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Metal-insulator transition and strong-coupling spin

liquid in the t−t′ Hubbard model

Federico Becca, Luca F. Tocchio, and Sandro Sorella
CNR-INFM Democritos and International School for Advanced Studies (SISSA), via Beirut
2-4, 34014 Trieste, Italy

E-mail: becca@sissa.it

Abstract. We study the phase diagram of the frustrated t−t′ Hubbard model on the
square lattice by using a novel variational wave function. Taking the clue from the backflow
correlations that have been introduced long-time ago by Feynman and Cohen and have been
used for describing various interacting systems on the continuum (like liquid 3He, the electron
jellium, and metallic Hydrogen), we consider many-body correlations to construct a suitable
approximation for the ground state of this correlated model on the lattice. In this way, a very
accurate ansatz can be achieved both at weak and strong coupling. We present the evidence
that an insulating and non-magnetic phase can be stabilized at strong coupling and sufficiently
large frustrating ratio t′/t.

The Hubbard model on the square lattice with nearest- and next-nearest-neighbor hoppings
has been widely studied by many authors with different numerical techniques and contradictory
outcomes. The Hamiltonian is given by:

H = −
∑

i,j,σ

tijc
†
i,σcj,σ + H.c. + U

∑

i

ni,↑ni,↓, (1)

where c†i,σ(ci,σ) creates (destroys) an electron with spin σ on site i, ni,σ = c†i,σci,σ, tij is
the hopping amplitude (denoted by t and t′ for nearest- and next-nearest-neighbor sites,
respectively), and U is the on-site Coulomb repulsion. In the following, we will consider the
half-filled case, where the number of electrons N is equal to the number of sites. The model
of Eq. (1) represents a simple prototype for frustrated itinerant materials. In the presence of a
finite t′/t, there is no more a perfect nesting condition that leads to antiferromagnetism for any
finite U and non-conventional phases may be stabilized at zero temperature, like for instance
spin liquids with no magnetic order.

The first numerical study of this model is due to Lin and Hirsch, [1] who found the existence
of a critical Uc for the appearance of antiferromagnetism at finite values of t′/t. More recent
studies have been done by Imada et al., [2, 3, 4] by using the Path Integral Renormalization
Group approach, by Yokoyama et al., [5] by using a variational Monte Carlo method, and by
Tremblay et al., [6] by a Variational Cluster Approximation. Remarkably, all these numerical
approaches give very different results for the ground-state properties of this simple correlated
model. In fact, there are huge discrepancies for determining the boundaries of various phases,
but also for characterizing the most interesting non-magnetic insulator. Furthermore, also the
possibility to have superconductivity at small values of U/t is controversial.
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In the following, we will show our numerical results, which are based upon an improved
variational Monte Carlo approach that contains backflow correlations. [7] Before doing that,
it is useful to remind how to construct suitable variational states to describe different phases.
Variational wave functions for the unfrustrated Hubbard model, which has antiferromagnetic
long-range order, can be easily constructed by considering the ground state |AF 〉 of a mean-field
Hamiltonian containing a band contribution and a magnetic term

HAF = −
∑

i,j,σ

tijc
†
i,σcj,σ + H.c. + ∆AF

∑

j

ei Q·RjSx
j , (2)

where Sx
j is the x component of the spin operator Sj = (Sx

j , Sy
j , Sz

j ) and Q is a suitable
pitch vector, e.g., Q = (π, π) for the Neel phase. In order to have the correct spin-spin
correlations at large distance, we have to apply a suitable long-range spin Jastrow factor, namely
|ΨAF 〉 = Js|AF 〉, with Js = exp[−1

2

∑
i,j ui,jS

z
i Sz

j ], which governs spin fluctuations orthogonal
to the magnetic field ∆AF . [8] It is important to stress that the mean-field state |AF 〉 can easily
satisfy the single-occupancy constraint by taking ∆AF → ∞; in this limit, it also contains the
virtual hopping processes, which are generated by the kinetic term, implying that it is possible
to reproduce super-exchange processes.

On the other hand, in pure spin models, namely when U is infinite and charge fluctuations
are completely frozen, spin-liquid (i.e., non-magnetic) states can be constructed by considering
the ground state |BCS〉 of a BCS Hamiltonian with singlet pairing

HBCS = −
∑

i,j,σ

tijc
†
i,σcj,σ + H.c. +

∑

i,j

∆ij
BCS(c†i,↑c

†
j,↓ + c†j,↑c

†
i,↓) + H.c. (3)

and then applying to it the so-called Gutzwiller projector, |RV B〉 = PG|BCS〉, where PG =∏
i(1− gni,↑ni,↓) and g = 1. [9] These kind of states can be remarkably accurate and represent

important tools for the characterization of disordered spin-liquid ground states. [10, 11] However,
whenever U/t is finite, the variational state must also contain charge fluctuations. In this
regard, the simplest generalization of the Gutzwiller projector with g 6= 1, which allows doubly
occupied sites, is known to lead to a metallic phase. [12] One particularly simple way to obtain
a Mott insulator with no magnetic order is to add a sufficiently long-range Jastrow factor
J = exp[−1

