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Real operation Data Analysis on District Heating load patterns

M. Noussana,∗, M. Jarrea, A. Poggioa

aPolitecnico di Torino - DENERG, c.so Duca degli Abruzzi 24, 10129, Turin, Italy

Abstract

District heating networks play an important role in the heating and cooling sector, serving up to 60% of the citizens
in some countries. The availability of a thermal network supplying multiple users allows producing heat from different
sources and multiple technologies. The possibility of relying on different solutions allows the system manager to optimize
the heat generation by choosing the best unit for each operation condition. This choice is based on a deep knowledge of
heat load profiles, that are related to users behavior, network performances and control logics.

This paper provides an analysis of a DH system operation over ten heating seasons, with the aim of highlighting the
main characteristics of the heat load variations and finding the fundamental drivers for heat load prediction. Although
the system has seen a significant development throughout the years, the specific energy consumption has been found
to be comparable on the whole duration of the analysis. Two main patterns are highlighted, based on the different
operation settings along the hours of the day and the outdoor temperature as the main weather driver for building’s
heat demand.
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1. Introduction

District heating systems have been developed in last
decades as an effective way to supply heat to final users,
especially where combined heat and power plants provide
a high conversion efficiency. Within the current European5

targets on energy efficiency [1] and energy production from
renewable sources [2], DH systems can play a major role
through sustainable and efficient thermal energy produc-
tion, within the Smart Thermal Grids concept framework
[3, 4, 5, 6].10

DH systems have a wide field of applications, ranging
from large systems supplying heat to the major metropolis
to small systems tailored on mountain villages or isolated
communities. The heat production comes from different
sources, depending on the size of the system and on the15

location. Large DH systems usually rely on CHP pro-
duction from fossil fuel-based plants, exploiting the higher
efficiency provided by cogeneration with respect to sepa-
rate production of heat and power. In some cases, the
heat is produced from waste incinerators or from large20

biomass plants, especially in northern Europe. Medium
and small DH systems show a wider variety of energy con-
version technologies, ranging from fossil CHP production
to biomass heat or CHP production [7, 8],waste heat recov-
ery from industrial sites, heat pumps, energy generation25

from geothermal sources [9, 10] and solar energy [11, 12].
Many literature works addressed the development of

simulation models and tools for the design and optimiza-
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tion of DH systems, considering both energetic aspects
and economic aspects (among others, [13, 14, 15, 16, 17]).30

These models provide different approaches to increase the
energy efficiency of the DH systems, comparing technolo-
gies, system layouts and configurations. Some works are
focused on the role of energy storage systems, which pro-
vide an effective way to help decoupling the energy pro-35

duction and the energy demand, with the aim of increasing
the DH system efficiency [18, 19, 20].

In the last years, demand load assessment and manage-
ment has become more and more important, as the users’
behavior can have a significant impact on the global effi-40

ciency of the system. In particular, the heat load pattern
of the single substations is a major concern for a correct
and effective DH operation and management. In addition,
environmental aspects need to be taken into account, as
the development of DH systems should provide environ-45

mental benefits together with the increase of energy effi-
ciency. While a decrease of CO2 emissions can generally
be obtained, the emissions of other pollutants could need
a dedicated analysis [21, 22, 23].

While much attention has been paid on the design and50

optimization of future networks, few works address the
operation analysis of existing DH systems [24, 25, 26, 27].
However, the operation and control settings can have a
significant impact on the primary energy consumption of
the DH system, as over the year the system operates in55

different off-design conditions, especially at partial loads.
This paper provides an analysis of an existing large-

size DH system, supplied by natural gas CHP units and
integration boilers. The possibility of considering several
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years of operation with a narrow time step gives the op-60

portunity to perform a statistical analysis over various op-
eration conditions. A correlation is proposed between the
DH system consumption in different operation conditions
with respect to the outdoor temperature of the site, by
applying the energy signature methodology.65

2. Methodology

2.1. Description of the case study

The DH network considered in this work is supplying
the city of Turin (about 900,000 inhabitants), in the north-
west of Italy. The DH system has been continuously evolv-70

ing in last decades: the first users of the DH system were
connected in 1982, when a CHP unit started to produce
electricity and heat in a northern district of the city. In the
following years, different production sites were connected
to the grid, and the size of the network and number of75

users have continuously increased. Turin DH network cur-
rently serves about 56 million cubic meters of buildings
(almost 60% of the total buildings in the city), with a
network extent larger than 500 km of dual piping (as of
2014). The total amount of heat produced in 2014 was80

