
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RIIF-2: Toward the next generation reliability information interchange format / Savino, Alessandro; DI CARLO, Stefano;
Vallero, Alessandro; Politano, GIANFRANCO MICHELE MARIA; Gizopoulos, D.; Evans, A.. - ELETTRONICO. - (2016),
pp. 173-178. (Intervento presentato al convegno 22nd IEEE International Symposium on On-Line Testing and Robust
System Design, IOLTS 2016 tenutosi a Sant Feliu de Guixols, Spain nel 4-6 July 2016) [10.1109/IOLTS.2016.7604693].

Original

RIIF-2: Toward the next generation reliability information interchange format

Publisher:

Published
DOI:10.1109/IOLTS.2016.7604693

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2670016 since: 2017-05-02T11:58:36Z

Institute of Electrical and Electronics Engineers Inc.

RIIF-2: toward the next generation Reliability
Information Interchange Format

A. Savino, S. Di Carlo, A. Vallero, G.
Politano

Dep. of Control and Computer Engineering
Politecnico di Torino

Torino, Italy
e-mail: <firstname>.<lastname>@polito.it

D. Gizopoulos
Department of Informatics
and Telecommunications

University of Athens
Athens, Greece

e-mail: dgizop@di.uoa.gr

A. Evans
IROC Technologies

Grenoble, France
e-mail: adrian.evans@iroctech.com

Abstract1— This paper describes the joint effort of the two
FP7 EU projects CLERECO and MoRV toward the definition of
an extended reliability information exchange format able to
manage reliability information for the full system stack, from
technology up to the software level. The paper starts from the
RIIF language initiative, proposing a set of new features to
improve the expression power of the language and to extend it to
the software layer of a system. The proposed extended reliability
information exchange format named RIIF-2 has the potential to
support the development of next generation reliability analysis
tools that will help to fully include reliability evaluation into an
automated design flow, pushing cross-layer reliability
considerations at the same level of importance as area, timing
and power consumption when performing design exploration for
new products.

Keywords— reliability, robustness, design flow, modeling
languages

I. INTRODUCTION
Reliability has always been a serious issue for IC designers,

recently exacerbated by the innovations required to continue
transistor miniaturization such as FinFET transistors, high-k
gate dielectrics, etc. [1]. At current levels of integration,
reliability is a fundamental design dimension that must be
considered early in the design flow together with area, timing
and power. Failing to meet necessary reliability requirements
may add excessive re-design costs to recover and may generate
severe consequences on the success and profitability of a
product [2]. Today, reliability analysis is mostly focused at the
technology and circuit level. Excessive margining and
overdesign are often required to show a product will operate
safely over its full lifetime. However, technology scaling is
evolving so quickly that this approach is impacting the
performance, area, and power benefits of new technologies to a
level that makes reliability oriented overdesign economically
not sustainable [3]. To overcome this limit, cross-layer
approaches in which reliability levels of complex systems are
sustained by techniques that operate at all levels of the system
stack (i.e., technology, hardware architecture and software)

1 This paper has been fully supported by the 7th Framework Program of the
European Union through the CLERECO Project (http://www.clereco.eu), under
Grant Agreement 611404 and through the MoRV Project (http://morv-
project.eu), under Grant Agreement 619234.

have been proposed [4][5][6][7][8]. The research community
often focuses on efficient implementations of cross-layer
approaches for a specific sample design. However, tools for
reliability analysis are still at their early stages compared to
other very mature EDA design tools and this represents a major
issue for mainstream applications. This lack of tools is partly
the result of a lack of standardization of file formats and the
lack of powerful languages to express reliability information at
all levels of the system stack [9].

Nowadays, reliability information for complex digital
systems is mainly confined to the technology and circuit level.
At these levels, there is a deep knowledge of the different
failure mechanisms. However, cross-layer optimization
requires a comprehensive full system model that includes all
failure types and the propagation of their effect to higher levels
of the system stack. This is a fundamental requirement to
enable improved methodologies for analyzing the reliability of
systems built from unreliable components and process
technologies. An overly simplified reliability description
formalism often used for system level reliability analysis is
Reliability Block Diagrams (RBDs) [10][11]. Although RBDs
cannot be classified as a language for reliability information
management, they allow for simple descriptions and
characterization of a system. Each block in a RBD represents a
system component with an associated failure rate. The structure
of the RBD defines the logical interactions of failures within a
system that are required to sustain correct system operation.
More recently we have observed an increased call for the
definition of standardized languages allowing the
formalization, specification and modeling of extra-functional
reliability properties to enable a major productivity
improvement in the design of fault tolerant systems by
integrating automatic reliability analysis within the existing
silicon design flow. Among the different projects, the RIIF
(Reliability Information Interchange Format) initiative
launched by iROC Technologies and supported by the FP7 EU
Project MoRV (Modeling Reliability under Variability) is
gaining a major interest from the research community [12][9].
RIIF is a machine-readable format able to describe the failure
mechanisms associated with a generic hardware component as
well as a basic hardware system, through the decomposition of
complex components into simpler ones. In particular, using
RIIF, failure modes of a component can be expressed as

