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Abstract

The accurate prediction of windblown sand drift events approaching human infrastructures and activities is funda-
mental in arid lands. In both scientific literature and technical practice sand drift estimation is carried out in mean
terms. Typically, sand drift net direction and intensity are assessed by means of the resultant drift potential. How-
ever, windblown sand suffers a number of epistemic and aleatory uncertainties, related to both the wind and the sand
fields. The windblown sand drift estimation in probabilistic terms is useful in the infrastructure design perspective
and allows to obtain characteristic values of windblown sand transport. In this study windblown sand is considered
as an environmental action in analogy to wind action. Several uncertainties involved in the phenomenon are consid-
ered: threshold shear velocity and 10-minute average wind velocity are assumed as random variables. Monte Carlo
approach is adopted within a bootstrapping technique in order to assess sand drift in probabilistic terms. The proposed
approach is applied to five sites in the Arabian Peninsula. Directional statistics of the sand drift are given for each site.

Keywords: windblown sand, drift potential, uncertainty quantification, probabilistic approach, Monte Carlo

Nomenclature

DP Drift Potential
HW Hybrid Weibull
MC Monte Carlo
RDD Resultant Drift Direction
RDP Resultant Drift Potential
SD-WA Sand Deterministic - Wind Averaged
SWP Sand Wind Probabilistic
D drift potential
F probability distribution function
F0 wind calm rate
N number of occurrences
Q sand transport rate
R resultant drift potential
T reference time
Tr recording time
U wind velocity
U10 10-min averaged wind speed
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c.o.v. coefficient of variation
d sand grain diameter
dr sand grain reference diameter
f probability density function
g gravitational acceleration
k Weibull shape parameter
p percentile
sk skewness
u∗ shear velocity
u∗t threshold shear velocity
z0 roughness length
∆t sampling interval
∆θ sector width
θ wind direction
λ Weibull scale parameter
µ mean value
ρa air density
ρb packed bulk sand density
σ standard deviation
# cardinality
0 calm wind

1. Introduction1

Windblown sand is of interest for several engineering fields in arid environments (e.g. Middleton and Sternberg,2

2013; Stipho, 1992), from environmental to civil engineering. In particular, windblown sand interacts with a number3

of civil structures and infrastructures, such as roads (e.g. Redding and Lord, 1981; Dong et al., 2004), railways (e.g.4

Zhang et al., 2007, 2010; Cheng and Xue, 2014), industrial facilities and pipelines (e.g. Alghamdi and Al-Kahtani,5

2005), farms (e.g. Wang et al., 2010), town an buildings (e.g. Rizvi, 1989; Bofah and Al-Hinai, 1986). Windblown6

sand transport results from soil erosion and involves sedimentation around built obstacles. In particular, windblown7

sand effects on civil structures comprehend, but are not limited to: wind erosion and foundation scouring, moving sand8

dunes encroaching infrastructures, sand accumulation around structures and infrastructures. Due to the nature of these9

effects, they can lead to several incremental costs in infrastructure management, e.g. loss of capacity and increased10

maintenance costs (Zakeri, 2012), but also to disastrous events, such as train derailment (Cheng et al., 2015). The11

design of such infrastructures requires the accurate estimation of the amount of incoming windblown sand that attacks12

the structure. It significantly vary in space and time. Indeed, on the one hand, line-like infrastructures cross different13

regions with a wide variety of geomorphological characteristics. On the other hand, infrastructure design must ensure14

the service life prescribed by standards. Hence, a probabilistic approach to design is necessary to take into account15

the inborn variability of the phenomenon.16

The amount of incoming windblown sand is defined as the mass per unit time and per unit length, and usually17

called incoming sand drift. Phenomenologically, windblown sand is a multi-physics phenomenon which includes wind18

and sand subfields. Hence, sand drift depends on both the wind velocity and the sand characteristics. The modelling19

framework to sand drift evaluation has been first introduced by Fryberger and Dean (1979). Their seminal work20

still grounds the current scientific and technical literature in several application fields, such as fundamental research21

(e.g. Al-Awadhi and Al-Awadhi, 2009; Barchyn and Hugenholtz, 2011), geomorphology (e.g. del Valle et al., 2008;22