2.0 TWh, and 1.7 TWh of energy was supplied to the fi-
nal users, resulting in about 16% of thermal losses of the
network[28]. The main part of the connected users are res-
idential buildings (about 75%), while the remaining part
is composed by public administration offices, schools, hos-85

pitals and commercial buildings. The total area served by
DH network is shown in Figure 1. The heat production
is provided by multiple generation units, both CHP and
integration boilers. The newest CHP units are combined
cycles with natural gas turbines, while a gas turbine, a90

steam turbine and a natural gas engine are no longer in
operation. The DH system is also equipped with heat stor-
age units: 5,000 m3 of tanks are installed in Torino Nord
site, 5,000 m3 in Martinetto site (near Torino Nord) and
2,500 m3 in Politecnico site. The first HSS have been in-95

stalled in 2005/2006. Their main purpose is the storage of
the excess of CHP production at night in order to match
a part of the morning peak request without the need to
activate integration boilers.

2.2. Description of the dataset100

The data used in this paper have been obtained from
the monitoring system of the generation plants, and have
been collected during some previous works [29, 30].

2.2.1. Available operation data

The operation data are available from October 2001105

to April 2011, representing the energy consumption of ten
heating seasons.The data have been collected separately
for each unit of the system, i.e. CHP units, integration
boilers and heat storage systems. As of April 2011, the
Torino Nord site was not in operation. Therefore, the op-110

eration data considered in this paper are currently limited

Figure 1: Map of the DH network of Turin

to the other sites. The availability of updated data could
lead to an extension of the analysis, with a comparison
between the old and new DH system layout. For each gen-
eration unit the thermal energy production supplied to the115

DH grid is available, with a time step of 6 minutes. The
operation data refer to a wide-ranging period, in which the
DH system has significantly evolved, both on supply side
and on demand side. Considering the latter, the amount
of connected buildings has almost doubled from year 2001120

to year 2011, reaching almost 41 million m3 from an ini-
tial value of about 22 million m3. Considering the sup-
ply side, some generation units have been decommissioned,
and other started their operation. In particular, the heat
storage systems in Politecnico site have been in operation125

since the summer of 2006, and before 2006/2007 heating
season the heat was provided only by CHP and integration
boilers. In 2007 two diesel CHP engines in the Mirafiori
Nord site have been decommissioned, and they are now
available only for emergency operation. The CHP units in130

Moncalieri underwent two different refurbishments. Two
CHP natural gas combined cycles have been installed, the
first in 2005 as a substitution of a gas turbine unit and the
second in 2009, replacing a steam turbine power plant.

In addition to DH operation dataset, some weather135

data have been collected. The outdoor temperature has
been recorded with the same time step of the heat data,
and will be used for the calculation of the energy signa-
tures. Other weather data have been obtained with a daily
time step, by aggregating different measuring stations in140

the city of Turin [31]. The daily data available are the
minimum and maximum outdoor temperatures, the total
rain, the snow level, the average wind speed and the global
horizontal radiation. These data will be used to investi-
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gate possible correlations with heat consumption of the145

DH network.

2.2.2. Data corrections and gaps

The dataset considered in this research contains data
over about 840,000 time steps. This huge amount of infor-
mation had some gaps, caused by sensor failures or other150

database recording problems. The main part of the gaps
are related to single values, but in some cases the error af-
fects a longer period of time (up to some days in few cases,
mainly in summer months).

These gaps have been repaired with value interpola-155

tions with the previous and following available data. For
longer periods, a similar behavior to that of nearest days
has been calculated. This approach is justified by the ir-
relevant number of data errors with respect to the total
amount of measured data (lower than 0.1%).160

The data have been collected from different data man-
agement systems, depending on the type of generation
unit. The total heat supplied to the DH network has been
calculated as the sum of the production from each gener-
ation unit at the same time-step.165

This calculation represents the total amount of energy
required by the grid at any given time, but it is not as-
sociated to a unique physical energy flow, as it is a sum
of different energy flows supplied in different locations of
the network.The heat load of the network considered in170

this study includes the network losses, as there is no in-
formation about the actual demand of the users with the
required time step.

The analyses performed in this paper will take into ac-
count the ”heating seasons”rather than the calendar years.175

Each heating season starts on October, 1st and ends on
September, 30th of the following year. This choice is re-
lated to the fact that each major increase of users con-
nections is usually performed during summer season, and
the same applies to generation units refurbishment (e.g.180

HSS installation). As a result, considering heating seasons
rather then calendar year leads to more consistent results.

