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 

Abstract—Recently the benefits of simultaneously treating 

source and testing integrals in the numerical evaluation of 4-D 

reaction integrals have been reported. The reported schemes 

usually first transform the reaction integral to parametric 

coordinates, and some combination of radial, angular, and/or line 

segment integrals is then used to treat coincident, edge-adjacent, 

or vertex-adjacent triangular source and test element pairs. 

However advantages of the reported approaches are tempered by 

their lack of generality and severely degraded performance on 

poorly-shaped elements, the latter caused primarily by the 

parametric transformations’ severe distortion of the kernel's 

circularly concentric level contours.  

Here, for coplanar element pairs and kernels with 

1 R singularities, we apply the surface divergence theorem twice 

to obtain a novel formula for 4-D reaction integrals, generalizing 

earlier schemes while retaining their benefits and without 

distorting the original configuration space. Numerical results 

illustrate the method's efficiency, which is improved by 

employing appropriate transformations to further smooth the 

resulting integrands and hence accelerate their convergence. The 

reaction integral formula can be extended to non-coplanar 

elements. 

 
Index Terms—integral equations, moment methods, numerical 

analysis, singular integrals. 

I. INTRODUCTION 

he numerical integration of double surface integrals is 

fundamental to moment method solutions of surface 

integral equations (SIEs). SIEs have emerged as the 

dominant technology for modeling large and complex 

structures such as naval, aerospace, satellite, and antenna 

structures with unknowns confined to body surfaces. Even 

more critical, however, are periodic and/or layered media 

problems, where the Green’s function calculation costs per 

sample point are often hundreds of times that for 
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homogeneous media, and efficient methods with good 

accuracy are essential.  

Recently element mappings and radial integrations were 

used to develop powerful numerical methods for handling 

general kernels on both curved and flat triangular source and 

test elements [1]. The development of related analytical, 

numerical, and hybrid analytic-numerical approaches to this 

4-D integration problem can be traced in [2][3][4][5]. They 

address the general problem of handling the 4-D integration 

of singular and near-singular reaction integrals of the method 

of moments (MoM) over surface source and test element 

pairs. Ad hoc methods are generally used, however, that treat 

only self-interacting, edge-adjacent, or vertex-adjacent 

elements, and are generally limited to well-shaped (i.e., 

nearly equilateral) triangular element pairs.    

In this paper, we employ the surface divergence theorem 

twice to evaluate the two surface integrals involved for 

coplanar elements and kernels with 1 R singularities, where 

R  r r and r and r are observation and source points, 

respectively. The surface divergence theorem has been used, 

for example in [6], to handle singular source integrals, but its 

subsequent application to testing integrals has been 

essentially limited to ad hoc analytical and semi-analytical 

evaluations for (4-D) reaction integrals involving linear basis 

and test functions with static kernels and on planar domains 

[7][8]. Here, we use the surface divergence theorem for both 

source and testing integrals, generalizing the approach of [8] 

while retaining the beneficial features of [1] without some of 

its restrictions. In this paper, for simplicity, we restrict 

consideration to co-planar elements and homogeneous media 

potential kernels. This restricted case does, however, handle 

the moment method’s critical "self’-terms" for planar 

elements. (We note that kernels of the form  1 R   are also 

of considerable interest, but in the coplanar case the principal 

value contribution from the source integral reduces to a 

delta-function, and the resulting test integration reduces 

simply to an analytical evaluation of the inner product 

between basis and testing functions. A numerical treatment 

for this case is therefore relevant only for non-coplanar 

elements.)      

Specifically, we apply the surface divergence theorem to 

the source and test integrals, obtaining a novel, general 

expression for the reaction between coplanar elements with 

arbitrary kernels, bases, and testing functions. The result is 

particularly suited, however, for kernels bounded by 

singularities of order 1/R. The resulting representation has 
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features in common with those of [1], with two inner radial 

integrals and two outer integrals over source and test element 

boundaries. But the integral domains are not parametrically 

mapped, thus freeing the scheme from restrictions to well-

shaped coincident or adjacent elements.    

Though the derived general expression automatically 

regularizes kernels with singularities of order 1 R and hence 

can be applied directly, its efficiency can be significantly 

improved by using a static kernel with constant basis and 

testing functions as a model integrand to develop 

transformations for the contour integrals that provide an 

exact result for such kernels. Further, the transforms 

significantly accelerate the numerical evaluation for dynamic 

kernels and for linear basis and testing functions, and for 

even more general integrands of kernels with singularities 

bounded by 1/R. We demonstrate that the new representation 

is robust, and can be used with straightforward Gauss-

Legendre quadrature rules for reasonable accuracy, or double 

exponential quadrature rules [9] for essentially arbitrary 

precision. Accurate evaluation of these interactions often 

mitigates problems due to the error amplification in certain 

inherently ill-conditioned integral equations such as the 

electric field integral equation (EFIE). Such difficulties 

appear not only with high density, distorted, and non-

uniform meshes, but also near internal resonances, and due 

to inability to maintain linear independence as with 

increasingly higher order bases. We usually associate such 

problems with Green's functions for homogeneous media, 

but for problems in which  Green's function evaluation costs 

are typically hundreds of times greater (e.g.  layered and/or 

periodic media), one often faces a different problem: 

significantly reducing the number of  kernel evaluations to 

gain speed. In this case, one frequently settles for slightly 

reduced accuracy—and perhaps a moderately higher 

overhead cost per evaluation—in order to substantially 

reduce the number of Green's function evaluations. 
For (vector) linear basis and testing functions and 

homogeneous medium kernels, we show that the radial 

integrals can be evaluated in closed form. Alternatively, or 

for kernels merely bounded by such kernels, such as layered 

media or periodic Green’s function kernels, a purely 

numerical approach to radial integration  may be necessary.   

In this case a scheme is offered that optimizes the radial 

quadrature rule choice to obtain a specified accuracy.  

The paper is organized as follows. In Sect. II, the general 

expression for 4D reaction integrals between a pair of 

coplanar elements is derived. Sect. III is devoted to the 

evaluation of the radial integrals, while Sect. IV deals with 

variable transformations applied to accelerate the numerical 

evaluation of the contour integrals. In Sect. V several 

numerical results are presented, and Sect. VI contains 

conclusions and discusses possible extensions to the 

approach. Preliminary results for the proposed approach were 

presented in [10]. 

II. REACTION INTEGRAL FOR A COPLANAR ELEMENT PAIR  

Our interest is in performing accurate and efficient 

integration of double surface integrals of the form  

                   ( , ) ,

S S

F dS dS



   r r                    (1) 

where ( , )F r r  is a scalar function of a source point r and 

observation point r . For simplicity, we treat here only the 

coplanar case. This, in effect, reduces r and r to vectors in 

the plane of S and S  . Usually ( , )F r r  has a singularity of 

order  1 r r , and typically takes the form  

( , ) ( ) ( , ) ( ),F t G b  r r r r r r          (2) 

 where ( )b r and ( )t r are basis and testing functions and 

( , )G r r is a Green's function with singularity at .r r  (For 

vector bases or dyadic kernels, terms in (2) are vector or 

dyadic components, respectively.) The usual approach for 

evaluating (1) is to first carefully evaluate the inner (singular) 

integral over S  , then, assuming the resulting integral is non-

singular, evaluate the outer integral over S using 

straightforward Gauss quadrature [11][12][13]. Not only does 

this approach place undue burden on evaluation of the source 

integral, but the assumption of smoothness of the test integral 

integrand is actually invalid when boundaries of S and S  are 

in contact [1][14].     

