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Combined Active Flux and High-Frequency Injection
Methods for Sensorless Direct-Flux Vector Control

of Synchronous Reluctance Machines
Arzhang Yousefi-Talouki, Paolo Pescetto, Gianmario Pellegrino, Senior Member, IEEE,

and Ion Boldea, Life Fellow, IEEE

Abstract—This paper proposes a sensorless control scheme for
synchronous reluctance (SyR) motor drives based on the direct-flux
vector control (DFVC) method. The control operates in stator-flux-
oriented coordinates, using constant switching frequency. A hybrid
position and speed observer is proposed, based on the combina-
tion of the active flux concept and high-frequency signal injection
and demodulation. The two methods are fused together to form a
unique position and speed estimate signals, with seamless transition
between the two models based on reference speed. The proposed
observer covers a wide speed range, from standstill operation at
full load to flux weakening (FW). Furthermore, it is inherently im-
mune from position estimation error caused by cross saturation,
as proven mathematically and experimentally. The motor is oper-
ated according to the maximum torque per ampere (MTPA) law.
Specific issues related to MTPA around zero torque are addressed
in this paper. The proposed control technique extends the range of
application of the DFVC to encoderless drives, and can be usefully
adopted in those applications where both zero-speed and FW speed
range operations are necessary, such as home appliances, or au-
tomotive and aerospace actuators and generators. A 2.2-kW SyR
motor prototype was tested to verify the feasibility of the proposed
method. Key tuning aspects are addressed in this paper.

Index Terms—Active flux, direct-flux vector control (DFVC),
high-frequency (HF) injection, sensorless control, synchronous
reluctance (SyR) machines.

I. INTRODUCTION

SYNCHRONOUS reluctance (SyR) motors have become
popular thanks to their prominent features, such as

efficiency, good torque density, and replacement of induction
motors with minimum modifications of manufacturing process
[1]–[3]. Moreover, as the price of rare-earth materials used in
permanent-magnet (PM) machines is uncertain, the SyR motor
can be a cost-effective solution to all PM motor counterparts.
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Finally, SyR motors are salient by definition, and, therefore,
compatible with position sensorless methods based on saliency
tracking.

The direct torque control (DTC) method has attracted the
attention of many researchers and engineers due to its fast dy-
namic response and robust implementation [4]–[7]. The two
major shortcomings of this method are the variable switching
frequency and the high torque ripple. The direct-flux vector con-
trol (DFVC) method [8]–[10] retains the basic advantages of the
DTC, with the additional features of using constant switching
frequency and explicit limitation of the current vector amplitude.
The DFVC controls the amplitude of the stator flux linkage and
the torque current component via two proportional-integral (PI)
regulators, using the stator-flux-oriented coordinates ds , qs de-
fined in Fig. 1. As for DTC, the voltage-limited speed region is
easily exploited by directly handling the flux linkage amplitude
in flux-weakening (FW) mode.

Conventionally, synchronous motor drives use a shaft encoder
for sensing the rotor position. Numerous sensorless control
techniques were developed during the last decades, for elimi-
nating the encoder. Although both the DTC and DFVC use the
stator flux axes ds , qs instead of the rotor synchronous axes d,
q, they still need the knowledge of the rotor position, in particu-
lar, when torque control is required at standstill [6]. Sensorless
control schemes are divided in the two main categories of the
ones relying on motional back electromotive force (EMF) [11]–
[13] and the ones tracking the magnetic saliency of the rotor
[6]–[14], i.e., by injecting additional high-frequency (HF) sig-
nals into the machine. Very often, the two methods are combined
to include the standstill operating region [15]–[17]. Examples of
sensorless DTC for interior PM and PM-assisted machines are
in [6] and [18]–[21]. Morales-Caporal and Pacas [22] propose a
sensorless predictive DTC method for a SyR motor, extracting
the rotor position through pulse width modulation (PWM) mod-
ification. However, the performance of the drive at high speed
and the transition between high-speed and low-speed regions
is not clearly shown. A hybrid active flux and HF injection
method was proposed in [23] for sensorless vector control of an
axially laminated SyR motor. Using the active flux observer, the
sensorless controller operates appropriately at very low-speed
levels down to 2 r/min. A sensorless vector control was proposed
in [24], combining the HF injection with adaptive observer for
SyR motors. In every abovementioned paper on SyR motors,



