further comprises of one or multiple DSPs, central processing units (CPUs)
and other application- specific accelerators [24,25]. Use of these handheld mobile accelerators can
replace multiple dedicated computation devices by a single processor in motion controllers of robotic
systems, which can eventually enable the manipulators to execute massive complex tasks with
smaller physical dimensions. Moreover, modern handheld devices normally have a 1-GHz CPU
and a GPU such as Adreno (Qualcomm, San Diego, CA, USA, formerly of AMD), PowerVR SGX
(Imagination Technologies, Kings Langley, UK), Mali (ARM) or Tegra 2 (NVIDIA) [19,26,27]. These
findings motivated us to utilize the handheld mobile GPU as a primary processor to offload the
computational burden of a numeric controller and achieve significant acceleration in performance with
minimum power consumption.

In this work, a mobile-GPU based motion controller is proposed and physically realized.
The underlying inverse kinematic algorithm is implemented and accelerated using CUDA computing
language. Furthermore, the inverse kinematic algorithm-based accelerated motion controller is
evaluated over two different platforms (1) Nvidia Quadro K2200 workstation GPU; and (2) Nvidia

J. Low Power Electron. Appl. 2017, 7, 10 3 of 16

Shield K1 tablet. The performance of these platforms is compared with FPGA Spartan-3 xc3s200 and
Arduino-Due. The performance of multicore, multithreaded GPUs is significantly faster for the large
amount of data in comparison to other embedded controllers [28]. The assessment results show that
for a large amount of data of about 10, 000 test points, the desktop GPU is hundreds of times faster
than the FPGA, which is one of the most efficient concurrent controllers, and up to thousands of times
faster over the Arduino-Due. Furthermore, the proposed mobile platform-based scheme outperforms
the FPGA by 5× and boasts a 100× speedup over the Arduino-based sequential implementation.

The rest of the paper is organized as follows: Section 2 reviews the related work in the field
of robotic controllers. Section 3 briefly describes the inverse kinematic algorithm that is executed
on different controllers for comparative analysis. Section 4 presents the implementation and results
of selected algorithm on the powerful sequential controller (Arduino-Due). Section 5 discusses the
implementation and results achieved by the concurrent controller (FPGA) using combinational divisor.
CUDA-based implementation is presented in Section 6. Comparative analysis of GPGPU with other
embedded controllers is performed in Section 7. Hardware implementation and performance of mobile
GPU-based motion controllers is presented in Section 8 and concluding remarks are made in Section 9.

2. Related Work

Diversified approaches to control a robotic manipulator have been proposed. However, there is
much less of a contribution in the area of mobile GPU-based motion controllers.

The inverse kinematic implementation of a four-wheeled mobile robot is presented in [29].
A master–slave configuration-based distributed control mechanism is employed where the master
controller is used to compute the inverse kinematic model from the movement vector of the robotic
platform, and the slave controllers are used to drive the motors. Mobile GPU-based master controllers
can provide a tremendous speed-up over a microcontroller. This approach and other available
master–slave configurations and implementations can also benefit from the computational power
of GPGPU.

Mobile device-based controllers can also be used to realize the already available desktop
GPU-based implementations [30,31].

A web-based virtual laboratory for real-time software simulation and online control of robotic
platforms is proposed in [32]. The purpose of this research work was to provide an environment for
understanding the concepts of robotic systems. A vast number of software packages are employed
for developing the simulation on the server side and lightweight programming languages are used to
execute the program on the client side. Required robotic platforms can be controlled in real time by
establishing the connection between the server and the controller kit.

A mobile wireless-based, as well as a web-enabled solution for dynamic control of a robotic
manipulator is presented in [33,34]. Instead of using the Windows-based application, a web utility is
proposed to access the computational services provided by the server. Local installations of Matlab and
mathematical packages are avoided by employing the shared installation of packages on the server
side. Furthermore, a Wireless Application Protocol (WAP)-based application is proposed and realized
to meet the requirements of wireless devices such as cellular phones.

These systems cannot provide their services when the server back-end is inaccessible. Furthermore,
a low power but computationally powerful mobile device can be useful to compute the solution of
complex control algorithms and accelerate the robotic controller without using any other software
package. Moreover, the handheld devices can also be used to develop the robotic simulations and
visualize the results to offer interactive learning services.

3. Control Algorithm

A simple structure of robotic arm having two joints is considered in this work for the performance
evaluation of the GPGPU-based independent joint controller as shown in Figure 1. The proposed
scheme can also be extended to other complex robotic structures having multiple joints.

J. Low Power Electron. Appl. 2017, 7, 10 4 of 16

Figure 1. Two degree-of-freedom planar robotic arm.

An algorithm is required to rotate these joints to reach to a particular coordinate. For this purpose,
the inverse kinematic algorithm is used to represent this robotic arm geometrically as shown in Figure 2 [4].

y

x(0, 0)

(x, y)

α θ1

β

θ2

√
x2 + y2

l1

l2

Figure 2. Geometric representation of arm.