A. Source Integration Using the Divergence Theorem 

To evaluate (1), we first consider applying the divergence 

theorem to evaluate the innermost surface integral on primed 

coordinates. The idea is to find a vector function ( , )H r r such 

that ( , )F  H r r , and reduce the surface integral to a line 

integral via the surface divergence theorem,  

ˆ( , ) ( , ) ,C

S C

F dS dC

 

      r r H r r u                  (3) 

where C is the boundary of S  , Cr  is a point on  C , and 

ˆ u is a unit vector along the outward normal to the boundary 

of S  and in the plane of S  . To determine the vector ( , ),H r r  

assume it has only a single, radial component with respect to a 

fixed value of r , i.e., ˆ( , ) ( , )H  H r r D r r , where 

ˆ ( ) / D   D r r is a radial unit vector and D  r r is a 

radial distance between r and the source point in the plane of 

S and .S   Then for fixed r the surface divergence is  

 
1 ˆ( , )

d
D H F D

D dD
      

 
H r r D .            (4) 

Integration of (4) with respect to D  over the interval 

0 CD D     r r thus yields  

0

ˆ
ˆ( , ) ( , ) .

D

C F D D dD
D




     

D
H r r r r D         (5) 

Combining (3) and (5), we obtain  

0

ˆ
ˆ( , ) ( , ) ,

D

S C

F dS F D dD dC
D

 

 
         

 
  

D
r r u r r       (6) 

where ˆD   r r D . Equation (6) is easily generalized to 

vector or dyadic integrands by applying it component-wise, 
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yielding   

0

ˆ
ˆ( , ) ( , ) ,

D

S C

dS D dD dC
D

 

 
         

 
  

D
r r u r r       (7) 

where ( , )r r may be either a scalar, vector, or dyadic 

quantity.  Results (6) and (7) are not novel; indeed they may 

be considered as generalizations of the fundamental theorem 

of calculus to two dimensions [15].  

We also note that the contour integral of (6) may also be 

interpreted as integration in polar coordinates. For a point 

r outside the source contour ,C Figure 1 shows contributions 

to the integral (6) from a region of angular width .d     

C

far
Cr

ˆD D

r

r

S

ˆ u
n̂

ˆ u
near

Cr

dC

dC

d
 

. 
Figure 1.  Radial path contributions to integral (6). 

 

Noting that  

               
ˆ ˆ

,
dC

d
D


  

 
D u

                                                  (8)                               

where D is defined following (6), (6) can be rewritten  as  

       far

near

far

0
( )

( )

( )
( )

( , ) ( , )

( , ) ,
C

C

D

S C

D

D
C

F dS F D dD d

F D dD d












 






     

   

  

 
r

r

r r r r

r r

       (9)     

where the first line of (9) represents an integration in polar 

coordinates ( , )D    with an angular parameterization 

( )C  of C , and the second line further accounts for the 

exact canceling of radial integral contributions along the ray 
ˆ D  from equiangular differential segments lying 

outside C (see Fig. 1). We emphasize that this pairing of 

canceling contour contributions conveniently restricts the 

integration to S  , but is not generally necessary except 

possibly to reduce either cancellation error or the extent of the 

radial integration domain. It may also be desirable for multi-

layer or periodic Green's functions where there is not only a 

possibility the Green's function is discontinuous (e.g. if r 

and S  are in different layers), but also a very high cost 

associated with evaluating it at non-contributing source points 

outside the source region. 

B. Test integration using the divergence theorem 

To evaluate the outer surface integral in the double surface 

integral (1), we integrate (6) over S , interchange order of 

integration and apply the divergence theorem again, this time 

using  (7):  

 

0

0

0 0

( , )

ˆ
ˆ ( , )

ˆ
ˆ ( , )

ˆ ˆˆ ˆ( )( )
( , ) ,

C C

S S

D

S C

D

C S
D

C CC C

F dS dS

F D dD dC dS
D

F D dD dS dC
D

F D dD dD dC dC











 

  
           
  

            
    

       

 

  

  

   
r r

r r

D
u r r

D
u r r

u D u D
r r

r r

  

                                                                                              (10) 

where ˆ
C D r r D , and ( )C Cr r  is a point on ( ),C C as 

shown in Figure 2.  

n̂

r

Cr

C

ˆ u

û
r

Cr
ˆD D

ˆDD

C

S

S

 
Figure 2.  Two coplanar domains and geometrical definitions.   

The inner double radial integral feature, which smoothes the 

integral and exactly cancels singularities of order 

1 1 D  r r  in the innermost (radial) integral of (10), is 

analogous to the representation of Polimeridis et al., [1]–[5] 

but is performed in the physical rather than in a mapped 

domain.   

The general result (10) appears to be novel, though 

specialized versions of it have been used to analytically 

evaluate specific potential integrals [7][8]. Here, however, we 

focus on the numerical evaluation of the 4-D integral. We 

have noted that typical potential integrals involve a singularity 

of the form    ( , ) 1 1F D    r r r r which is exactly 

canceled by the first radial integral in (10).  

  For polygonal domains, such as the two coplanar triangles 

Figure 3, the remaining contour integrals may be implemented 

by successively integrating pairs of test and source domain 

edges making up the polygons' boundaries. Thus evaluating 

(10) reduces to evaluating integral contributions of the form  

 

O 
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Figure 3. Definition of quantities needed in the computation of radial integrals 

associated with a pair of interacting edges C  and C for source triangle 

S  and test triangle ,S respectively.  The vector  n̂  is the normal to the plane 

containing the two triangles. Outward normals to the test and source triangle 

edges are û and ˆ u , and the edges are oriented along the vectors 

ˆ ˆ ˆ n u and ˆ ˆ ˆ ,  n u resp.  

 

 

0 0

ˆ ˆˆ ˆ( )( )
( , ) .

U U
C C

L L

D

C C

F D dD dD d d

 

 

 







   
    

  
   

r ru D u D
r r

r r
  

(11) 

resulting from the interaction of line segment 

pairs C and ,C  parameterized by arc lengths  and ,  

respectively.  Without loss of generality, in the following we 

assume edges C  and C  belong to a pair of coplanar 

triangles, S and S  , respectively, with each boundary edge 

directed in a right-handed sense with respect to its triangle's 

normal, n̂ . Note that for a pair of collinear edges, both dot 

products and hence the corresponding edge-pair integral (11) 

vanish. For non-collinear edges, straightforward Gauss-

Legendre quadrature of sufficiently high order can, in 

principle, furnish any desired level of accuracy; in practice, if 

one desires more than modest accuracy (say, 5 or more 

significant digits), increasing the quadrature order can quickly 

reach a point of diminishing returns. To counter this tendency, 

or to simply improve convergence, it is useful to transform the 

contour integrals (11) into faster converging forms, as 

discussed in Sect. IV.  

III.       RADIAL INTEGRAL EVALUATION  

For polynomial basis and testing functions and the 

homogeneous medium kernel, the radial integrals may be 

evaluated in closed form, and this is a particularly efficient 

approach. But for kernels associated with, for example, 

periodic or multilayered media Green's functions, this 

approach may not be practical and a purely numerical 

approach is preferred. For homogeneous kernels or those 

bounded by homogenous kernels, it is also possible to 

optimize the choice of quadrature rule. We examine these 

three possibilities in the following sections.       