functions of its related parameters. Despite taking a significant
step toward the definition of a reliability management
description language, RIIF still has some limitations and room
for improvement. In particular, the initial RIIF model mainly
focused on the description of hardware related reliability
information without considering the higher layers of the stack,
which may require further extensions of the language in order
to cope with their complexity.

In this context, the FP7 EU project CLERECO (Cross-
Layer Early Reliability Evaluation for the Computing
cOntinuum), which focuses on the development of tools and
methods for early reliability analysis of complex digital
systems, has joined forces with the MoRV project working on
an revised version of the RIIF language (RIIF-2) able to model
and manage reliability information with a wider scope. In
particular the introduced extensions take into account that a
system is composed of both hardware and software
components, and the language must be broad enough to
encapsulate the effect of both categories of components and to
link information among layers in order to properly describe
how errors propagate and are handled within the system. This
way, it is possible to distribute the reliability analysis
throughout the design flow of a system and to propagate
information across different levels of the system stack.
Moreover, when introducing all levels of the system stack the
volume of information increases significantly. The introduction
of concepts such as inheritance and advanced templates,
common in high-level programming languages, will help in
effectively managing the information and overcoming the
limitations of the simple template mechanism available in the
original RIIF definition. This paper summarizes the result of
this joint effort providing a short overview of the basic RIIF
concepts as originally developed and focusing on the proposed
extensions to move the language toward the management of
reliability information for the full system stack.

The paper is organized as follows: section II reviews the
basic RIIF concepts and describes the main extensions being
proposed, whereas section III focuses on how the extended
RIIF language can be used to model reliability information for
software components. Finally section IV provides information
on the status of the implementation of the extended language
and section V summarizes the main contributions and
concludes the paper.

II. RIIF LANGUAGE EXTENSION
The goal of the RIIF-2 language is twofold: (i) enabling

new, powerful language structures able to cope with the
complexity of the full system stack, and (ii) extending the RIIF
description capability to the software components of the
system. This section focuses on the first of these two goals. The
RIIF language is extended in order to provide additional
flexibility in the description by introducing new keywords and
statements and by broadening the usage of some already
defined language mechanisms. In particular, the following
extensions have been introduced:

• An advanced template mechanism. In order to exploit
modularity and reuse for generic components, it is
important to ensure that description of similar modules
(e.g., SRAMs from different suppliers) is consistent. RIIF

already includes a simple template mechanism to
accomplish this goal, which is extended with dedicated
statements to improve the readability of the language and to
allow for complex uses such as implementation of multiple
templates from a single component.

• A full inheritance mechanism. Components can be often
classified into families that share overall characteristics
with small differences (e.g., different models of a single
microprocessor). The availability of an inheritance
mechanism will significantly reduce redundancy in the
description of families of components enabling for
optimized information management, and reduced risk of
modeling errors.

• Complex data structures. Reliability information may
require data aggregation to ease recurrent operations during
computational activities such as failure rates evaluation.
Complex data structures introduced in the RIIF-2 language
include associative arrays and clustered data in the form of
tables. Moreover a new indexing operator to easily access
subsets of data in a table is proposed.