Fig. 1. Reference frames: Stator (α, β), rotor (d, q), and stator flux (ds , qs )
coordinates.

maximum torque per ampere (MTPA) strategy was not used
and a constant d-axis current was injected in the whole torque
operating range. This is due to a specific issue in SyR motors:
both saliency-based and model-based position estimations tend
to fail around zero torque [25]. Dealing with the DFVC method,
to the best knowledge of the authors, there are only a few papers
hitherto reporting the combination of this method with sensor-
less applications [26], [27], however not in a wide speed range.

This paper proposes a sensorless DFVC technique for SyR
motor drives. The proposed method uses alternated HF signal
injection in combination with the active flux concept to build
the rotor position estimate in a wide speed range including
standstill and FW. In spite of commonly used current demod-
ulation, flux estimate signal is demodulated to track the rotor
position in the speed area covered by the signal injection. This
inherently avoids the occurrence of position error due to cross
saturation. Moreover, it will be discussed extensively that sen-
sorless control for SyR motors is impossible at zero current. In
this condition, both model-based and saliency-based position
estimation fail. Hence, an appropriate minimum flux excitation
is proposed at low torque, while for medium and high load, the
sensorless control operates based on MTPA. Experimental re-
sults show that the steady-state position error is zero at all speed
and torque levels and under control during speed transients,
and that the transition between the two estimation methods is
seamless and reversible. A transparent tuning methodology for
the observer and the low-speed and high-speed models fusion is
provided, and the effect of parameters put in evidence. Also, FW
operation is documented experimentally. Finally, performance
comparison with one popular HF voltage injection-current de-
modulation sensorless method [24] is provided in experiments
to further investigate the effect of cross saturation. The proposed
control technique is a solid candidate for general purpose control
of SyR motor drives, without the need of a shaft encoder.

II. DIRECT-FLUX VECTOR CONTROL

The DFVC technique presented in [8] is briefly described in
this section. The rotor and stator flux reference frames are illus-
trated in Fig. 1, where (α, β), (d, q), and (ds, qs ) stand for station-
ary frame, rotor flux frame, and stator -flux frame, respectively.

A. Motor Model in Rotor Coordinates

The model of a SyR motor in rotor reference frame is ex-
pressed in (1)–(3), where Rs is the stator resistance, λd and λq

are stator flux linkages, p is the pole pairs, T stands for electro-

Fig. 2. Flux-linkage maps of the 2.2-kW SyR motor under test, evaluated
experimentally (ratings in Table I).

Fig. 3. dq inductances of the 2.2-kW SyR motor under test derived from
flux-linkage maps.

magnetic torque, and Ld , Lq are the d, q inductances
⎧
⎪⎨

⎪⎩

vd = Rsid +
dλd

dt
− ωλq

vq = Rsiq +
dλq

dt
+ ωλd

(1)

T =
3
2
· p · (λdiq − λq id) (2)

{
λd = λd (id , iq ) = Ld(id , iq ) · id
λq = λq (id , iq ) = Lq (id , iq ) · iq

. (3)

The current-to-flux-linkage maps (3) include saturation and
cross saturation effects. The flux-linkage maps and apparent
inductances versus current component in d, q rotor frame for the
motor under test are reported in Figs. 2 and 3, respectively. The
flux maps can be also identified automatically using sensorless
self-commissioning methods as addressed in [28].