Bogle et al., 2015; Kilibarda and Kilibarda, 2016; Yang et al., 2016), paleo sedimentology (e.g. Yang et al., 2014),23

climatology (e.g. Bogle et al., 2015), coastal management (e.g. Riksen et al., 2016), civil engineering (e.g. Dong24

et al., 2004; Zhang et al., 2010; Cheng et al., 2015). In the Fryberger and Dean (1979) framework, the so-called Drift25

Potential (DP) is defined for each wind direction, while the Resultant Drift Potential (RDP) and the Resultant Drift26

Direction (RDD) stand for the magnitude and direction of the vector sum of DP over the directions, respectively.27

These quantities are called ”potential” because they provide a measure of sand-moving capacity of the wind blowing28
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over an ideal sand bed, neglecting the local covering of the ground surface (Pye and Tsoar, 2009). Fryberger and29

Dean (1979) obtain DP per reference time (usually 1 year) by cumulating the sand transport rate Q over the wind30

speed recording time, and rescaling it on the reference time. In turn, Q results from the vertical integration of the31

horizontal windblown sand flux. Several semi-empirical models to predict Q have been proposed so far, reviewed e.g.32

in Dong et al. (2003); Kok et al. (2012); Sherman and Li (2012). Among them, modified Bagnold type models are33

the most widely adopted in literature (see for instance the field studies by Fryberger and Dean, 1979; Al-Awadhi and34

Al-Awadhi, 2009; Barchyn and Hugenholtz, 2011; Sherman and Li, 2012; Sherman et al., 2013; Yang et al., 2014; Liu35

et al., 2015). In particular, the model proposed by Lettau and Lettau (1978) is the most adopted one. They all relate Q36

to the wind shear velocity u∗ and the threshold shear velocity u∗t, that is the shear velocity above which sand transport37

occurs. Usually, such a threshold is assessed as a function of the sand grain diameter d by means of semi-empirical38

expressions (e.g. Bagnold, 1941; Iversen and White, 1982; Shao and Lu, 2000; McKenna, 2003). According to the39

Authors, it is worth pointing out that the current approach within the Fryberger and Dean (1979) framework is:40

• deterministic with respect to the sand subfield. Indeed, the expressions of the threshold shear velocity u∗t used41

so far are purely deterministic;42

• time-averaged with respect to the wind subfield. The wind speed inborn variability is accounted for, but only43

the mean value of DP is retained because the rescaling on the reference time is tantamount to averaging.44

Let us call such approach as Sand Deterministic - Wind Averaged (SD-WA).45

Despite SD-WA approach is generalized in practice, windblown sand phenomenon is affected by several sources46

of uncertainty. They can be generally classified in aleatory and epistemic uncertainties (Zio and Pedroni, 2013). Let47

us introduce a complementary categorization referring to the wind and sand subfields introduced above. Epistemic48

uncertainties are associated with the lack of knowledge about the properties and conditions of the phenomena to be49

modeled. They can be further ascribed to model, parameter and measurement uncertainties. Wind-field epistemic50

uncertainties are generally well quantified, because of its long-standing modelling, while sand-field ones have been51

only recently highlighted with respect to threshold shear velocity (e.g. Barchyn and Hugenholtz, 2011; Raffaele et al.,52

2016) and sand transport rate (e.g. Barchyn et al., 2014). Aleatory uncertainties refer to inherent randomness of natural53

phenomena. Let us introduce a further categorization referring to the wind and sand subfields introduced above. Wind-54

related aleatory uncertainties affect the velocity and other environment variables. Sand-related aleatory uncertainties55

take place at both the microscopic scale, i.e. grain irregular shape, grain size distribution, grain relative position on56

the sand bed (e.g. Nickling, 1988; Duan et al., 2013; Edwards and Namikas, 2015), and the macroscopic scale, i.e.57

soil vegetation covering, soil sediment availability, soil moisture and soil crusting (see e.g. McKenna Neuman and58