A. Brief RIIF Overview
This section reviews the basic RIIF concepts. Interested

readers may refer to [12] for a detailed description of the initial
language. In RIIF, the keyword component is used to model
a system component representing the main RIIF entity.
Together with the component two additional types of entities
are available: (1) the reliability requirements that a component
has to meet (requirement keyword), and (2) the
environment under which the component is going to operate
(environment keyword) whose characteristics can be used
to express different parameters of a components (e.g., the error
rate of a device is a function of the temperature whose range is
defined based on the environment). To parameterize entities,
RIIF offers two alternatives (keywords): constants
(constant keyword) and parameters (parameter
keyword). The main difference is that constants express static
values whereas parameters express variable values computed
as a function of other constants and parameters. In terms of
reliability, within a component, the user is able to declare
different failure modes (fail_mode keyword) and their rate
of occurrence can be expressed as a function of any other
already defined parameters or other failure modes. Fig. 1
outlines an example of the basic usage of constants and
parameters applied to the definition of a simple SRAM
component. Both parameters and constants are defined by a
label (e.g., VOLTAGE in Fig. 1) and by a data type defining the
kind of information they store. Examples of allowed data types
are: boolean, integer, float, enum (for enumerative
items), time (to define timing related information), etc. The
value assignment is optional (it can be set later in the
definition) and the actual value can be either explicit or a
formula (SBU’RATE at line 27 of Fig. 1 is expressed in terms
of other constants and parameters).

The assign keyword is used to assign a value to a
parameter or to an attribute of a parameter (referred through a
tick(') and its label). Attributes of a parameter are free, and
enable to specify simple aggregated information, such as units

(metrics) and descriptions. Users can define failure modes in a
similar fashion as parameters. As an example, Fig. 1 shows the
definition of three failure modes (SBU, MBU and SEFI)
using the fail_mode keyword that helps to distinguish
between general parameters and failure modes.

Fig. 1. RIIF description of a simple SRAM component.

B. RIIF-2 Extensions
In RIIF, the possibility to define templates is limited to the

definition of a hardware component in which common desired
information is listed without providing values. While this
mechanism is effective for small libraries of components, an
explicit set of statements to define and manipulate templates is
desirable to improve the robustness of RIIF descriptions in case
of large libraries and to simplify the implementation of
automatic verification tools. In order to implement a full
template mechanism (such as in most high-level programming
languages), RIIF-2 introduces a new template statement. A
template enables to define a set of constants, parameters and
failure modes that must be defined in all components
implementing the template. The example of Fig. 2 defines a
template for an SRAM (lines 1-24) and one for a flip-chip
package (lines 33-44). Predefined values for parameters and
constants can be defined directly in the template as for instance
PACKAGE_TEMP’UNITS (line 39). In a template, predefined
values can be assigned either inline or through the new
introduced keyword impose. The value of predefined
parameters and constants does not need to be reassigned in
those components implementing the template. Undefined
values can be defined through the use of the abstract
keyword. Within a template, each definition identified with the
abstract keyword simply includes a label and a data type as
for instance the definition of the CORE_VOLTAGE parameter
(lines 4-7). Abstract parameters identify mandatory
information that must be defined in all components
implementing the template. Once a template is applied to a
component, the user is required to define the actual values for
all abstract items described within the template. The
application of a template to a component is described through

the new keyword implements as for example at line 46
where a flip-chip SRAM is defined. Multiple templates can be
implemented by the same components, thus allowing complex
usages when a complex hierarchy of components must be
described. In our example the defined component implements
both the SRAM and the package template.

Fig. 2. RIIF-2 description of a flip-chip synchronous SRAM.

The expression power of the improved template mechanism is
further increased when coupled with the introduction of the
inheritance capability of RIIF-2. Inheritance is described by
redefining the use of the extends keyword used in RIIF to
denote the implementation of components from templates.

Through inheritance, both templates and components can
be redefined, thus creating new templates or components that
inherit all the definitions contained in their parent and modify
only those portions that differ. Lines 26-31 of Fig. 2 define a
synchronous SRAM template that extends the basic SRAM
definition. This refined template defines the SRAM clock
frequency as an additional parameter required to characterize
the component. Together with the extends keyword the new
keyword self is used whenever a child template/component

01:component SIMPLE_SRAM;
02:
03: // Parameter Declaration
04: parameter VOLTAGE : float := 1.0;
05: assign VOLTAGE'UNITS = VOLTS;
06: parameter DIE_TEMP : float := 25.0;
07: assign DIE_TEMP'UNITS = CELSIUS;
08:
09: // Parameter to be modified by user
10: parameter NUM_BITS : integer := 1024*1024; //number of bits
11:
12: // Constants specific to modeling this SRAM
13: constant A_DIFF : float := 3.2;
14: constant Q_COL_EFF : float := 0.6;
15: constant MBU_RATIO : float := 0.25;
16:
17: // Define Radiation Induced Failure Modes
18: fail_mode SBU; // Rad. induced single bit error
19: fail_mode MBU; // Rad. induced multiple bit error (same word)
20: fail_mode SEFI; // Radiation induced failure of entire device
21:
22: assign SBU'UNITS = FITS;
23: assign MBU'UNITS = FITS;
24: assign SEFI'UNITS = FITS;
25:
26: // Equations to specify rate of defined failure modes
27: assign SBU'RATE = NUM_BITS * A_DIFF * EXP(- CORE_VOLTAGE /
 Q_COL_EFF);
28: assign MBU'RATE = SBE'RATE * MBU_RATIO;
29: assign SEFI'RATE = 10; // obtained from testing
30:
31:endcomponent SIMPLE_SRAM