B. Motor Model in Flux Coordinates

The voltage equation (1) is rotated to the stator-flux-oriented
reference frame dsqs , defined in Fig. 1, and (4) is obtained. By
definition of flux-oriented frame, the flux components in dsqs

are λds = λ and λqs = 0, being λ the stator flux amplitude. The
angle δ is the flux phase angle respect to the rotor direct axis d
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vds = Rs ids +
dλds

dt
−

(

ω +
dδ

dt

)

λq s = Rs ids +
dλ

dt

vq s = Rsiq s +
dλq s

dt
+

(

ω +
dδ

dt

)

λds = Rsiq s + λ

(

ω +
dδ

dt

) .

(4)
To express the electromagnetic torque as a function of the

flux vector amplitude λ and phase δ, the torque equation in dq
components (2) is manipulated substituting λd = λ · cos(δ) and



Fig. 4. Sensorless DFVC scheme.

λq = λ · sin(δ). The torque equation in the new form is

T =
3
2
· p · Ld − Lq

2LdLq
· λ2 · sin (2δ) . (5)

Alternatively, the simpler torque expression (6) can be ob-
tained via the cross product of the flux linkage and current vec-
tors, expressed in dsqs coordinates, remembering that λds = λ

and λqs = 0

T =
3
2
· p · (λdsiqs − λqsids) =

3
2
· p · λ · iqs . (6)

Equation (6) is the core of the DFVC strategy, where torque
is controlled via λ and iqs .

C. DFVC Scheme

The block diagram of the sensorless DFVC for a speed-
controlled SyR motor drive is illustrated in Fig. 4. The
stator flux amplitude λ and the iqs current component are
closed-loop controlled using PI regulators. The stator flux is
regulated by means of ds-axis channel, while iqs is dynamically
coupled with flux control axis, as shown in [8]. However,
this disturbance effect can be model-based compensated, if
needed. The flux feedback λ̂ is acquired from the flux observer.
For the sake of efficiency, MTPA trajectory is adopted which
correlates the flux amplitude to the desired torque set points.
The flux amplitude reference is lower limited to 0.7 Vs both to
ensure a minimum level of back-EMF excitation and to make
saliency-based position tracking possible as explained in the
following. The quadrature current reference i∗qs is calculated
according to torque and flux set points using the inverse of (6).
θ̂ and ω̂ in Fig. 4 are the observed rotor position and speed
signals coming from the sensorless position observer.

Over a certain speed, the control switches to FW mode to
comply with the maximum voltage limitation of the inverter.
The maximum voltage limit is respected by limiting the flux
reference as

λ∗ ≤ [Vmax − Rs · iqs · sign (ω̂)]
|ω̂| (7)

where Vmax = vdc/
√

3 and vdc is the dc-link voltage measure-
ment. The FW block is independent from motor parameters,
with the exception of Rs .

Fig. 5. Active flux vector diagram in dq frame.

Fig. 6. Stator flux and active flux observer diagram.

III. SENSORLESS ACTIVE FLUX OBSERVER

The active flux concept was proposed for the first time in
[29], turning salient-pole ac machines into fictitious nonsalient-
pole ones. The dq components of active flux vector (λ̄AF ) are
expressed as (8). As can be seen, the active flux vector lies in
rotor d-axis since the q-axis component is zero. Hence, position
of active flux vector is identical to the rotor position. Fig. 5
shows the active flux concept graphically, where λ̄ and īs are
the stator flux linkage and stator current, respectively.

{
λdAF = λd − Lq · id = (Ld − Lq ) id = λ̄AF

λqAF = λq − Lq · iq = 0
. (8)

The flux observer illustrated in Fig. 6 is based on back-EMF
integration (voltage model) and a compensation signal coming
from the error between the observed flux λ̂αβ and a second
flux estimate λ̂αβ ,i obtained from the current vector through
dq flux tables (current model). The observer’s transfer function
(9) shows that the scalar feedback gain of the observer g rad/s



Fig. 7. Actual and estimated rotor reference frame.

is the crossover angular frequency between the voltage and
current models

λ̂αβ =
s

s + g

(
v∗

αβ − Rsiαβ

s

)

+
g

s + g

(
λ̂αβ ,i

)
. (9)