By using basic trigonometric laws (law of cosines etc.), parameters to control the system can be
expressed as shown in Equations (1) and (2).

θ1 = tan−1 y
x
− cos−1 x2 + y2 + l2

1 − l2
2

2l1
√

x2 − y2
(1)

θ2 = cos−1 x2 + y2 − l2
1 − l2

2
2l1l2

(2)

where x and y are the targets to be reached in Cartesian coordinates and θ1 and θ2 are the angles of the
joints to be rotated. Moreover, l1 and l2 are the lengths of robotic arms as shown in Figure 2. It can
be noted that excepting the boundaries, there will always be two solutions (the elbow up and elbow
down configuration) to reach the required location as shown in Figure 2, but the controller will choose
the one which will be closest to the current position. By doing so, least joint displacement would be
required to move to the next point. Moreover, the movement of robotic arm for different test points
(0, 6), (1, 5) and (3, 4) can be visualized by Figure 3. From the first test point, it can be verified that if l1
and l2 are 3 and 4 respectively, and it is required to reach (x, y) = (0, 6) , then required angles of joints
would be 54 and 62 degrees respectively.

The inverse kinematic algorithm discussed in this section is implemented on Arduino-Due,
FPGA Spartan-3 and GPGPU Nvidia Quadro K2200 for comparative analysis. Furthermore, this GPU
implementation is physically realized by interfacing the mobile GPU with Arduino-Due where
computational task is performed by the primary controller (mobile GPU) and movements of motors
are controlled by the secondary controller (Arduino-Due).

This research work used the same approach as the multi-axes computer numerical
controlled (CNC) machine, where the required product can be designed in computer-aided

J. Low Power Electron. Appl. 2017, 7, 10 5 of 16

design/computer-aided manufacturing (CAD/CAM) software using microcomputers. Then, these
microcomputers generate the sequential instructions (called G-code) to control the end-effector.
Similarly, in this research work, Autocad software is used to draw the design and create the waypoints
of the path in the form of cartesian coordinates. These generated points are serially transmitted to
the Arduino-Due and FPGA for computation. As it can be imported into the internal memory of
mobile device using appropriate file format, it can be used by its embedded GPGPU. These Cartesian
coordinates are used by the inverse kinematic algorithm to compute the angles to drive the motors of
the robotic arm.

(0, 6)

(1, 5)

(3, 4)

54◦

27◦ 90◦

115◦

116◦

For (0,6), θ1 = 54◦

θ2 = 116◦ − 54◦ = 62◦;
For (1,5), θ1 = 27◦

θ2 = 115◦ − 27◦ = 88◦;
For (3,4), θ1 = 0◦

θ2 = 90◦ − 0◦ = 90◦;

Figure 3. Visualization of inverse kinematic algorithm.

A simple graphical user interface (GUI) can also be developed to design the path or product
directly on the mobile device. Control of robotic manipulator using image processing is also
an alternative method to mimic the human movements and perform the complex tasks involving the
translational and rotational motions. Image processing is a best-suited approach as far as GPUs are
concerned where the same operation has to be executed on each and every pixel which can be done
efficiently using GPGPUs. An image of a human hand can be captured from the mobile camera and
then can be processed using GPGPU to find the waypoints to control the robotic manipulator.

4. Implementation of Algorithm on Sequential Controller (Arduino-Due)

For the sequential implementation of inverse kinematic algorithm, the widely-used powerful
microcontroller board Arduino-Due is selected and programmed using C-based language. All the
programs and algorithms burned in this controller are executed sequentially as shown in Figure 4.
First of all, the waypoints generated by the CAD/CAM software are serially received by the Arduino.
These received coordinates (x and y) are used by the microcontroller to compute the angles sequentially,
and then signals are sent to the motors of robotic arm accordingly.

Arduino-Due has an Atmel Smart SAM3X8E 32 bits ARM Cortex processor. This is an open
source hardware platform, and it has 32-bit core to perform computations on 4 bytes of data in a single
clock cycle. It operates at 84 MHz of speed (CPU Clock). Arduino-Due provides support of 54 digital
pins for the input and output of digital values. It also has 12 analog inputs pins of 10 bits resolution
and 2 analog output pins. Furthermore, it has an universal serial bus (USB) host port to connect
the smartphone and other serial devices like keyboard, mouse, etc. The integrated development
environment (IDE) is the compiler and burner program for the Arduino Boards. Arduino-Due can

J. Low Power Electron. Appl. 2017, 7, 10 6 of 16

be programmed using C language which is sequential. Programming of Arduino is relatively easier
because of its large set of software libraries. Therefore, in this work, libraries of Arduino are used for
the implementation of inverse kinematic algorithm. Values of coordinates are provided serially by the
user as input and computed outputs are the angles of the motors.