A. Analytical evaluation 

For standard RWG bases and testing functions [16], the radial 

integrals for the vector potential become  

     
0 0

1
( ) ( ) ,

4

C C
jk

D fe
i j

e
D dD dD




 


  

 
r r

r r
Λ r Λ r

r r
   (12) 

where the (unnormalized) testing function associated with the 

ith edge of element e and the source basis function associated 

with the jth edge of element  f  can be written, resp., as   

 ˆ( ) ,e e e
i i C i D    Λ r r r r r D                                  (13) 

  ˆ ˆ( ) .
f f f

Cj j j D D         Λ r r r r r D D                     (14) 

In (13) and (14), 
e
ir  and

f
jr , , 1,2,3,i j   are the vertices 

opposite the ith and jth test and source triangle edges, resp.; 

integral (12) now has the form   

   20 0

1
( , ) ,

4

C C D jkDp D D e dD dD


   
r r

      (15) 

where  2
2 ( , ) ( )p D D a bD D c D D      is a quadratic   

polynomial in D and Dwith  

    

   
ˆ ( )

ˆ ( )

fe
C i C j

f e
C C ij

e
C i

a

b

c

 

 



    

     

   

r r r r

D r r r r

D r r

, 

, 

.

              (16) 

The integral (12) or (15) is straightforwardly evaluated as  

   

2 2

2 3

0

1 ( ) 1 ( ) 1

4 ( )( ) ( )

( ) 1 ( ) 2 3
.

( )

C C

jkD

D

a c jk b c jk
D e

jkjk jk

c jk a D b jk D D

jk











          
                  

     










r r  

                                                                                            (17) 

For the associated scalar potential radial integrals, the basis 

and testing functions are constants.  Replacing a by that 

constant and dropping all terms not containing a in (15) and 

(17) yields the scalar potential radial integrals. For both scalar 

and vector potentials, the corresponding static potential result 

can either be evaluated directly or by evaluating (17) in the 

limit as 0k  .    

B. Numerical evaluation 

We observe that the inner, radial integrals of (10) and (11) 

are over a triangular domain as shown in Fig. 4 (not to be 

confused with triangles S and S  ) and, since the singularity 

has been canceled, may be efficiently implemented as a 

surface integral over the domain using standard Gauss-triangle 

integration [17][18]. An exceptionally complete table of 

symmetrical rules for such integrals is available in [18]. For a 

Gauss-triangle quadrature rule with weights GT
kw   

and barycentric coordinates 
( )

1 ,
GT k


( )

2 ,
GT k

 ( )
3
GT k   

( ) ( )
1 21 ,
GT k GT k   1, , ,k K the radial integral evaluation 

takes the form  

O 

C
 

Cr
 

C 
r  

r  

r  

ˆD D
 

S  

S   

ˆ u
 n̂

 

ˆDD  

û  

C
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 

0 0

2 ( ) ( ) ( )

1

( , )

, ,

C C D

K
GT k k k

C C k
k

F D dD dD

w F D







 
  

 
 

   

 



r r
r r

r r r r

         (18) 

where 

 ( )( ) ( ) ( )
1

( )( ) ( ) ( ) ( )
2

ˆ , 1 ,

ˆ , ,

ˆ ˆ .

GT kk k k
C C C

GT kk k k k
C C

C C

C C

D D

D D





 






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    (19) 
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Figure 4. Triangular domain of integration for radial integrals. 

In principle, the radial integral domains can be limited, as in 

(9), to regions interior to the source and observation triangles, 

thus saving points at which the kernel and bases need to be 

evaluated and eliminating cancellation errors from sample 

point contributions outside the original triangles that worsen 

as their separations increase. The approach may also be 

necessary for Green’s functions with discontinuities outside 

the source testing domains, such as layered media Green’s 

functions. However, more elaborate bookkeeping is needed to 

determine which and where triangle boundaries are crossed by 

the radial paths; such aspects will not be explored here.  

C. Optimized numerical evaluation 

For many problems, the radial integrals (12) take the form  

       
0 0

( ) ( ) ,
C C D fe jkD

i j e dD dD
   

r r
r r                        (20) 

or have integrands bounded by integrands of this form, where 

basis and testing functions ( ')
f
j r  and ( )e

i r , respectively, 

are assumed to be (vector) polynomials of order p in D’ and D. 

Zhang et al. [18] provide a rather complete set of high-

accuracy Gauss-type quadrature rules to exactly integrate 2-D 

polynomials of order 29 on the unit triangle. Hence, with an 

accuracy-based estimate of the polynomial order of the 

exponential phase factor jkDe
 over the domain, we can 

choose a quadrature rule that integrates the radial integrals to a 

specified number of decimal digits. 

The exponential factor in (20) can be rewritten as 

    
 

max max

22

2
,

C CC C

C C

jk DjkjkD

jk j j xj

e e e

e e e e
 





    

   



 

r rr r

r r
              (21) 

where max 2,C Ck  r r max , 1 1,x x      and we  

allow the medium wavenumber k  to be complex. One might 

be tempted to use the truncated Taylor series error estimate to 

estimate the polynomial order of maxj x
e

 on the interval 

1 1x   , but we know that Taylor series errors usually 

increase rapidly away from the expansion point, with a 

maximum relative error at the endpoints. By contrast, an nth 

order Chebyshev polynomial spreads out the error, 

approximately minimizing the maximum error over the 

expansion interval, and indeed its error estimate is found to   

yield a much lower order estimate. The Chebyshev polynomial 

relative error estimate is [20]  

 
 max max

max max

( )
j j x

n

n j j x

e e p x

e e

 

 


 

 


        

  
maxmax

max

1 2 Im( )
1 max

1( 1,1)
max .

2 ( 1)! 2 ( 1)!

nj x
j xn

n n nx

e ed e

n dx n


 




 
 

 

(22) 

                                                                                                  

where Im(z) denotes the imaginary part of z. Thus, the 

exponential factor (21) can be represented as a polynomial 

( )np x of degree n to d significant decimal digits, if n is chosen 

such that 

                
1Im( )

2
10 .

( 1)! 4

C C
nk

C C d
n

ke

n





  
  

  

r r r r           (23)                                                                                    

The degree n satisfying (23) may be found iteratively 

using max
1

2

( 1)
n n

n


  


 with max2 Im( )

0 max2 2K e


  , 

where 0 < K < 1 is a parameter found to be about 0.75K   in 

numerical experiments.  Finally, if basis and testing functions 

are both polynomials of order m, the integrands of the double 

radial integrals (15) or (20) can be replaced by 

2 ( , ) jkD
mp D D e

 , where 2 ( , )mp D D is a polynomial of 

degree 2m . In principle, one can then use either the method of 

the previous  section to generate a closed form result 

analogous to (17), or if jkDe
 can be modeled as a polynomial 

of degree n with an error of  less than10 ,d  the numerical 

approach of this section can be used to evaluate the radial 

integrals assuming an integrand of approximate degree 2m+n.  