Nickling, 1989; Lancaster and Baas, 1998; Shao, 2008; Hoonhout and de Vries, 2016). The statistical description of59

wind speed is long-standing and well established, as reviewed e.g. by Carta et al. (2009). Conversely only recently60

the Authors proposed the statistical description of threshold shear velocity (e.g. Raffaele et al., 2016). The cited paper61

substantially contributes to the background of the present study. It includes a comprehensive review on the uncertain-62

ties that affects both experimental measurements and modelling of u∗t. In the light of this, a statistical modelling is63

developed, based on advanced copula-based quantile regression. Joint probability density functions of the sand grain64

diameter and u∗t are derived, as well as the conditional probability density functions of the threshold shear velocity65

for given values of the diameter.66

Both the engineering design needs and the shortcomings of the SD-WA approach pave the way for the proba-67

bilistic description of the incoming sand drift. According to the Authors, it can be regarded as equivalent to other68

environmental actions, in analogy to wind action. Hence, let us briefly outline in the following to which extent the69

incoming wind speed U is analogous to the sand transport rate Q and to the drift potential DP. First, in wind engi-70

neering the wind speed is defined in probabilistic terms due to the uncertainty related to inborn wind variability only.71

The probabilistic representation of sand transport rate is recommended a fortitiori and it is more difficult at the same72

time, since it is affected by more uncertainties. The variability of both wind and sand features should be taken into73

account. Second, most of the wind effects on structures, e.g. equivalent static loads or flutter, are related to extreme74

values of the incoming wind speed. Conversely, windblown sand effects on civil structures are mainly induced by the75

cumulated values of current values of Q over time, that is DP. In this perspective, windblown sand effects and related76

assessment recall wind-induced fatigue. In spite of this analogy, some differences remain. Only a few incoming wind77

directions are considered in directional wind-induced fatigue assessment (see e.g. Repetto and Solari, 2004), i.e. the78
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ones that induce the highest stresses on the cross section. Conversely, all incoming wind directions are taken into79

account in assessing the windblown sand drift, since they all contribute in RDP definition.80

Bearing the above analogy in mind, three main questions may rise to the Authors’ mind: i. How does the un-81

certainty of both threshold shear velocity and mean wind velocity jointly propagate to RDP? ii. Does the probability82

distribution of RDP change significantly form a site to another in the same region? iii. Does the gap between charac-83

teristic and mean value of RDP make the approach of interest for engineering practice?84

The present study aims at contributing in shedding some light on such issues. A general probabilistic approach85

is proposed and applied to real world sites in Arabian Peninsula. Each site is characterized by its actual wind field86

and sand granulometry. In particular, variability of both sand characteristics at microscopic scale (comprehensively87

reflected by threshold shear velocity) and wind speed (i.e. wind direction and intensity) are considered. Other sources88

of uncertainties reviewed above are not included because the lack of their statistical description. As a result, instead89

of a single pair of values describing mean RDP magnitude and direction, their probability distributions are obtained.90

Characteristic values are derived from them, and design values can be derived in turn towards a semi-probabilistic91

approach. The paper develops accordingly to the above objectives through the following sections. In Section 2, the92

proposed probabilistic approach is outlined. In Section 3, results referred to some chosen Sites in Arabian Peninsula93

are shown, compared and discussed. In Section 4, conclusions and perspectives are outlined.94

2. Methods95

In the following, the proposed probabilistic approach based on the general framework of Fryberger and Dean96

(1979) is outlined. First, the framework proposed by Fryberger and Dean (1979) is recalled. Then, the proposed97

probabilistic approach to assess sand drift is shown step-by-step.98

Fryberger and Dean (1979) define the directional drift potential and the resultant drift potential on the basis of the99

model proposed by Lettau and Lettau (1978), where the sand transport rate Qθ in a given direction θ is expressed as100

Qθ = 6.7

√
d
dr

ρa

g
u3
∗,θ

(
1 −

u∗t
u∗,θ

)
if u∗,θ > u∗t

Qθ = 0 if u∗,θ ≤ u∗t,
(1)

being d the sand grain diameter, dr = 0.25 mm the reference sand grain diameter, ρa the air density, g the gravitational101

acceleration, u∗t the threshold shear velocity and u∗,θ the shear velocity in the corresponding wind direction.102