In the case of Arduino, there is no built-in performance analyzer in the IDE environment.
Therefore, an approach based on stopwatch (micros command) is used to find the execution time of
the desired algorithm. This micro command provides the current time of the clock. Consequently,
if the performance of an algorithm is to be determined, then it can be placed between the two
micros commands and difference of these two outputs would be execution time of the required
algorithm. Therefore, the measured average execution time of this inverse kinematic implementation
in Arduino-Due is 2 microseconds at 84 MHz of CPU speed.

Coordinates (x,y)

Serial input y

Serial input x

Start

Sequential Controller Arduino-Due

Angle θ2

Angle θ1 Motor

Motor for Joint-1

Motor for Joint-2

End

Step 1 Step 2 Step 3

Figure 4. Flow chart of sequential implementation.

5. Implementation of the Algorithm on the Independent Joint Controller (FPGA)

The FPGA Spartan-3 xc3s200 controller is used for the independent joint computation of inverse
kinematic algorithm. Very High Speed Integrated Circuits Hardware Design Language (VHDL) or
Verilog Language can be used to program an FPGA. In this work, VHDL is used to implement the
inverse kinematic algorithm. The desired algorithm can be divided into smaller tasks and executed
faster than a sequential implementation using concurrent processes in VHDL. Concurrent execution
capability of VHDL makes it the best choice to execute the algorithms and compute the solution of
complex mathematical equations. Moreover, concurrent language can execute multiple blocks of
code in parallel. As shown in Figure 5, both angles of inverse kinematic can be computed in VHDL
independently and similarly, control of motors can also be parallelized using FPGA.

The main problem for implementing this algorithm on VHDL is that it does not support the
required operations of division. Hence in this work, a combinational divider model is implemented
to achieve the required results. This model is discussed in [35,36]. To perform the division operation
(quotient = dividend/divisor), a comparison technique is used as shown in Figure 6.

J. Low Power Electron. Appl. 2017, 7, 10 7 of 16

Serially received coordinates (x,y)

Inverse Kinematic Algorithm (VHDL)

Angle 1 Angle 2

Concurrent Controller (FPGA)

Servo Motor for Joint-1 Servo Motor for Joint-2

Figure 5. Flow chart of independent joint calculation using a field-programmable gate array (FPGA).
VHDL: Very High Speed Integrated Circuits Hardware Design Language.

If
Dividend = 12 = 1100
Dividend = 5 = 0101
If
Dividend = n bits = 4 bits
Divisor = 2n - 1 bits = 7 bits (Will shift left 2n-1 times)
n steps = 4 steps

0010 Quotient

Divisor 0101000 0001100 = 12 Dividend 1st step
0101000 Dividend < Divisor, so first bit of Quotient = 0

Shift Right
by 1 bit

0010100 0001100 = 12 Dividend 2nd step
0010100 Dividend < Divisor, so second bit of Quotient = 0

Shift Right
by 1 bit

0001010 0001100 = 12 Dividend 3rd step
0010100 Dividend > Divisor, so third bit of Quotient = 1

Shift Right
by 1 bit

0001010 0001100 = 12 Dividend 4th step
0010100 Dividend < Divisor, so third bit of Quotient = 0

Figure 6. Combinational divider in VHDL.

J. Low Power Electron. Appl. 2017, 7, 10 8 of 16

A shifted version of the divisor is compared with the dividend. Shifting of divisor and number
of comparisons are dependent on the lengths of dividend and divisor. If the dividend is less than
the divisor then quotient’s most significant bit would be zero and the dividend would be unchanged.
However, if the dividend is greater than the divisor then the quotient’s most significant bit would be
one and the divisor would be subtracted from the dividend and the new value of dividend would be
used for next comparison. Bits computed in comparison would form the value of quotient, and after
the last step of comparison, the value of dividend would be the remainder of the division function.
A test algorithm is designed in VHDL using this combinational divider and is implemented on FPGA.
The result of implementation is verified using the test bench waveform of the system as shown in
Figure 7. This well-known combinational division algorithm is extended to achieve the floating
point representation [37]. The precision of three decimal places is used for computing the inverse
trigonometric angles using lookup tables. This representation can be extended to achieve higher
accuracy. However, there is also the tendency for a loss of precision as floating representations become
very large. This applies in particular to the representations that are derived from very small values
(in this case the angles) which can lead to a loss of significance. However, this problem can be resolved
by restructuring the mathematical expression.

The complete code is divided into two processes to achieve the concurrency. The first process
is for computing the first angle and the second process is for the second angle. These two separate
computations are defined through the components in VHDL, where components are the codes
that can be called in top module concurrently. After simulation in test bench waveform, next step
“synthesis” is performed. Using synthesis, VHDL code is converted into gate level diagram called
a Net List. The synthesis report provides some meaningful results like allocated resources and speed
of complete implementation.