Thus increasing either the basis/testing order or the frequency 

simply raises the effective polynomial order of the integrand 

of the double radial integrals.         
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Figure 5. Number of correct significant digits vs. observation and source point 

separation normalized to wavelength, for scalar potential with constant basis 
functions, k real. Each curve corresponds to the number of (expected) 

significant digits specified in the quadrature rule. Curves connected by dashed 

lines all use the same number of sample points, with labels indicating the 

number used.   

Figure 5 shows the actual number of correct significant digits 

obtained for the radial integrals (20) with respect to 

observation and source point separation in 

wavelengthsapplying the proposed optimized radial 

integration quadrature rule. The case considered involves a 

scalar potential kernel with constant basis and testing 

functions, and real k.  Each curve of Figure 5 corresponds to a 

specified number of significant digits, d, as input to the 

proposed procedure. Observe that, for each specified d, the 

achieved number of correct significant digits actually achieved 

is always at least as high as that specified, with the curve 

dipping to almost that value (with K adjusted to 0.75) just 

before the next higher order quadrature rule is invoked, 

suggesting the rule selection procedure is essentially optimal. 

Figure 5 also shows the solid lines connected by dotted lines 

and labeled to indicate the total number of sample points used 

for a fixed order quadrature rule.  The curves suggest, for 

example, that six significant digits are always reached by a 7 

point quadrature rule for observation and source points 

separated by no more than a quarter of a wavelength, a simple 

result that may be of practical use in a production code since it 

eliminates the need for solving (23). For vector potentials 

using linear (vector) bases, the order of the approximating 

integrand polynomial order should be increased by 2. 

 
Figure 6.  Number of correct significant digits vs. observation and source 

point separation normalized to wavelength, for scalar potential with 

constant basis functions, k complex  Im( ) Re( )k k  . Each curve 

corresponds to the number of (expected) significant digits specified in the 

quadrature rule. 

Figure 6 reports results similar to those of Figure 5 but for a 

complex wavenumber k where Im( ) Re( )k k  , as is 

asymptotically the case for highly conducting materials. The 

behavior of the proposed optimized radial integration 

quadrature rule is similar to that for real k, but as might be 

expected, a few more sample points are required to reach the 

desired accuracy due to the exponential decay of the kernel. In 

this case, a detailed examination of the data shows that a 12 

point rule will provide six significant digits of accuracy for 

observation and source points separated by no more than a 

quarter of a wavelength.  

IV.       CONTOUR INTEGRAL TRANSFORMATIONS 

In order to improve numerical efficiency in evaluating the 

contour integrals in (11), we make transformations on the line 

integrals such that the two outer integrals become 

   
( ) ( , )

( ) ( , )

U U U U

L L L L

u u

u u

du du
d d

u du d

    

    

 
 

  

  

 


   
   

 

    ,     (24)      

where u    is chosen to largely cancel variations in the 

inner bracketed integrand resulting from the two radial 

integrations,  and du d  plays the same role for the resulting 

outer bracketed integral in (24). A sufficiently accurate 

estimate of the required smoothing for kernels with 

singularities of order  1 r r can be obtained by using the 

static integrand with constant basis and testing functions as a 

model integrand, i.e., we temporarily assume  

1
( , ) .

4
F


 


r r

r r
                                    (25) 

To put the necessary integrations in standard                                                    

form for all triangle edge pairs, we assume a rotation of the 

triangle plane until the relevant source edge is horizontal and 

directed to the right as shown in Figure 7.  We further assume 

that the extended edges of the edge pair intersect at an 

angle as shown; the arc length variables  and 

' parameterize the edges in (24), and are measured from the 

intersection point of the (extended) line segments. For parallel 

line segments, the intersection point and the parameters  and 

'  become infinite, 0 or ,   and the case must be 

treated as a limit. Calculation of the intersection point and 

other relevant geometry considerations are discussed in 

Appendix A. Parallel line segments are treated in both 

Appendices A and B. 
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Figure 7.  Geometry for integrating over a line segment pair.   

  With (25), the radial integrals can be easily performed, 

resulting in    

ˆ ˆˆ ˆ( )( )

8
C C




  


u D u D
r r                             (26) 

for the term in the (inner) square brackets in  (24).  Noting 

from Figure 7 that  

,                                        (27) 

 and that 

ˆ ( )( ) sinˆˆ cos ,
( , ) ( , )

ˆ ( )( ) sinˆˆ cos ,
( , ) ( , )

C C

C C

C C

C C

h

R R

h

R R

  


   

  


   









  
       

  

    
       

  

u r r
u D

r r

u r r
u D

r r

(28) 

 where  

2 2( , ) 2 cosC C R      
       r r ,          (29) 

(26) can be written as    
2

2 2

ˆ ˆˆ ˆ( )( ) sin
.

8 8 2 cos
c c

 

     


   
  

  

u D u D
r r    (30) 

With the choice   

2 2

sin ( )
cos ,

( , )2 cos

u h

R

  


     

   
  
    

       (31) 

the variation of the inner line integral for the static kernel is 

exactly canceled; integration of (31) yields  

1 cos
( , ) sin ( , ) ( )cos sinh .

( )
u R h

h

  
      




 

      
 

   

(32) 

Combining (30) and (31) with (25), (11), and (24)

yields

 

0 0

2

( , )

( , )

ˆ ˆˆ ˆ( )( )
( , )

1 sin

8 ( , )

1
( )

8

1
( ) ( , ) ( , ) .

8

U U
c c

L L

U U

L L

U U

L L

U

L

D

c c

u

u

U L

F D dD dD d d

d d
R

h du d

h u u d

 

 

 

 

  

  





 

 
 

  

 


     

















   
    

  






 
  

 
 


    

   

 

 



r ru D u D
r r

r r

 

                                                                                              (33) 

 The integrand of (33) suggests choosing  

( ) ( , ) U

L
u u



 
  



 
 ,                             (34) 

where  

1

( , )
( ) ( , )

cos
( ) sin ( , ) ( )cos sinh

( )

u
h u

h R h
h

 
  



  
     






 



   
    

   

 

(35) 

since  

   
( , )

( ) , ,
U

U L

L

du u
h u u

d



 

 
    

 



 


       

    (36) 

then reproduces the integrand of  (33), yielding   

 

0 0

ˆ ˆˆ ˆ( )( )
( , )

1
( , ) ( , ) ( , ) ( , )

8

U U
c c

L L

D

c c

U U U L L U L L

F D dD dD d d

u u u u

 

 

 

       









   
    

  

       

   
r ru D u D

r r
r r

    

(37) 

for ( , )F r r  the static kernel (25). Thus, if (36) can be 

integrated, Eq. (37) furnishes for the static kernel (25) a closed 

form result for the reaction between each line integral pair, 

and, by superposition, for the entire double surface integral. 

Details for integrating (36) are found in Appendix B; the result 

is    

2 2 2

3
1

3
1

( , )
( , ) sin

3

( ) cos
sinh

3tan ( )

( ) cos
sinh .

3tan ( )

R
u

h

h

h

h

 
    

   

 

   

 






   
 

   
     

  
   

 

                 (38) 

Though ( , )u    is bounded, for  near zero or  , the last 

two terms of (38) become very large, nearly equal, and of 

opposite sign, leading to large cancellation errors. Also, for 

parallel line segments, 0, ,   (38) must be evaluated as 

a limit. Both situations are handled by replacing the last two 

terms of (38) by Taylor series expansions about 0   and 
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   , which simultaneously incorporates the limits and 

eliminates cancellation error in the vicinity of these values. 