The directional drift potential Dθ (i.e. DP in Fryberger and Dean, 1979, notation) is rephrased as103

Dθ =
1
ρb

T
Tr

Nθ∑
i=1

Qθ,i∆t =
T
Tr

Nθ∑
i=1

Dθ,∆t,i (or Dθ = 0 if Nθ = 0) , (2)

where ρb is the packed bulk sand density, T is the reference time and Tr is the recording time set as a multiple of T .104

∆t is the sampling interval of the wind speed, not necessarily equal to the 10-minute averaging time, for the sake of105

generality. The drift potential over the sampling interval Dθ,∆t [m3m−1∆t−1] is estimated postulating Qθ [Kg m−1s−1]106

constant over ∆t.107

Nθ follows as the number of occurrences in the reference time in which the wind will blow in the direction θ, and it is108

expressed as109

Nθ =
T
Tr

Tθ
∆t
, constrained by

2π/∆θ∑
θ=1

Nθ + N0 = N, (3)

where Tθ is the time over which the wind blows in the direction θ, ∆θ is the sector width on which the wind is recorded,110

N0 and N are the number of occurrences of calm wind and the number of total occurrences in the reference time T ,111

respectively.112

Finally, the resultant drift potential R (i.e. RDP in Fryberger and Dean, 1979, notation) can be easily obtained from113

the vector sum of Dθ:114

R =

2π/∆θ∑
θ=1

Dθ. (4)
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In the following, resultant drift potential magnitude and direction are defined as |R| and R̂, respectively.115

It may be useful to highlight that Fryberger and Dean (1979) provide also an index of the directional variability of116

windblown sand drift, i.e. the ratio between the resultant drift potential magnitude and the sum of drift potential117

modulus:118

R/D =
|R|∑2π/∆θ

θ=1 |Dθ|
. (5)

In particular, the lower the ratio, the higher the directional variability.119

In the proposed probabilistic approach the input quantities u∗t and u∗,θ are random variables. Hence, the Fryberger120

and Dean (1979) framework has to be adapted in order to deal with such random variables. Let us call such approach121

as Sand Wind Probabilistic (SWP). The steps followed in SWP approach are sketched in the flow chart in Figure 1122

and described in the following.

𝑢∗,𝜃

𝑢∗𝑡

𝑄𝜃 𝐷𝜃 𝑅
𝑈10

𝑧0

𝑑

site char. input r.v. results

MC bootstrap
MC

bootstrap
MC

sand

wind

subfield

Figure 1: Flow chart of the proposed SWP approach

123

The site characteristics are needed as input data, with respect to both sand subfield (mean sand diameter d) and124

wind subfield (aerodynamic roughness z0 and time series of 10-minute averaged wind speed U10(t)). The input ran-125

dom variables u∗t and u∗,θ are described from the probability density functions f (u∗t) and f (u∗,θ), respectively. To the126

Authors’ best knowledge, there are no experimental evidence or systematic studies in literature about a dependence127

between u∗,θ and u∗t. In this study, the directional shear velocity and the threshold shear velocity are considered in-128

dependent random variables. Indeed, u∗t depends entirely on the sand characteristics, while u∗,θ depends only on the129

wind velocity for a given z0. f
(
u∗,θ

)
is simply obtained by rescaling the probability density function f

(
U10,θ

)
, being130

u∗,θ = 0.41U10,θ/ln(z/z0). Hence, Weibull-type f
(
u∗,θ

)
results. The conditional probability density functions f (u∗t | d)131

are obtained in Raffaele et al. (2016). Interested readers can refer to the paper above for further details. Here, Figure132

2 is limited to summarize the final finding of that study, i.e. the statistical description of the threshold shear velocity133

versus mean sand diameter d by means of some percentiles and statistical moments: the mean value µ(u∗t) and 1st,134

5th, 25th, 75th, 95th and 99th percentiles p(u∗t).135

The sand transport rate model proposed by Lettau and Lettau (1978) is adopted because it is widespread in scien-136

tific and technical literature (e.g. Fryberger and Dean, 1979; Al-Awadhi and Al-Awadhi, 2009; Barchyn and Hugen-137

holtz, 2011; Yang et al., 2014; Liu et al., 2015), and judged performing better than other sand transport models138

