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Abstract

The efficiency of electrical machines carries a global impact because they fulfill about

three quarters of global electrical energy consumption. Its improvement requires a

sound knowledge of energy loss properties of magnetic materials used in the core

of electrical machines, especially non conventional supply conditions, such as non-

sinusoidal, high induction, alternating (1-D) and rotating (2-D) flux waveforms that

have been posed with the incorporation of new electronic devices and materials in

the systems. For these reasons, novel theoretical models and experimental techniques

need to be developed to obtain the loss behavior under these complex flux regimes.

To address these issues, experimental investigation and theoretical analysis have

been carried out in this thesis on different magnetic materials and a wide ensemble

of supply conditions.

The aim of the theoretical analysis was to fill the gap between the physicists

and the engineers by developing simple models that can be applied to compute the

loss under realistic supply conditions. This theoretical frame is rooted in the physi-

cal principle of the separation of loss and the Statistical Theory of Loss (STL) by

which the loss can be separated into the hysteresis, classical, and excess components.

The concept of loss separation has been exploited under 1-D flux and extended to

2-D fluxes, where the relations between alternating and rotational losses have been

obtained on a number of different materials, this analysis restricted to the region

not influenced by skin effect. The proposed theoretical models have been tested

by comparing loss figure of different magnetic materials over a wide range of fre-
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quencies, induction levels, and conventional or non-conventional supply conditions.

To this purpose, loss characterization of non-oriented Fe-(3.2wt %)Si steels have

been performed using a three phase magnetizer able to generate 1-D and 2-D flux

patterns, up to saturation magnetization. Fieldmetric and Thermometric methods

have been applied at low and very high induction levels. Loss characterization of

other non-oriented Fe-Si and low carbon steels have also been performed under 1-D

flux at very low and high sinusoidal inductions using Epstein frame, single sheet

tester or ring samples, over frequencies ranging from quasi-static conditions up to 10

kHz. Systematic uncertainties have been observed in measurements using a Single

Sheet Tester due to MMF drop in flux closing yoke and a compensated Permeameter

has been designed to reduce these uncertainties by compensating the MMF drop in

the flux closing yoke.
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Chapter 1

Introduction

According to the International Energy Outlook 2016 [1], compiled by the US Energy

Information Administration, CO2 emissions related to energy tends to increase from

32.3 billion Mt in 2012 to 35.6 billion Mt, and are expected to reach 43.2 billion

Mt in 2040. At the same time, the world’s net electricity generation is expected

to increase from 21.6 trillion kWh in 2012 to 25.8 trillion kWh in 2020. About

70% of electricity is produced from fossil fuels and almost 46% of electrical energy

is supplied to electrical motors driven systems according to International Energy

Agency in 2011 [2]. Therefore, electrical machines are indirectly responsible for

producing a significant amount of CO2 emissions and thus the efficiency of electrical

machines carries a global impact.

In order to improve it, a basic step is a sound knowledge of the energy loss

properties of magnetic materials used in the core of the machines. Since many

decades, the process of physical modeling and magnetic characterization of materials

has been addressed. However, the invention of new devices, the discovery of new

materials, and the widening of applications, have resulted in new experimental

and theoretical challenges. For instance, a trend towards high working frequency

operation has been observed in recent times. In addition, because of the application of
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Fig. 1.1 Worldwide consumption of electrical energy adapted from IEA report 2011 [2].
About 46% of electrical energy is utilized by electrical motors, that are indirectly responsible
of producing significant amount of CO2 emissions.

switched mode power supplies and electronic drives, the magnetic cores of electrical

machines have to go through growing complex non-sinusoidal flux waveforms [3].

New problems also appear when dealing with high velocity electrical machines used

in powertrain applications because, for compactness reasons, levels of induction

closed to magnetic saturation and frequencies in the kHz range are encountered

[4]. Therefore, in order to deal with such complex regimes, novel experimental and

theoretical models need to be developed.

Losses in electrical machines can be classified into ohmic loss, mechanical loss,

and iron loss. Out of these, ohmic and mechanical loss are sufficiently recognized,

but determining iron loss can be a complex task because their modeling rely on exper-

imental data which can be difficult to obtain under such complex regimes of fluxes.

As an example, in a single phase transformer the flux density changes sinusoidally

versus time along a specific direction. This behaviour is termed as alternating or

1-Dimensional (1-D) flux. On the other end, in three phase transformer’s T-joints and

in the cores of rotating machines, flux density vector can rotate within. This is known

as rotational flux or 2-Dimensional (2-D) flux. Under normal practical conditions,
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both alternating and rotating fluxes coexist as shown in Fig. 1.2, adapted from [5].

The response of magnetic materials under 2-D flux is very different from 1-D flux,

especially at high induction level [6, 7]. Therefore, an advanced charaterization

requires both 1-D and 2-D flux regimes, at different frequencies and induction levels.

Measurements under 1-D flux up to medium-high induction levels, far from satura-

tion regimes, have become standardized. Epstein frames and Single Sheet Testers

are used widely in the industry for this purpose [8, 9]. Since the last century, many

researchers have investigated rotational core losses. Baily [6], in 1896, obtained

results under alternating and rotating magnetic fields. It was noticed, for the first

time, that the rotational loss decreases drastically approaching saturation, as reported

in Fig.1.3. On the other end, measurements under 2-D fluxes are even more confined

as compared to 1-D measurements, and still far from standardization.

50 Hz1T

Fig. 1.2 Flux loci measured in the stator of an electrical machine at 50 Hz. Pairs of
mutually orthogonal search coils were wound through holes in the sheet to detect flux loci
(adapted from [5]).

The determination of magnetic loss in soft magnetic materials at high induc-

tion levels has always been challenging [10–12], because conventional power loss

measurement carried out according to standard procedures, i.e measuring hysteresis

loop area, cannot be applied upon approaching saturation. It is because the power

factor becomes very low and the signals related to B and H are nearly in quadrature

[13]. Under these conditions, the loss should be obtained from the measurement



4 Introduction

of the rate of rise of the temperature of the magnetized sample. This procedure is

called thermometric method, and can be employed because it is not influenced by

low power factor [14, 15]. An additional issue is due to the control of the induction

waveform at such high inductions [16–18], that is in general fairly critical.

For optimum modeling and efficient design, engineers need to take into account

the core behavior of electrical machines under such complex regimes, but because

of a lack of experimental data under 2-D flux, they can use only the available data

obtained under alternating conditions: a situation far from the real conditions. For

these reasons, the extension of magnetic characterization to such complex scenarios

is the need of the day.

Fig. 1.3 Alternating and rotational loss in soft iron and hard steels at different induction
levels [6]. It was observed for the first time that rotational loss (represented by blue colour),
decreases significantly at high inductions.
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1.1 Goal of the thesis

The main focus of this dissertation is to bridge the gap between physicists and elec-

trical machine designers by providing loss behavior of magnetic materials through

suitable experimental techniques and their theoretical analysis via iron loss models,

and statistical theory of loss in particular. We have investigated the energy loss over a

wide range of frequencies and induction levels, from very low values up to saturation,

both under 1-D and 2-D fluxes. Even though the adopted approach has been mainly

experimental, assessed iron loss models have been exploited to evaluate and validate

the results, and new theoretical analyisis have been pursued. Epstein strips and ring

samples have been measured under 1-D conditions, whereas circular samples have

been investigated under 2-D flux loci. Alternating measurements have also been

performed on circular samples in order to compare them with the one obtained via

Epstein frame.
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1.2 Thesis outline

The manuscript is divided into the following chapters:

Chapter 1: discusses introduction, goals, and motivation. The list of scientific

publications originated from this dissertation is presented.

Chapter 2: discusses energy loss models. The Statistical Theory of Loss (STL)

and the related loss separation procedure are explained. These concepts representing

the theoretical background upon which the work is based.

Chapter 3: illustrates the main experimental techniques used for magnetic loss

measurements together under 1-D and 2-D conditions. The setups utilized for energy

loss measurements are described.

Chapter 4: this chapter presents a novel compensated single sheet tester fea-

turing a compensation scheme for the accurate determination of magnetic loss in

materials. Results obtained in non-oriented and grain-oriented materials are reported.

Chapter 5: alternating and rotational losses up to very high induction levels in

non-oriented Fe-Si are discussed.

Chapter 6: broadband energy loss behavior in different non-oriented Fe-Si

and low-carbon steel sheets at very high and very low induction are presented. In

particular, the role of classical losses is evaluated and discussed.

Chapter 7: reports the conclusion and future work.
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Chapter 2

Overview of iron loss models

In modern applications, such as renewable energy production and powertrain system

[4, 19], the optimum design of electrical machines is a very complicated task, because

a number of requirements and constraints need to be satisfied at the same time. In

particular, torque density, efficiency, cost, weight, and reliability have to be taken into

account [20, 21]. Stochastic algorithms, often employed to solve such multi-objective

design problems, require the evaluation of a large number of design configurations,

to achieve the optimum. The best trade-off between the computation time and the

accuracy is therefore required.

The accuracy of iron loss models play a very important role in optimization

procedures because they have a major influence on the final efficiency of the elec-

trical machine [22]. Iron loss models can be classified into three main categories.

The first category is based on heuristic formulas, e.g. the Steinmetz formula (ex-

tensively applied in electrical engineering [23]), provides simple and fast analytical

expressions. By means of these models, the power loss is obtained under sinusoidal

flux as a function of peak induction and frequency. Several modifications of these

phenomenological models have been proposed to extend their application to distorted

regimes. They will be discussed in section 2.1.
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In the second category we classify the physical models based on the loss sepa-

ration principle, where the total loss is assumed to be made of hysteresis, classical,

and excess loss components. This approach is explained in section 2.2.

The last category is based on hysteresis models. By these models, static and

dynamic J-H behavior can be represented under generic induction waveforms. Ex-

amples are the well known classical Preisach model [24] and the dynamic Preisach

model [25]. The hysteresis models can be introduced into electromagnetic solvers

to predict loss distribution in complicated magnetic cores. Such models require a

preemptive set of experimental data not always available to the designers.

2.1 Steinmetz-like formulas

2.1.1 Standard Steinmetz formula

This category of models originates from the Steinmetz equation [26] given by

Ptot =CSE f αBβ
p , (2.1)

where f is the frequency, Bp is the peak induction, CSE, α and β are suitable constants

depending upon the materials. At very low frequencies, where the total loss can

only be attributed to hysteresis loss, the value of β is almost equal to 1.6. At high

frequencies, α , β and CSE can be obtained via curve fitting techniques of Eq. 2.1

with experimental data. It is worth noting that the exponents α and β can change

significantly with frequency and peak induction. Table 2.1 reports some typical

values of β for a grain-oriented 3% Fe-Si steel sheet, at different peak inductions

and frequencies [27]. Table 2.2 reports variation in the values of α for a medium

frequency power transformer ferrite [28]. Another key point to note is that the

classical Steinmetz equation is valid only for sinusoidal waveforms. However, as the
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material can be subjected to non-sinusoidal flux, numerous attempts have been made

to extend its applicability to non-sinusoidal waveforms. Some of the modifications

are discussed in the following.

Table 2.1 Exponent β in Steinmetz equation 2.1 for a grain-oriented 3% Fe-Si at various
frequencies and peak inductions.

Exponent β Peak Induction (T)
f = 0 Hz f = 50 Hz f = 100 Hz

1.57 1.84 1.6 0.7-1.0
3.53 2.653 2.6 1.5-1.7

Table 2.2 Variation of α for a medium frequency general purpose ferrite developed by
Magnetics, Inc [28].

Ferrite Material
Frequency Range Frequency Exponent (α)

f <10 kHz 1.06
10 kHz < f <100 kHz 1.72
100 kHz < f <500 kHz 1.66

f >500 kHz 1.88

2.1.2 Modified Steinmetz equation

Following [29, 30], the standard Steinmetz equation has been extended to predict the

material loss under arbitrary induction waveform as

Ptot =CSE f α−1
eq Bβ

p f , (2.2)

where the equivalent frequency feq is given by

feq =
2

∆B2π2

∫ T

0
(dB/dt)2dt, (2.3)

being

∆B = Bmax −Bmin· (2.4)
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Under a sinusoidal waveform of amplitude Bp, one finds

feq =
2

4B2
pπ2

∫ T

0
ω

2B2
pcos2

ωt = f , (2.5)

that is equation 2.1 is recovered.

A more general modification of Steinmetz equation is given in the Generalized

Steinmetz Equation [31], where the loss is obtained as a function of flux density B(t)

and its derivative dB/dt. The power loss is given by

Ptot =
1
T

∫ T

0
CGSE |dB/dt|α |B(t)|β−α dt (2.6)

where CGSE, α and β are suitable constants depending upon the materials.

Despite the simplicity of Steinmetz-like equations, there are some limitations

associated with this approach. In fact the coefficients depend significantly upon

the input frequency and changes drastically when altered. Eventually it must be

remarked that the Steinmetz models become less accurate over a wide range of

frequency and degree of distortions.
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2.2 Models based on loss separation

Adopting the loss separation approach, the energy loss Wtot is given by three compo-

nents, the static hysteresis loss Whyst, the classical loss Wcl, and the excess loss Wexc,

as discussed in detail by Bertotti by means of the Statistical Theory of Losses (STL)

[32]. Therefore, the loss can be written as

Wtot =Whyst +Wcl +Wexc. (2.7)

Each loss components will be discussed in the following.