The relevant series approximations are derived in Appendix B. 

We note that the integrand (24) is generally a function of 

 and   whereas the numerical integration is in the u and u  

domains. Hence inverse functions or mappings of the 

transcendental functions u and u  back to  and   are 

needed. Since u and u depend on edge pair geometry, the 

inverse mappings differ, in general, for each point pair 

associated with a given edge pair. Fortunately, continuous 

mappings are not required, however, since the quadrature rules 

only require discrete values of u and u . E.g., for the kth 

sample point 
ku u  , the corresponding value 

k    may 

be efficiently found via a simple Newton scheme that 

determines the root 
k  of the equation ( , ) 0k ku u     , as 

in [11]. The derivative of the inverse transform is 

d du   1 '( , )u       and for u  between the two 

values ( , ), ( , )U Lu u       , the inverse exists as long the 

derivative u     is non-vanishing on the interval, which, 

from (31), is clearly the case as long as 0.   Unfortunately, 

in the MoM, this exceptional case occurs rather frequently for 

realistic triangles, e.g. for all edge pairs of a self-term.  More 

generally, it occurs whenever extended source and test line 

segments intersect at an endpoint or interior point of the 

source segment. A simple means for detecting this situation is 

given in Appendix A. If 0  is an endpoint of the source 

segment, special treatment of the line segment integral is 

required, as outlined below; if 0  is an interior point, the 

integration domain should be split into two subdomains about 

the point 0  and the following treatment applied on each 

line sub-segment.   

To analyze the behavior of u near 0,   we note 

transformation (32) can be expanded in a Maclaurin series, 

obtaining 

 
2

3
0

'
' , ' ' sin ( ),

2
u u


   


           (39) 

where  0' ' ,0u u  . The inverse function corresponding to 

(39) thus has a square root type branch point at 0u u  , 

       0

2
sgn sin ' ' .

sin
u u


 


           (40) 

Note that in (40), sin and  0' 'u u must have the same sign 

near 0  . The branch point may thus be removed by 

introducing the secondary transformation  

           2
0' sgn sin ' ' ,v u u            (41) 

not only eliminating the branch point in the source contour 

integrand, but also, since  2 ' ' sgn sin ',v dv du introducing 

a zero in the new integration variable v  where the 

denominator factor ' 'u   in (24) vanishes. Similarly, 

examination of the behavior of the transformation (34) near 

0  yields the Maclaurin series 

    
     

 2 2 31
0 2

, ' , '

sin ' ' ( )

U L

U L

u u u

u

    

    

 

   
          (42) 

where  
'

0 ' '
0, ' U

L
u u



 



 . Hence the secondary transform 

       2
0sgn ' ' ,U Lv u u                          (43)

eliminates a similar square root type branch point in the test 

contour integrand, and introduces a zero in v  where the 

denominator factor du d of (24) vanishes. The overall 

scheme for using the transforms may now be summarized as 

follows: 

  

 Select a source and test edge pair and check if they are  

(anti-)parallel. If so, then skip calculation of the pair's 

interaction, and proceed to the next pair. 

  

 Examine the source and test edge pairs for endpoints that 

occur at the intersection of their extended line segments; if 

an intersection occurs within a line segment, the segment 

should be divided into two subsegments, and each treated as 

an independent edge.  For segments or subsections with an 

end-point at the intersection, the associated u  or 

u transform should be followed by a v  or v transform, as 

appropriate.  

 

 Select a quadrature rule and use it to discretize v  ( v ) or   

u  ( u ), as appropriate, for each line segment. If v  ( v ) 

parameterizes the line segment, then each sample point 
( )kv ( ( )kv

 ) is mapped directly back to the corresponding 

point ( )ku ( ( )ku
 ).  Otherwise, use the quadrature rule to 

directly select the sample points ( )ku ( ( )ku
 ).     

  

  Map points ( )ku ( ( )ku
 ) back to discrete sample points 

( ) ( )k k
L   ( ( ) ( )k k

L 
     ) in the local line 

segment arc length parameter (see Appendix A) using 

Newton's method to solve ( ) ( )( ) 0k ku u    

( ( ) ( )( , ) 0k ku u
     ). The integrands of the contour 

integrals are then evaluated at the test and source contour 

points ( )k and  
( ) ,k  respectively.    

  

We also remark that as an alternative to the proposed 

secondary transforms (41) and (43), the quadrature scheme of 

Ma, Rockhlin and Wandzura for square root singularities 

[21][22] can be used directly for the  and ' integrations 

whenever 0   and/or  ' 0   are end or interior points of 

the integration domain. Note the transformations (32) and (38) 

make the integrand analytic only for pulse basis functions and 

static kernels. For higher order basis functions and dynamic 

kernels, the dominant singularities of the integrands are 

removed but the integrands are not analytic, thus creating the 
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need for quadratures that treat other singularities such as the  

Ma, Rockhlin and Wandzura quadratures and the double 

exponential quadrature schemes used to produce the numerical 

results of the next section. 

Finally, we note that the choices (31) and (32) cancel the 

rapid variation of ˆˆ u D  in the integrand; this approach  can 

also be extended to cancel just the dual factor ˆˆ  u D , leading 

to a dual expression for u  (i.e., with primed and unprimed 

quantities interchanged). In limited testing, this alternative 

transform pair has been found to work almost as well as the 

approach described, is simpler, and is symmetric with respect 

to its treatment of source and test contour integrals.      

V. NUMERICAL RESULTS 

In this section, we examine the numerical characteristics of 

the proposed approach. It is both convenient and instructive to 

separately examine convergence of the edge pair contour and 

radial integrals representing contributions to the reactions 

between triangular element pairs. Hence, to study convergence 

of the contour integrals, we use the exact result (17) for the 

radial integrals to eliminate that source of error; on the other 

hand, when studying the radial integral convergence, we use a 

very accurate, double exponential (DE) quadrature rule [9] to 

assure that the contour integrals are well-converged. To obtain 

reference values for determining the reaction integral error, we 

use the exact radial integral together with a high order DE rule 

for the contour integrals. In obtaining reference values, 

calculations are performed in quad precision using comparable 

precision quadrature data and root-finding tolerances; all 

reference values used have been found accurate to at least 25 

significant digits. All other computations are performed in 

double precision.   

 For vector potential reaction integrals, all nine linear edge 

basis and test function reaction combinations are computed for 

a triangle pair, and the worst case result (least number of 

significant digits) is reported. For scalar or static potential 

quantities, we assume constant bases and report a single result.   

For each type of reaction integral considered, the error 

metric reported is the number of significant digits (SD) of the 

computed reaction integral, 

    10 ref refSD log ( ) /nI I I     ,                              (44) 

where 
nI  is the integral computed using n  sample points, and 

the reference value is 
refI . Since the working precision of our 

computations is double precision, the term 1.0E 16   is 

added in the argument of the logarithm to ensure that precision 

beyond 16 significant digits is neither claimed nor reported.  