The current model dominates at low-frequency levels
(ω < g), whereas the observed flux comes from the voltage
model at higher frequency (ω > g). The stator flux direction is
obtained as

sin
(
θ̂s

)
=

λ̂β
√

λ̂2
α + λ̂2

β

, cos
(
θ̂s

)
=

λ̂α
√

λ̂2
α + λ̂2

β

. (10)

The active flux (8) is evaluated in Fig. 6 using the offline
calculated Lq table, obtained from the flux tables of the motor.
Fig. 3 reports the Lq values as a function of iq with id as
parameter. Active flux position coordinates are finally calculated
as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin
(
θ̂AF

)
=

λ̂β ,AF∣
∣
∣λ̂AF

∣
∣
∣

=
λ̂β ,AF

√

λ̂2
α,AF + λ̂2

β ,AF

cos
(
θ̂AF

)
=

λ̂α,AF∣
∣
∣λ̂AF

∣
∣
∣

=
λ̂α,AF

√

λ̂2
α,AF + λ̂2

β ,AF

. (11)

A. HF Signal Injection and Demodulation

To estimate the rotor position at low speed and standstill,
conventionally a HF voltage is injected on estimated rotor d̂-axis
and HF current response in quadrature axis is demodulated.
However, it was shown in [30] that demodulation of q̂-axis
current component presents a position estimation error due to
the cross saturation. In this paper, instead of commonly used
current demodulation, the output of flux tables in flux observer
(λ̂q̂ ,i) is demodulated. It will be shown mathematically that
the proposed demodulation technique is immune from cross
saturation error. The amplitude and frequency of HF injected
voltage are 50 V, and 833 Hz, respectively.

When a HF voltage is injected to the d̂-axis, the HF current
responses are as (12), where uc is the amplitude of the injected
voltage and ωc is the carrier frequency. Subscript HF shows
the high-frequency components and Δθ = θ̂ − θ is the rotor
position error. Ldd and Lqq are incremental inductances. Also,
Ldq stands for mutual inductance. Fig. 7 illustrates the actual

and estimated rotor frame and HF injection
{

Id̂H F = B · [Lcm − Ldmcos (2Δθ) − Ldq sin (2Δθ)]

Iq̂H F = B · [Ldmsin (2Δθ) − Ldqcos (2Δθ)]

(12)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B (id , iq ) =
ucsin (ωct)

ωc

(
LddLqq − L2

dq

)

Lcm =
Ldd + Lqq

2
, Ldm =

Ldd − Lqq

2

. (13)

It is seen from (3) that using flux tables and estimated current
components (Id̂H F , Iq̂H F ), HF flux component is obtained as
(14). Subscript i means the flux components coming from flux
tables (current model)

[
λ̂d̂H F,i

λ̂q̂H F,i

]

=

[
Ldd Ldq

Ldq Lqq

]

·
[

Id̂H F

Iq̂H F

]

. (14)

With replacing (12) in (14), it is deduced that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ̂d̂H F,i = B[LddLcm − (LddLdm) cos (2Δθ)

−LdqLcmsin (2Δθ)]

λ̂q̂H F,i = B[LdqLcm [1 − cos (2Δθ)]

+[LqqLdm − L2
dq ]sin (2Δθ)]

. (15)

For small values of Δθ, the term [1 − cos(2Δθ)] in λ̂q̂H F,i is
negligible. Hence, λ̂q̂H F,i is approximated as

λ̂q̂H F,i
∼= B · [LqqLdm − L2

dq

] · sin (2Δθ) . (16)

λ̂q̂H F,i signal (16) is closed-loop controlled to track the rotor
position. With reference to Fig. 8, λ̂q̂ ,i signal is initially bandpass
filtered. The resulting signal λ̂q̂H F,i is demodulated and low-
pass filtered (LPF). Finally, the position error feedback ε (17) is
obtained

ε = LPF
[
λ̂q̂H F,i · sin (ωct)

]
. (17)

Manipulating (16) and (17), the position error is put in evi-
dence as

ε =
uc

2ωc
· LqqLdm − L2

dq

LddLqq − L2
dq

· sin (2Δθ) ∼= kε · Δθ (18)

where kε is as

kε (id , iq ) =
uc

ωc
· LqqLdm − L2

dq

LddLqq − L2
dq

. (19)

The demodulated error signal (18) is input into a PI regulator
and fed back to the control to force it to zero in closed loop. Fig. 9
shows the tracking loop used for rotor position estimation where
ω̂H F stands for observed speed obtained from HF injection
technique.