X 5 3 0

Y 0 4 6

θ1
127 0 54

θ2
90 62

Figure 7. Implementation of algorithm in VHDL.

Moreover, synthesizer generates the register-transfer level (RTL) abstraction of VHDL code.
The RTL is a high-level representation of an actual circuit which can be wired on FPGA for hardware
implementation. Each RTL block contains entire logic blocks and interconnection of the circuit. The RTL
block of the algorithm having two components of θ1 and θ2 can be viewed in Figure 8.

x
y

θ1

θ2

θ2

θ1

Figure 8. Register-transfer level (RTL) abstraction of the VHDL code.

In the previously discussed controller (Arduino-Due) and language (C/C++), execution time is
dependent on the instruction cycles based on CPU speed. Furthermore, the total execution time of

J. Low Power Electron. Appl. 2017, 7, 10 9 of 16

a sequential algorithm is that required to take inputs from the user, computing solutions using several
instructions having different instruction cycles and then providing the outputs. In VHDL, performance
or execution time of implementation is measured through the maximum combinational path delay
obtained from the synthesis report. This time is the maximum combinational path delay or execution
time after VHDL code is converted to the logic blocks and connections. The path delay and logic area
required by the hardware are two important factors to be considered in FPGA. According to synthesis
report, for a 50-MHz crystal frequency of FPGA, the maximum combinational path delay for a single
test point of the inverse kinematic algorithm is 0.100793 microseconds (100.793 nanoseconds).

6. Implementation of Algorithm on General Purpose Graphics Processing Unit

GPU is a multicore, multithreaded hardware which can outperform the other embedded controllers
using its massive concurrent computational resources. Computing resources of GPU are arranged in
multiple grids of completely independent blocks. A single block is composed of multiple threads which
can only communicate within their block as shown in Figure 9. The single instruction multiple threads
(SIMT) model of GPGPU is an extension of single instruction, multiple data (SIMD) architecture where
the parallel executions are combined with multithreading. In SIMD architecture, the same instruction
is executed concurrently for all data. In the SIMT execution model, a set of threads execute the same
instruction. These sets of threads are called warps. A warp consists of 32 threads.

CUDA framework enables the graphics processing unit to execute programs designed in C/C++
language [38]. There are two types of code in GPU programming, host and device code. The host
code is used for the configuration of a GPU, allocation of memory and resources, synchronization of
events and to issue the command for execution of code on GPU. The device code (Kernel) contains the
instructions to be performed on input data [39].

The inverse kinematic algorithm is implemented using CUDA on Quadro K2200. The execution
time of CUDA code is measured using CUDA (event application programming interface (API))
runtime library. Using this CUDA event API, the time between two events can be measured. First of
all, the inverse kinematic algorithm is executed using a single thread of GPU. Average execution time
of this configuration on GPU is 32.384 microseconds.

Grid 1

Block(0,0) Block(0,1) Block(0,2) ...

Block(1,0) Block(1,1) Block(1,2) ...

...

...

...

Thread(0,0) Thread(0,1) ...

Group of
32

Threads
=

1 Warp

Thread(1,0) Thread(1,1) ...

... ...

Figure 9. Representation of a graphics processing unit (GPU) structure.

J. Low Power Electron. Appl. 2017, 7, 10 10 of 16

The same code is tested to execute 1000 test points using 1000 parallel threads and GPU calculated
the solution of 1000 test points in 62.848 microseconds as shown in Figure 10. Then, the same code
is executed to find the solution of 10, 000 test points using multiple parallel blocks having parallel
threads as shown in Figure 11.

[x1, y1]

.....

[x2, y2] [xi, yi] [xn, yn]

Thread1 Thread2 Threadi Threadn

Figure 10. Representation of an execution in a single GPU block.

[x1, y1][x1024, y1024] [xi, yi] [xi+1024, yi+1024] [xn−1024, yn−1024] [xn, yn]

Block1 Blocki Blockn..........

Figure 11. Representation of an execution in multiple GPU blocks.

GPU calculated the solution of 10, 000 test points in 109.79 microseconds using 10 parallel
blocks, each having 1024 parallel threads to accelerate the execution. The execution time of discussed
configurations of threads and blocks are listed in Table 1.

Table 1. Execution time of test points on the GPU.

Number of Test Points Execution Time (MicroSeconds)

1 1 test point using 1 thread and 1 block 32.384
2 1000 test points using 1000 threads and 1 block 62.848
3 10,000 test points using 1024 threads and 10 blocks 109.79

7. Comparative Analysis of Embedded Controllers

For the inverse kinematic algorithm, the maximum combinational path delay of VHDL code
is about 0.1 microseconds, which is less than the average execution time of the same algorithm on
sequential controller Arduino-Due and GPU for a single test point. Arduino-Due (programmed in C)
executes the test algorithm in 2 microseconds, whereas the GPU computes the solution of a single test
point in 32.384 microseconds. Therefore, the FPGA is executing codes around tens of times faster than
the Arduino-Due and hundreds of times faster than the Quadro K2200 for a single test point.