2.2.1 Hysteresis loss

The hysteresis loss corresponds to the area of the hysteresis cycle obtained under

quasi-static conditions, as shown in Fig. 2.1. In practice, the hysteresis loss is

also obtained by extrapolating loss measurements up to f = 0 Hz, as shown in

Fig. 2.2. Under quasi-static conditions, eddy currents dissipation mechanism still

persist because the domain wall motion is not smooth and is blocked by pinning

centers. Therefore the process takes place in a jerky manner, a phenomenon known

as Barkhausen effect. The discrete jumps generate current pulses localized around

the segment of the wall in motion, where time constant are very short as compared

to the period of magnetization. Therefore it can be stated that hysteresis loss does

not depend upon the rate of magnetization.
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Fig. 2.1 B−H loops at different frequencies, measured in 0.343 mm thick Fe-(3.2 wt%)Si-
(0.5 wt%)Al along the longitudinal direction. The grey region represents the area of the
B(H) loop at f = 2 Hz (quasi-static condition) and is equal to the hysteresis loss.
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Fig. 2.2 The quantity W -Wcl at different frequencies obtained in a 0.35mm thick Fe-
(3.2wt%)Si at Bp = 1.55T under 1D flux. The measurements have been extrapolated up to f
= 0 Hz to obtain Whyst.
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Fig. 2.3 Sample geometry for classical eddy current loss computation, where d is the
thickness along the y axis. The sample is assumed infinitely long and the external field is
applied along z axis. Under these assumptions, the induced eddy currents are confined to
x− y plane.

2.2.2 Classical loss

The classical loss component is the dynamic eddy current loss obtained by disregard-

ing the magnetic structure. Let us calculate such loss for an electrical steel sheet of

thickness d and conductivity σ (see Fig. 2.3) assuming the following conditions:

• the material is considered homogeneous;

• the thickness d is very small as compared to other dimensions;

• the magnetic field is applied along the z-direction and is represented by Ha;

In the low frequency limit, the effect of the induced eddy currents is small as

compared to the applied field. Under such conditions, the induction B is approxi-

mated by taking its average over the slab cross section and is assumed independent

of y. Applying Maxwell equations, we obtain

∂Hz

∂y
= jx, (2.8)

and
∂ jx
∂y

= σ
dBz

dt
. (2.9)

After deriving Eq. 2.8 and replacing ∂ jx/∂y through Eq. 2.9, we obtain

∂ 2Hz

∂y2 = σ
dBz

dt
, (2.10)
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Integrating Eq. 2.9 w.r.t y, we obtain

j(y, t) = σ
dB
dt

y, (2.11)

The following boundary conditions hold: H = Ha, for y =±d/2. After integration

of Eq. 2.10, we obtain

H(y, t) = Ha(t)−
σ

2
dB
dt

(
d2

4
− y2). (2.12)

The eddy currents generate a counterfield directed in opposite direction respect to Ha.

It is worth noting that eddy current field will get strong with increase of the rate of

change of magnetic induction. The instantaneous dissipated power is then obtained

as

Pcl(t) =
1
d

∫ d/2

−d/2

j2(y, t)
σ

dy =
σd2

12

(
dB
dt

)2

. (2.13)

The loss per cycle under sinusoidal induction and negligible skin effect is then given

by

Wcl =
∫ T

0
Pcl(t)dt =

< Pcl(t)>
f

=
π2σd2 f B2

p

6
. (2.14)

where σ is the conductivity, Bp is the peak induction, and f is the frequency.

2.2.3 Excess loss

Weiss proposed the concept of magnetic domains within magnetic materials [33].

Magnetic domains are magnetized along different directions and are arranged in

such a way so as to reduce the overall energy. Fig. 2.4 reports an example of domain

structure for a single and polycrystal. The domains are separated by thin transitional

regions known as domain walls or Block walls. When subjected to an external field,
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domain walls movement drives eddy current paths around the Block walls that act as

a source for the excess loss [34].

Fig. 2.4 Arrangement of domains for zero resultant magnetic moment in (a) single crystal
and (b) polycrystalline specimen (adapted from [35]). The arrows correspond to the resultant
magnetic moment of a single domain.

Single domain wall model

A fist step toward excess loss modelling was done by Williams, Shockley and Kittel

in [36], who analyzed the Fe-Si single crystal shown in Fig. 2.5, and determined

the velocity of propagation of the single domain boundary under weak and strong

magnetic fields. The position of the domain wall (DW) was controlled by the

magnetic field generated by the current in a coil wrapped around the sample. A

secondary winding connected to a flux meter was used to measure the change of flux.

The velocity of propagation of the single domain wall boundary was measured by

timing the deflections on a flux meter with a stop watch. We will now discuss the

wall dynamics under these conditions. Let us consider an electrical steel sheet of

thickness d and conductivity σ , as shown in Fig. 2.6. It has a single domain wall
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Fig. 2.5 A simple domain structure in a single cyrstal of Fe-Si (adapted from [36]). The
rotation of magnetic field from one limb to another is controlled by four 90◦ domain walls
(dashed oblique segments) existing in each of the four corners of the crystal. The arrows
indicate the direction of local polarization.

located at x = 0. The field Ha is applied along the z direction. The flux φ can be

computed from the position of the single domain wall xw, as

φ = 2Jsdxw, (2.15)

where Js = µ0Ms is the saturation polarization. In addition

dφ

dt
= 2Jsdvw, (2.16)

where vw = dxw/dt is the velocity of the wall. This is a 2D problem because the

magnetization is directed along the z axis and the slab is supposed infinitely extended

along the same direction. Therefore, the eddy current paths flow in the x− y plane

and are independent of z. If we assume a known φ(t) waveform, the eddy current

loss can be obtained by solving Maxwell equations. From Ampere’s law, we obtain

div J⃗ = 0, (2.17)
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Fig. 2.6 A single magnetic domain wall for a sheet of thickness d and length l. The domain
wall moves along the x direction under the action of the external field, and is surrounded by
the induced eddy currents represented by dashed curves.

and from Faraday’s law

rot J⃗ = 0. (2.18)

It is worth noting that Eq. 2.17 and 2.18 are obeyed everywhere except at domain

wall position. The following boundary conditions hold

jy(y =±d
2
) = 0. (2.19)

Around the moving domain wall, the application of Faraday’s law provides

jy(x = 0−) =− jy(x = 0+) =
σ

2d
dφ

dt
, (2.20)

where x = 0 represents the position of the wall. By solving together Eq. 2.17 and

2.18 under the given boundary conditions, the two components of eddy current

density are computed. The eddy currents are approximately concentrated in a region

of width d, and decreases exponentially as the distance is increased. The power

dissipation is given by

Pw = σG
(

dφ

dt

)2

, (W) (2.21)
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Fig. 2.7 Periodic domain walls with spacing 2L in a slab of thickness d along y direction
in pry and bean model. The slab is assumed to have infinite length along z direction. With
the application of the external field Ha along z axis, eddy currents are generated around each
of the moving domain walls.

where G ∼= 0.1356 is a dimensionless geometrical coefficient. The average power

loss per unit volume of the slab, is given by

Pw

V
=

σG
S

(
dφ

dt

)2

= σGS
(

dB
dt

)2

, (W/m3) (2.22)

where B is the average induction.

The loss can be compared to the one obtained under uniform flux distribution,

Pcl(t) = σd2/12(dB/dt)2. The ratio is then

Pw/V

Pcl
∼ 12Gl

d
> 1. (2.23)

Therefore, the power loss per unit volume with eddy currents concentrated around

a single domain wall, is greater than the classical loss obtained by disregarding the

magnetic structure.
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Periodic domain walls model

Pry and Bean investigated the loss in a magnetic material by considering a set of

identical 180◦ domain walls in an infinite slab as shown in Fig. 2.7. Each wall is

displaced from its average position by the quantity ±xw(t) and moves at a velocity

±vw(t) under the action of the applied field Ha along the z-axis. The solution of

Maxwell equations provide the following expression for the loss

PPB(t)∼=
σ

2L

(
dφ

dt

)2 4
π3 ∑

oddn

1
n3 cth

(
nπL

d

)
, (2.24)

where 2L is the domain wall spacing.

For 2L << d, i.e. domain size is small compared to the thickness of the slab, Eq.

2.24 provides

PPB(t)∼=
σ

L2

(
dφ

dt

)2 2
π4 ∑

oddn

1
n4 =

σd2

12

(
dB
dt

)2

= Pcl (2.25)

where B(t) is the average induction in the slab. This means that as 2L << d, the

classical loss formula is recovered.

For 2L >> d, Eq. 2.24 becomes

PPB(t)∼=
σG
2Ld

(
dφ

dt

)2

=
1

2Ld
PW (t)∼= 1.63

2L
d

Pcl(t). (2.26)

Here, the influence of magnetic domains structure is expressed by the ratio 2L/d.

The additional loss due to magnetic domains becomes greater as the size of the

magnetic domains 2L exceeds the thickness d. Fig. 2.8 illustrates this point showing

the loss versus number of domain walls at a given average induction. It can be

observed that the loss decreases with increase in the number of domain walls and

finally becomes equal to the classical loss (Eq. 2.14). In addition, Fig. 2.9 shows

eddy current patterns for different numbers of domain walls. Initially, eddy currents
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Fig. 2.8 Total loss vs. number of domain walls for a 0.34mm thick and 2mm long slab
obtained by numerical simulation. It can be seen that the loss decreases with increase in the
number of domain walls and ultimately becomes equal to the classical loss (Eq. 2.14).

are concentrated around domain walls only. Later, by increasing the number of

domain walls (i.e. decreasing DW spacing 2L), the eddy currents interaction is

increased and form patterns that are distributed all across the sheet.

Random Domain walls model

In real materials, the domain size and shape is not fixed because it changes from

place to place and time. In order to take into account such random domain structure,

Bertotti [37] introduced disorder through a statistical approach, ending with the

following expression for the loss

PRW (t) = Pcl(t)+
λ

d
⟨Pw(t)⟩ . (2.27)

Here, the first term is the classical loss obtained by dissregarding the magnetic

structure (Eq. 2.13). The second term is the excess power, where Pw(t) is the average
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Fig. 2.9 Eddy current patterns for different number of domain walls simulated in a 0.34mm
thick and 2mm long steel sheet. With few domain walls, the eddy currents are concentrated
around domain walls only. By increasing the number of domain walls, the eddy currents
interaction is increased and form patterns that are distributed all across the sheet.

power dissipated across each wall and λ is the average density of walls, being 1/λ

the average domain wall spacing. The theory can now be applied to find a suitable

expression for the excess loss in a real material.

We begin to consider the excess field given by

Hexc = Pexc/(dφ/dt) (2.28)

So, the excess field due to a single domain wall can be written as

Hexc = σG
dφ (w)

dt
, (2.29)

In case of n active walls, the total flux rate should be equal to the required average

flux rate. One can therefore write
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n
dφ (w)

dt
= S

dJ
dt

, (2.30)

where dJ/dt is the polarization rate and S is the cross sectional area. The flux rate

per wall is then

dφ (w)

dt
=

S
n

dJ
dt

, (2.31)

Therefore, Eq. 2.29 becomes

Hexc =
σGS

n
dJ
dt

. (2.32)

It is only valid in case of large wall spacing (2L >> d) [32], but fails when it

is applied to fine domain structure (2L <<< d). For fine domain structures, one

can start from the physical description of domain structure dynamics supported

by Barkhausen noise experiments where the magnetization proceeds through large

magnetization clusters due to strong internal correlation fields. For such a cluster,

we can write

Pexc = σG(is)dφ (cl)

dt
dJ
dt

. (W/m3) (2.33)

where G(is) is a function of the internal structure while dφ (cl)/dt is the average flux

associated with the magnetization cluster [38]. Thus one can say that even in the

fine domain structures, there is a high probability that the active wall is surrounded

by many other active walls that form “Magnetic Objects” (MO) and are in-turn

distributed randomly. MOs play the same role as active domain walls but with

different eddy current damping effects due to different internal structures. They have

different structural and dynamic properties in different materials evolving from one

domain wall for (2L >> d) to a magnetization cluster for (2L <<< d). If an MO

has a damping coefficient G(x) and flux rate dφ (x)/dt and is distributed randomly, we
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Fig. 2.10 Magnetic objects randomly distributed in a material that play the same role as
active domain walls but with different eddy current damping effects due to different internal
structures. MOs have different structural and dynamic properties in different materials.

can write the following equation

Hexc = σG(x)dφ (x)

dt
, (2.34)

In case of a number of n simultaneously active MOs, the same equation becomes

Hexc =
σG(x)S

n
dJ
dt

, (2.35)

Let us introduce the factor ñ = nG/G(x), the effective number of active MOs. Eq.

2.34 then becomes

Hexc =
H(x)

ñ
. (2.36)

where H(x) = σGSdJ/dt is the excess field in a material where whole flux change is

concentrated in a single 180◦ domain wall. This equation states that the excess field

decreases with increase in the number of active MOs.

The magnetization process is highly inhomogeneous if the frequency is low. It is

because there are very few active correlation regions in the sample. By increasing the

applied field pressure (increasing frequency) higher flux rates in the active regions
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will be produced. This applied field pressure will not only concentrate on the

already active regions but also upon the rest of material. It can therefore result in

the activation of other non-active MOs in the material. Hence, the magnetization

process becomes more and more homogeneous with increasing frequency. These

mechanisms are governed by the pressure due to applied field which in turn is

controlled only by excess field in this case. Thus, we can say that ñ is a general

function of Hexc and it increases with increasing Hexc. The first order expansion of

ñ(Hexc)is given by

ñ(Hexc) = n0 +Hexc/V0 + ...... (2.37)

where n0 is the number of magnetically correlated regions (MO) in the sample

when frequency approaches zero and V0 is a statistical parameter that represents the

pressure induced on other magnetic objects (MO) to try to align them in the same

direction. Hence there are two competing mechanisms: Eq. 2.36 states that Hexc

decreases with an increase in the number of active magnetic objects. On the other

end, Eq. 2.37 states that the number of active regions increase when Hexc is increased.