01:template SRAM_TEMPLATE;
02:
03: // All SRAMs must define voltage, temperature and size
04: abstract constant NAME : string;
05: abstract constant MANUFACTURER : string;
06: abstract parameter CORE_VOLTAGE : float;
07: abstract parameter NUM_BITS : integer;
08:
09: // All SRAMs must have radiation induced failure modes
10: fail_mode RAD_FM[];
11: // All SRAMs must have permanent failure modes
12: fail_mode PER_FM[];
13:
14: abstract RAD_FM[SBU]’RATE; // single bit upset
15: impose RAD_FM[SBU]’UNITS = FITS;
16: abstract RAD_FM[MBU]’RATE; // multiple bit upset
17: impose RAD_FM[MBU]’UNITS = FITS;
18: abstract RAD_FM[SEFI]’RATE; // control logic errors
19: impose RAD_FM[SEFI]’UNITS = FITS;
20: abstract RAD_FM[SEL]’RATE; // single event latchup
21: impose RAD_FM[SEL]’UNITS = FITS;
22: abstract PER_FM[SSAF]’RATE; // single stuck-at fault
23: impose PER_FM[SSAF]’UNITS = FITS;
24:endtemplate
25:
26:template SYNCSRAM_TEMPLATE extends SRAM_TEMPLATE;
27: //All synchronous SRAM must specify the clock speed.
28: abstract parameter CLK_Speed : integer;
29: impose CLK_Speed’UNITS= MHZ;
30:
31:endtemplate
32:
33:template FLIP_CHIP_TEMPLATE;
34:
35:// All flip-chip packages must contain the following info.
36: abstract constant NAME : string;
37: abstract parameter NUM_BUMPS : integer;
38: abstract parameter PACKAGE_TEMP : float;
39: impose PACKAGE_TEMP’UNITS = CELSIUS;
40:
41: // All Flip-Chip packages have these failure mechanisms
42: abstract fail_mode OPEN_BUMP;
43: abstract fail_mode DIE_CRACK;
44:endtemplate
45:
46:component CY7C1263XV18 implements
SYNCSRAM_TEMPLATE,FLIP_CHIP_TEMPLATE;
47:
48: set SYNCSRAM_TEMPLATE.NAME = "CY7C1263VX18";
49: set MANUFACTURER = "CYPRESS";
50: set CORE_VOLTAGE = 1.8;
51: set NUM_BITS = 37748736; // 36 Mbit
52: set CLK_Speed = 633;
53: set FLIP_CHIP_TEMPLATE.NAME = “165-LBGA”;
54: set NUM_BUMPS = 165;
55: set PACKAGE_TEMP’MIN = 0;
56: set PACKAGE_TEMP’MAX = 70;
57: set RAD_FM[SBU]’RATE =;
58: set PER_FM[SSAF]’RATE =;
59: endcomponent

needs to redefine the value of a constant/parameter based on
the value of the same constant/parameter defined in the parent
template/component. An example of usage of this mechanism
is presented subsequently in Fig. 4.

Further language extensions proposed in this paper focus on
the introduction of complex data structures. The RIIF language
only supports the definition of fixed size numerically indexed
arrays. However, in several cases information must be
associated to a set of labels to make it easy its retrieval during
automated system reliability analysis. For this reason, the RIIF-
2 language includes a new associative array data type. An
example of an associative array is the definition of the SRAM
failure modes in Fig. 2. In order to group them into radiation
induced failure modes and permanent failure modes they are
defined through two associative arrays (RAD_FM and
PER_FM at lines 10 and 12). The empty brackets are used to
denote the associative arrays. In particular they indicate that the
number of elements is undefined and new elements can be
freely appended to the array. The index of each element is
defined when the element is created:
<VECTOR_NAME>[<element_label>] = <value>. In
this way, there is no need to number the vector elements and
the access is based on the label used as an index. Finally, the
extended RIIF language introduces a new data type: table.
Tables are the perfect data structure whenever groups of
heterogeneous information must be aggregated together to
maintain their informative content. The definition of a table
includes the definition of a header defining the columns of the
table and the definition of the table content. An example of its
use is provided in Fig. 3 and Fig. 4 later in the paper. Together
with the table data type a new operator denoted with the
symbol [#]is introduced. When applied to a table column it
denotes an iterative access to all rows of the table. It is
particularly useful whenever the value of a parameter must be
expressed as a function of values contained in a table.