Fig. 8. HF injection-based demodulation process. ϕd is for compensation of
discretization delay.

Fig. 9. HF injection-based tracking loop.

B. Absence of Cross Saturation Error

As said, the cross saturation effect is inherently overcome if
the q-axis flux component (16) is used in the position tracking
loop. Equation (16) shows that λ̂q̂H F,i is proportional to the
position error (Δθ), and, thus, the tracking loop will converge
to the correct rotor position (Δθ = 0) when λ̂q̂H F,i is forced
to zero. Conversely, if Iq̂H F (12) were demodulated in place
of λ̂q̂H F,i , the tracking loop would converge to a steady-state
position error Δθdq , expressed in (20). According to (12), Δθ =
0 is not a solution for equation Iq̂H F = 0

Δθdq =
1
2
arctan

(
2Ldq

Ldd − Lqq

)

. (20)

C. Effect of HF Injection on the Observed Flux

Measured currents iαβ contain an HF component, as said.
However, they are not LPF when used for control or flux es-
timation purposes. Looking at the flux observer scheme in
Fig. 6, (9) suggests that the flux observer is a high-pass fil-
ter for the back-EMF signals, and a low-pass filter with cutoff
frequency g for the current-model-based flux estimate. There-
fore, the impact of HF noise of the observer’s input (iαβ ) on
the back-EMF term is minor, because limited to the resistance
voltage component, and it is inherently LPF in the current
model branch of the observer. The other observer’s input is
v∗

αβ , that is sampled before HF injection, as evidenced in Fig. 4.
As a consequence, the observed flux is not affected by HF
oscillation.

D. Tuning of the Tracking Loop

Fig. 10 shows kε for different working points of the motor
under test. It is seen that the critical area is around no load
condition (iq = 0) when the sign of kε changes. As introduced
in Section II-C, the flux amplitude reference is set according to
the MTPA law, and lower bounded to 0.7 Vs. This guarantees
a minimum level of excitation to the motor, and approximately
corresponds to the condition id = 2 A highlighted in green in

Fig. 10. Position error factor kε as a function of iq , with id as parameter.
MTPA (blue) and minimum excitation limit 0.7 Vs (green) are reported.

Fig. 11. Contour lines of kε in the id , iq plane. Blue line is MTPA trajectory,
green line is where the flux equals 0.7 Vs, black lines are kε contours, and red
lines are torque contours [N�m].

Fig. 10. The MTPA trajectory (blue) and the flux lower limit
(green) are also represented in Fig. 11, where kε contours are
represented in the id , iq plane. As can be seen, with adopted
flux lower limitation, sign of kε does not change and is positive.

The bandwidth of tracking loop ωbw,H F shown in Fig. 9 is
as (21) where kp,H F is the proportional gain of PI regulator. In
[24], the suggested bandwidth is three times smaller than the
LPF cutoff frequency, as reported in

ωbw,H F = kp,H F · kε (id , iq ) ≤ 1
3
ωbw,LP F . (21)

E. Fusion of Active Flux and HF-Injection Methods

The rotor speed estimation based on active flux method is
computed in discrete form as in (22) where sin(θ̂AF ) and
cos(θ̂AF ) are obtained from (11) and fs is the sampling
frequency in Hertz. Subscripts k and k − 1 indicate the cur-
rent time sample tk and tk − Ts , respectively

ω̂AF,k =
(
sinθ̂AF,k cosθ̂AF,k−1 − cosθ̂AF,k sinθ̂AF,k−1

)
· fs.