In the field range where Eq. 2.37 remains valid, one can obtain the following result

by incorporating ñ in Eq. 2.36

Hexc(n0 +Hexc/V0) = H(w). (2.38)

Solving for Hexc, one can then obtain the following equation

Hexc =
n0V0

2
(
√

1+4H(w)/n2
0V0 −1). (2.39)

At low magnetization rates where 4H(w)/n2
0V0 << 1, Eq. 2.39 becomes

Hexc ∼= H(W )/n0 ≡
σGS

n0

dJ
dt

, (2.40)
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At high magnetization rates, where 4H(w)/n2
0V0 >> 1, Eq. 2.39 becomes

Hexc ∼=
√

H(w)V0 ≡
√

σGSV0

(
dJ
dt

)1/2

, (2.41)

Thus, the whole problem is conveniently solved with two phenomenological

parameters, no and Vo. A general expression for excess power loss Pexc under

arbitrary induction waveforms based on Bertotti’s statistical theory of loss is given

by

Pexc(t) =
noVo

2

(√
1+

4σGSVo

n2
oV 2

o
|J̇(t)|−1

)
|J̇(t)|. (2.42)

Here, J̇(t) is the time derivative of the magnetic polarization, G ∼= 0.1356 and S is

the cross-sectional area of the material. Normally Vo and no are very small, hence

the following relation is normally assumed at typical applicative frequencies

4σGSVo

n2
oV 2

o
|J̇(t)|>> 1, (2.43)

Therefore, Eq. 2.42 correspondingly reduces to

Pexc ∼=
√

σGSVo|J̇(t)|3/2, (2.44)

The excess energy loss can be obtained by integrating Eq. 2.44

Wexc ∼=
√

σGSVo

∫ T

0
|J̇(t)|3/2dt. (2.45)

Equation 2.45 can be applied to any desired waveform. For a sinusoidal J(t), it

becomes

Wexc ∼= 8.76
√

σGSVoJ3/2
p f 1/2, (2.46)
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while for triangular J(t) Eq. 2.45 provides

Wexc ∼= 8
√

σGSVoJ3/2
p f 1/2. (2.47)

When condition in Eq. 2.43 cannot be assumed, the integration of Eq. 2.42 provides

under sinusoidal J(t)

Wexc( f ) = 2n0V0Jp ·
∫

π/2

0

(√
1+

8σGSV0

n2
0V 2

0
π f Jpcosφ −1

)
cosφdφ (2.48)

In all cases where the conditions mentioned in Eq. 2.43 cannot be assumed, Eq. 2.48

should be applied to obtain the excess loss. Finally, the total loss under a sinusoidal

J(t) is given by

Wtot =Whyst +
π2σd2 f B2

p

6
+8.76

√
σGSVoJ3/2

p f 1/2 (2.49)

It must be noted that Eq. 2.49 holds only if the skin effect is negligible [39]. It is

because the standard classical loss equation, incorporated in the model, cannot be

applied with the emergence of skin effect.

2.3 Loss separation procedure

The loss separation procedure is the method by which the different loss components

are obtained. The procedure is discussed as follows.

The first step is to measure the total loss. After that, the classical loss is computed

by using Eq. 2.14. The third step is to obtain Wdiff, given by

Wdiff =Wtot −Wcl. (2.50)
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Fig. 2.11 A loss separation procedure has been applied to a 0.35mm thick Fe-(3.2wt%)Si
at Bp = 1.2 T under 1D flux. The quantity Wdiff =Wtot −Wcl is obtained (open circles) and
then extrapolated up to f = 0 to obtain Whyst.

An example of such procedure is reported in Fig. 2.11, for a Fe-(3.2wt%)Si lam-

ination at Bp = 1.2 T, showing the quantity Wdiff = Wtot - Wcl vs.
√

f . Here, Wdiff

has been extrapolated up to f = 0 Hz to obtain Whyst. Finally, experimental Wexc is

obtained by subtracting Whyst from Wdiff. Fig. 2.12 reports the total loss vs. frequency

together with its components.

2.4 Modeling of loss under generic flux loci

The physical modelling of loss under 2-D flux regimes has not been yet completely

achieved [40]. Nevertheless the literature show that the concept of loss separation

has been extended to 2-D regimes, and some phenomenological expression for the

loss have been obtained. To introduce such phenomenological models, we consider

the generic elliptical flux loci of Fig 2.13, where Jp is the half-length of the major

axis and a ·Jp with a ≤ 1 is the half length of the minor axis. Here Jx(t) = Jp sin(ωt)
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Fig. 2.12 Total loss has been separated into the hysteresis loss Whyst, the classical loss
Wcl , and the excess loss Wexc in a 0.35mm thick Fe-(3.2wt%)Si lamination at Bp = 1.2 T
under 1D flux. Wcl is obtained by applying the standard classical formula (Eq. 2.14), Whyst
by extrapolating Wdiff up to

√
f = 0 Hz, and Wexc by subtracting Whyst from Wdiff.

and Jy(t) = aJp · cos(ωt), where ω is the angular frequency. The application of the

loss separation principle provides

W (Jp,a) =Whyst(Jp,a)+Wcl(Jp,a)+Wexc(Jp,a). (2.51)

A rational approach by which the different components of loss are estimated can

be introduced by considering the relationship between alternating and rotational

loss components. To this end, we define the ratios Rhyst =W (ROT)
hyst /W (ALT)

hyst , Rclass =

W (ROT)
class /W (ALT)

class , and Rexc =W (ROT)
exc /W (ALT)

exc . Regarding Rclass, the theory provides,

under negligible skin effect, Rclass = 2. On the other end, the theoretical behavior

of Rhyst and Rexc versus peak polarization is at present not completely developed.

Nevertheless, phenomenological expressions for the loss components under whatever

elliptical flux loci, have been worked out in [41]. Regarding the hysteresis loss, we
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Fig. 2.13 An general elliptical flux loci, where Jp is the half-length of the major axis and
aJp with a ≤ 1 is the half length of the minor axis.

can interpolate the corresponding loss under alternating W (ALT)
hyst and pure rotating

(circular) W (ROT)
hyst through the power law

Whyst(Jp,a)∼=W (ALT)
hyst (Jp) · (1−ar)+W (ROT)

hyst ar. (2.52)

By introducing the ratio between alternating and rotational loss components, Eq.

2.52 can be written as

Whyst(Jp,a)∼=W (ALT)
hyst (Jp) ·

[
1+(Rhyst(Jp)−1)ar] . (2.53)

The experiments have shown that W (ALT)
hyst (Jp) follows a power-law similar to ar such

that W (ALT)
hyst ∝ Jr

p. Therefore we can reformulate the previous Eq. 2.53 as

Whyst(Jp,a)∼=W (ALT)
hyst (Jp)+W (ALT)

hyst (aJp) ·
(
Rhyst(Jp)−1

)
. (2.54)

where the ratio Rhyst(Jp) follow a rather general behavior. Regarding the excess loss,

we start our analysis from the instanteneous excess power loss formula (Eq. 2.44)
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under 1-D flux. The natural extension of such equation to 2D fluxes is

Pexc(t)∼=
√

σGSVo

∣∣∣∣∣dJ⃗
dt

∣∣∣∣∣
3/2

. (2.55)

Under the elliptical flux loci shown in Fig. 2.13, the integration of Eq. 2.55 upon a

period T provides

Wexc(Jp,a, f ) = g(a)8.76
√

σGSV0(Jp,a)J
3/2
p
√

f . (2.56)

where g(a) is a non-dimensional coefficient that is given by

g(a) =

√
2π

8.76

∫ 2π

0

(
sin2(φ)+a2cos2(φ)

)3/4
dφ . (2.57)

The value of g(a) ranges between 1 (alternating flux) to 1.8 (rotational or circular

flux). Eq. 2.56 can be rewritten by interpolating the excess loss component measured

under alternating and rotational conditions. Following this approach, we obtain

Wexc(Jp,a, f ) = g(a)

[
W (ALT)

exc (Jp, f ) · (1−aq)+
W (ROT)

exc (Jp, f )
g(1)

aq

]
. (2.58)

Assuming W (ALT)
exc ∝ Jq

p and introducing the ratio Rexc(Jp), we eventually obtain

Wexc(Jp,a, f )∼= g(a)
{

W (ALT)
exc (Jp, f )+W (ALT)

exc (aJp, f ) ·
[

Rexc(Jp)

g(1)
−1
]}

. (2.59)

It is worth noting that the ratio Rexc(Jp) can be considered independent of frequency

as it will be shown later in Chapter 5. In addition, assuming W (ALT)
exc (Jp, f ) ∝

√
f we
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can write

Wexc(Jp,a, f )∼= g(a)
{

W (ALT)
exc (Jp, f0)+W (ALT)

exc (aJp, f0) ·
[

Rexc(Jp)

g(1)
−1
]} √

f√
f0
,

(2.60)

that is the excess loss behavior under any elliptical flux loci can be obtained from the

ratio Rexc(Jp) and the alternating excess loss at a reference frequency f0. Regarding

the classical loss, the theory provides

Wclass =
σd2

12

∫ 1/ f

0

[(
dBx

dt

)2

+

(
dBy

dt

)2
]

dt, (2.61)

In particular, for the given elliptical loci, we obtain

Wclass(Jp,a, f ) =W (ALT)
class (Jp, f ) · (1+a2). (2.62)

2.5 Conclusion

The objective of this chapter was to give an overview of different iron loss models.

Modelling of losss based on loss separation and STL, has been discussed. The con-

cept of loss separation has been phenomenologicaly extended to the modeling of loss

under a generic flux loci. These concepts represent the theoretical background upon

which the present work is based. The next chapter will focus upon the experimental

techniques.



Chapter 3

Experimental techniques

3.1 Measurement techniques

The magnetic materials have commercial value only if their magnetic properties

are determined under defined AC and DC excitations. Although the amount of

information provided by the manufacturers is limited by the technical difficulties

and cost, there is still a growing demand of material data by engineers who need

to compare different materials for optimizing their designs. It has lead to the

development of comprehensive measuring methods and preparing updated measuring

standards such as IEC 60404-2, IEC 60404-4, and IEC 60404-6. In this chapter we

will discuss the measuring techniques and experimental setups, at low and medium

frequencies, adopted by the research and industry, within the general framework

provided by the international measuring standards.

3.1.1 Fieldmetric method

This method allows one to obtain the hysteresis loops, and consequently the energy

loss represented by the area of the cycle, by measurement of the magnetic field
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strength H and the flux density B waveforms. The flux density is obtained by means

of B sensing coils, either wound across the sample, or inside holes drilled through

the sample, depending upon the setup. The corresponding voltage detected by the

sensing coils is then integrated to obtain B as

B(t) =
∫ 1

N2S
u2(t)dt, (3.1)

where N2 is the number of windings of the sensing coil, and S is the cross sectional

area of the sample enclosed by the windings. When dealing with 2-D loss analysis,

two sensing coils should be wound along the two orthogonal directions as shown in

Fig. 3.1.

The magnetic field H can be obtained by two different methods. With the first

method, usually applied when closed magnetic circuits are employed, the H field

is obtained by measuring the magnetization current in the primary coil and is then

given as

H =
N1

lm
iH, (3.2)

where N1 is the number of turns of primary winding, iH is the primary current, and

lm is the effective magnetic path length. With the second method, usually applied to

open samples, the field H is locally measured at the surface of the sample by using

H-sensor made up of thin windings wrapped around a very thin sheet as shown in

Fig. 3.2. The corresponding magnetic field strength H is then obtained as

H =
1

µ0KH

∫
VHdt, (3.3)

where VH is the terminal voltage and KH is the coil coefficient determined via

calibration of the H-coil. H-sensors employed in 2-D loss measurements have

windings along the two orthogonal directions as shown in Fig. 3.2.
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Fig. 3.1 A typical B-coil obtained by threading wires in holes drilled through the sample
along the two orthogonal directions. Change in B induces voltage in these coils which is then
integrated to obtain B.

Fig. 3.2 A typical H-coil employed in 2D measurements with windings along the two
orthogonal directions. The H-coil is placed very close to the surface of the sample.
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The instantaneous values of B and H gives us the required information about the

flux loci and the corresponding energy loss in the sample. The total specific loss

occurring in the sample, in case of 1-D supply conditions is given by

Pt =
1

T ρm

∫ T

0
(Ha ·

dB
dt

)dt. (J/kg) (3.4)

where T is the period and ρm is the mass density of the sample.

In 2-D loss analysis, the corresponding total power loss is obtained by

Pt =
1

T ρm

∫ T

0
(Hx ·

dBx

dt
+Hy ·

dBy

dt
)dt, (J/kg) (3.5)

where Bx, By, Hx and Hy are the components of flux density and magnetic field

strength along the two orthogonal directions x and y.

3.1.2 Thermometric method

The fieldmetric method becomes inaccurate at high induction because of the very

low power factor. As an example, in non-oriented alloys, the fieldmetric method

fails to perform accurate measurements at induction greater than Bp ∼ 1.6 T. Beyond

this threshold, an alternative technique for loss measurement, called thermometric

method, able to operate under whatever flux loci, comes into play. Fig. 3.3 shows an

example of the energy loss behavior vs. peak induction at different frequencies under

rotational flux. It can be seen that the loss obtained using the fieldmetric method

deviates from thermometric loss measurements beyond 1.6 T and is affected by a

large increasing uncertainty.

The thermometric method measure the loss by exploiting the dependence between

the rate of rise of temperature of the sample dT/dt and the dissipated power [42].

The temperature of the sample can be measured by an extended copper-constantan

thermocouple (TC), attached to the measuring area of the sample via a conducting
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Fig. 3.3 Energy loss vs. peak induction measured under circular flux at 50 Hz, 100
Hz and 200 Hz. At low induction, measurements have been carried out using fieldmetric
method (solid symbols). At high inductions i.e. beyond 1.55T, the fieldmetric measurements
could not represent the true loss value due to the very low power factor, therefore, the loss
measurements have been performed via the thermometric method (open symbols).

glue (normally a silver paste) as shown in Fig. 3.4. An identical copper-constantan

junction, insulated from the sample, is connected in series opposition with the active

junction of TC. The output differential signal is then fed into a nanovoltmeter. The

sample is placed in a vacuum chamber where quasi-adiabatic conditions are achieved.