III. SOFTWARE COMPONENTS CHARACTERIZATION
The software layer (i.e., firmware, system and application

software) is a key element of a complex digital system and
plays a key role from the reliability standpoint [14]. While raw
errors are generated at the technology level due to undesired
effects such as ageing, environmental stress, variability etc.,
many detectable errors can be gracefully managed by correct
software handling and a significant portion of the undetectable
errors may be masked, depending on the application. The
software routines executed in a complex system play a
significant role in introducing this type of masking effects and
must be properly characterized when implementing cross-layer
reliability solutions to potentially reduce the design margins
imposed at the hardware level. Software components are in
general difficult to profile. They can be characterized statically
(i.e., without execution), or dynamically (i.e., collecting run-
time information). Dynamic properties are particularly difficult
to collect since they are strongly related to the input data sets.

This section overviews how the expression power of RIIF-2
can be used to model and manage reliability related
information for software components, thus addressing the full
system stack. In order to properly model software components
in RIIF-2 we started from the identification of a preliminary set

of general parameters required to express basic properties of a
software component that may influence its ability to mask or
propagate hardware faults:

• software class to distinguish among firmware, system and
application software, etc. Each class can be further split into
subclasses.

• code size. It can be expressed as: (i) the number of high
level code lines, (ii) the number of assembly instructions,
(iii) the size of the binary code. Moreover, it can be
statically computed or dynamically computed based on the
execution of a set of workloads.

• number of loops to count how many loops are statically
defined in the software code and how many times they are
executed for selected workloads.

• variable lifetime to identify those variables with longer life
and therefore higher chance to be corrupted. It could be an
average value or a distribution function.

• algorithm complexity computed in general as a function of
other parameters such as size, number of loops, etc.

• read access rate/count to count the memory read
operations. It can be statically or dynamically computed.

• write access rate/count to count the memory write
operations similarly to the read access rate.

• cache miss rate/count to count cache misses. It can be
collected through dynamic analysis resorting to hardware
facilities available in most commercial microprocessors.

• cache hit rate/count to count the number of cache hits.

• accessed memory pages to count the number of memory
pages accessed during the execution of the code.

Together with these general parameters, a set of more specific
parameters can be collected and modeled. Hardware failures
may significantly affect timing of a software application.
Therefore, it is important to be able to model timing constraints
that must be respected to obtain a correct result. Since the
software execution time depends on the workload, timing
constraints are usually defined as an expected execution time in
relation to a given workload. Moreover, if margins can be
accepted in the execution time, optional max accepted
execution time and average accepted execution time properties
can be defined. Hardware level failure modes (e.g., SBU) may
deviate the correct software execution generating a set of
possible software faulty behaviors (SFBs). In order to model
the way a hardware failure enters the software domain and is
propagated eventually generating a SFB we resort to the
concept of software fault models (SFMs). We consider the
SFMs has introduced by Vallero et. al in [7] that translate the
effect of a hardware failure model into the software domain
(e.g., an SBU translates into a wrong data of an instruction).
SFMs represent the link between the hardware and the software
layer of a full system stack. The SFBs describe how a software
component reacts to a given SFM. We consider three main
classes of SFBs: timing (e.g., early/late execution), data (e.g.,
incorrect data, no data produced, etc.), and responsiveness
(e.g., responsive, partial responsive, fully unresponsive, etc.).

Characterizing the SFBs of a software component means
providing the probability of observing a behavior in the
presence of one or a combination of SFMs. Due to the limited
space available in this paper, the reader may refer to [7] for a
detailed description of the concept of SFM and for a
preliminary taxonomy.