2

∑
i,j vi,jninj ], ni =

∑
σ ni,σ being the local density. [13] Nevertheless, the accuracy

of the resulting wave function |ΨBCS〉 = J |BCS〉 can be rather poor in two dimensions for large
on-site interactions, especially in presence of frustration, since the super-exchange energy scale
is not correctly reproduced. In fact, in contrast to the previous case with magnetic order, within
the uncorrelated state |BCS〉 it is not possible to avoid a finite amount of double occupancies,
and the Gutzwiller factor is mandatory to project out high-energy configurations. Here, we
propose a simple improvement of (general) correlated wave functions in order to mimic the
effect of virtual hoppings, leading to the super-exchange mechanism. In particular, we want
to modify the single-particle orbitals, in the same spirit of backflow correlations, which have
been proposed long time ago by Feynman and Cohen to obtain a quantitative description of the
roton excitation in liquid Helium. [14] The backflow term has been implemented within quantum
Monte Carlo calculations to study bulk liquid 3He, [15, 16] and used to improve the description
of the electron jellium both in two and three dimensions. [17, 18] More recently, it has been also
applied to metallic Hydrogen. [19]

Originally, the backflow term corresponds to consider fictitious coordinates of the electrons
rb
α, which depend upon the positions of the other particles, so to create a return flow of current:

rb
α = rα +

∑

β

ηα,β[x] (rβ − rα) , (4)
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where rα are the actual electronic positions and ηα,β[x] are variational parameters depending
in principle on all the electronic coordinates, namely on the many-body configuration |x〉. The
variational wave function is then constructed by means of the orbitals calculated in the new
positions, i.e., φ(rb

α). Alternatively, the backflow term can be introduced by considering a linear
expansion of each single-particle orbital:

φk(rb
α) ' φb

k(rα) ≡ φk(rα) +
∑

β

cα,β[x] φk(rβ), (5)

where cα,β[x] are suitable coefficients that depend on all electron coordinates. The definition (5)
is particularly useful in lattice models, where the coordinates of particles may assume only
discrete values. In the Hubbard model, the form of the new “orbitals” can be fixed by considering
the U À t limit, so to favor a recombination of neighboring charge fluctuations (i.e., empty and
doubly-occupied sites):

φb
k(ri,σ) ≡ εφk(ri,σ) + η

∑

j

tijDiHjφk(rj,σ), (6)

where we used the notation that φk(ri,σ) = 〈0|ci,σ|φk〉, |φk〉 being the eigenstates of the mean-
field Hamiltonian (2) or (3), Di = ni,↑ni,↓, Hi = hi,↑hi,↓, with hi,σ = (1− ni,σ), so that Di and
Hi are non zero only if the site i is doubly occupied or empty, respectively; finally ε and η are
variational parameters (we can assume that ε = 1 if DiHj = 0). As a consequence, already
the determinant part of the wave function includes correlation effects, due to the presence of
the many body operator DiHj . The previous definition of the backflow term preserves the spin
SU(2) symmetry. A further generalization of the new “orbitals” can be made, by taking all the
possible virtual hoppings of the electrons:

φb
k(ri,σ) ≡ εφk(ri,σ) + η1

∑

j

tijDiHjφk(rj,σ) +

η2

∑

j

tijni,σhi,−σnj,−σhj,σφk(rj,σ) + η3

∑

j

tij (Dinj,−σhj,σ + ni,σhi,−σHj) φk(rj,σ), (7)

where ε, η1, η2, and η3 are variational parameters. The latter two variational parameters are
particularly important for the metallic phase at small U/t, whereas they give only a slight
improvement of the variational wave function in the insulator at strong coupling. For simplicity,
we take the same parameters for up and down electrons.

Thanks to backflow correlations, it is possible to obtain a correct extrapolation to the infinite-
U limit (i.e., to the variational energy obtained with the fully projected states g = 1 in the
Heisenberg model). On the contrary, without using backflow terms, the energy of the BCS
state, even in presence of a fully optimized Jastrow factor, is few hundredths of J = 4t2/U
higher than the expected value, see Fig. 1. The importance of backflow correlations is even
more evident in the frustrated case, where they are essential also for improving the accuracy of
the antiferromagnetic wave function.

In order to draw the ground-state phase diagram of the t−t′ Hubbard model, we consider
three different wave functions, all with backflow correlations: One non-magnetic state |ΨBCS〉
and two antiferromagnetic states |ΨAF 〉 with pitch vectors Q = (π, π) and Q = (π, 0), relevant
for small and large t′/t, respectively. The variational phase diagram is reported in Fig. 2.