Fig. 8 shows the accuracy of vector potential self-reaction 

integrals for coincident source and test triangles that are right 

isosceles triangles with perpendicular sides each of length 

0.1 .  (For this and other cases where the scalar potential is 

unreported and where triangle pairs have  maximum edge 

lengths of 0.1 , the scalar potential was always found to 

converge to 2–3 more significant digits than the vector 

potential for a given number of sample points. Figures 9, 11, 

13, and 15 illustrate this point.) The exact result (17) is used 

for the radial integrals in Fig. 8, and two quadrature schemes, 

Gauss-Legendre (GL) and double exponential (DE), are 

compared.  The number of sample points per edge contour 

integral is the same for both test and source edges, and the 

number of significant digits obtained is plotted vs. this 

quantity. As is typical when using these two quadrature rules, 

GL appears more effective at achieving low-to-moderate 

accuracies, whereas the DE scheme is effective when very 

high accuracies are desired. The quadrature schemes' behavior 

is also compared with and without the integrand-smoothing 

contour transforms. For self terms, since every edge pair 

intersects the endpoint of another edge, when using transforms 

for the contour integrals, not only the u and u transforms, but 

also the v and v transforms must be invoked for each edge 

pair. The effectiveness of the contour integral transforms is 

clear: in the GL scheme, for a specified accuracy, about half as 

many sample points are needed per edge (or about one quarter 

the total number of points per edge pair). Higher accuracies 

can be achieved using the DE scheme, where the effectiveness 

of the contour integral transforms is even more pronounced. It 

is noteworthy that for self terms, there are only 6 non-

vanishing edge pair combinations, but only 3 of them are 

independent. Therefore the total number of sample points used 

in Fig. 8 may be closely estimated as 2

E R3N N  where 
EN  

represents the horizontal axis of the figure, i.e. the number of 

sample points for both source and test edges for the 3 

interacting pairs of the 9 edge pairs (6 pairs are collinear and 

hence do not interact); 
RN is the number of sample points used 

for radial integration. Hence combining a relatively low order 

GL quadrature rule with exact radial integration 
R(i.e., 1)N   

can lead to a very efficient and accurate self term evaluation 

suitable for many applications.        

For numerical radial integration, an optimum 

RN corresponding to a given number of significant digits in 

Fig. 6 can be closely estimated using Fig. 5 with 

2 10C C 
 r r , corresponding to the longest triangle 

side. 

 
Figure 8.  Number of correct significant digits vs.number of sample points per 

edge; vector potential, self term case for right isosceles triangle. Gauss-

Legendre (GL) and double exponential (DE) quadrature rules with and 
without variable transforms are compared; the radial integration is exact. 

 In Fig. 9, for the same situation considered in Fig. 8, a very 

high order DE quadrature rule is used to ensure the 
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convergence of the contour integrals, and Gauss-triangle rules 

[18] are applied to the radial integral. The number of radial 

quadrature points, 
RN , shown is the total for the triangular 

integration domain of Fig. 4. The scalar potential integral 

apparently converges to about 2 more significant digits than 

the vector potential integral. Recall that for the radial integral, 

it is also possible to specify the number of significant digits 

desired and use (23) to select the appropriate Gauss-triangle 

quadrature rule [18]. We also note in Fig. 9 that only one 

radial sample point per edge pair is required to integrate the 

static scalar potential to machine precision; this is also true for 

each of the contour integrals when the u and u' transforms are 

used since they are chosen to exactly integrate the static 

kernel.   

 
Figure 9.  Number of correct significant digits vs. number of radial sample 

points for each edge point-pair integral; self term case for right isosceles 
triangle; vector, scalar and static potential; NE = number of sample points per 

edge (contour integrals). 

In Figs. 10–13 the same analysis is performed for edge-

adjacent and vertex-adjacent cases using the same coplanar 

source and test triangles as for the self term case, but 

positioned as shown in the corresponding inserts. The total 

number of sample points used in Figs. 10–13 may be closely 

estimated as 2

E R8N N since in both cases one pair of the 9 edge 

pairs is collinear. It is evident that the accuracy behavior of the 

contour and radial integrals is very similar to the results 

obtained for the self term case.  However, comparing Figs. 9, 

11, and 13 for the radial integrals, we see that as the triangles 

are moved apart, convergence is slightly slower due to the 

relatively longer electrical distances between source and test 

triangle edge pairs. Also note that, due to the presence of the 

linearly-varying basis and test functions in the vector 

potential, the vector potential loses about two significant digits 

of accuracy compared to the scalar potential, where constant 

bases are used.      

 

 
Figure 10.  Number of correct significant digits vs. number of sample points 

per edge; vector potential edge adjacent case with right isosceles triangles. 

Gauss-Legendre (GL) and double exponential (DE) quadrature rules with and 
without variable transforms are compared; the radial integration is exact. 

 
Figure 11.  Number of correct significant digits vs. number of radial sample 
points for each edge point-pair integral; edge adjacent case with right 

isosceles triangles; vector, scalar and static potential; NE = number of sample 

points per edge (contour integrals). 

 
Figure 12.  Number of correct significant digits versus number of sample 

points per edge; vector potential vertex adjacent case with right isosceles 

triangles. Gauss-Legendre (GL) and Double Exponential (DE) quadrature 
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rules with and without variable transforms are compared; the radial integration 

is exact. 

 
Figure 13.  Number of correct significant digits vs. number of radial sample 

points for each edge point-pair integral; vertex adjacent case with right 
isosceles triangles; vector, scalar and static potential; NE = number of sample 

points per edge (contour integrals). 

 In Figs. 14 and 15 the same analysis is performed for the 

non-touching test and source triangle pair shown in the inserts. 

The total number of sample points for non-touching triangles 

with no collinear edges is generally 2

E R9N N ; in this case, 

however, there are 2

E R8N N sample points since there is one 

collinear edge pair. The accuracy results for the contour 

integrals (Fig. 14) are quite different from the previous cases 

since, with well-separated edge pairs, the integrand is 

sufficiently smooth that the Gauss-Legendre quadrature rule is 

effective even without transforming the contour integrals or 

using the DE scheme. 

 
Figure 14.  Number of correct significant digits vs. number of sample points 

per edge; case of non-touching right isosceles triangles. Gauss-Legendre (GL) 
and Double Exponential (DE) quadrature rules with and without variable 

transforms are compared; the radial integration is exact. 

 
Figure 15.  Number of correct significant digits vs. number of radial sample 

points for each edge point pair integral; non-touching right isosceles triangles; 

vector, scalar and static potential; NE = number of sample points per edge 
(contour integrals). 

An advantage of (10) for performing 4-D integrals on 

triangle pairs is its relative insensitivity to triangle shapes, 

which is even further improved by transforming the edge 

integrals using (32), (34) and (38). The error contour plots in 

Fig. 16 show (using a common color bar key) the number of 

correct significant digits in the scalar potential self term for 

different shaped triangles. The endpoints 1 and 2 of a 

triangle’s longest edge are placed at points 0.0 and 1.0 along 

the x-axis, respectively (since it is symmetric, only the left 

half of each plot is shown); the third vertex can then only 

appear within or on the boundary of the region bounded by 

two circular arcs centered at vertices 1 and 2 and with radii 

equal to the maximum edge length [13] (i.e., any point outside 

the region has at least one edge longer than the maximum). 