(22)
Position estimation based on active flux is combined with

HF-injection-based technique as illustrated in Fig. 12. The gain
k is intercalated to switch on and off the HF-injection loop.
As can be seen, below 50 r/min, k is equal to 1. From 50 to



Fig. 12. Hybrid position and speed observer.

Fig. 13. Fusion structure, equivalent to the scheme of Fig. 12.

100 r/min, k decreases linearly and it is zero above 100 r/min.
Also, the HF injection is dropped out according to the gain k.
Therefore, above 100 r/min, position estimation is purely based
on the AF method. Also, a pole h rad/s is inserted between
observed position θ̂ and AF-based observed position θ̂AF for
the sake of a smooth transition.

The active flux estimation is precise at medium and high
speed and during the transients, while the injection is needed
at low speed. For analysis purposes, the fusion structure of
Fig. 12 is equivalent to the scheme presented in Fig. 13, where
the cutoff frequency of LPF is 50 Hz. The transfer function
related to the two angle estimations can be easily obtained as
(23) and (24), where kp and ki are the proportional and integral
gains of PI regulator shown in Fig. 13. It should be noted that
kp = kp,H F · kε and ki = ki,H F · kε . The values of kp and ki

have been set at 120 and 5000, respectively. Also, h has been
set at 25 rad/s

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ̂ = GH F · θ + GAF · θ̂AF

GH F =
H

1 + H

GAF =
1

1 + H

(23)

where H is the open-loop transfer function of the tracking loop

H =
1

1 + sτf
· Ki + sKp

s
· k · 1

s + h
. (24)

Fig. 14 illustrates the bode diagram of the two transfer
functions at low speed where k = 1. As can be seen, the angle
θ̂ is estimated based on the HF injection, while the information
coming from active flux is used at HF, i.e., during the transients,
where the contribution of the HF injection is negligible. In
this way, a considerable bandwidth extension is achieved.
Also, it is seen that the bandwidth of position estimation based
on HF injection is around 16 Hz in steady state which is
approximately three times smaller than the bandwidth of LPF.
With increasing the speed above 50 r/min, and, thus, reducing

Fig. 14. Bode diagram of the proposed sensorless fusion structure.

the coefficient k, the open-loop characteristic (H) moves down,
leading the crossover point to lower frequencies. It means that
active-flux-based estimation will be active at lower frequencies,
while the bandwidth of HF loop decreases gradually. At speeds
above 100 r/min where k = 0, the observed angle simply comes
from the active flux without additional filters (θ̂ = θ̂AF ).

F. Criteria for Minimum Excitation Limit Selection

The key obstacle in using MTPA for encoderless control of
pure SyR motors is the zero torque, zero current condition. At
zero torque reference, the MTPA law for a SyR machine would
command zero current (id = 0 and iq = 0). In DFVC, this would
mean using zero flux amplitude for zero torque (λ∗ = 0).

Dealing with position estimation, such zero excitation con-
dition is a critical one to those sensorless techniques based
on back-EMF integration, because a SyR machine at zero cur-
rent has no back EMF to track. Moreover, it is also critical for
position detection based on HF injection and saliency tracking,
since SyR machines have a singularity in the origin of the id , iq
plane. In other words, in SyR machines, the structural bridges
are not saturated around zero current, and, thus, the incremental
inductances in d- and q-axis are very similar, leading to low
saliency, as evident from Fig. 2. This is also verified in Fig. 10,
where the position error gain kε is almost null for id = 0, iq = 0,
standing for the low or zero saliency. As seen, if the MTPA law
(blue line) is strictly adopted, the error gain kε reaches zero at
zero id and iq and saliency tracking becomes impossible. Con-
versely, the green line representing kε for id = 2 A is always
above zero and this tells that the rotor position can be always
estimated using saliency tracking. This is why below a certain
reference torque, the condition id = 2 A (i.e., λ∗ = 0.7 Vs) is
used instead of the MPTA. Choosing a higher value of minimum
excitation (e.g., id > 2 A), would shift the tracking loop to un-
stable region as shown in Fig. 10, for example, with id = 4 A:
as can be observed, the kε gain has negative values for id = 4 A
or more. Therefore, for this motor, id = 2 A, or 0.7 Vs, is the
best candidate for guaranteeing saliency tracking at no load con-
dition. This minimum excitation condition corresponds to circa
70% of nominal flux linkage, to say that it is also a significant
level of excitation guaranteed to the back-EMF-based part of
the flux and position observer.