Most analyses are performed using an hourly time step.
Choosing narrower time steps would add little benefit thus
increasing the computation time. In addition, as the goal185

of the paper is the description of the entire network behav-
ior, the aggregation of 6-minute data in different locations
would be affected by inertia phenomena that are much less
relevant when considering hourly average values.

2.3. Analysis of heat demand drivers190

The analysis of the DH network load has the aim of
underlying the variations of the heat demand profile of
the users over the year. Two main patterns can be noticed,
with different time scales and drivers:

� an hourly pattern, mainly driven by the hour of the195

day, and caused by the different operation settings
and parameters of the users;

� a daily pattern, mainly related to outdoor tempera-
ture, that can be studied through the energy signa-
ture methodology.200

As a result, two different analyses need to be performed in
order to study in detail these two aspects.

2.3.1. Analysis of hours: Heat load patterns

The heat demand variations over the day are strongly
related to the different operation parameters set by the205

users and by the heating system manager. The analysis of
the heat load profiles of the network shows the aggregation
of several buildings with different behaviors but causing an
aggregated heat demand that has specific features. The
heat load variation over the day has also consequences on210

the supply side, as the operation of the generation units
need to be organized in order to optimize the energy con-
version in each different demand condition of the grid.

For this reason, the heat load variation over the day
has been investigated, in order to find recurrent patterns215

ad analyze the weight of the hour of operation over the
aggregated heat load demand on the network.

2.3.2. Analysis of temperature: Energy signature

The main driver for daily heat demand is related to
outdoor weather conditions, which are the primary cause220

of heat demand in buildings. Other heat uses (e.g. do-
mestic hot water) are usually a lower part of the overall
demand of the DH system. In particular, in the proposed
case study only a marginal part of the heat is used for
other purposes than space heating.225

An analysis of the possible weather drivers has pointed
out that the outdoor temperature is the best predictor for
the heat demand. The ”energy signature” methodology is
often used in the buildings sector, adopting a linear model
to estimate the heat consumption from average outdoor230

temperatures.
In this paper the energy signature will be performed

on a daily time step during the winter months, in order
to avoid the overlook of the infra-day variations described
in the previous section. An hourly energy signature will235

also be defined, but with the aim of highlighting different
operation patterns rather than obtaining reliable values for
a preliminary estimation of heat demand.

3. Results and discussion

3.1. District Heating operation summary240

The heat supply of the DH system shows an evolution
over the years, as the volume of buildings connected to
the system is increasing (see Figure 2). Some oscillations
related to average annual weather conditions can be no-
ticed, while the heat demand distribution over the months245

remains comparable.
The Figure 3 shows the share of different production

units in the supply side, highlighting the main contribu-
tion of CHP systems over the year. This aspect is crucial
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Figure 2: Monthly energy production for each Heating Season.1

for the overall optimization of the DH system operation,250

as the use of heat from CHP means a higher conversion ef-
ficiency. Moreover, in order to further increase this share,
from the 2006/2007 heating season some heat storage sys-
tems have been installed. Their purpose is the operation
in day/night cycles, in order to recover the excess heat255

available from CHP at night and use it during the day to
limit the need of integration boilers. This trend is going
to increase further in the following years (for which de-
tailed data are not available) thanks to the installation of
additional heat storage systems, leading to a CHP share260

(including HSS) of 96% in 2014[28].
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Figure 3: Annual Energy production.1

3.2. Hour-driven demand: heat load profiles during the
day

The effect of the hours on heat demand can be de-
scribed by analyzing in detail the profile patterns of each265

day. As an example, all the profiles of 2009/2010 heating
season are reported in Figure 4.

1The heating season 2010/2011 is limited to April 2011, as sum-
mer data were not available.

Some common patterns over the months can be high-
lighted in the picture:

� The energy consumption during the night falls to low270

levels, due to the setback temperature control;

� The first hours of the morning (5 to 7 am) show a
considerable peak, needed to warm the building up
to the required set point temperature;

� During the day the trend is more constant, with275

two small decreases and consequent peaks, generally
around 10 am and 2pm;

� Depending on the month, the height of the load is
changing but the patterns are quite similar.
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Figure 4: Daily heat load profiles for 2009/2010 heating season.