Under stationary regime the dynamic energy balance (see Fig 3.6) is described

by the following equation

P =
dQ
dt

+
dQint

dt
+

dQext

dt
, (3.6)

where dQ/dt is the rate of cumulation of thermal energy in the sample, dQext/dt is

the rate of heat transmission to external reservoir (environment) at temperature To
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Fig. 3.4 Copper-constantan junctions used to detect temperature variations and perform
thermometric loss measurements. The two orthognal black lines in the center represent B-
windings threaded into the holes drilled through the sample. An identical copper-constantan
junction, insulated from the sample, is connected in series opposition with the active junction
of thermocouple.

Fig. 3.5 A sample with two orthogonal B windings threaded in holes drilled through the
sample. A thermocouple is also attached to the sample by using a conductive glue.
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Fig. 3.6 Scheme of the heat transfer processes inside the disk. T is the temperature of the
measuring area (dark inner region). Qint is the heat transferred to the disk at temperature T ′

while Qext is the heat transferred to the external environment at a temperature To.

and dQint/dt is the rate of heat transmission to the part of the disk, at temperature

T ′, sorrounding the measuring (central) region, P is the dissipated power as a

consequence of the magnetization process. The first term of the right hand side of

Eq. 3.6 is given by

dQ
dt

= cp
dT (t)

dt
, (3.7)

where T is the temperature of the measuring area of the sample and cp is the specific

heat per unit mass of material. The second term of Eq. 3.6 is given by

dQint

dt
= Kint[T (t)−T ′(t)], (3.8)

being Kint the internal heat transmission coefficient. Finally, the last term of Eq. 3.6

is given by

dQext

dt
= Kext[T (t)−To], (3.9)
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Fig. 3.7 Experimental increase of T vs. time represented by black solid curves for a
non-oriented Fe-(3.2wt%)Si-(0.5wt%)Al lamination at Bp = 1.7 T and f = 50 Hz. The
blue dashed line is obtained by applying Eq. 3.13 while the red dashed line is obtained via
Eq. 3.14. It can be seen that the experimental curves can be excellently predicted by this
technique.

where Kext is the external heat transmission coefficient. From Eq. 3.7, 3.8 and 3.9,

Eq. 3.6 takes the following form

P = cp
dT (t)

dt
+Kint[T (t)−T ′(t)]+Kext[T (t)−To]. (3.10)

In our analysis we have assumed that the temperature of the sample is uniform.

Therefore T (t) = T ′(t) and equation 3.10 reduces to

P = cp
dT (t)

dt
+Kext[T (t)−To] (3.11)

Before starting the experiment, the sample must be in thermal equilibrium with its

surroundings. The experiment starts at the switch on time t0, and stops at the switch

off time t1, at which the sample has reached temperature T1.

Under perfect adiabatic conditions, the external heat transmission coefficient Kext

is zero and Eq. 3.11 further reduces to
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P = cp
dT (t)

dt
= cp

(T1 −To)

(t1 − t0)
. (3.12)

However, in reality, Kext is not zero and has to be determined experimentally. If Eq.

3.11 is integrated from the switch off time t1, the exponential decay of temperature

is obtained as

T (t) = To +(T ′
1 −To)exp

[
−Kext

cp
(t − t1)

]
. (3.13)

The only unknown in this equation is Kext which can easily be determined via a

fitting procedure (for t > t1), as shown in figure 3.7. Eventually the increase of

temperature of the sample between t0 and t1 is given by the following equation

T (t) = To +
P

Kext

[
1− exp

(
−Kext

cp
(t − t0)

)]
. (3.14)

The last expression can provide the dissipated power loss P. Again, as shown in

Fig. 3.7, a good fit of the temperature behavior is also possible in this region with

consequent achievement of P. This method was used extensively to measure the

localized power loss in [43, 44]. Part of the experiments described in Chapter 5 are

obtained by using the thermometric method.
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3.2 Measurement setups

3.2.1 1-D Measurement setup

In this section we will describe the wattmeter-hysteresisgraph used to perform 1-D

loss measurements. Magnetizers such as Epstein frame, Single Sheet Testers and

Ring samples can be employed within the setup. A scheme of the hysteresisgraph

is given in Fig. 3.8. The waveform is supplied by a signal generator to a power

amplifier and is used to drive the primary coil of the magnetizer. The voltage drop

uH is measured on a calibrated resistor RH so obtaining the magnetizing current

iH = uH/RH. The corresponding magnetic field strength is then obtained as

H =
1

GH

N1

lm
iH(t), (3.15)

where GH is the low-noise pre-amplifier gain, N1 is the number of windings of the

primary coil, and lm is the magnetic path length which depends upon the type of

magnetizer. On the other end, the voltage u2 induced in the secondary coil of the

magnetizer is amplified by a low-noise preamplifier, and then fed into the digital

oscilloscope. The induced voltage is integrated to obtain B as

B(t) =
∫ 1

GB

1
N2S

u2(t)dt, (3.16)

where GB is the gain of the preamplifier, N2 is the number of windings of the

secondary coil and S is the cross sectional area of the sample. Two channel digital

oscilloscope capable of performing synchronous acquisitions should be used to

perform simultaneous acquisiton of both signals. The signals are then elaborated by

a software in PC, where the energy loss is obtained as

W =
1

GBSN2

∫ T

0
u2 · iHdt. (J/m3) (3.17)
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Fig. 3.8 The wattmeter-hysteresisgraph developed by Fiorillo and co-workers [45] at
INRIM. The system implements digital control of the waveform of dB/dt by an iterative
process. Samples such as Epstein strips, and ring samples can be employed in the system.

A sinusoidal dJ/dt is recommended by the standards for AC characterization. It

is controlled by using the iterative procedure discussed in section 3.2.3. Let us now

discuss different magnetizers that can be employed in the setup.

Epstein Frame

The standard Epstein frame, recommended by IEC 60404-2 [8], consists of four

rectangular solenoids into which the strips can be inserted in such a way as to form a

closed magnetic circuit. The frame can either have 200 turns or 700 turns of primary

and secondary windings. The primary winding is used to magnetize the specimen

and is located on the outside of each limb. A secondary winding, located on the inner

side of each limb, is used for the detection of voltage. Samples are cut along the

transverse and rolling directions and loaded in the opposite sides of the frame. The

samples form double lapped joints and there are overlapping corners in the circuit.
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Fig. 3.9 A 700 turns compensated Epstein frame. The standard weights are placed at each
corner. The samples cut along the transverse and rolling directions should be loaded into the
opposite limbs.

In order to measure the loss, we exploit Eq. 3.4 where the field H is obtained by

H =
N1

lm
iH, (3.18)

being N1 the number of turns of primary winding, iH is the primary current, and lm

is the effective magnetic path length whose value is recommended to be 0.94 m [46].

There are some problems associated with the Epstein frame in terms of determin-

ing the true loss behavior of magnetic materials. In fact, the double lapped joints

and overlapping corners introduce inhomogenities in the circuit. Then, the effective

magnetic path length is not always fixed and such assumption introduces systematic

errors in the experiments. The sample preparation procedure includes stress relief

annealing which can be time consuming. Irrespective of these problems, it is used

extensively in the industry because of its reproducibility and standardization. Fig. 3.9

shows a 700 turns Epstein frame with an air flux compensation, where the primary

winding of the air flux compensator is connected with the primary winding of Epstein

frame, while the secondary windings are connected in series opposition. The number
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Fig. 3.10 A 200 turns non-compensated Epstein Frame loaded with sample and standard
weights on each corner. The primary windings are located on the outside of each limb
while secondary winding are located on the inside. This Epstein frame is recommended for
frequencies up to 10 kHz.

of turns in the compensator is then veried in such a way that it produces a voltage

equal but opposite to the voltage produced by the Epstein Frame with no sample. In

this way, the air flux is compensated for almost all of the current levels. A 200 turn

Epstein frame is shown in Fig. 3.10. The use of any of the frame depends upon the

input frequency.

Ring core measurements

Ring samples, e.g. as in Fig. 3.11, are recommended by IEC 60404-6 and can

be employed to perform loss measurements of magnetic materials with high per-

meabilities, soft magnetic composite powders and non-oriented steel sheets. The

ring samples have a fixed circumferential magnetic path length, no airgaps and can

be mounted directly without any addtional setup. However, materials can undergo

through bending stress, and magnetic properties become dependent upon the radius

of the ring sample.
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Fig. 3.11 A low Carbon Steel ring sample with the number of primary and secondary
windings of 252 and 100 respectively.

Two layers of windings are wrapped around the sample. The outer one is the

primary winding used to create the field in the sample while the inner winding is

used to determine the secondary voltage. The magnetic field is obtained through

H =
N1iH
2πrm

, (3.19)

where rm is the mean radius of the ring, N1 is the number of primary windings and

iH is the excitation current. Finally, the loss is determined by applying Eq. 3.4.

In order to get good uniformity of magnetization over the ring cross-section, it is

recommended in IEC 60404-6 that the ratio between the outside and inside diameters

be Do/Di ≤ 1.1.

Single Sheet Tester measurements

Energy loss in different magnetic materials can also be determined by the application

of Single Sheet Testers (SST). Fig. 3.12 shows a SST recommended by IEC 60404-3,

used in industrial measurements. Samples of 500 mm long and between 300-500
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mm are used. The yoke of the SST is laminated and can be constructed either from

grain oriented Fe-Si or Ni-Fe laminations, by U-bending and stacking them upon

one another. Double C-yokes are usually made of grain oriented Fe-Si laminations

and should be 25 mm thick and within 0.5 mm coplanar to eliminate the air gaps

between opposite poles. Minimum recommended length for primary and secondary

windings are 440 mm [47]. The upper C-yoke is made to move in the upward

direction to allow insertion of the sample. Moreover, the weight of the upper C-yoke

is counterbalanced by a suspension in such a way that a maximum force of 200 N is

applied on the sheet. The magnetic path length is fixed at 0.45 m. Although H fields

could be measured either by using Hall probe, a flat H-sensing coil, or a Rogowski-

Chattock potentiometer, the standard IEC 60404-3 prescribe to obtain H from the

current circulating in the primary winding [47]. The field is then

H =
N1iH

lm
, (3.20)

where N1 is the number of turns of the excitation coil, iH is the excitation current

and lm is the effective length of magnetic circuit. The arrangement must be placed

in the east-west direction to mitigate the effect of earth magnetic field upon the

measurements.

Sources of systemetic errors in SST are the assumption of a fixed magnetic

path length, and the loss in the yoke which were compensated by using additional

magnetizing windings, a Rogowski-Chattock potentiometer and a feedback circuit

in [49, 50]. This lead to an expansion towards Compensated Single sheet/strip

tester (CSST). However, the designed circuit, arrangement of coils, and stability of

the structure of potentiometer, prevented it from considering it as a measurement

standard. Nafalski and Moses [51] designed a double yoke system with low specific

loss and reduced the length of Rogowski-Chattock potentiometer coil to half of the

magnetization windings. Despite of the design improvements, the system still had
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Fig. 3.12 Single Sheet Tester recommended by IEC 60404-3 adapted from [48]. The pole
face is 25mm thick. The primary and secondary windings should be at least 440mm long.
The primary windin can be a single layer, made of 1mm diameter wire with 400turns. The
number of secondary windings is not fixed, and is suited to accurate signal acquisition.

considerable loss in the yoke of the system. To compensate the losses in the yoke of

SST precisely, a simple and effective compensation technique has been proposed

and a single strip double-C yoke permeameter has been developed. It is discussed in

chapter 4.
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Medium to high frequency measurements

Although, the focus of thesis is upon low and power frequencies, medium to high

frequency measurements will be discussed in this section briefly, to get a basic

idea about the problems that come into play if the input magnetization frequency

is increased beyond few kHz. Characterization of soft magnetic materials in the

kHz range and beyond is required due to the increasing use of motors and trans-

formers at high frequencies. Some of the problems encountered in high frequency

measurements are as follows:

• Skin effect: The counter field generated by the eddy currents can lead to non-

uniform penetration of flux in the sample under investigation. Skin effect can also

affect the conductors and even the calibrated resistor used to measure the magnetizing

current. This can significantly influence the output result.

• Increasing frequency can drastically increase the temperature of the sample.

As an example, a Mn-Zn ferrite ring sample can show an increase of the temperature

of 2 ◦C per second when it is excited at 1MHz at Jp = 0.1T.

• For the detection of signals, rapid A/D converters are required. The power

requirements of the system also increases significantly. As such, the peak induction

that can be achieved in the sample becomes limited. In case of single sheet measure-

ments, the materials used in the yoke for flux closure should be such as to exhibit

minimum skin effect.

• Stray inductances and capacitances start to play a very important role when

the magnetizing frequency exceeds the kilohertz range. The leakage flux can be

neglected as compared to the flux produced by the sample. However, effects related

to parasitic capacitance cannot be ignored. With the increase of frequency, increased

current is drained due to the winding capacitance in connecting cables and at the

input of acquisition devices. Self capacitance in the range of 50 pF/m to 100 pF/m

can be found in coaxial cables while 10 pF to 50 pF is common in acquisition devices.
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Self capacitance of the primary and secondary windings of 700 turns epstein frame

is between 50 pF and 200 pF while interwinding capacitance is in the order of 1000

pF to 3000 pF which is huge. IEC 60404-10 therefore recommends the use of 200

turn Epstein frame beyond 400 Hz, which can appropriately be used till 10 kHz.

Numerous methods of incorporating the effects of inductances and capacitances

in the circuit are discussed in [48]. The discussion of these techniques are beyond

the scope of this thesis, as here all the measurements are performed in conditions

where the effects of inductances and capacitances due to the circuit can be neglected.

In case of analysis at frequencies beyond 400 Hz, a 200 turn Epstein frame has

been used, as recommended by IEC 60404-10. Also, at high frequencies and low

induction, the material can be treated as a linear medium which brings acceptable

simplification in the analytical treatment of power loss at high frequencies. It is

advised to consult Chapter 6 for further details regarding magnetic behavior of soft

magnets at high frequencies and low inductions.