It is worth mentioning that PM synchronous motors do not
suffer from the aforementioned problems, because the PM
produce back EMF also at zero current, and because they do
not have the unsaturated bridges saliency issue at zero current.



Fig. 15. Experimental test bench.

TABLE I
SYR MACHINE UNDER TEST SPECIFICATIONS

Rated power/Number of poles 2.2 kW/4
Nominal speed/rated torque 1500 r/min/14 N�m
Nominal current 7 A
Phase resistance 3.5 Ω
Moment of inertia (J) 0.005 kg · m2

Max current (inverter limit) 20 A
Inverter voltage (dc-link) 520 V

IV. EXPERIMENTAL RESULTS

The effectiveness of the proposed sensorless DFVC method
is investigated experimentally. A view of test rig is shown in
Fig. 15. The controller is a dSPACE 1103 PPC board. The sam-
pling and switching period is Ts = 100 μs. A variable-speed
drive with active front end (ABB Selivector) is used to impose
the load torque or alternatively to set the speed in the tests. The
rotor position is measured through a quadrature encoder with
512 cycles per revolution for monitoring purposes. The ratings
of the SyR motor under test are reported in Table I.

A. Response of Closed-Loop Speed Control

The performance of the drive at standstill is depicted in
Fig. 16. A 17-N�m step load (121% of rated torque) is applied to
the motor at t = 1.2 s and removed at t = 8.2 s. Estimated and
actual speed, estimated torque, current on qs -axis, observed flux,
position estimation error, and three-phase currents are shown in
this figure. As can be seen, the position estimation error is very
close to zero and dynamic response of the system is fairly good.

Results of a similar test run at 300 r/min with 17-N�m step
load are presented in Fig. 17. The position estimation at this
speed is purely based on AF method.

Fig. 18 shows the response to speed reference reversal in
no-load condition, from +10 to −10 r/min. Again, the position
estimation error is approximately zero and dynamic response of
the system is acceptable. Also, the speed estimation is accurate.
It should be commented that the residual noise on measured
speed is due to the discretized position signal from encoder. The
measured speed is calculated from the derivative of the position
coming from a 512 cycles per revolution encoder and then LPF
to reduce the quantization noise. Nevertheless, the quantization
of the position produces relevant noise, more evident at low
speed. Moreover, the measured speed contains fourth harmonic
probably due to rotor mechanical defects. Estimated speed has

Fig. 16. Load steps at standstill: 0 to 17 N�m (121% of rated torque) and vice
versa. Second figure from the top: blue: T̂ (5 N�m/div); green: iq s (3.5 A/div);
red: λ̂ (0.5 Vs/div).

Fig. 17. Load steps at 300 r/min: 17-N�m (121% of rated torque) loading.
Second figure from the top: blue: T̂ (5 N�m/div); green: iq s (3.5 A/div); red: λ̂

(0.5 Vs/div).



Fig. 18. No-load speed reversal from 10 to −10 r/min. Third figure from the
top: blue: T̂ (1 N�m/div); red: λ̂ (0.7 Vs/div).

the same noise components of measured speed, plus a sixth
harmonic residual oscillation due to nonperfectly compensated
of inverter nonlinear errors.