CUDA implementation for a single test point (using a single thread) is slower than the concurrent
implementation of FPGA as shown in Figure 12. This is because the embedded controllers discussed in
previous sections are suitable for single instruction single data (SISD) arithmetic and logical operations
while the GPU is suitable for SIMD executions. The GPU can execute required arithmetic operations
on a large set of data with higher speed and lower power consumption [22,40]. The poor performance
of GPU (for a single test point) is because of overhead related to the data transfer and kernel launch.

J. Low Power Electron. Appl. 2017, 7, 10 11 of 16

For smaller workload, these delays are significant. Meanwhile, for the larger dataset, achieved
performance gain outweighs the transfer and launch overheads.

The task of a robotic manipulator or computer numeric controller is to perform the same operation
not just on a single point, but on thousands of defined points or coordinates. The execution time
of all discussed controllers would increase linearly with the addition of test points because these
controllers are based on SISD architecture where the solution of each test point is computed sequentially.
However, GPU can compute the solution of thousands of test points independently using its SIMT
architecture. Figure 13 illustrates the capability of GPGPU to calculate the solution of large data set
more efficiently in terms of time.

Finally, the performance of discussed embedded controllers is computed and compared under
various compute-loads (by changing the numbers of test points) as shown in Figure 14.

 0

 5

 10

 15

 20

 25

 30

 35

Arduino Due FPGA GPU

E
x
e
c
u
ti
o
n
 T

im
e
 [
m

ic
ro

s
e
c
o
n
d
]

Figure 12. Comparison of results for single test points.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Arduino Due FPGA GPU

E
x
e
c
u
ti
o
n
 T

im
e
 [
m

ill
is

e
c
o
n
d
]

Figure 13. Comparison of results for 10,000 test points.

J. Low Power Electron. Appl. 2017, 7, 10 12 of 16

0 0.2 0.4 0.6 0.8 1
·104

0

0.5

1

1.5

2

·104

Number of Test Points

Ex
ec

ut
io

n
Ti

m
e

(M
ic

ro
Se

co
nd

s) Arduino-Due
FPGA
GPU

Figure 14. Performance of embedded platforms under various compute loads.

8. Hardware Realization of GPGPU-based Robotic Manipulator

The proposed robotic manipulator is physically realized by interfacing a GPGPU-enabled
embedded device with microcontroller where the intensive computations are performed on GPGPU
and results are transferred serially to the microcontroller (Arduino-Due) to control the motors of the
system. GPGPU computed the solution of the algorithm as primary controller and Arduino-Due
controlled the motors as a secondary controller as shown in Figure 15.

Start

Import
Waypoints
From File

Allocate
GPU

Resources

Execute
Kernel

and Fetch
Results

Transmit
Result
Serially

Display
Result on

Screen

Serial
Available?

Receive
Result

Display
Result

Control
Motors/

Actuators

yes
no

Primary Controller
(Mobile CPU-GPU)

Secondary Controller
(Micro-Controller)

Figure 15. GPU as primary and microcontroller as secondary controller.

J. Low Power Electron. Appl. 2017, 7, 10 13 of 16

Data to be processed is imported into the mobile platform as a txt file. These test points can be
imported from text, mat or bin files in the mobile platform to compute the solution of required data.
A CUDA-based inverse kinematic algorithm is executed concurrently using Nvidia Shield K1 Tablet.
Nvidia Shield K1 tablet is equipped with a Kepler K1 GPU which has 192 CUDA cores, a quad-core
Cortex-A15 CPU of 2.2 GHz and 2 GB of shared random-access memory (RAM). The execution time of
all configurations is measured for the mobile platform and is listed in Table 2. A CPU-only version
is also implemented and tested on the mobile platform using Cortex A15 processor. For 10, 000 test
points, a GPGPU-based independent joint controller boasts 40× speedup over the CPU-only reference.

Table 2. Execution time on mobile platform.

Number of Test Points Execution Time (Micro Seconds)

1 1 (Using 1 thread and 1 block) 155.750
2 1000 (Using 1000 threads and 1 block) 162.014
3 10,000 (Using 1024 threads and 10 blocks) 201.033
4 10,000 (Sequential code on Cortex A15 CPU of Nvidia Tablet) 8515.163

An average execution result shows that the mobile GPGPU gained 5× speedup over the FPGA
(Spartan 3)-based concurrent code and is about 100 times faster than the Arduino-Due (having Atmel
32 bits ARM Cortex processor)-based sequential code.