These patterns are caused by operation logics of the280

heating systems of the buildings, which are related to users
behavior, local heating regulations, etc. Therefore, the
DH demand during the day is mainly related to the users
control logics, to be matched with the available generation
units of the DH system.285

Considering average patterns, Figure 5 shows the DH
operation from 2007/2008 heating season for some repre-
sentative months. The main share of the heat is provided
by CHP units, as already stated by annual balances. How-
ever, at night CHP units present a potential excess of avail-290

able heat that is used to load the heat storage systems that
will help matching the morning peak supply. The remain-
ing heat share, especially in winter months, is provided by
integration boilers. The heat storage systems are also op-
erated for small infra-day load/unload cycles, in order to295

smooth the load changes required to CHP units.
It is clear that the operational choices on the supply

side have been taken to maximize the CHP share in or-
der to match the DH network load. Other alternatives
could be considered with different profiles, namely with300

a strong decrease of the morning peak the heat storage
would probably not be required. However, such decrease
would require a widespread demand side management, by
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starting earlier in the morning the heat supply and through
slower heat ramps.305

The mid-seasons behavior is similar to the winter one,
but with lower energy consumption. In Figure 3 the av-
erage profile of March has been chosen, which is similar
to other months in spring or autumn. The summer shows
a constant low profile, the network being active only for310

domestic hot water production and some particular users
(e.g. hospitals, distributed absorption chillers.)
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Figure 5: Average heat load for some months (heating seasons from
2007/2008 to 2010/2011).

An analysis of the network behavior can provide useful
insights related to the consumption patterns of the users.
The network heat losses are a minor part of the energy315

involved, especially during the heating season. Moreover,
the heat losses have a slight variation w.r.t. time, as the
network temperature and the ground temperature have
generally minor variations.

3.3. Temperature-driven demand: daily energy signature320

The effect of outdoor temperature on heat demand can
be described by using the energy signature methodology
(see section 2.3.2).

Daily data provide a good example of the usefulness
of energy signature for the description of the energy per-325

formance of heated buildings. The use of this method on
a DH network can be performed considering the network
as an aggregation of single buildings with comparable con-
sumption patterns.

The daily signature of the entire DH network is plot-330

ted in Figure 6, considering the winter months only (from
November to March), over all the years available in the
dataset. The adoption of specific energy as variable is
needed in order to compare different volumes of buildings
connected to the network. There is some point scattering,335

although R2 has an acceptable value. The colors in the
plot highlight the different heating seasons considered for
the chart.

A further investigation can be performed by drawing
the energy signatures for each heating season. The single340

y = 312 − 13 ⋅ x,  r2 = 0.863
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Figure 6: Daily energy signature of the network during winter months
(Nov-Mar).

signatures are plotted together in Figure 7, with the global
signature as reference. The equations for each season have
been reported in Table 1, together with the total volume
of the buildings connected to the network.
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Figure 7: Daily energy signature of the network during winter months
(Nov-Mar), calculated for each Heating Season.

The trend suggests a generalized decrease of the energy345

consumption. However, there are a number of aspects that
can affect the energy performance over the years, as in ten
years of operation multiple factors can have an impact on
these analyses. The following aspects are worth mention-
ing, considering DH operation:350

� The increase of buildings volume connected to DH
network causes a different distribution of buildings
features and operational parameters;

� The connection of new areas will then modify also
the network topology, and therefore the network losses355

could be affected in different ways depending on the
pipes length and diameters, the network tempera-
tures, water velocity, etc.;
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Table 1: Daily energy signatures parameters

Heating Heated Intercept Slope R2

Season Volume
[Mm3]

2001/2002 22.51 330.20 -14.38 0.929
2002/2003 23.08 334.44 -14.36 0.940
2003/2004 22.83 342.34 -13.17 0.884
2004/2005 24.54 309.98 -13.18 0.926
2005/2006 24.59 325.05 -14.03 0.928
2006/2007 31.89 296.44 -12.42 0.858
2007/2008 36.13 300.15 -11.90 0.886
2008/2009 36.42 302.36 -12.28 0.919
2009/2010 38.61 296.51 -13.35 0.921
2010/2011 40.98 288.53 -12.68 0.946

� The installation of new heat generators and the de-
commissioning of others can lead to slightly different360

operation logics, resulting in some shifting of energy
consumption over the day. However, daily analyses
should not be much affected.