The important outcome is that without backflow terms, the energies of the spin-liquid wave
function are always higher than those of the magnetically ordered states, for any value of the
frustration t′/t. Instead, by inserting backflow correlations, a spin-liquid phase can be stabilized
at large enough U/t and frustration. For example, this can be seen in Fig. 3, where we show
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Figure 1. Variational energies per site (in unit of J = 4t2/U) for the BCS state with the
Jastrow factor, with and without backflow correlations, for 98 sites and t′ = 0 (left panel) and
t′/t = 0.7 (right panel). The results for the wave function with antiferromagnetic order and no
BCS pairing are also shown. Arrows indicate the variational results obtained by applying the
full Gutzwiller projector (i.e., g = 1) to the mean-field states for the corresponding Heisenberg
models.
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Figure 2. Left panel: Phase diagram as obtained by comparing the variational energies of
different wave functions, all with backflow correlations. Right panel: Phase diagram as obtained
by Yokoyama et al. by their variational approach. [5]

the variational energies for the three aforementioned wave functions with and without backflow
correlations, at U/t = 16.

In order to study the metal-insulator transition, we look at the static density-density
correlations in momentum space q, namely N(q) = 〈n−qnq〉 (where nq is the Fourier transform
of the local density ni). Indeed, N(q) shows a linear behavior for |q| → 0 in the metallic phase
and a quadratic behavior in the insulating region. [13] For small Coulomb repulsion and finite
t′/t, N(q) has the linear behavior for |q| → 0, typical of a conducting phase. Further, a very
small superconducting parameter with dx2−y2 symmetry can be stabilized (e.g., ∆ij

BCS = ±∆BCS

at nearest neighbors) suggesting that long-range pairing correlations, if any, are tiny. In this
respect, we compare in Table 1 the optimized ∆BCS when the spin-liquid wave function |ΨBCS〉
contains or not backflow correlations, for various U/t and t′/t = 0.75. Data show that when
accuracy increases, by means of backflow correlations, the BCS pairing is reduced by an order
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with Q = (π, π), and green squares the energies of the magnetic state with Q = (π, 0). Data
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Figure 4. Variational results for N(q) divided by |q| for 98 (empty symbols) and 162 (full
symbols) sites and t′/t = 0.75. The metal-insulator transition takes place between U/t = 7 and
U/t = 8, where N(q) changes from a linear to quadratic behavior for |q| → 0

of magnitude. By increasing U/t, a metal-insulator transition is found and N(q) acquires a
quadratic behavior in the insulating phase, indicating a vanishing compressibility. In Fig. 4,
we show the variational results for N(q) as a function of U/t for t′/t = 0.75. The insulator
just above the transition is magnetically ordered and the variational wave function has a large
∆AF ; the transition is likely to be first order, since the parameter ∆AF has a jump across the
metal-insulator transition.

In the frustrated regime with t′/t ∼ 0.7, by further increasing U/t, there is a second transition
to a disordered insulator. Indeed, for U/t > 14, the energy of the BCS wave function becomes
lower than the one of the antiferromagnetic state. In this respect, the key ingredient to have
such an insulating behavior is the presence of a long-range Jastrow term J , which turns a
BCS superconductor into a Mott insulator. [13] It should be noted that the spin liquid wave
function contains a superconducting gap with dx2−y2 symmetry, in contrast to what was found
in the infinite-U limit, namely in the frustrated Heisenberg model, by a similar variational
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U/t ∆BCS with backflow ∆BCS without backflow
7 0.042(1) 0.306(1)
6 0.031(1) 0.145(1)
4 0.012(1) 0.039(1)
2 0.002(1) 0.021(1)

Table 1. BCS pairing ∆BCS for various U/t in the metallic region at t′/t = 0.75 and 98 sites.

Wave function Energy (U/t = 20, t′/t = 0.7) Energy (U/t = 8, t′/t = 0.3)
J |BCS〉 -0.1950(1) -0.4016(1)

JHDJ |BCS〉 -0.2061(1) -0.4180(1)
J |BCS + Backflow〉 -0.23516(4) -0.4879(1)
Js|AF + Backflow〉 -0.23257(3) -0.5222(1)

Table 2. Variational energies (in unit of t) for three spin-liquid wave functions and for the best
antiferromagnetic state with Neel order. The cluster contains 98 sites. JHD is a short-range
many-body Jastrow factor that has been used in Ref. [5].

approach. [10] In fact, in the latter case, the BCS parameter contains both a term with dx2−y2

symmetry and a further term with dxy symmetry. However, the energy gain due to the latter
term is very small in the Heisenberg model (i.e., order of 0.001J) and it is very hard to detect it
when charge fluctuations are allowed (i.e., in the Hubbard model). In all cases that have been
analysed, we found that the dxy term is not stable in the thermodynamic limit, but converges
to zero as the number of lattice sites is increased.