For the realization of proposed system, the serial connection between Nvidia Shield Tablet and
Arduino-Due is created using an USB A/B to USB on-the-go (OTG) cable. The Nvidia Shield Tablet
has an Android operating system; therefore an Android application is developed to compute the
solution of inverse kinematic and make serial communication between embedded devices (GPGPU
and Arduino-Due). This serial connection is created using the USB libraries provided by the Android
operating system. Since host and device programs are written in C++ and CUDA respectively, it is
necessary to use the Java Native Interface (JNI) to call the native function from the Java code. A static
library is made from the CUDA code which is link against the Android application.

GK20A is the device name of the Tegra K1 GPU obtained using the CUDA API. The Android
application is programmed to continuously monitor the serial connectivity between the tablet and
the Arduino microcontroller. As the physical connection is made between the tablet and the Arduino
using USB cable, the Android application establishes a serial connection and starts transmitting the
computed data (θ1 and θ2 in this particular case) to the microcontroller. By changing underlying
algorithm and using required sensors and actuators, the same GPGPU mobile platform can be used in
various other robotic applications where the execution of large dataset is required to be performed.

Mobile devices are powered by the batteries that are limited in capacity. Nvidia Shield K1
Tablet is powered by a battery of 5192 mAh and 19.75 Wh. A mobile application should be power
efficient to maximize the life of a battery. Table 3 shows that the CPU-based sequential implementation
consumes less power due to lower core count, whereas the GPU consumes more power because of its
multiple cores.

Table 3. Energy Consumption of inverse kinematic algorithm (mWh) for 10, 000 test points.

Sequential Version Concurrent Version

1 0.108 0.136

It can be noted that the CPU-based sequential implementation is slashing the energy consumption
by nearly 25 percent but this power consumption is of few milliWatt per hour for both CPU and GPU
references which are a small fraction of total available energy for computation of 10,000 test points.
However, GPU-based implementation is 40× faster than the CPU-only reference. Moreover, the flow of

J. Low Power Electron. Appl. 2017, 7, 10 14 of 16

this GPU based scheme can further be accelerated using optimized data transfer schemes like Unified
or Pinned memories.

The proposed scheme can also be extended to other robotic structures with multiple joints like biped
robot. The structure of a biped robot is much complex and needs more parameters to be computed.
FPGAs are core processing components of such systems [41]. However, these parameters can be
calculated independently using the GPU-based controller and can provide a tremendous speed-up.

9. Conclusions

This paper presents a mobile GPU-based robotic controller for the fast solution of a computationally
large and data-intensive inverse kinematic algorithm. The proposed scheme is physically realized by
interfacing a GPGPU-enabled embedded device with microcontroller where the intensive computations
are performed on a GPGPU and a microcontroller is used to control the motors/actuators of the system.
This inverse kinematic algorithm is implemented in widely used sequential and concurrent controllers
for the comparative analysis. The proposed GPGPU-based scheme shows substantial improvement in
execution speed over other controllers that is needed for a robotic application. Results conclude that the
proposed scheme can show promising results in various applications where the computational burden
of a numeric controller can be offloaded to a powerful mobile GPU.

Author Contributions: All the authors contributed equally.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GPU graphics processing unit
GPGPU general-purpose graphics processing unit
SIMD single instruction multiple data
FPGA field programmable gate array
OpenCL Open Computing Language
CUDA Compute Unified Device Architecture

References

1. Rizvi, S.T.H.; Cabodi, G.; Patti, D.; Gulzar, M.M. Comparison of GPGPU based robotic manipulator with
other embedded controllers. In Proceedings of the 2016 International Conference on Development and
Application Systems (DAS), Suceava, Romania, 19–21 May 2016; pp. 10–15.

2. Chang, T.N.; Cheng, B.C.B.; Sriwilaijaroen, P. Motion control firmware for high speed robotic systems.
IEEE Trans. Ind. Electron. 2006, 53, 1713–1722.

3. Lin, F.-J.; Shen, P.-H. Robust fuzzy neural network sliding-mode control for two-axis motion control system.
IEEE Trans. Ind. Electron. 2006, 53, 1209–1225.

4. Gulzar, M.M.; Murtaza, A.F.; Ling, Q.; Javed, M.Y.; Tahir, S.; Rizvi, H.; Rana, R.A. Kinematic modeling
and simulation of an economical scara manipulator by Pro-E and verification using MATLAB/Simulink.
In Proceedings of the 2015 International Conference on Open Source Systems & Technologies (ICOSST),
Lahore, Pakistan, 17–19 December 2015; pp. 102–108.

5. Visioli, A.; Legnani, G. On the trajectory tracking control of industrial SCARA robot manipulators. IEEE Trans.
Ind. Electron. 2002, 49, 224–232.

6. Park, S.W.; Oh, J.H. Hardware realization of inverse kinematic for robot manipulators. IEEE Trans.
Ind. Electron. 1994, 41, 45–50.

7. Chan, Y.F.; Moallem, M.; Wang, W. Design and implementation of modular FPGA-based PID controllers.
IEEE Trans. Ind. Electron. 2007, 54, 1898–1906.