(Sherman et al., 2013). Qθ results from the transformation of the continuous random variables u∗,θ and u∗t. Qθ is139

expected to be a mixed random variable. In fact, Qθ is characterized by a discrete part, i.e. Qθ = 0, and a continuous140

part, i.e. Qθ > 0, because of the nature of the adopted sand transport rate model (Eq. 1).141

Analytically, given the independent random variables u∗,θ and u∗t, the probability density function f (Qθ) for a given142

value of d can be evaluated by differentiating its distribution function F(Qθ), which, for q ≥ 0 and u∗,θ > u∗t, can be143
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Figure 2: Threshold shear velocity statistics. Mean values µ(u∗t) and percentiles p1(u∗t), p5(u∗t), p25(u∗t), p75(u∗t), p95(u∗t), p99(u∗t)

expressed as144

FQθ
(q) = P[Qθ ≤ q] = P


6.7

√
d
dr

ρa

g
u3
∗,θ

(
1 −

u∗t
u∗,θ

)
≤ q

⋂{
u∗,θ > u∗t

}
=

∫ ∫
{
(v1,v2) : v1>v2; v3

1

(
1− v2

v1

)
≤

q
6.7

√
dr
d

g
ρa

} f(u∗,θ ,u∗t)(v1, v2)dv1dv2

=

∫ ∞

0


∫ v1

v1−
1

v2
1

q
6.7

√
dr
d

g
ρa

f(u∗,θ ,u∗t)(v1, v2)dv2

 dv1

=

∫ ∞

0

Fu∗t (v1) − Fu∗t

v1 −
1
v2

1

q
6.7

√
dr

d
g
ρa

 fu∗,θ (v1)dv1.

(6)

However, apart for the untractable analytical solution of this double integration, f (Qθ) cannot be expressed in explicit145

form because f (u∗t | d) is given by a non-parametric kernel density function (Raffaele et al., 2016).146

Numerically, Monte Carlo (MC) simulations can be applied (Caflisch, 1998). This approach presents three substantial147

advantages. First, MC convergence is independent from the number of random variables involved. In fact, it converges148

with a rate equal to 1/
√

m, where m is the number of realizations, regardless of the number to random variables.149

Second, the very low cost of each single numerical realization of Qθ allows to perform a large number of realizations150

for each wind direction. Finally, MC allows to describe the mixed random variable Qθ in a straightforward manner.151

It is worth pointing out that Nθ (Eq. 3) is a random quantity because Tθ is. For this reason, the probability152

distribution of the directional drift potential g (Dθ) should be expressed as a mixture of convolutions153

g (Dθ) =

∞∑
n=1

( f1 ∗ . . . ∗ fi ∗ . . . ∗ fn)
(
Dθ,∆t

)
P [Nθ = n] with fi = f for i = 1, . . . ,Nθ, (7)

whose corresponding mean µ and variance σ2 are154

µ (Dθ) = µ (Nθ) µ
(
Dθ,∆t

)
σ2 (Dθ) = µ (Nθ)σ2 (

Dθ,∆t
)

+ µ2 (
Dθ,∆t

)
σ2 (Nθ) .

(8)
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In particular, the variance results from the sum of two terms, the first due to the variance of Dθ,∆t and the second155

to the variance of Nθ. It should be pointed out that adoption of a non-random Nθ implies an underestimation of156

the uncertainty of Dθ, being in this case σ2 (Nθ) = 0. It should be also observed that the constraint on the whole157

set {Nθ, θ = 1, 2, . . . , n} (see Eq. 3) induces a negative dependence between the variables Nθ, and consequently in158

the set {Dθ, θ = 1, 2, . . . , n}, which plays a key role in the final distribution of R. Unfortunately, the description of159

such an effect of the dependence between the variables Nθ can not be provided in a simple and tractable analytical160

manner. For these reasons, a Monte Carlo approach, based on bootstrapping techniques (Efron and Tibshirani, 1993)161

from the data set of observed values to generate samples, has been adopted. For each simulation, first the vector162

N = (N1,N2, . . . ,Nn) of registered occurrences of wind in the considered directions has been obtained from the data163

set. Then, for each direction {θ = 1, 2, . . . , n}, a sample of cardinality Nθ of realizations of Dθ,∆t has been randomly164

chosen. Finally, the matrix D = (D1,D2, . . . ,Dn) has been simulated through165

D =



D1
D2
...