3.2.2 2-D measurement setups

In this section, magnetic measurements systems under 2D (rotational or elliptical)

flux are discussed. In particular, the scheme of our experimental setup, developed at

INRiM, is shown in Fig. 3.13 and 3.14 for the fieldmetric and thermometric methods,

respectively. Previous work have been carried out on grain oriented materials and is

reported in [52–54]. Loss analysis in different non-oriented steel sheets under 2D flux

has been perfomed in [41, 55]. An intercomparison of rotational loss measurements

in non-oriented Fe-Si alloys has been performed in [56], while comprehensive

investigation of alternating and rotational losses in non-oriented steel sheets has

been carried out in [44]. Disk shaped samples has been analyzed by C. Ragusa and

co-workers under 2D flux up to high inductions in [16, 18].
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Fig. 3.13 Experimental setup for the loss measurement of soft magnetic materials under
controlled 2D flux loci via fieldmetric method. The arbitrary function generators provide a
suitable voltage to the three phase magnetizer via power amplifiers to achieve the desired
flux loci. Two orthogonal windings are threaded along x and y directions to detect B while
H is obtained by using a 700 turn flat H-coil. The signals B and H are amplied using
a preamplifier, converted to digital form using an oscilloscope and then elaborated by a
software in PC. The 2D energy loss is obtained by adding the areas of the loops along the
two orthognal axis.

In our setup, disk shaped sample having 80 mm diameter are employed. The

desired flux density is obtained through a three-phase magnetizer by supplying

the exciting coils through suitable currents fed by the power amplifiers that are

driven by the arbitrary function generators. Suitable waveform for the generator

can be obtained through a feedback system that eventually achieve the flux loci and

waveform. The signals detected by the search coils are amplified, read by digital

oscilloscope and elaborated by a PC.
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Fig. 3.14 Experimental setup for the characterization of soft magnetic materials under
controlled 2D flux loci via thermometric method. Here the rate of the rise of the temperature
of the sample is detected by using thermocouples along the x and y direction which are
stuck on the surface of the lamination using a conductive glue (normally silver paste). The
thermocouples are connected in series opposition with a junction insulated from the sample
to compensate any fluctuations. The thermocouples are connected to a digital oscilloscope
through a nano-voltmeter. The application of thermometric method requires adiabatic
conditions. To this purpose, the bore of the magnetizer was designed to accomodate a
cylindrical Plexiglas vacuum chamber. The desired flux loci is obtained through arbitray
function generators that supply suitable currents to the magnetizer via power power amplifiers.
The energy loss along each axis is obtained by applying Eq. 3.13 and 3.14.



3.2 Measurement setups 55

Fig. 3.15 Sample with two orthogonal B windings threaded along the holes (diame-
ter=0.7mm) spaced 40 mm apart.

B and H-coil

To measure magnetic field B, holes of 0.7mm diameter are drilled through the sample

along the x and y axes. Fig. 3.15 shows the two orthognal windings, each having a

few turns, threaded into the holes to detect the corresponding voltages.

Fig. 3.16 A 700-turn H-coil with two orthogonal windings along rolling and transverse
directions. The coil is made of very thin wire and wrapped around a thin sheet. It should be
placed as close to the surface of the sample as possible.

To measure the effective field, the H-coil exploits the property of conservation

of the tangential component of the field at the sample’s surface [57]. Fig. 3.16
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Fig. 3.17 B-Windings threaded through the sample through holes drilled in the sample.
These windings are placed orthogonal to each other to measure the field in x and y directions.
H-sensor is placed very close to the surface to measure H at its surface with double windings
along x and y direction.

shows a vectorial 700-turn flat H-coil with two windings along the x and y axis,

which is placed at the center of the sample (Fig. 3.17). To reduce the errors, the

H-coil is made of very thin windings, wrapped around a very thin sheet, and is

placed very close to the surface of the sample. After integration of the voltages, the

tangential field components Hx and Hy of the field
−→
H are obtained. The H-coil is

positioned in such a way that the direction of Hx and Hy should coincide with Bx and

By respectively. Small misalignment are compensated by performing measurements

along clockwise and anticlockwise direction and then taking their averaged value

[58].

Magnetizers

Two different kinds of three phase magnetizers have been applied. The first magne-

tizer designed to perform high frequency measurements up to 5 kHz [59] is shown

in Fig. 3.18. A small air gap width of 1 mm between the sample and the yoke has

been adopted to reduce the demagnetizing field and the magnetizing currents in each

phase. The magnetizer has two-pole stator core, with three slots per pole, and a
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Fig. 3.18 The high frequency low induction magnetizer with sample placed in its center

toroidal winding configuration as shown in Fig. 3.19. The core was assembled by

using 0.35 mm thick non-oriented Fe-Si sheets.

The second magnetizer was designed for the thermomtric and high induction

loss characterization. It is shown in Fig. 3.20. To excite the sample at high peak

inductions, the windings are made of thin copper wires as the number of turns

per coil is large as compared to the first magnetizer. Moreover, to get adiabatic

conditions, the bore of the magnetizer was designed to accomodate a cylindrical

Plexiglas vacuum chamber, shown in Fig. 3.21. In the vacuum chamber, a residual

pressure of around 10−3 Pascals was reached by using a vacuum pump.
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Fig. 3.19 The magnetizer has two-pole stator core, with three slots per pole, and a toroidal
winding configuration. Geometric parameters slot depth ts, core-thickness ty, axial height
of core T and width of slot ws were optimized to excite the 80mm disk shaped sample at
high frequencies. The coils in the magnetizer are made up of thick copper wires and the
number of turns per coil is limited to 10. Moreover, there is a mid-point connection on each
coil by which number of turns per coil ns can be changed to 5 to perform high frequency
measurements

Fig. 3.20 High induction magnetizer designed to perform analysis at high inductions close
to saturation conditions. The bore of the magnetizer can accommodate a cylindrical plexiglas
vacuum chamber to achieve adiabadic conditions.
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Fig. 3.21 Cylindrical Plexiglas vacuum chamber enhousing the sample to obtain quasiadi-
abatic conditions required for analysis via thermometric method.



60 Experimental techniques

3.2.3 Control of the induction waveform

The measuring standards prescribe that the AC characterization of magnetic materials

should be carried out under a controlled sinusoidal waveforms. With the development

of electronic setups, the sinusoidal induction waveforms can be maintained even in

small samples using a negative feedback. Here the actual voltage on the secondary

side is compared with the reference voltage supplied to the primary circuit. The

difference is amplified and reinjected in to the primary till it reduces to zero. Digital

feedbacks are preferred because of the stability and bandwith limitations in analog

feedbacks.

The block diagram of the feedback algorithm used in the measurement setups

is shown in Fig. 3.22 adapted from [60]. The whole system can be considered as

a voltage/flux, input/output nonlinear dynamical system with the voltage u as the

main physical output. The desired waveform is obtained by controlling the function

generator through an iterative procedure in which the next voltage is obtained by the

addition of the term linearly dependent upon the difference between the desired and

actual flux. It is given by

ek+1 = ek +α(φp −φ
k)+β (up −uk) (3.21)

where ek+1 is the input voltage obtained upon k+1- iteration, ek is the input voltage

obtained upon the k-th iteration, φp is the prescribed flux, φ k is the actual flux

measured upon the k-th iteration, up is the prescribed voltage while uk is the voltage

measured upon the k-th iteration, α is a system dependent suitable positive constant

and β is a dimensionless quantity. The feedback can also be implemented in such as

way that it acts either on the flux or the voltage. In case of 2-D flux loci, the applied

fields are controlled by three programmable function generators via a similar iterative

procedure to ensure the correct flow of three phase currents into the windings of

magnetizer, through power amplifiers and resistances connected in series.
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Fig. 3.22 Block diagram of the feedback algorithm (adapted from [60]). The system can be
considered as a voltage/flux, input/output nonlinear dynamical system in which a numerical
feedback periodically refreshes the voltage input so that the actual voltage gets a better match
of the prescribed periodic output.
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Chapter 4

A novel compensated Single Strip

Tester

4.1 Introduction and motivation

Power loss measurement in different materials has always been a subject of interest

for many years. The goal of the measurement setups is to determine the magnetic

losses as a function of induction and frequency accurately. Moreover, the results

should be repeatable and reproducible. Various standards have been devised to

achieve this goal. Burgwin suggested Epstein Frame and it has been used as a

standard (IEC 60404-2) for loss measurements. However, the method requires

tedious preparation of samples and results in the systematic deviations due to inho-

mogeneities in the magnetic circuit. [61, 62, 48]. Single sheet tester is also widely

used to measure the magnetic loss properties of magnetic materials and has been

standardized by IEC 60404-3. SST shows good reproducibility but the assumption of

fixed magnetic path length and losses in the yoke introduce systematic errors in loss

measurements. To address these issues, a single strip double-C yoke permeameter

with a simple, effective and a novel compensation technique has been implemented
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to compensate losses in the yoke of SST, thereby reducing systematic errors in

loss measurements. The system uses Epstein strips because they are practically

convenient. However, it can be easily adapted to the standard SST permeameter. The

idea is to use the upper half yoke of the permeameter as a zero MMF indicator and

the lower half of the yoke for the implementation of compensation circuit.

4.1.1 Sample geometry

Fig. 4.1 a) Epstein Strip used as a sample in the compensated single strip tester; b)
cross-sectional view of the strip sample and coils.

Fig. 4.1 shows the sample used in the permeameter. As previously stated, it is a

conventional Epstein strip. A 500 turn and 30 mm long B-coil is placed across the

center of the sample. A calibrated multi-turn flat H-coil, having a thickness of 1 mm

and 0.0225 m2 turn-area, is placed inside the B-coil over the surface of the sample

to measure the tangential field. The effective fields and inductions are found to be

highly uniform across the measuring region. The obtained loss is therefore, the true

loss of the material. The results obtained by using B and H-coils will be used as a

reference. The designed permeameter is shown in Fig. 4.2. It consists of a double-C

laminated yoke, each yoke is in turn composed of 0.30 mm thick high-permeability

grain-oriented strips with cross sectional area of 2500 mm2. There is a distance of

L1 = 190 mm between the pole faces of the yokes. A uniformly wound solenoid is

placed within the pole faces. Supplementary thin windings are placed at the end
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Fig. 4.2 A 3-D view of the designed permeameter. Middle part contains the sample and is
enclosed by exciting coils.

of the solenoid to obtain maximum uniformity of the applied field over the whole

length [48].

4.1.2 Magnetic path length

As discussed in 3.2.1, the magneto motive force NI, where I is the current flowing

through N number of windings is related to magnetic field H along the closed path

can be obtained by using Ampere’s law and is given as

N · I =
∮

L
H ·dl = H ·Ls +H ·Lp (4.1)

where (H ·Lp) represents the MMF drop in the yokes and (H ·Ls) represents the

MMF drop in the sample. If somehow the MMF drop in the yokes is made very
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Fig. 4.3 A 2-D view of magnetizer, measuring coils and exciting current

close to zero or compensated precisely, the Eq. 4.1 will reduce to

N · I = H ·Ls (4.2)

where Ls has a value intermediate between L1 and Lo. L1 is the distance between the

pole faces and Lo is the total width of the permeameter (see Fig. 4.3 ). The value of

Ls apparently depends upon flux channeling into the yoke from sample as shown in

Fig. 4.4. It also depends upon the magnetization levels in the sample and changes

considerably when the sample enters into the non-linear regime.

In order to get the accurate prediction of the field generated in the sample, the

length of the flux Ls needs to become equal or close to the distance between the

pole faces L1 (which is a known quantity). To achieve this target, the following

modification has been proposed in the upper yoke of permeameter. As shown in

Fig. 4.5, beneath the limbs of the upper yolk, wedge-shaped iron poles are inserted.

Contact lines between the poles and sheet surface are positioned at the distance L1.
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Fig. 4.4 Standard Configuration

Fig. 4.5 Modified Configuration: the massive Wedge shaped poles have in practice flux φ1
= 0 when the feedback is operational
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Thus the flux path length in the sample matches the same distance L1 under the

operation of feedback system.

Once the magnetic path length becomes fixed such as Ls = L1 , and the flux in the

yoke of the permeameter is compensated precisely, we can easily obtain the exact

magnetic field H in the sample according to the following expression

N · I = H ·L1 (4.3)

4.1.3 Principle of MMF compensation

The compensation scheme proposed here is based upon the idea of cancellation of

MMF analogous to the use of the Chattock coil. This approach is proven to be much

simpler as compared to the Rogowski-Chattock [51]. Unlike the weak and noisy

signal generated by the Chattock coil, the signal generated and controlled using this

approach is large and therefore easy to handle. Here, the upper yoke by itself is used

as a zero MMF indicator. A secondary coil of few turns is wrapped around the upper

yoke to obtain the derivative of magnetic flux φ1 flowing through the upper yoke.

The equivalent reluctance circuit of the proposed scheme is given in Fig. 4.6. Here

the reluctance of the sample is represented by Rs, reluctance of lower and upper

yoke by RY, and reluctance of wedge-shaped pole by Rp. It is evident that magnetic

flux drop E, the drop occurring outside the sample, is directly proportional to the

derivative of the flux φ1. As there is no other MMF source in the upper yoke, so if

somehow the magnetic flux φ1 gets canceled, E will reduced to zero and when this

happens, the corresponding voltage v1 ∝
dφ1
dt induced in the secondary coil will also

become zero. The only MMF drop in the circuit under such conditions will be the

one across the sample.

The condition has been obtained by employing compensation windings on the

lower yoke of the permeameter. Its output is controlled and adjusted in such a way as
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Fig. 4.6 Equivalent Reluctance circuit of compensated permeameter

to generate flux equal to φ1 and opposite to its direction. Under such condition, the

net flux flowing through the yoke of the permeameter and corresponding magnetic

flux drop E is made equal to zero. The schematic diagram of the feedback control

loops is given in Fig. 4.7. The output of the compensation windings (NcIc) on

the lower yoke is adjusted via PID controller and then amplified with a high gain

amplifier in such a way that the voltage v1 is brought to zero.