8. Shao, X.; Sun, D.; Mills, J.K. A new motion control hardware architecture with FPGA-based IC design for
robotic manipulators. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation,
Orlando, FL, USA, 15–19 May 2006; pp. 3520–3525.

J. Low Power Electron. Appl. 2017, 7, 10 15 of 16

9. Sepúlveda, A.C.; Muñoz, A.J.; Espinoza, R.J.; Figueroa, E.M.; Baier, R.C. FPGA v/s DSP performance
comparison for a VSC-based STATCOM control application. IEEE Trans. Ind. Inform. 2013, 9, 1551–3203.

10. Mei, G.; Xu, N. CudaPre3D: An Alternative Preprocessing Algorithm for Accelerating 3D Convex Hull
Computation on the GPU. Adv. Electr. Comput. Eng. 2015, 15, 35–44.

11. Bi, H.; Ao, Z.; Zhang, Y.; Zhang, K. Implementation of Parallel Computing Fast Algorithm on Mobile GPU.
In Unifying Electrical Engineering and Electronics Engineering; Springer: New York, NY, USA, 2014; Volume 238,
pp. 1275–1281.

12. De Ravé, E.G.; Jiménez-Hornero, F.J.; Ariza-Villaverde, A.B.; Gómez-López, J.M. Using general-purpose
computing on graphics processing units (GPGPU) to accelerate the ordinary kriging algorithm.
Comput. Geosci. 2014, 64, 1–6.

13. Oskouei, S.S.L.; Golestani, H.; Kachuee, M.; Hashemi, M.; Mohammadzade, H.; Ghiasi, S. GPU-based
Acceleration of deep convolutional neural networks on mobile platforms. Distrib. Parallel Clust. Comput.
2015. Available online: https://arxiv.org/abs/1511.07376v1 (accessed on 15 December 2016).

14. Jin, X.; Daku, B.; Ko, S.B. Improved GPU SIMD control flow efficiency via hybrid warp size mechanism.
Microprocess. Microsyst. 2014, 38, 717–729.

15. Gao, Y.; Iqbal, S.; Zhang, P.; Qiu, M. Performance and Power Analysis of High-Density Multi-GPGPU
Architectures: A Preliminary Case Study. In Proceedings of the 2015 IEEE 17th International Conference on
High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems,
New York, NY, USA, 24–26 August 2015; pp. 66–71.

16. Ko, Y.; Yi, S.; Yi, Y.; Kim, M.; Ha, S. Hardware-in-the-loop simulation of Android GPGPU applications.
In Proceedings of the 2014 IEEE 12th Symposium on Embedded Systems for Real-time Multimedia
(ESTIMedia), Greater Noida, India, 16–17 October 2014; pp. 108–117.

17. Zhao, D. Fast filter bank convolution for three-dimensional wavelet transform by shared memory on mobile
GPU computing. J. Supercomput. 2015, 71, 3440–3455.

18. Jeon, D.; Kim, D.H.; Ha, Y.G.; Tyan, V. Image processing acceleration for intelligent unmanned aerial vehicle
on mobile GPU. Soft Comput. 2015, 20, 1713–1720.

19. Ensor, A.; Hall, S. GPU-Based Image Analysis on Mobile Devices. 2011. Availabele online: https://arxiv.
org/abs/1112.3110v1 (accessed on 23 January 2017).

20. Vicente, P.; Ferreira, R.; Jamone, L.; Bernardino, A. GPU-Enabled Particle Based Optimization for
Robotic-Hand Pose Estimation and Self-Calibration. In Proceedings of the 2015 IEEE International Conference
on Autonomous Robot Systems and Competitions, Vila Real, Portugal, 8–10 April 2015; pp. 3–8.

21. Periquito, D.; Nascimento, J.; Bernardino, A.; Sequeira, J. Vision-based hand pose estimation: A mixed
bottom-up and top-down approach. In Proceedings of the 8th International Conference on Computer Vision
Theory and Applications (VISAPP), Barcelona, Spain, 21–24 February 2013; pp. 566–573.

22. López, M.B.; Nykänen, H.; Hannuksela, J.; Silvén, O.; Vehviläinen, M. Accelerating image recognition on
mobile devices using GPGPU. Parallel Process. Imag. Appl. SPIE 2011, doi:10.1117/12.872860.

23. Satria, M. T.; Gurumani, S.; Zheng, W.; Tee, K.P.; Koh, A.; Yu, P.; Rupnow, K.; Chen, D. Real-time system-level
implementation of a telepresence robot using an embedded GPU platform. In Proceedings of the 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 14–18 March
2016; pp. 1445–1448.

24. Paul, J.; Oechslein, B.; Erhardt, C.; Schedel, J.; Kröhnert, M.; Lohmann, D.; Stechele, W.; Asfour, T.;
Schröder-Preikschat, W. Self-adaptive corner detection on MPSoC through resource-aware programming.
J. Syst. Archit. 2015, 61, 520–530.