Finally, it has to be stated that in this specific applica-
tion the linearization of heat consumption w.r.t. outdoor365

temperature is affected by some approximations:

� The outdoor temperature considered in this study is
a single value for a wide area. Some local phenomena
could cause some degrees of difference over the city
(e.g. presence of green areas, rivers, etc.);370

� There is no information about the internal tempera-
ture of the heated buildings: a physic linear depen-
dence connects heat consumption with temperature
difference. However, if the internal temperature has
some fluctuations, or differences among buildings,375

the calculation of energy signature can significantly
be affected;

� Each measure of heat flow can be affected by some
errors, and the same effect can be noticed on outdoor
temperatures.380

All these aspects are to some extent related to the resid-
uals of the linear regression w.r.t. outdoor temperature.
However, the use of daily energy signature seems to be
an useful tool for an estimation of the expected heat con-
sumption based solely on the outdoor temperature. An385

application could be related to the day-to-day prediction
of future heat needs based on the available weather fore-
casts.

3.4. Hours and Temperature: hourly energy signature

While a daily energy signature can provide a tool for390

a rough linearization of energy consumption versus out-
door temperature, hourly energy signature has usually too

much point scattering to provide reliable numbers. How-
ever, some interesting trends can be observed in order to
evaluate the different behaviors over the hours of the day.395

Figure 8 shows an hourly energy signature of the whole
network in winter months (November to March). The plot
shows two different patterns during the day and during the
night, due to the night setback temperature control or the
system switch-off, depending on the building. The ”tran-400

sient” hours are located outside of the two main groups,
resulting from the average of the two main behavious (gray
points in Figure 6). Moreover, the green-colored area at
the top of the daily cloud represents the morning peak
needed to heat up the buildings.405
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Figure 8: Hourly energy signature of the network during winter
months (Nov-Mar).

Some further qualitative considerations can be deduced
from Figure 8. Different operation logics (e.g. with no or
lower night temperature setback) would cause a collapse
of the ”night” and ”peak” behaviors over the ”day” behav-
ior. This variation could lead to an increase of the overall410

energy consumption, but could lead also to a number of
advantages, such as:

� a decrease of the peak power request in the network;

� the possibility of lowering the operation tempera-
tures of the heating systems of the buildings, as the415

maximum heat required would be much lower;

� a general lower operation temperature of the net-
work, which could help to integrate renewable sources
(e.g. heat pumps, solar) in the supply side of the DH
and lead in some cases to better conversion efficien-420

cies.

These considerations could be the basis for further anal-
yses, which would require some additional information on
the features of the buildings and the operating tempera-
tures of the network.425

3.5. DH operation in summer

The analysis of the network in summer months gives
some insights on the average heat demand of the city.
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Figure 9 shows the distribution density of the daily spe-
cific heat during summer months for each year available.430

The months that have been considered for the analysis
are June, July and August, as May and September have
several outliers that causes anomalies. Year 2005 shows a
clear anomaly, as for a part of the summer the network
has been shut down for major maintenance activities (in-435

cluding heat storage systems connection). The other years
have similar distributions, the average being around 13.0
Wh/m3/day, with some higher values related to particular
weather conditions. The average heat consumption during
summer is roughly representative of the share of heat losses440

of the network and the domestic hot water consumption.
Also heat losses are at some extent related to buildings to-
tal volume, as the increase of connections usually requires
additional pipes.

mean value = 13.0  Wh/mÂ³
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Figure 9: Summer months: Distribution density of Daily Specific
Heat (Jun-Aug).

4. Conclusions445

The aim of this paper is to analyze the operation of
a large DH system over several heating seasons, in order
to find insights about the main drivers of heat demand
profiles.

The analysis of the entire network does not allow con-450

sidering the features of the connected buildings; on the
other hand it has been noticed that even with a significant
increase of the volume of buildings connected to the sys-
tem, the results do not show significant differences. The
main drivers of the heat consumption have been found to455

be the different operation settings during the day (i.e. the
night temperature setback or night shut-down) and the
outdoor temperature.

The daily energy signature calculated for different years
considering specific heat demand shows similar behaviors,460

with some differences that could be related to the net-
work layout changes and the average characteristics of the
buildings connected to the network for each year.

The use of energy signatures with an hourly time step
provides less useful numerical results, but it allows high-465

lighting the different behaviors related to normal daytime
operation, night-time operation with temperature setback,
morning peak operation and transient hours.

This last analysis suggests that the night temperature
setback has significant consequences on the heat demand,470

causing a strong energy peak in the morning. The change
of this operation logic could lead to a decrease of the max-
imum heat demand of the buildings, resulting in the pos-
sibility of lowering the network temperatures and enhanc-
ing the integration of alternative energy sources (e.g. heat475

pumps, solar), and in some cases increasing the conversion
efficiency. However such analysis should also consider the
features of the buildings, and should be performed on a
subset of the network with more detailed operation data,
especially on the parameters of the heating systems of each480

building.
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