The proposed method is very simple as it does not require any MMF sensor.

Moreover, the sensitivity is very high. The yoke is made of highly permeable GO

lamination due to which the signal to noise ratio is very good. The voltage obtained

from the windings wounded on the upper yoke is very high as compared to the

voltage obtained from chattok coil. Therefore, it is much more precise and relatively

easy for the feedback system to control it to zero. The pole reluctance Rp due to the

poor contact between the sample and wedge shape pole carries negligible effects

upon the performance of permeameter because the flux in the upper pole is ultimately

made to disappear.
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Fig. 4.7 Compensated permeameter’s control circuit

4.1.4 Experimental results

Non-oriented Fe-(3wt%)Si sheets and high-permeability grain-oriented (HiB) sheets

having a thickness of 0.35 mm and 0.28 mm respectively, have been tested in

the compensated permeameter. Under sinusoidal induction waveform at 100 Hz,

apparent power, hysteresis loops and energy loss have been measured with a peak

polarization range of 0.2 T ≤ Jp ≤ 1.5 T. The value of magnetic field H can either

be found locally using H-coil placed at the center of the strip or by measuring the

magnetizing current in the primary windings (MC method).

Non-oriented Fe-Si steel sheets

Energy loss vs. peak polarization obtained by utilizing the H-coil method and

MC method is shown in Fig. 4.8. The system has been used in a compensated

and uncompensated mode, with and without wedge-shaped poles. The results

are then compared to the one obtained via H-coil. It can be seen that the use of

uncompensated permeameter have resulted in overestimated values because of the
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Fig. 4.8 Comparison of the energy loss measured by the H-coil method and the current
measurement method

MMF drop in the yokes. In addition, the loss deviation increases with increase in

the value of Jp and a deviation of about 7 percent can be seen at high Jp. When

the compensated permeameter is used without the wedge-shaped poles, the loss

values are still overestimated, ranging between 2 to 4%. It is due to the fact that

magnetic flux lines cannot be limited exactly to the distance between the pole faces

L1, and that the real value is somewhat larger. Finally, the results with compensation

scheme including wedge-shaped iron poles shows remarkable agreement with the

local H-coil measurements.

Fig. 4.9 shows the corresponding hysteresis loops measured via local H-coil, MC

method with compensation without compensation. It can be seen that a very good

resemblance is obtained between the H-coil and the compensated current methods.

Grain-Oriented HiB sheets

The use of the permeameter becomes more important in case of grain-oriented

materials. Here, the MMF drop in the yokes is higher as compared to that of
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the sample, and the loss in the yokes become more important. The signal can be

very small in this case, especially at low frequencies, due to which the localized

measurements with H-coil can be very challenging. The proposed design is very

helpful and interesting under such conditions. Figure 4.10 shows energy loss values

obtained through MC method, with and without compensation, and via local H-coil

method in grain-oriented HiB sheet. In the case of a compensated permeameter, the

results are in a very good agreement with that of an H-coil. When an uncompensated

permeameter is used, it is observed that the MC method overestimates the magnetic

loss by a remarkable extent. Overestimation of about 10% is observed at low

induction levels ( Jp = 0.5 T) and about 6% at high induction levels (Jp = 1.5 T). The

observed behavior is expected because the loss in the yoke does not depend upon the

type of material under test but instead depends only on Jp.

Behavior of the measured apparent power is given in Fig. 4.11. Again, remark-

able resemblance is obtained between the results obtained via MC method with

compensation, and that of H-coil method. A small difference of 3% in the apparent

power is observed between the two techniques at low Jp. Small signal levels, and in-

tegration problems associated with H-coil may be the main reasons of this difference

and the proposed method is therefore very useful in this regard.
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4.1.5 Conclusion

A permeameter has been designed for accurate power loss measurements by compen-

sating the MMF drop in the flux closing yoke. It uses a wedge shaped pole face for

obtaining a precise magnetic path length. The permeameter works on the principle

of using the flux-closing yoke for sensing and compensation. The performance

of the device has been validated by measurements on different non-oriented and

grain-oriented Fe-Si sheets.



Chapter 5

Alternating and rotational losses in

non-oriented steel sheets at high

inductions

5.1 Introduction and motivation

Iron cores of electrical machines are subjected to complex operating conditions,

including 2-D fluxes and high induction levels often close to magnetic saturation.

The characterization of magnetic materials in these conditions, over a broad range of

frequencies, can be a challenging task because of the difficulties in the control of the

waveforms and the required power. Very limited literature has been published so far

about this topic [16] [17] [18], so compelling machine designers to extrapolate the

data obtained in standard conditions at medium inductions and frequencies to these

extreme working conditions, a process that entails errors in the evaluation of the

electrical machine efficiency. A detailed investigation of different magnetic materials

under 2-D flux is therefore required. To this purpose, in this chapter we will display

and discuss some results of measurements obtained on a Fe-(3.2wt%)Si circular
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disk sample. Two kind of three-phase magnetizers are applied in combination of

fieldmetric and thermometric techniques as dicussed in section 3.2.2. We have

measured the alternating and rotating magnetic loss over a wide range of peak

polarization Jp (0.1 T - 1.965 T ) and frequency f (2 Hz- 1 kHz).

5.2 Experimental setup and sample geometry

The experimental setup used for the characterization of non-oriented Fe-(3.2wt%)Si

sheets under rotational and alternating fields is shown in Fig. 5.1, whereas the

electronic scheme has already been depicted in Fig. 3.13 and 3.14 in Chapter 3. The

disk shaped samples with a diameter of 80 mm, and 0.35 mm thickness, are laser cut

and annealed at 780 ◦C for 2 hours in vacuum. Their physical parameters are listed

below

electrical conductivity σ = 2.04 ×106 S/m ;

density δ = 7650 kg/m3 ;

average grain size (s) = 92 ×10−6 m ;

specific heat per unit mass cp= 462 J/(kg ·K) ;

saturation polarization Js = 2.01 T ;

sheet thickness d = 0.356 mm .
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Fig. 5.1 Setup for 1D and 2D characterization of magnetic materials. Three function
generators provide suitable voltage to the primary windings of the magnetizer, through a
power amplifier, that in turn setup the desired fields in the sample. The corresponding values
of B and H detected by the sensors are amplified, converted to digital form via oscilloscope,
and then elaborated by a software in the PC.

5.3 Results and discussion

Fig. 5.2 and 5.3 report the energy loss behavior vs. peak induction under alternating

and rotational supply conditions, in the frequency range (2 Hz -1 kHz), up to Bp =

2.0 T. Approaching saturation, the difference between peak induction Bp and peak

polarization Jp cannot be neglected, and then it might be appropriate to distinguish

between the W (ALT) and W (ROT) dependence on Bp and Jp. In the current situation, a

maximum polarization value Jp= 1.965 T was achieved at Bp= 2.0 T. It should be

noted that Whyst and Wexc depends upon Jp only, whereas the classical loss depends

upon Bp, and consequently the contribution of the term µ0H cannot be ignored.

Under alternating conditions, the measurements are carried out separately along

the easy and hard axis and then averaged to get the loss. Fig. 5.4 reports the high

induction region of the experimental 2-D loss curve v.s Jp, plotted as a function of
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reduced polarization Jp/Js, up to f = 200 Hz. It can observed that 200 Hz is the

maximum frequency at which the sample under investigation was brought very close

to saturation magnetization due to the power limit of the setup. In addition, the

dashed lines in Fig. 5.4 represent the rotational classical loss, which is twice the

classical loss under alternating conditions

W (ROT)
class =

π2σd2 f B2
p

3
(
J/m3) , (5.1)

being such formula valid under negligible skin effect. A remarkable result is the abil-

ity of the equipment to point out the theoretical limit of rotational loss, where the total

loss becomes equal to the classical loss upon reaching the saturation polarization.

By applying the loss separation procedure, the hysteresis loss W (ROT)
hyst is obtained

by extrapolating the quantity W (ROT)
diff =W (ROT)−W (ROT)

class up to f = 0 Hz. The excess

loss Wexc is then obtained as

W (ROT)
exc ( f ) =W (ROT)( f )−W (ROT)

hyst ( f )−W (ROT)
class ( f ). (5.2)

From Fig. 5.5, it can be observed that Whyst and Wexc start to decrease beyond Jp/Js ≈

0.75. Upon reaching saturation induction Jp/Js ≈ 0.98, the two loss components

become zero as the total loss W (ROT) reduces to W (ROT)
class . The application of the

Statistical Theory of Loss, provides the following expression for the excess loss

under rotational magnetization flux loci [39]

W (ROT)
exc

∼= g ·8.76 ·
√

σGSVoJ3
p ·
√

f
(
J/m3) , (5.3)

where G ∼= 0.1356, S is the cross-sectional area of the sample, σ is the conductivity

and Vo is a statistical parameter, depending on Jp. The value of g in the rotational

case is approximately equal to 1.8 (Eq. 2.57 in chapter 2).
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Fig. 5.2 Energy loss vs. peak induction in the frequency range (2 Hz- 1 kHz) under
alternating sinusoidal flux. At low induction, measurements are carried out by fieldmetric
method (solid symbols) while measurements at high induction are carried out by thermo-
metric method (open symbols). Remark that a region exists where the solid and the open
symbols overlap.
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Fig. 5.3 Energy loss vs. peak induction in the frequency range (2 Hz- 1 kHz) under
rotational flux. As in Fig. 5.2, measurements are carried out by applying both fieldmetric
and thermometric methods and a region exists where the solid and the open symbols overlap.
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Fig. 5.4 2-D loss behavior at high polarization values close to saturation. Rotational loss
(solid lines) achieves the value of classical loss (dashed lines) at Jp/Js ∼= 0.98.

We have validated the theoretical formula Eq. 5.3, under both rotational and

alternating conditions, by comparing it with the experimental data. As an example,

Fig. 5.6 and 5.7 show, under alternating and rotational inductions, the
√

f depen-

dence predicted by Eq. 5.3 at Bp = 1.4 T. The divergence from the experimental

data at high frequencies is due to the appearence of skin effect. In Fig. 5.8, the ratio

Rhyst = W (ROT)
hyst /W (ALT)

hyst is plotted versus Jp/Js. It can be noticed that it decreases

monotonically, eventually becoming zero at saturation. In addition, results obtained

by Brailsford [63] for different materials are superposed. We can argue that Rhyst

follows a rather universal behavior in non-oriented sheets.

Fig. 5.9 shows the alternating and rotational excess loss, along with their ratio

Rexc. In this case, different symbols in the graph represent different frequencies.

Though some scattering is present in the experimental data, in particular at low
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Fig. 5.5 Separation of loss obtained under rotating induction at 50Hz. The components
Whyst and Wexc vanishes at Jp/Js ≈ 0.98 as the total loss approaches to Wclass.

frequency regimes, it can be stated confidentially that the ratio Rexc is independent

of frequency.

5.3.1 Example of practical estimation of loss under a given 2-D

flux

On the basis of the above results, we have applied the procedure discussed in section

2.4 by which the 2-D magnetic loss under any polarization loci (alternating, circular,

elliptical) can be obtained. Fig. 5.10 reports an example of B-loci in a non-oriented

material at Jp = 1.14 T. The first step is to determine an equivalent elliptical loci

having same Jp and area of the B-loci. Once we have obtained it, the different loss

components can be computed by applying equations given in section 2.4. Let us

start our analysis from hysteresis loss, that is computed by applying the following

equation
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Fig. 5.6 Predicted dependence of W −Wcl vs.
√

f by applying Eq. 5.3 at Bp = 1.4 T under
alternating flux (solid line) . The dots represent the experimental values. Whyst is obtained
by extrapolating the experimental data up to f = 0 Hz. The difference between the theoretical
results and the experimental data, at high frequencies, is due to the emergence of skin effect.

Whyst(Jp,a)∼=W (ALT)
hyst (Jp)+W (ALT)

hyst (aJp) ·
(
Rhyst(Jp)−1

)
(5.4)

The corresponding values of W (ALT)
hyst at Jp = 1.14 T and aJp = 0.81 T as well as Rhyst

at Jp = 1.14 T can be obtained from Fig. 5.8. Let us now compute the excess loss

which is given as

Wexc(Jp,a, f )∼= g(a)
{

W (ALT)
exc (Jp, f0)+W (ALT)

exc (aJp, f0) ·
[

Rexc(Jp)

g(1)
−1
]} √

f√
f0

(5.5)

From Fig. 5.9, the corresponding values of W (ALT)
exc at Jp = 1.14 T and aJp = 0.81 T

as well as Rexc at Jp = 1.14 T can be obtained. For a = 0.71, the corresponding value

of g(a) can be obtained by using Eq. 2.57. Finally, the classical loss is computed

through numerical integration, under negligible skin effect, as
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Fig. 5.7 Predicted dependence of W −Wcl vs.
√

f by applying Eq. 5.3 at Bp = 1.4 T under
rotational flux (solid line). The dots represent the experimental values. Whyst is obtained by
extrapolating the experimental data up to f = 0 Hz. The difference between the theoretical
results and the experimental data, at high frequencies, is due to the emergence of skin effect.

Wcl =
σd2

12

∫ 1/ f

0

[(
dBx

dt

)2

+

(
dBy

dt

)2
]

dt (5.6)

Fig. 5.11 shows the computed total energy loss behavior vs. frequency, together with

the loss components.