Fig. 3 shows an example of how RIIF-2 can be used to
model a system including hardware and software. For brevity,
the model of the full hardware layer is reduced to a single
hardware component VECTORCALC_CORE able to execute
vector computations. In this component we assume that fault
injection experiments have been used to measure the
occurrence rate of a set of SFMs in the presence of hardware
failure modes and this information has been modeled by the
SW_FM table (lines 5-9). Lines 12-32 define a high-level
SW_COMPONENT template modeling the above-mentioned
basic information items characterizing a software module. It
uses the extended template formalism introduced in section
II.B. In this template the constant SFB_ITEMS defines a set of
labels that identify 11 SFBs expressing the time properties of
the module (IN_TIME, UNDETECTABLE, EARLY,
LATE), the responsiveness of the module
(FULL_UNRESPONSIVE, PARTIAL_UNRESPONSIVE,
RESPONSIVE) and the data integrity of the module
(DATA_BENIGN, NO_DATA, EDC, NON-EDC).
Egregious Data Corruptions (EDCs) indicate software
outcomes that significantly deviate from the error-free
outcomes while NON-EDC indicate small or no deviations in
the obtained results [13]. Line 20 introduces a key information
for the template. Each instance of SW_COMPONENT must
define the target hardware execution platform through the new
RIIF-2 keyword platform thus establishing a link between
the software and the hardware layer as explained later in this
section. Lines 23-30 show instead an example of the use of the
newly introduced table data structure to describe both time
constraints and SFBs. Both items cannot be described as simple
single-value parameters, but require an aggregation of a set of
heterogeneous information. In particular the template declares
the two tables and their headers that in turn define the
information that will be stored when the template will be
implemented by a component. A table header is a vector whose
elements are defined inline with a comma separated list
enclosed within {} brackets. The number of elements of the
vector sets the header dimension dynamically.

To further emphasize on the capability of the table data
structure, let us consider the implementation of the
SW_COMPONENT template reported in lines 34-54 of Fig. 3. In
this component besides setting the basic information defined in
the template line 43 sets the value of the target platform and
links this software to the VECTORCALC_CORE. Through the
SW_FM table of the VECTORCALC_CORE component that
links its failure modes to the SFMs, and through the SFB table
of the VADD component that links each SFM to the SFB
reliability information can be efficiently propagated from the
hardware to the software layer of the stack. Moreover, line 44
shows how the RIIF child_component keyword already
available in the initial version of the language can be used to
model the software hierarchy. In the VADD component, the use

of the new table data type can be appreciated. Lines 46-48
define the items (rows) of the TIME_CONSTRAINTS table.
Each item reports the execution time (EXEC_TIME column),
the average and the maximum time (AVG_TIME, MAX_TIME
columns) for a given workload (WORKLOAD column). An even
more complex use of the table data type is used in lines 48-52
to define the items of the SFB table. In this case, each row of
the table identifies an SFM. The probabilities of occurrence of
each SFB in the presence of the SFM are defined. This is
accomplished through the two columns named
OCCURRING_SFB representing the list of SFBs and
OCCURRING_SFB_RATE representing the associated
probabilities. These two elements are two arrays defined within
a column of a table. Resorting to the flexibility of these new
data structures we have been able to represent complex data in
a very compact and expressive manner.

Fig. 4 (lines 1-12) shows instead an example of how
inheritance can be easily used to define a modified version of
the same software application implementing a software error
detection mechanism based on variable duplication. In this
example we show how the self operator can be used to easily
model the time overhead introduced by the inserted protection
mechanism w.r.t. the timing of the original application. For the
sake of readability, the definition of the improved masking
probabilities is not reported. Finally, Fig. 4 (lines 13-20) shows
another way to describe the component proposed in Fig. 4. In
this case we use the iterative operator [#] introduced in section
II.B to redefine all entries of the TIME_CONSTRAINTS table
with a single definition. The operator applies the same formula
to all entries of a given table. This feature is particularly useful
when managing big tables whose lines must be processed
according to the same criteria, for example, scaling of all
failure rates.

IV. IMPLEMENTATION
The definition of the RIIF-2 language is still underway.

This prevent the availability of a complete toolchain to support
the use of the language in both research and commercial tools.
To promote the RIIF-2 initiative and to stimulate the
contribution of the reliability community a public website
available at http://riif.iroctech.com/ has been setup. This will
serve as a central repository for the initiative where news and
information will be published, tools will be released.
Researchers interested in collaborating on the initiative can
also refer to this website to join the RIIF-2 development team.

V. CONCLUSIONS
In this paper we presented the effort of two FP7 European

projects (MoRV and CLERECO) toward the definition of a
standardized language for modeling reliability information for
complex digital systems taking into account the full system
stack. Starting from the RIIF initiative, this paper introduces an
extended language that includes a set of features able to
increase the expressive power of the language with particular
emphasis on its use in automatic reliability analysis tools.
Moreover, the paper focuses on exploiting the new extended
language to cover the characterization of reliability information
for software modules that are of primary importance when
cross-layer mechanisms must be analyzed and implemented for

a new system. Through the joint dissemination end exploitation
effort of two FP7 EU projects the extended RIIF language will
support the development of next generation reliability analysis
tools that will help to include reliability evaluation into an
automated design flow at the same level as area, timing and
power consumption.