25. Hung, C.L.; Lin, C.Y.; Wang, H.H. An efficient parallel-network packet pattern-matching approach using
GPUs. J. Syst. Archit. 2014, 60, 431–439.

26. Cheng, K.-T.; Wang, Y.-C. Using mobile GPU for general-purpose computing—A case study of face
recognition on smartphones. In Proceedings of the 2011 International Symposium on VLSI Design,
Automation and Test, Hsinchu, Taiwan, 25–28 April 2011; pp. 1–4.

27. Cavus, M.; Sumerkan, D.; Simsek, O.S.; Hassan, H.; Yaglikci, A.G.; Ergin, O. GPU based Parallel Image
Processing Library for Embedded Systems. In Proceedings of the 2014 International Conference on Computer
Vision Theory and Applications (VISAPP) , Lisbon, Portugal, 5–8 January 2014; pp. 234–241.

https://arxiv.org/abs/1511.07376v1
https://arxiv.org/abs/1112.3110v1
https://arxiv.org/abs/1112.3110v1

J. Low Power Electron. Appl. 2017, 7, 10 16 of 16

28. Raghav, S.; Ruggiero, M.; Marongiu, A.; Pinto, C.; Atienza, D.; Benini, L. GPU acceleration for simulating
massively parallel many-core platforms. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1336–1349.

29. Maulana, E.; Muslim, M.A.; Hendrayawan, V. Inverse kinematic implementation of four-wheels mecanum
drive mobile robot using stepper motors. In Proceedings of the 2015 International Seminar on Intelligent
Technology and Its Applications (ISITIA), Surabaya, Indonesia, 20–21 May 2015; pp. 51–56.

30. Chrétien, B.; Escande, A.; Kheddar, A. GPU Robot Motion Planning Using Semi-Infinite Nonlinear
Programming. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2926–2939.

31. Hermann, A.; Klemm, S.; Xue, Z.; Roennau, A.; Dillmann, R. GPU-based real-time collision detection for
motion execution in mobile manipulation planning. In Proceedings of the 2013 16th International Conference
on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 Novmber 2013; pp. 1–7.

32. Navaraja, A.T.; Jain, N.; Sengupta, D.; Kumar, C.S. Web-Based Simulation and Remote Triggered Laboratory
for Robots. In Proceedings of the 28th International Conference on CARS & FoF, West Bengal, India,
6–8 January 2016; pp. 665–667.

33. Sobh, T.M.; Wang, B.; Patel, S.H. Web enabled robot design and dynamic control simulation software
solutions from task points description. In Proceedings of the Industrial Electronics Society, 2003, The 29th
Annual Conference of the IEEE, Roanoke, VA, USA, 2–6 November 2003; Volume 2, pp. 1221–1227.

34. Sobh, T.M.; Wang, B.; Patel, S.H. A Mobile Wireless and Web Based Analysis Tool for Robot Design and
Dynamic Control Simulation from Task Points Description. J. Internet Technol. 2003, 4, 153–162.

35. Pedroni, V. Circuit Design with VHDL; MIT Press: Cambridge, MA, USA, 2004; pp. 198–202.
36. Parte, R.; Jain, J. Analysis of effects of using exponent adders in IEEE-754 multiplier by VHDL. In Proceedings

of the 2015 International Conference on Circuits, Power and Computing Technologies (ICCPCT-2015),
Nagercoil, India, 19–20 March 2015; pp. 1–5.

37. Rizvi, S.T.H.; Javed, M.Y.; Saeed, A.; Asif, H. Approach to perform combinational divider based floating
point calculations using VHDL component. Sci. Int. (Lahore) 2015, 27, 3131–3133.

38. Stojanovic, N.; Stojanovic, D. High performance processing and analysis of geospatial data using CUDA on
GPU. Adv. Electr. Comput. Eng. 2014, 14, 109–114.

39. Li, G.; Zhu, Z.; Cong, Z.; Yang, F. Efficient decomposition of strongly connected components on GPUs.
J. Syst. Archit. 2014, 60, 1–10.

40. Zhao, M.; Jang, B. A GPU powered mobile AR navigation system. Mob. Wirel. Technol. 2016, 187–196,
doi:10.1007/978-981-10-1409-3_21.

41. Chung, R.L.; Zhang, Y.Q.; Chen, S.L. Fully pipelined CORDIC-based inverse kinematic FPGA design for
biped robots. Electron. Lett. 2015, 51, 1241–1243.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Control Algorithm
	Implementation of Algorithm on Sequential Controller (Arduino-Due)
	Implementation of the Algorithm on the Independent Joint Controller (FPGA)
	Implementation of Algorithm on General Purpose Graphics Processing Unit
	Comparative Analysis of Embedded Controllers
	Hardware Realization of GPGPU-based Robotic Manipulator
	Conclusions