5.4 Conclusion

Loss characterization of non-oriented Fe-(3.2wt %)Si steel sheet has been performed

using a three phase magnetizer under 1-D and 2-D flux till very high induction levels-

close to magnetic saturation. It was shown experimentally for the first time that

upon approaching saturation, the total measured loss coincides with the theoretically

predicted classical loss, in the absence of skin effect. Since the alternating and
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Fig. 5.8 Comparison of our results for Rhyst (represented by black line) to those obtained
by Brailsford for different magnetic materials [63]. Different symbols represent different
materials. It can be seen that Rhyst follows a rather universal behavior and decreases mono-
tonically eventually becoming zero at saturation. W (ROT)

hyst and W (ALT)
hyst are the hysteresis loss

obtain under rotational and alternating conditions respectively. It can be seen that at high
inductions, W (ROT)

hyst decreases drastically, while W (ALT)
hyst remains almost constant.

the rotational energy loss components are found to be related in a rather universal

fashion, at all frequencies, it is concluded that the loss under a given 2-D loci can

be estimated on the basis of a limited set measurements, obtained under alternating

conditions, and the corresponding loss ratios.
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Fig. 5.9 The excess loss ratio Rexc at different values of Jp/Js. Different symbols in the
graph represent different frequencies. Despite of some scattering at low frequencies, it can
be stated confidentially that the ratio Rexc is almost independent of frequency. Here, W (ROT)

hyst

decreases at high inductions while W (ROT)
hyst continues to increase till magnetic saturation.

Fig. 5.10 Flux density vs. t/T for the two components of B-loci.
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Fig. 5.11 The computed 2-D loss behaviour in a 0.356 mm thick non-oriented Fe-Si at Jp
= 1.14 T. The hysteresis loss is computed by applying Eq. 5.4, the excess loss is computed
by applying Eq. 5.5 and the classical loss by Eq. 5.6. The total loss is obtained by adding up
the individual contributions.
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Chapter 6

Classical loss computation under 1-D

fluxes

6.1 Motivation

Classical loss discussed in section 2.2.2 plays a very important role in the loss sepa-

ration approach based on STL. The computation of classical loss component usually

assumes a uniform magnetization throughout the cross section of the magnetic sheet,

thereby presupposing no skin effect. Under sinusoidal induction the classical energy

loss is given by the equation

Wcl =
Pcl

f
=

π2σd2 f B2
p

6
, (6.1)

where σ is the conductivity, Bp is the peak induction, and f is the frequency. It is

worth noting that by this formula we can obtain the classical loss disregarding the

magnetic constitutive law of the material. The assumption of negligible skin-effect

is satisfied at low frequencies, but at high frequencies the same formula cannot be

applied anymore and a solution of the magnetic diffusion equation is in general
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required. The main challenge is posed by the material constitutive law and its intrin-

sic strong non-linearity. One possibility is to solve the diffusion equation through

numerical models like as in [64, 65], under a hysteretic and dynamic constitutive

relationship. However, at very low inductions, a linear approximation of the constitu-

tive relationship equation (B⃗ = µH⃗) can be assumed and the solution of Maxwell’s

equations can be worked out without resorting to numerical analysis. On the other

end, at high induction a simple expression for the classical loss could be derived

by assuming a kind of step-like characteristic. In this chapter, the two models for

the classical loss will be worked out and the obtained theoretical results will be

compared to the experimental data.

6.1.1 Computation of classical loss at low induction

At low induction a linear approximation of the constitutive equation (B⃗ = µH⃗) is

here adopted by assuming µ = Bp/Hp, where Bp is the peak induction and Hp is the

peak value of the magnetic field. As an example Fig. 6.1 shows the B−H loop of a

non-oriented Fe-Si lamination at Bp = 0.2 T where a constant relative permeability

of µ = 5900 can be assumed. Let us now derive a formula for the classical loss.

Consider the sample geometry shown in Fig. 6.2. Here, the magnetic field is directed

along the z-axis and the Maxwell’s equations can be written as

∂Hz

∂y
= jx, (6.2)

and
∂ jx
∂y

= σ
∂Bz

∂ t
. (6.3)

After deriving Eq. 6.2 and replacing ∂ jx/∂y through Eq. 6.2, we obtain

∂ 2Hz

∂y2 = σ
∂Bz

∂ t
, (6.4)
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Fig. 6.1 B−H loop of a 0.345 mm thick non-oriented Fe-Si at Bp = 0.2 T. At such low
inductions, a constant relative permeability µ = 5900 can be assumed.

Assuming the constitutive equation Bz = µHz, we finally obtain

∂ 2Hz

∂y2 = σ µ
∂Hz

∂ t
. (6.5)

Under sinusoidal regime, we can introduce complex quantities by which we obtain

∂ 2Hz

∂y2 = jσωµHz. (6.6)

In addition, the following boundary conditions hold

∂Hz

∂y
|y = d/2 = jωσ

d
2

Bzp, (6.7)

where Bzp is the average Bz, and

∂Hz

∂y
|y = 0 = 0. (6.8)
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Fig. 6.2 The sample geometry for the computation of loss at low induction. Here d is
the thickness along y axis and l is the width of the sample along the x-axis. The sample is
assumed infinitely long and the external field is applied along z axis

The solution of previous Eqs. provide the classical loss [66] as

Wcl( f ) =
πγB2

p

2
· sinhγ − sinγ

coshγ − cosγ
, [J/m3] (6.9)

where

γ =
√

πσ µd2 f . (6.10)

If γ ≤ 2, the skin effect can be neglected [67] and Eq. 6.9 is reduced to the standard

classical formula (Eq. 6.1).

6.1.2 Computation of loss at high induction

This case is related to very high fields at which the materials exhibit a response close

to ideal soft magnetic material, and hence become saturated at fields lower than the

maximum field. One possibility is to adopt a kind of step-like J−H characteristic

because in such a case, a simple expression for the classical loss can be derived. As

an example, Fig. 6.3 reports the J−H loop of low carbon steel (LCS-3); see table

6.1. At high inductions, it can be seen that the loop can be well approximated by a

step-like responce.
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Fig. 6.3 The J −H responce of sample LCS-3 at Jp = 1.6T (green line). At such a high
induction, the constitutive relationship is highly non-linear and the loop can be approximated
by a steplike responce (red line).

According to this approach, the magnetization change is not uniform. Instead, it

occurs only in a certain portion of slab cross section in the form of one dimensional

fronts as shown in Fig. 6.4. In our analysis we assume the peak induction equal to

the maximum induction (Bp ≈ Bmax). Under these circumstances, the two symmetric

fronts will propagate towards the center where they annihilate in each half period.

The instantaneous values of B(t) has a direct correspondence with the position of the

front yF(t). For increasing B, we obtain

yF(t) =±d
4

[
B(t)
Bp

−1
]
, (6.11)

and for decreasing B, the equation becomes

yF(t) =±d
4

[
B(t)
Bp

+1
]
. (6.12)
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Fig. 6.4 Propagating fronts in magnetic materials observing step-like magnetization law

Due to the symmetry between the two fronts, we will limit the analysis to the region

where (−d/2 < y < 0). Applying Faraday’s law we obtain

j(y, t) =

−σd
2

dB
dt −d/2 ≤ y < yF(t)

0 yF(t)< y ≤ 0
(6.13)

By integrating Eq. 6.13 with respect to y, the field H is obtained as

H(y, t) =

−σd
2

dB
dt [yF(t)− y] −d/2 ≤ y < yF(t)

0 yF(t)< y ≤ 0
(6.14)

In addition, the following boundary condition holds

H(y, t) |y=±d/2= Ha(t), (6.15)

where Ha(t) is the applied field. Incorporating Eq. 6.11 and 6.12 in Eq. 6.14, the

following magnetization law is obtained

Ha(t) =
σd2

8

[∣∣∣∣dB
dt

∣∣∣∣ B(t)
Bp

+
dB
dt

]
. (6.16)
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Here, the field is proportional to frequency f as it depends upon dB/dt. As the power

loss per unit cycle is given by

W (SWM)
cl =

P(SWM)
cl

f
=
∫ 1/ f

0
Ha

dB
dt

dt, (6.17)

by incorporating Eq. 6.16 in 6.17, we obtain

W (SWM)
cl =

σd2

8

∫ 1/ f

0

[∣∣∣∣dB
dt

∣∣∣∣ B(t)
Bp

dB
dt

+

(
dB
dt

)2
]

dt. (6.18)

As the first term of the right hand side of equation 6.18 oscillates to zero, Eq. 6.18 is

reduced to

W (SWM)
cl =

σd2

8

∫ 1/ f

0

(
dB
dt

)2

dt, (6.19)

Under sinusoidal induction Eq. 6.19 becomes

W (SWM)
cl =

π2

4
σd2B2

p f = 1.5Wcl( f ). (6.20)

From this relation, it can be observed that the SWM model provides a classical

loss much greater than the loss obtained under uniform flux density (Eq. 6.1). The

expriment will show that this approach unfortunately leads to non-physical results

because the computed classical loss can result greater than the experimental.

6.2 Experimental

Magnetic energy losses have been measured at low and high inductions at different

frequencies to compare the theoretical results, obtained with the models discussed

in the previous sections. Table 6.1 provides the list of the investigated low carbon

steels (LCS) and non-oriented iron silicon alloys. The samples have been chosen

because of different conductivity, thickness and density. At high inductions, the
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LCS samples emulate a step-like response. In addition, the classical loss is relatively

high compared to the excess loss because of the low resistivity. The samples have

been measured either as Epstein strips or ring samples and the measurements have

been performed with the calibrated wattmeter-hysteresisgraph, described in section

3.2.1, under controlled sinusoidal induction. At low induction, the frequency span

from quasi-static conditions up to 10 kHz. On the other hand, at high inductions

the analysis is only limited to the region not influenced by the skin effect. Because

of different conductivity, sheet thickness, and permeability, the frequency span not

influenced by skin effect varies from one sample to another. Two different Epstein

frames have been used with number of turns equal to 200 and 700.

Table 6.1 The list of non-oriented and low carbon steel sheets analyzed at very high and
low inductions. The samples have been measured either as Epstein strip or a ring. The LCS
samples in particular have low resistivity and tends to emulate a step-like response.

Material Sample shape Density
(kg/m3)

Resistivity
(Ω ·m)

Thickness
(mm)

LCS-1 Epstein 7850 19.2 ×10−8 0.506
LCS-2 Ring 7860 15.3 ×10−8 0.507
LCS-3 Epstein 7870 12 ×10−8 0.636
Fe-Si (NO)- 1 Ring 7650 52 ×10−8 0.194
Fe-Si (NO)- 2 Epstein 7600 56 ×10−8 0.345

6.2.1 Low induction measurements

The loss has been measured at Jp = 0.2 T and frequency ranging from quasi-static

conditions up to 10 kHz. Fig. 6.5 shows the total loss decomposed into its three

components, with the classical loss computed by applying Eq. 6.9, and assuming a

relative permeability µ = 5900. Fig. 6.6 reports the quantity Wdiff = Wtot −Wcl vs.
√

f up to f = 10 kHz. The hysteresis loss Whyst has been obtained by extrapolation

up to f = 0 Hz. The quantity Wdiff = Whyst +Wexc is then computed theoretically

where Wexc is obtained through the following equation
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Fig. 6.5 Measured energy loss at Jp = 0.2 T up to 10kHz, in 0.194 mm thick non-oriented
Fe-(3.2wt%)Si sample. The open circles represent the experimental loss. The total loss is
decomposed into its three components where Wcl( f ) is obtained through Eq. 6.9.

Wexc = 2n0V0Jp ·
∫

π/2

0

(√
1+

8σGSV0

n2
0V 2

0
π f Jpcosφ −1

)
cosφdφ (6.21)

In addition, Fig. 6.7 shows the corresponding number of active magnetic objects

n versus Hexc. It can be seen that the theoretically assumed linear dependence of n

versus Hexc has been validated upon the complete range of frequencies.

We wanted to examine the limit of the standard classical formula neglecting skin

effect (Eq. 6.1). To this end, the loss separation has been newly obtained by applying

the classical loss formula Eq. 6.1 till 1 kHz and the results are shown in Fig. 6.8. Fig.

6.9 reports the quantity Wdiff =Wtot −Wcl vs.
√

f . Again, the experimental results

have been validated theoretically by applying Eq. 6.21. However, as the frequency

range is extended till 10 kHz, it can be seen from Fig. 6.11 that the quantity Wdiff =

Wtot −Wcl deviates from
√

f law beyond 2500 Hz because of the emergence of the
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Fig. 6.6 The quantity Wdiff = Wtot −Wcl is plotted vs. the square root of frequency in the
0.194 mm thick non-oriented Fe-(3.2wt%)Si sample up to f = 10 kHz (open circles). The
same quantity Wdiff is then computed theoretically as Wdiff = Whyst +Wexc, where Wexc is
obtained through Eq. 6.21 (dashed lines).

Fig. 6.7 The number of active magnetic objects n is plotted against Hexc in the investigated
0.194 mm thick non-oriented Fe-(3.2wt%)Si sample. It can be seen that n follows a linear
relationship with Hexc upon the complete range of frequencies.



6.2 Experimental 99

Fig. 6.8 Measured energy loss at Jp = 0.2 T up to 1 kHz in a 0.194 mm thick non-
oriented Fe-(3.2wt%)Si sample. Experimental loss represented by open circles. The loss is
decomposed in to its three components, where Wcl is obtained by applying standard classical
loss formula (Eq. 6.1).

Fig. 6.9 Quantity Wdiff = Wtot −Wcl is plotted against
√

f in 0.194 mm thick non-oriented
Fe-(3.2wt%)Si sample till 1 kHz (dots), where Wcl is computed through standard classical
loss formula (Eq. 6.1). The dashed line represents the same quantity obtained theoretically
where Eq. 6.21 is applied to compute the excess loss.
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Fig. 6.10 Measured energy loss at Jp = 0.2 T up to 10 kHz in a 0.194 mm thick non-
oriented Fe-(3.2wt%)Si sample. Experimental loss represented by open circles. The loss is
decomposed in to its three components, where Wcl is obtained by applying standard classical
loss formula (Eq. 6.1).

skin effect. A comparison between the classical loss formulas Eq. 6.9 and Eq. 6.1 is

reported in Fig. 6.12. It can be seen that the two computed classical losses begin to

deviate from one another at frequencies beyond 2500 Hz.