Fig. 3. System modeling with both hardware and software components.

Fig. 4. Vector_ADD software with protection mechanisms.

REFERENCES
[1] Y.-K.Choi, D.Ha, E.Snow, J.Bokor, T.-J.King, "Reliability study of

CMOS FinFETs," in IEEE International Electron Devices Meeting,
2003. IEDM '03 Technical Digest., pp.7.6.1-7.6.4, 8-10 Dec. 2003.

[2] J.Yoshida. “Toyota Case: Single Bit Flip That killed.” EETimes,
October 2013.

[3] T.Austin, V.Bertacco, S.Mahlke, and Y.Cao. “Reliable Systems on
Unreliable Fabrics” IEEE Design & Test of Computers, 25(4): 322-333,
July 2008.

[4] H.M.Quinn, A.De Hon, and N..Carter. CCC visioning study: system-
level cross-layer cooperation to achieve predictable systems for
unpredictable components. Technical report, Los Alamos National
Laboratory (LANL), 2011.

[5] S.Mitra, K.Brelsford, and P.N.Sanda. Cross-layer resilience challenges:
Metrics and optimization. In Conference on Design Automation & Test
in Europe (DATE), 2010.

[6] N.P.Carter, H.Naeimi, and D.S.Gardner. Design Techniques for Cross-
Layer Resilience. In Conference on Design, Automation & Test in
Europe (DATE), 2010.

[7] A.Vallero, S.Tselonis, N.Foutris, M.Kaliorakis, M.Kooli, A.Savino,
G.Politano, A.Bosio, G.Di Natale, D.Gizopoulos, S.Di Carlo, Cross-
layer reliability evaluation, moving from the hardware architecture to the
system level: A CLERECO EU project overview, Microprocessors and
Microsystems, Available online 20 June 2015, ISSN 0141-9331.

[8] M. Ottavi et al. "Dependable Multicore Architectures at Nanoscale: The
View From Europe", IEEE Design & Test of Computers, Vol. 32, No 2,
Mar.-Apr. 2015, pp. 17-28.

[9] U.Schlichtmann, V.Kleeberger, J.Abraham, A.Evans, C.Gimmler-
Dumon, M.Glas, A.Herkersdorf, S.Nassif, and N.Wehn, “Connecting
different worlds - technology abstraction for reliability-aware design and
test,” in Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, March 2014, pp. 1–8.

[10] Reliability Modeling and Prediction, ser. Military standard. U.S.
Department of Defense, 1981. [Online]. Available:
https://books.google.ca/books?id=b50QAQAAMAAJ

[11] M.Modarres, M.Kaminskiy, and V.Krivtsov, Reliability Engineering and
Risk Analysis: A Practical Guide. Taylor & Francis, 1999. [Online].
Available: https://books.google.ca/books?id=IZ5VKc-Y4_4C

[12] A.Evans, M.Nicolaidis, S.-J.Wen, D.Alexandrescu, and E.Costenaro,
“RIIF - reliability information interchange format,” in On-Line Testing
Symposium (IOLTS), 2012 IEEE 18th International, June 2012, pp.
103–108.

[13] A.Thomas and K.Pattabiraman, “Error detector placement for soft
computation,” in Dependable Systems and Networks (DSN), 2013 43rd
Annual IEEE/IFIP International Conference on, June 2013, pp. 1–12.

[14] A.L.Silburt, A.Evans, A.Burghelea, S.-J.Wen, D.Ward, R.Norrish and
D.Hogle. Specification and Verification of Soft Error Performance in
Reliable Internet Core Routers. Nuclear Science, IEEE Transactions on,
vol. 55, no. 4, pages 2389 –2398, aug. 2008.