B. Transition Between the Two Sensorless Models

To investigate the performance of the proposed method during
transition between low-speed and high-speed regions, motor is
commanded to 1500 r/min at t = 2 s and again to −1500 r/min
at t = 5.9 s as illustrated in Fig. 19. It is seen that the position
estimation error is around zero in steady states and acceptable
during transients.

Fig. 19. No-load high-speed reversal from 0 → 1500 → −1500 r/min. Sec-
ond figure from the top: blue: T̂ (5 N�m/div); red: λ̂ (0.5 Vs/div).

Fig. 20. HF injection and dropping out methodology: Zoom of estimated
speed and v∗

α 1 .

As said, the HF injection starts to decrease gradually above
50 r/min and is completely dropped out above 100 r/min. To
validate this, estimated speed and v∗

α1 (see Fig. 4) have been
magnified in Fig. 20.

C. Flux Weakening

Fig. 21 reports the FW test where the speed travels to 3000
r/min at t = 0.8 s and again decelerates and goes to −3000
r/min at t = 5 s. As can be seen, above 2000-r/min machine
goes to FW region according to (7). From torque, iqs , and flux
waveforms, it is seen that in the range of 2000–3000 r/min, flux
is decreasing and conversely iqs increases to deliver a constant



Fig. 21. FW test from 0 → 3000 → −3000 r/min.

torque. Also, the position estimation error is zero at steady state
and is limited during transients. The FW block reduces the flux
amplitude below the minimum excitation value (0.7 Vs), to
comply with the voltage constraint.

D. Cross Saturation Error

As said in Section III-B, provided that in the proposed sen-
sorless technique HF component of λ̂q̂ ,i signal is demodulated
in place of current component, the cross saturation effect is
inherently overcome. To verify that positive and negative 14-
N�m ramp torque reference is applied to the motor while the
shaft is kept at standstill using the speed-controlled load. As
can be seen from Fig. 22, while the applied command torque is
ramping up and down, rotor position estimation error is close
to zero. The same test has been done using demodulation of
current on estimated q̂-axis, according to [24]. As can be seen
in Fig. 23, during torque ramping, the position estimation er-
rors ramps up and down due to cross saturation effect. In order
to compensate this effect, demodulation technique should be
modified as (25), [24]. As can be seen, (25) is motor parameter
dependent and is prone to produce error when motor parame-
ters vary according to different working points. While, the de-
modulation process used in this paper is independent of motor
parameters

ε[24] = LPF
(

Ldq

Lqq
· Id̂H F + Iq̂H F

)

· sin (ωct) . (25)

Fig. 22. Torque control test at standstill: 14-N�m load ramp is applied when
λ̂q̂ , i signal is demodulated (proposed demodulation). Top figure, blue: T̂ (5
N�m/div); green: iq s (3.5 A/div); red: λ̂ (0.7 Vs/div).

Fig. 23. Torque control test at standstill: 14-N�m load ramp is applied when
q̂-axis current is demodulated. Top figure, blue: T̂ (5 N�m/div); green: iq s (3.5
A/div); red: λ̂ (0.7 Vs/div).

V. CONCLUSION

A sensorless technique based on a direct-flux vector control
has been presented for SyR motor drives. The proposed hybrid
position estimation technique uses the fusion of active flux esti-
mation and pulsating HF voltage injection. Flux demodulation
technique is used instead of standard quadrature current demod-
ulation for tracking the rotor position at zero and low speeds, in-
herently compensating for the effects of cross saturation. More-
over, an extensive analysis has been done in peculiarities of pure
SyR motors around zero torque in sensorless controls. Based on
this analysis, a minimum flux limit with MTPA strategy has
been proposed. The feasibility of the proposed control method
is demonstrated in experiments. The reported results show the
good dynamic response at different speed and torque levels and
the zero steady-state position error. Position error during speed
transients is under control. The transition between the two sen-
sorless models is seamless in both acceleration and deceler-
ation. Finally, the FW speed range is easily exploited thanks
to the natural predisposition of the proposed DFVC technique.
The proposed control technique is a good candidate for general
purpose sensorless control of SyR motor drives.
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