The conclusion is that at low inductions, the theoretical frame offered by STL

can be applied even in the presence of skin effect.

6.2.2 High induction case

The investigation is now carried out on LCS steel sheets at high peak-induction

(Jp = 1.6 T) to check the validity of the classical loss formula obtained under the

SWM model (Eq. 6.20) . To this end, we have selected three LCS samples whose

quasi-static B−H loops emulate the step-like response (Fig 6.13). As the sample

conductivity is high, the excess loss component is much lower than the classical loss.

All the measurements have been restricted to the region not influenced by the skin
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Fig. 6.11 Wdiff = Wtot −Wcl is plotted against
√

f in a 0.194 mm thick non-oriented Fe-
(3.2wt%)Si sample till 10 kHz (dots), where Wcl is computed through standard classical
loss formula (Eq. 6.1). The same quantity Wdiff = Whyst +Wexc (dashed lines) is computed
theoretically where Eq. 6.21 is used to obtain the excess loss . Experimental Wdiff deviates
from

√
f law beyond 2500 Hz due to the emergence of skin effect.

effect because we want to check one more time, the validity of the standard classical

loss formula (Eq. 6.1).

We started our analysis with the experimental characterization of sample LCS-2,

at Jp = 1.6 T. The classical loss was firstly computed by using the standard classical

formula (Eq. 6.1). Fig. 6.14 shows the experimental quantity Wdiff = Wtot −Wcl and

its theoretical counterpart Wdiff = Whyst +Wexc where the excess loss is computed by

applying Eq. 6.21. The experimental and theoretical results are in agreement till 500

Hz. Beyond this frequency, a significant deviation is observed. The reason is that

the standard classical loss formula can no longer be applied in the presence of skin

effect. Similar results are reported in Fig. 6.15 for the sample LCS-1. It is observed

that the region of frequencies not influenced by the skin effect is limited to f ∼= 60
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Fig. 6.12 Classical loss (with and without skin effect) is plotted vs. frequency in a 0.194
mm thick non-oriented Fe-(3.2wt%)Si sample till 10 kHz. Wcl (solid line) is obtained by
applying standard classical loss formula (Eq. 6.1) while Wcl (dashed line), is obtained by
applying Eq. 6.9, that takes skin effect into account. They begin to deviate at frequencies
beyond 2500 Hz due to the appearance of skin effect.

Hz. A similar result ( f ∼= 80 Hz) has been found for the sample LCS-3. Both LCS-1

and LCS-3 have higher permeability as compared to LCS-2, that causes the early

appearance of skin effect in these materials.

The conclusion is that under negligible skin effect, the experimental results can

be accurately predicted with the STL, using standard classical loss formula (Eq. 6.1).

Therefore, it is confirmed one more time that the standard classical loss formula can

be even applied at high inductions, under negligible skin effect.

In order to discuss the classical loss formula obtained from the SWM model

(Eq. 6.20), the loss separation has been performed in the same frequency range not

influenced by the skin effect. Fig. 6.16 shows the decomposition of total energy

loss into the three components in sample LCS-2. Here, W (SWM)
cl is the classical

loss obtained by adopting SWM model (Eq. 6.20), whereas the Wcl is the classical
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Fig. 6.13 DC hysteresis loops of the three adopted low carbon steel sheets at Jp=1.6 T. The
loops resemble almost a step-like response.

Fig. 6.14 The quantity Wdiff = Wtot −Wcl versus
√

f in 0.507 mm thick LCS-2 at Jp=1.6
T (open circles) and its theoretical counter part Wdiff = Whyst +Wexc (dashed line) where Eq.
6.21 has been applied to compute the excess loss. Deviation between the experimental and
the theoretical results is observed at frequencies beyond 500 Hz due to the appearance of
skin effect.
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Fig. 6.15 The quantity Wdiff = Wtot −Wcl vs.
√

f for a 0.506 mm thick LCS-1 at Jp=1.6 T
(dots) along with the theoretical Wdiff = Whyst +Wexc (dashed line) where Eq. 6.21 is applied
to compute the excess loss. Again, a deviation between the experimental and theoretical
results is observed beyond 60 Hz due the appearance of skin effect.
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Fig. 6.16 Energy loss measurements performed on 0.507 mm thick LCS 2 at Jp=1.6 T
upon the range of frequencies not influenced by the skin effect. W (SWM)

cl is the classical
loss obtained from SWM model (Eq. 6.20), while Wcl is obtained by applying the standard
classical loss formula (Eq. 6.1). It can be seen that W (SWM)

cl predict values even greater than
the total loss (open circles).

loss obtained by applying standard classical formula (Eq. 6.1). It is observed

that W (SWM)
cl predicts values even greater than the experimental total loss. This

is in contradiction with the basic idea that the existence of domain walls and the

corresponding local eddy current loss should in any case contribute to extra loss

irrespective of the assumptions regarding the uniformity of flux density’s distribution

at low frequencies. In other words the values predicted by following the SWM model

are not physical and the hypothesis of a step-like shape (Fig. 6.13) is not verified.

Similar results are obtained for sample LCS-1 and LCS-3, as shown in Fig. 6.17

and 6.18. Again it can be seen that the classical loss predicted by SWM overestimates

the total loss. In conclusion, one can confidently state that STL predicts the energy

loss vs. frequency behavior in all the investigated steel sheets accurately also at high

induction levels. On the other end, the application of the SWM approach, leads to a

huge contrast between the measured and predicted losses.
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Fig. 6.17 Energy loss measurements performed on 0.506 mm thick LCS-1 sheet at Jp =
1.6 T, upon frequencies not influenced by skin effect. W (SWM)

cl is the classical loss obtained
by SWM model (Eq. 6.20) while Wcl is obtained by applying the standard classical loss
formula (Eq. 6.1). Again, it can be observed that W (SWM)

cl predicts values even greater than
the experimentally obtained total loss.
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Fig. 6.18 Energy loss measurements performed on 0.636mm thick LCS 3 sheet at Jp=1.6T
upon the region of frequencies not influenced by skin effect. W (SWM)

cl is the classical loss
adopted by SWM model (Eq. 6.20), Wcl is obtained by applying the standard classical loss
formula (Eq. 6.1). It can be seen that W (SWM)

cl (dashed line) predict values even greater than
the total loss (open circles).
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Chapter 7

Conclusion

7.1 Conclusion

The efficiency of the soft magnetic materials used in the core of electrical machines

play a key role in the challenge of the global energy saving. For this reason, the accu-

rate computation of magnetic loss is an important step in the design and optimization

of electrical machines. Among the different models available, simple expressions

based on the Steinmetz formula are currently applied because of their simplicity,

but they reveal their limits especially under non conventional supply conditions. On

the other end, the physical models based on the Statistical Theory of Loss and the

loss separation concept can bridge the gap between engineers and physicists. In

modern electrical machines and drives, the application of power electronics, new

geometrical and magnetic configurations, high speed, and the needs in powertrain

application of more compact configurations is responsible for complicated flux pat-

terns, distorted waveforms, higher supply frequencies and high induction levels near

saturation. For this reason, there is a need of experimental characterizations under

non-conventional supply conditions comprising 1 and 2-dimensional fluxes, distorted
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waveforms, high frequencies and higher induction levels, not always covered by

standard measurement methods.

In this thesis, we have investigated non oriented soft magnetic materials under a

wide range of supply conditions, including 2-D flux till magnetic saturation, 1-D flux

at low and high inductions up to high frequencies. A complete characterization of Fe-

(3.2 wt%)Si steel sheet was performed up to inductions close to magnetic saturation

(Jp/Js ≈ 0.98) under 1 and 2-D fluxes. Models based on Statistical Theory of Loss

and loss separation concept were applied under 1-D conditions, successfully extended

to 2-D fluxes, and validated at least in the region of frequencies not influenced by

the skin effect. The energy loss components under 1-D and 2-D conditions were

interrelated in a rather universal fashion at all frequencies and it was shown that

through a limited set of measurements under alternating and circular conditions, the

corresponding behavior under a generic flux loci can be estimated.

Loss characterization of different non-oriented Fe-Si and low carbon steels

were also performed under 1-D flux at very low and high sinusoidal inductions

using Epstein frame, ring samples, and a compensated single sheet tester, over

frequencies ranging from quasi-static conditions till 10 kHz. At low inductions,

where a linear approximation of the constitutive relation holds, the solution of

Maxwell equations provided an analytical approximation of the classical loss under

skin effect conditions. Such result was applied to separate the loss and it was verified

that STL found application at very low induction, even in the presence of skin effect.

At high inductions, where the magnetic constitutive equation is highly non-linear,

an analytical expression for the classical loss was worked out by using the so called

Saturation Wave Magnetization (SWM) model, where the B−H loop of a material

is approximated by a step-like response. In this case, different low carbon steel

sheets were tested at high induction levels where the B−H loop seems to emulate

a step-like response, but it was shown that the classical loss using SWM approach

overestimated the experimental losses leading to "non-physical" results. On the other



7.1 Conclusion 111

end, in the region where skin effect is negligible, the experimental loss could be

accurately predicted by using the standard classical loss formula in the framework of

the STL.

A collateral research was developed during a visit to ENS, Cachan, France where

a compensated Single Strip Tester with a simple and novel compensation technique

was developed to reduce the systematic uncertainities introduce in measurements

due to flux drop in the yokes of Single Sheet Testers. The developed compensated

SST implements an effective MMF compensation method to neutralize the losses in

the yoke through which the accurate characterization of soft magnetic steel sheets

(both non-oriented and grain-oriented) were obtained.
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83:25–30, 2007.

[56] C Ragusa, Stanislaw Zurek, C Appino, and Anthony John Moses. An intercom-
parison of rotational loss measurements in non-oriented fe–si alloys. Journal
of Magnetism and Magnetic Materials, 320(20):e623–e626, 2008.

[57] N Nencib, A Kedous-Lebouc, and B Cornut. 2d analysis of rotational loss
tester. Magnetics, IEEE Transactions on, 31(6):3388–3390, 1995.

[58] Yoshitaka Maeda, Hiroyasu Shimoji, Takashi Todaka, and Masato Enokizono.
Rotational power loss of magnetic steel sheets in a circular rotational magnetic
field in ccw/cw directions. Journal of Magnetism and Magnetic Materials,
320(20):e567–e570, 2008.

[59] Olivier de la Barrière, Carlo Appino, Fausto Fiorillo, Michel Lécrivain, Carlo
Ragusa, and Patrice Vallade. A novel magnetizer for 2d broadband characteri-
zation of steel sheets and soft magnetic composites. International Journal of
Applied Electromagnetics and Mechanics, 48(2, 3):239–245, 2015.

[60] F Fiorillo, E Barbisio, and Carlo Stefano Ragusa. Accurate measurement of
magnetic power losses and hysteresis loops under generic induction waveforms
with minor loops. 2004.

[61] J Sievert and Braunschweig Physikalisch-Technische Bundesanstalt. Mag-
netic measurements on electrical steels using Epstein und SST methods.
Wirtschaftsverl. NW, Verlag für Neue Wiss., 2001.

[62] JD Sievert and D Son. On the effective magnetic path length used for field
strength and loss determination. Journal of Magnetism and Magnetic Materials,
41(1):235–237, 1984.

[63] F Brailsford. Alternating hysteresis loss in electrical sheet steels. Electrical
Engineers, Journal of the Institution of, 84(507):399–407, 1939.

[64] Sergey E Zirka, Yury I Moroz, Philip Marketos, and Anthony J Moses.
Viscosity-based magnetodynamic model of soft magnetic materials. IEEE
transactions on magnetics, 42(9):2121–2132, 2006.

[65] O Bottauscio, Mario Chiampi, and D Chiarabaglio. Iron losses in soft mag-
netic materials under periodic non-sinusoidal supply conditions. Physica B:
Condensed Matter, 275(1):191–196, 2000.



References 117

[66] Giorgio Bertotti. Hysteresis in magnetism: for physicists, material scientists,
and engineers. Academic„ San Diego, 1998.

[67] Cinzia Beatrice, Carlo Appino, Olivier de la Barrière, Fausto Fiorillo, and
Carlo Ragusa. Broadband magnetic losses in fe-si and fe-co laminations. IEEE
Transactions on Magnetics, 50(4):1–4, 2014.


	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Goal of the thesis
	1.2 Thesis outline
	1.3 List of scientific publications

	2 Overview of iron loss models
	2.1  Steinmetz-like formulas
	2.1.1 Standard Steinmetz formula
	2.1.2 Modified Steinmetz equation

	2.2 Models based on loss separation
	2.2.1 Hysteresis loss
	2.2.2 Classical loss
	2.2.3 Excess loss

	2.3 Loss separation procedure
	2.4 Modeling of loss under generic flux loci
	2.5 Conclusion

	3 Experimental techniques
	3.1 Measurement techniques
	3.1.1 Fieldmetric method
	3.1.2 Thermometric method

	3.2 Measurement setups 
	3.2.1 1-D Measurement setup
	3.2.2 2-D measurement setups
	3.2.3  Control of the induction waveform 


	4 A novel compensated Single Strip Tester
	4.1 Introduction and motivation
	4.1.1 Sample geometry
	4.1.2 Magnetic path length
	4.1.3 Principle of MMF compensation
	4.1.4 Experimental results
	4.1.5 Conclusion


	5 Alternating and rotational losses in non-oriented steel sheets at high inductions 
	5.1 Introduction and motivation
	5.2 Experimental setup and sample geometry
	5.3 Results and discussion
	5.3.1 Example of practical estimation of loss under a given 2-D flux

	5.4 Conclusion

	6 Classical loss computation under 1-D fluxes
	6.1 Motivation
	6.1.1 Computation of classical loss at low induction
	6.1.2 Computation of loss at high induction

	6.2 Experimental
	6.2.1 Low induction measurements
	6.2.2  High induction case


	7 Conclusion
	7.1 Conclusion

	References