The frequency is chosen such that the electrical length of the 

longest edge is 10; the plot region thus embraces triangles 

of any shape whose maximum edge length is 10 . The color 

at each point (x,y) is keyed to the number of correct significant 

digits for a triangle with its third vertex at the  point. The 

number of sampling points per edge is 8 and the total number 

of radial sample points is fixed at 7 (sufficiently accurate for 

all radial paths), and GL quadrature is used. The contour plot 

of Fig. 16(a) shows the accuracy obtained applying all the 

proposed transforms; Fig. 16(b) shows the same without 

transforms. As the figure clearly shows, the transforms 

counteract the effects of rapid variations of the dot product 

terms in (10) that occur for nearly parallel edges, making 

accuracy relatively insensitive to triangle shape. 

For homogeneous medium kernels, we have found that 

using the transforms can result in a CPU time penalty factor of 

about 6 for well-shaped triangles and for the same number of 

edge sample points. Indeed, the extra computational burden of 

the transform evaluation and root finding almost negates the 

gain resulting from the decreased number of sampling points 

needed to achieve a given accuracy. However, for very poorly-

shaped triangles, it is very difficult to achieve desired 

accuracies without the transforms, so that the required CPU 

time for a given accuracy is much reduced using the 

transforms. Hence, for the homogeneous medium kernel, one 
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can say that a principal benefit of the transforms is to ensure 

relative insensitivity to triangle shape. And for problems 

involving certain Green's functions, such as those for periodic 

and/or layered media where kernel evaluation costs are 

typically hundreds of times greater than for homogeneous 

media kernels, one should expect that the extra overhead of 

computing transforms and their inverses is practically 

negligible compared to the time saved by needing fewer kernel 

evaluations. 

 
Figure. 16.  Significant digits for scalar potential, self term, vs. triangle shape 

for a triangle whose longest edge is length = /10, and with vertices 1 and 2 at 

(x,y) = (0,0) and (x,y ) = (1,0), respectively. The color at any point (x,y ) 
locating  vertex 3 is keyed to the colorbar showing the number of correct 

significant digits for that triangle shape with (a) all transforms applied and (b) 

no transforms applied. Number of sample points per edge NE = 8 (GL 
quadrature rule); number of radial sample points per edge pair NR  = 7 (Gauss-

triangle rule).  

 

In Fig. 17, for the vector potential of a self element case, the 

proposed scheme (blue line with circle markers) is compared 

with the Radial-Angular (RA) singularity cancellation scheme 

[13] for source integration combined with test integration 

using Gauss-Legendre (GL, red line with star or square 

markers) and Ma-Rokhlin-Wandzura [21,22] quadrature 

schemes (MRW-log, green line with up- or down-pointing 

triangle markers). The latter is appropriate for integrands that 

can be approximated as a polynomial plus the product of a 

polynomial and a logarithm function. As discussed in [14], the 

MRW-log scheme is appropriate for this case when high 

accuracy in the testing integral is desired. 

The RA scheme is currently regarded as among the most 

efficient source integral schemes [12]. Usually for the 

associated test integrations, a simple Gauss-Triangle or GL 

product rule is used in the RA. But as discussed in [14], for 

very high accuracy test integrations near source element 

edges, a MRW-log quadrature scheme should be used since 

potentials have a ln  variation very near the edges, with 

 representing distance from an edge. This singular behavior 

is tightly confined to a small region near the edges, however, 

as evidenced by the fact that ordinary GL initially outperforms 

the MRW-log scheme up to about four significant digits (RA 

opt, star or down-pointing triangle markers). However, this 

trend reverses as test sample points are pushed closer to the 

edges of the source triangle. The testing integration is 

evaluated using standard GL product rules varying the number 

of sample points from 7 to 61 (star or square markers) or using 

MRW-log product rules, varying the number of sample points 

from 8 to 50 for each of the three sub-triangles into which the 

test triangle is subdivided [14]. That the underlying RA 

scheme is largely limited by the test integral accuracy is seen 

by increasing the source quadrature (RA opt+1, rectangular or 

up-pointing triangle markers); the results are merely shifted 

horizontally to the right with essentially no increase in 

accuracy. 
 

 

 
Figure 17. Number of correct significant digits (a) vs. total no. of sample 
points and (b) vs. normalized CPU time. Vector potential, self element for a 

right isosceles triangle whose perpendicular sides are of length   /10 

comparing present scheme to Radial-Angular (RA) singularity cancellation 

scheme [13]  for the source triangle (S) using Gauss-Legendre (GL) or Ma-
Rokhlin-Wandzura (MRW-log) quadrature schemes for the test integral (T).  

 

Figure 17(a) compares the number of significant digits vs. 

the total number of sample points required to evaluate vector 

potential for a right isosceles triangle. Comparison is with 

respect to schemes reported in [13]. Figure 17(b) presents the 

same data vs. normalized CPU time.  Times reported are 

normalized with respect to the time required to perform 100 

evaluations of  the 9 vector potential integrals divided by the 

time required to perform the same evaluation simply applying 

a GL quadrature scheme with 16 sample points to the 

traditional surface/surface test and source integrals. 
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The most important observation in Fig. 17 is the superior 

efficiency of the proposed scheme in minimizing the number 

of sample points compared to the RA scheme, either with or 

without transforms. To generate the data for the proposed 

scheme, a form of "manual optimization" of the radial 

sampling has been used: For each case, the 4-D integral is first 

evaluated using the exact radial integral (17) and with a 

selected contour sample point scheme.  The number of 

significant digits obtained is then rounded to the next higher 

integer, and this number is used in the scheme of Sect. III.C to 

select the appropriate radial sampling scheme that numerically 

evaluates the integral to the same accuracy. The resulting 

number of significant digits and total number of kernel sample 

points in this latter case are reported in Fig. 17. 

For the cases considered, it is evident that the proposed 

scheme is more efficient with respect to number of sample 

points required for a specified accuracy than some commonly-

used singularity cancellation schemes coupled with 

appropriate testing schemes.  It is also more efficient than the 

scheme of [1], though we emphasize that the latter was not 

optimized in any way. Overall calculation time will also be 

reduced whenever the time saved in kernel evaluations heavily 

outweighs the method’s slightly increased overhead for 

computing transforms and their inverse mappings at sample 

points.     

VI. CONCLUSIONS 

We present a novel general formula for 4-D reaction integrals 

involving coplanar elements based on a double application of 

the surface divergence theorem. The representation obtained 

has two inner radial integrals and two outer contour integrals 

over the source and test element boundaries. The method’s 

efficiency, in terms of number of correct significant digits for 

a given kernel sampling rate and its insensitivity to triangle 

shape, is strongly improved by employing variable transforms 

for the contour integrals to further smooth the integrands and 

accelerate convergence of the integrals. Moreover, a closed 

form evaluation of the radial integrals is derived for a 

homogeneous medium kernel and standard linear triangle 

basis and testing functions; alternatively, for a completely 

numerical approach, a scheme is developed to optimize the 

choice of quadrature rule. 

The next step in this research activity is to extend the 

approach to non-coplanar elements and to kernels having 

other singularities.  It also appears the approach can be 

extended to curved elements. 
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APPENDIX A. 

 
Figure 18. Geometry, global and local line segment parameterizations.  