01:component VECTORCALC_CORE;
02: // An hardware component performing vectorial calculations
 ...
03: parameter fail_mode SBU;
04: assign SBU’RATE = 10; //obtained from radiation tests
 ...
05: parameter SW_FM: table;
06: assign SW_FM’HEADERS = {FAILMODE, SFM, RATE};
07: assign SW_FM’ITEMS = { // Obtained from fault injection
08: [“SBU”, “WRONG_DATA”, 0.3 * SBU’RATE],
09: [“SBU”, “WRONG_INSTRUCTION”, 0.2 * SBU’RATE], ... };
10:endcomponent
11:
12:template SW_COMPONENT;
13: // All programs must define the name, size, …
14: abstract parameter NAME : string;
15: abstract parameter SIZE : integer;
16: abstract parameter LOOPS : integer ;
17: abstract parameter PROTECTION : enum {NONE, VAR_DUP, ...};
18: abstract parameter READ_ACCESS : integer ;
19: abstract parameter WRITE_ACCESS : integer ;
20: abstract platform executed_on;

21: // List of possible SFB considered in our library
22: abstract constant SFB_LIST:= {IN_TIME, UNDETECTABLE, EARLY,
 LATE, FULL_UNRESPONSIVE, PARTIAL_UNRESPONSIVE, RESPONSIVE,
 DATA_BENIGN, NO_DATA, EDC, NON-EDC};
24:
25: // Timing constraints depending on the workload
26: abstract parameter TIMING_CONSTRAINTS : table;
27: impose TIMING_CONSTRAINTS’HEADERS = {WORKLOAD,
 EXEC_TIM, MAX_TIME, AVG_TIME};
28:
29: // Software faulty behaviors table defining the probability
 of occurrence of each SFB given the occurrence of each SFM.
30: abstract parameter SFB : table;
31: impose SFB’HEADERS = {SFM_TYPE, SFM,
 OCCURING_SFB, OCCURRING_SFB_RATE};
32:endtemplate
33:
34:component VADD implements SW_COMPONENT;
35: set NAME = “Vector ADD”;
36: set SIZE = 524;
37: set SIZE’UNITS = instructions;
38: set PROTECTION = NONE;
39: constant NUMBER_OF_ITEMS := 10000;
40: set READ_ACCESS = 76 * NUMBER_OF_ITEMS / 10000;
41: set WRITE_ACCESS = 75 * NUMBER_OF_ITEMS / 10000;
42: set LOOPS = 3;
43: set executed_on = VECTORCALC_CORE;
44: child_component VPRINT;
45:
46: assign TIMING_CONSTRAINTS’ITEMS = {
47: [TEST_BENCH1, 0.0000001, 2, 0.000001],
48: [TEST_BENCH2, 0.0000003, 2.1, 0.0000004] };
49: assign SFB’ITEMS = {
50: ["permanent", "WRONG_DATA", SFB_ITEMS, { 0.893, 0.107, 0,
 0, 0.891, 0.042, 0.067, 0.413, 0.109, 0.052, 0.426 }],
51: ["permanent", "INSTR_REPLACEMENT", SFB_ITEMS, { 0.274,
 0.726, 0, 0, 0.378, 0.348, 0.274, 0, 0.726, 0, 0.274 }],
52: ["transient", "WRONG_DATA", SFB_ITEMS, { 0.893, 0.009, 0,
 0.098, 0.987, 0.001, 0.012, 0.968, 0.013, 0, 0.019 }],
53: ["transient", "INSTR_REPLACEMENT", SFB_ITEMS, { 0.614,
 0.309, 0, 0.077, 0.309, 0, 0.691, 0.691, 0.309, 0, 0 }]};
54:endcomponent

01:component VADD_VARIABLE_DUPLICATION_VER1 extends VADD;
02: set NAME = "Vector ADD with Variable Duplication";
03: set PROTECTION = VAR_DUP;
04: assign TIMING_CONSTRAINS’ITEMS = { 
05: (PROTECTION == VAR_DUP)?
06:  ["TEST_BENCH1", self+0.001, self+0.2, self+0.0015] :
07: ["TEST_BENCH1", self , self , self], 
08: (PROTECTION == VAR_DUP)? 
09: ["TEST_BENCH2", self+0.001, self+0.2, self+0.0015] :
10: ["TEST_BENCH2", self , self , self] }; 
11:endcomponent
12:
13:component VADD_VARIABLE_DUPLICATION_VER2 extends VADD;
 ...
14: assign TIMING_CONSTRAINS’ITEMS[#][EXEC_TIME]=
15: (PROTECTION == VAR_DUP)? self + 0.001 : self ;
16: assign TIMING_CONSTRAINS’ITEMS [#][MAX_TIME]=
17: (PROTECTION == VAR_DUP)? self + 0.2 : self ;
18: assign TIMING_CONSTRAINS’ITEMS[#][AVG_TIME]=
19: (PROTECTION == VAR_DUP)? self + 0.0015 : self ; };
 ...
20:endcomponent

