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Our understanding of epidemic spreading has been deeply improved by the study of
time-varying networks. Activity-driven networks (ADNs) are a very powerful paradigm
to study these networks and, in particular, to model the co-evolution of the network of
contacts and the spreading dynamics [4, 5, 9]. Despite significant advances, most of the
studies on ADNs are based on extensive Monte Carlo simulations, and analytical results
are only limited to linearized mean-field approximations that allow to obtain precise re-
sults on the epidemic threshold [3, 5, 7], revealing the presence of a phase transition
between a condition in which the epidemic dies out fast and another where the epi-
demic spreads in the population, becoming endemic. However, the available analytical
results are not able to forecast the dynamic evolution of the spreading, nor to estimate
its endemic equilibrium. The latter is a metastable equilibrium point of the epidemic
process with a constant (non zero) fraction of infected individuals.

Here, we propose an analytical framework that enables the study of the entire dy-
namics of the epidemic spreading at the population level. Differently from the original
ADN formulation, where a discrete-time epidemic model is implemented with a con-
tinuous probability distribution for the nodes’ activities, here we consider a continuous-
time model with a discrete distribution. This change of perspective leads to a rigorous
analytical treatment, which is also not prone to the confounds associated with the se-
lection of the time step [6]. Our theory relies on a reduced number of parameters than
traditional ADNs, making robust parameter identification from real-world data more
robust and less prone to overfitting [8].

We consider a (large) population of n individuals, each one labeled with a natural
number up to n and associated with a node of a time-varying graph G(t) = (V,E(t)),
with t ∈ R+. We focus on a susceptible-infected-susceptible (SIS) process [1], being
the simplest and most studied among the epidemic models 5. Each node v ∈V is given
a time-invariant activity rate av ∈ R+. Node v becomes active after a time sampled
from an exponentially distributed random variable with rate av and contacts a node
uniformly at random in V , generating an instantaneous undirected edge through which
the epidemic spreads with fixed probability λ , if one of the two nodes is infected and

5Our theory can be easily extended to tackle more complex epidemic models (SIR, SEIS,
etc.).
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the other one is susceptible. Infected nodes recover after a random time generated from
an exponentially distributed random variable with parameter µ .

We propose a discrete power-law activity distribution in which individuals are par-
titioned into k equidistant activation classes (a1 < · · · < ak). We denote with ni the
number of nodes in the i-th class and we let ni ∝ a−γ

i , where real-world observations [5]
bound γ ∈ [2,3]. Due to central limit theorem, for n→ ∞, the fraction of nodes in each
class converges to ηi ∝ a−γ

i , independently on n.
In the hydrodynamic limit n→ ∞, our formulation leads to a deterministic approxi-

mation of the dynamics, exponentially close to the original stochastic process [2]. In this
approximation we model the evolution of the fraction of infected nodes ζi in each acti-
vation class through the following system of k ordinary differential equations (ODEs):

ζ̇i =−µζi +λ (1−ζi)(aix1 + x2), (1)

where x1 = ∑ηhζh and x2 = ∑ηhahζh. Notice that the macroscopic variable x1 repre-
sents the fraction of infected individuals across all classes, while x2 takes into consid-
eration the activity rates of the infected nodes.

The main observable in the study of epidemics is x1, whereas in real-world situa-
tions, the fraction of infected nodes in each class described by (1) cannot be observed.
Therefore, being initial conditions for each class not available, system (1) cannot be di-
rectly applied to predict the evolution of epidemics. For this reason and to facilitate the
mathematical treatment of (1), we rewrite it using exactly k ODEs in terms of macro-
scopic variables x1, x2 and, in general, x j = ∑ηha j−1

h ζh, where j = 1, . . . ,k.
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Fig. 1: Averaged Monte Carlo simulations of the epidemic process (blue) and theoretical
bounds (red) from our low-dimensional continuous approximation. Time unit is a day.
In (a) and (b), k∗ = 1 is set to predict bounds on the endemic equilibrium. In (c) and
(d), k∗ = 2 is set to predict bounds on the transient evolutions. Simulations are averaged
over 200 trials. The power-law exponent of the activity rate distribution is set as γ = 2.2
in (a) and (c) and γ = 2.8 in (b) and (d). Other model parameters are set as n = 5000,
λ = 0.3, µ = 0.08.

Such approach involves some issues in the computation of the quantities x j’s, for
large values of j. In fact, on the one hand, it is practically difficult to compute initial con-
ditions for such quantities. On the other hand, because of the power-law distribution of
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the activation rates ai, the quantities x j’s tend to blow up, harming the numerical integra-
tion of the ODEs. To overcome this limitation we consider a low-dimensional system of
ordinary differential inclusions, comprising k∗− 1 << k equations and one inclusion,
using the following natural bounds on xk∗+1: a1xk∗ ≤ xk∗+1 ≤ akxk∗ and xk∗+1 ≤ αk∗ ,
where α j = ∑ηha j

h is the j-th moment of the power-law distribution of the activation
rates. The cases with k∗ = 1 and k∗ = 2 lead to very interesting results, illustrated in
Fig. 1. Notably, using k∗ = 1, two bounds for the fraction of infected nodes in the en-
demic equilibrium can be obtained, as illustrated in Figs. 1 (a)-(b). On the other hand,
k∗ = 2 leads to the definition of two bounds where the fraction of infected nodes x1
during the transient evolution is confined, as illustrated in Figs. 1 (c)-(d). A sensible
combination of these bounds can lead to predictions of the whole dynamics of the frac-
tion of infected nodes x1, from the inception of the epidemic spreading to its endemic
equilibrium.

Predictions obtained using our approach can be drastically improved if a finite-time
horizon is considered. Results are not shown here due to space constraints.
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