We can make a direct comparison of our energies with the ones obtained by Yokoyama and
collaborators, [5] who used a similar variational wave function containing a particular many-body
Jastrow factor JHD to correlate empty and doubly occupied sites at nearest-neighbor distances.
In Table 2, we report the variational energy of the simple spin-liquid state |ΨBCS〉 = J |BCS〉,
together with the improved energies, which are obtained by adding the Jastrow term JHD or
by considering backflow correlations. We notice that the latter state always gives much lower
energies than the one obtained with the additional Jastrow factor. In particular, let us consider
the case of U/t = 8 and t′/t = 0.3, which should be magnetically ordered according to our
calculations and disordered according to Ref. [5] (see Fig. 2). In this case, even though our spin-
liquid state has a much better energy than the one with JHD, the best wave function has Neel
order, indicating that the stability region of antiferromagnetism is larger than what predicted
by Yokoyama and collaborators. [5]

To conclude, we compare the variational energies with the ones obtained by the Green’s
function Monte Carlo approach, implemented within the Fixed Node (FN) approximation. In
brief, the FN method allows one to filter out the high-energy components of a given state and
to find the best variational state with the same nodes of the starting one. [20] On the lattice,
the FN method can be defined as follows: Starting from the original Hamiltonian H, we define
an effective Hamiltonian by adding a perturbation O:

Heff = H+ O. (8)

The operator O is defined through its matrix elements and depends upon a given guiding function
|Ψ〉, that is for instance the variational state itself

Ox′,x =

{ −Hx′,x if sx′,x = Ψx′Hx′,xΨx > 0∑
y,sy,x>0Hy,x

Ψy

Ψx
for x′ = x,

(9)
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where Ψx = 〈x|Ψ〉, |x〉 being a generic many-body configuration. The most important property
of this effective Hamiltonian is that its ground state |Ψ0〉 can be efficiently computed by
using the Green’s function Monte Carlo technique, [21, 22] which allows one to sample the
distribution Πx ∝ 〈x|Ψ〉〈x|Ψ0〉 by means of a statistical implementation of the power method:
Π ∝ limn→∞GnΠ0, where Π0 is a starting distribution and Gx′,x = Ψx′(Λδx′,x − Heff

x′,x)/Ψx is
the so-called Green’s function, defined with a large or even infinite positive constant Λ, δx′,x
being the Kronecker symbol. The statistical method is very efficient since in this case all the
matrix elements of G are non-negative and, therefore, it can represent a transition probability
in configuration space, apart for a normalization factor bx =

∑
x′ Gx′,x. In this case, it follows

immediately that the asymptotic distribution Π is also positive and, therefore, we arrive at the
important conclusion that the ground state of Heff has the same signs of the chosen guiding
function (i.e., the best variational state).

In Fig. 5, we show the variational energies per site (with backflow correlations) and the FN
ones for U/t = 16 on a 98-site lattice. The small energy difference between the pure variational
energies and the FN ones demonstrates the accuracy of the backflow states. Notice that |ΨAF 〉
and |ΨBCS〉 have different nodal surfaces, implying different FN energies.

In order to verify the magnetic properties obtained within the variational approach, we can
consider the static spin-spin correlations S(q) = 〈Sz

q Sz−q〉, where Sz
q is the Fourier transform of

the local spin Sz
i . Although the FN approach may break the SU(2) spin symmetry, favoring a

spin alignment along the z axis, S(q) is particularly simple to evaluate within this approach, [20]
and it gives important insights into the magnetic properties of the ground state. In Fig. 6, we
report the comparison between the variational and the FN results by using the non-magnetic
state |ΨBCS〉. Remarkably, in the unfrustrated case, where antiferromagnetic order takes place,
the FN approach is able to increase spin-spin correlations at Q = (π, π), even by considering
the non-magnetic wave function to fix the nodes. In this case, the FN results are qualitatively
different from the pure variational ones, which indicate no magnetic order in the thermodynamic
limit. A finite value of the magnetization is also plausible in the insulating region just above the
metallic phase at strong frustration (i.e., t′/t ∼ 0.75), confirming our variational calculations. On
the contrary, by increasing electron correlation, FN results change only slightly the variational
value of S(π, π), indicating the stability of the disordered state. Therefore, the FN results
confirm that a spin liquid region can be stabilized only at large enough U/t, while the insulator
close to the metallic region is magnetically ordered.

In summary, the backflow wave functions represent simple and useful generalizations of
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standard projected states, which are used to describe strongly correlated materials. They are
highly accurate and may give important insights into the ground-state properties of frustrated
models with itinerant electrons.
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