 

In Fig. 18, we assume we are given the line segment end point 

coordinates  1 1,i j r r  of  the test and source  line segments, 

respectively, and we want to locate the intersection of their 

extensions.  The two line segments shown in Fig. 18 are 

presumed to be the source triangle edge opposite vertex j  and 

the test triangle edge opposite vertex i. (Only edges i and j of 

the source and test triangles are shown.) The 

quantities ,  are segment arc lengths measured from the 

point of intersection of the extended line segments, while ,   

are local arc length parameterizations measured from 

endpoints of the  source and test segments, respectively.   The 

line segment unit vectors are 1 1 1 1
ˆ ( )j j j j         r r r r  

and 1 1 1 1
ˆ ( ) ,i i i i     r r r r and the two triangle outward 

normals (see Fig. 3) along the segments are  ˆ ˆˆ   u n  and 

ˆ ˆˆ  u n . The angle between the line segments may be 

determined from ˆ ˆcos ,    ˆ ˆˆsin ( ),   n  and 

1tan (sin cos ).    (Use of the intrinsic function atan2, 

found in many programming languages, insures that   is 

placed in the proper quadrant of its range, .     )  Four 

separate cases may be identified: 

 If  1 1 1 1ˆ ˆ( ) ( ) 0j i j i           u r r u r r  (or equivalently, if 

1 1ˆ ( )j i  u r r 1 1ˆ ( ) 0)j i    u r r ) the segments are 

collinear and hence do not interact.   

 If 6sin 10 , cos 0,    one should use (B.7) for 

( , );u    this case includes the parallel line segment 

limit 0  .   

 If 6sin 10 , cos 0,    one should use (B.11) for 

( , );u   this case includes the anti-parallel line segment 

limit    .  In both this and the previous case, we can 

assume that the point of intersection of the extended line 

segments always falls outside both line segments.  

 If 6sin 10 ,   we first determine if the extended source 

segment intersects the test segment.  From the figure, we 

note that 
0 0 1 1
ˆ ˆ

i j   
      r r r.   Dotting first with ˆ   

and then with ˆ  yields the linear system   

                       
0

0

1
,

1

a c

a b





     
         

         (A.1) 

 written in matrix form and having the solution 

                    
0

2

0

1

1

c a b

b a ca





     
          

,       (A.2) 

where  

ˆ ˆ ˆ, ,

ˆ , .

a b

c d

        

      

r

r r r
       (A.3) 

If 
0 0C     the extended source segment intersects the 

test segment, the test segment must be subdivided at 

0 , and the quadrature algorithm must then be applied 

to each subsegment separately. On the other hand, if 

0 0,C      the extended test segment intersects the 

source segment, the source segment must be subdivided at 

0  ,  and the appropriate quadrature rule applied on 

each sub-segment.  

 

In the above, C  and C  are as depicted in Figs. 3 and 7 

and defined following Eq. (11), and are the lengths of the 

source and test edges opposite vertices j and i, respectively.  

Also, the threshold 6sin tan 10    above was found by 

testing a range of  thresholds and determining that, for all   

and  , below the threshold, the standard  expression (38) for 

( ) ( , ) U

L

u u


 
  



 
 was not able to maintain double precision 

accuracy while the modified form of Appendix B  was able to 

do so. 

APPENDIX B. 

From equation (35), 

2 1

( , )
sin ( , )

cos
sin ( ) ( , ) ( )cos sinh .

( )

u
u

h R h
h

 
   



  
     






 


  

    
 

(B.1) 

We define the first term on the right hand side of the second 

equality above as 1( , )u    and consider its integration as the 

indefinite integral 

 

ˆ   

 

0 
ˆ   

0 
ˆ    

C r 

  

ˆ z 

C   r 

  

 

ˆ  

 r 

1 i  r 

1 j  r’ 1 j  r’ 

1 i  r 

 
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2 2 2
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2 2

3 4

3
2 2

3 4
1

( , ) sin ( , )

sin 2 cos

( , ) cos ( cos )
sin sin ( , )

3 2
cos sin

2 ( , )

( , ) cos ( cos )
sin sin ( , )

3 2

cos sin cos
sinh

2 ( )

u R d

d

R
R

d

R

R
R

h

      

      

      
   

   

 

      
   

     





 

   

  
 






  
 

 


 







,


  


(B.2) 

where Dw 380.211 and Dw 380.001 are used in the third and 

fourth equalities, respectively, with "Dw" referring to [23]. 

The remaining term, 2 ( , )u    in (B.1), may be integrated by 

parts, yielding  

2 2 1

2

3 2
1

2 2

cos
( , ) cos sin sinh

sin

sin cos cos
sinh

3 ( )

cos sin
.

3 ( , )

u d

h

d
R

  
     

 

     



   


 





  
    

 

  
   

 









  (B.3) 

The last integral in (B.3) is evaluated using Dw 380.021. and 

Dw 380. 001 as  

 

 

2

2 2

2 2
1

( , )

3 cos ( , ) (3cos 1)

2 2 ( , )

3 cos ( , )

2
(3cos 1) cos

sinh .
2 ( )

d
R

R d

R

R

h




 

       

 

    

    







   
 



 


  


 





(B.4) 

Combining (B.2), (B.3), (B.4) and simplifying, we obtain (38).  

A.  Evaluation for small tan  

The last two terms in (38) should be combined and evaluated 

as a Taylor series to prevent cancellation errors and to 

incorporate the limit when tan is small, i.e., when the source 

and test line segments are  (anti-) parallel or nearly so.  The 

last two terms of (38) can be written as  

 

 

 

3 3

1 1

3
3 1

3 1

cos cos
sinh sinh

3tan 3tan

sgn( )
sgn( )sgn( )cos ( ) sinh tan( )

3tan

cos sinh tan ,

T

h h

h h

h R
h h

     

 

   


 

 







      
       


    

   

(B.5) 

where in the last line, we have used (27), (28) and noted that 

cos cos
tan , tan .

h h

     
 

  
 


    (B.6) 

 

Case  near  0:  

Near 0,   sgn( )sgn( ) 1h h  and we can write T as  

3 cos ( ) (0)
sgn( ) ,

sin
3

R t t
T h

 

 



 
   

   
 
 

           (B.7) 

where  3 1 ( ) cos ( ) sinh tan( )t         and both factors 

in parentheses are bounded as 0  . To calculate the factors 

accurately for small , we replace each by its 

Maclaurin series approximation, 
2 4

6

2 3

sin
1 ( ),

6 120

( ) (0) (0) (0)
(0) ( ) ,

2 6

t t t t
t

  





  



   

 
   

      (B.8) 

where, noting that 1(sinh tan ) 1 cosd x dx x  ,  terms on the 

right hand side of the second equality in (B.8) are found to be   

 

2 1

3 1

2 1

2

(0) cos 3sin sinh (tan ) sgn(cos ) ,

(0) (6cos 9cos )sinh (tan ) 5 cos sin

(0) sin (6 27cos )sinh tan

(19cos 11)sgn(cos ).

t

t

t

   
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  

 







       

       

    

  

(B.9) 

Case  near  : 

Near ,    sgn( )sgn( ) 1h h   .  It is convenient to make 

the substitution =(sgn )    , and to expand T 

about 0,  noting that  

cos( ) cos( ),

sin( ) sin( ),

tan( ) tan( ),

tan tan .

   

   

   

 

    

    

   



               (B.10) 

This yields, finally   
3 cos ( ) (0)

sgn( ) ,
sin

3

R t t
T h

 





 
   

   
 
 

      (B.11) 

where again we can use the Taylor series (B.8), (B.9) to 

approximate the quantities in parentheses.   

 

 