Dθ

...
Dn


=



∑N1
i=1 D1,∆t,i∑N2
i=1 D2,∆t,i

...∑Nθ

i=1 Dθ,∆t,i
...∑Nn

i=1 Dn,∆t,i


, (9)

where any Dθ,∆t,i is a realization of Dθ,∆t previously extracted from the data set.166

Analytically, R is the vector sum of the components Dθ of the matrix D (Eq. 4), thus a realization of the resultant167

drift potential R can be immediately assessed once the realization of D is given. A set of numerical realizations of R168

can be computed by repeating the same procedure multiple times, and the distribution of R can be estimated through169

such a sample.170

3. Applications and results171

In the following, the proposed SWP approach is applied to five Sites located in the Arabian Peninsula. In Sub-172

section 3.1, the layout of the study is shown. Geographical location and aeolian sand grain size of the chosen sites173

are reported. In Subsection 3.2, SWP approach is applied to Site 1. Obtained results are shown in terms of both174

intermediate, i.e. Qθ and Dθ, and final, i.e. R, results in order to follow and comment step-by-step the full adopted175

procedure. Finally, in Subsection 3.3, final results from Sites 1-5 sites are summarized and compared.176

3.1. Study layout177

The site selection obeys to three criteria. Sites with a complete enough anemometric database are first retained.178

Among them, sites are selected to sample the huge variability of both sand and wind subfields in Arabian Peninsula.179

Finally, sites are chosen in reason of their proximity to railway lines having in mind the vulnerability of such infras-180

tructures to windblown sand.181

In Figure 3, Sites 1-5 are represented on Arabian Peninsula (blue dots). On the same Figure, some operating/under182

construction/planned railway tracks are sketched. In particular, the 950 km long Saudi Landbridge links Jeddah with183

the Saudi Arabia capital Riyadh. The 2750 km North South Railway Line links northern Saudi Arabia with Riyadh184

and the port city Ras Al-Khair. The 450 km long Haramain High Speed Rail links the cities of Medina and Mecca.185

Ethiad Rail is part of the United Arab Emirates’ national 1200 km railway network.186

Sites coordinates and mean sand grain size d are reported in Table 1. Mean grain sizes are derived from sedimentology187

studies of arabian sand dunes (Al-Sari and Uddin, 1981; Ehlen, 1993; Al-Harthi, 2002; Edgell, 2006). In particular,188

Sites 1, 3 and 4 are sensitive to the sand of Ad Dahna desert, made of medium grained, well sorted quartz sand. Site 2189

is sensitive to the sand of Jeddah plain. Site 5 is sensitive to the fine grained, moderately well sorted sand of Rub’ al190

Khali desert.191

The aerodynamic roughness is set equal to z0 = 4e−3 m in all Sites. The wind velocity dataset refers to Tr = 5192

years from January 2008 to December 2012 for all stations as well. The 10-min average wind direction is measured193

in the horizontal plane with a sampling interval ∆θ = 10◦ at all the selected anemometric stations. n = 36 directions194
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North-South
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Others

Ethiad Rail
4

Figure 3: Sketch of the selected sites (blue dots) and railways tracks (lines)

Table 1: Sites of incoming sand drift estimation

Site number Site name Latitude Longitude d [mm]
1 Riyad 24◦4’1.20”N 47◦34’58.80”E 0.35
2 Jeddah 21◦41’60.00”N 39◦10’58.80”E 0.25
3 Hafr Al-Batin 27◦55’1.20”N 45◦31’1.20”E 0.30
4 Al Qaisumah 28◦19’1.20”N 46◦7’58.80”E 0.30
5 Al Ain 24◦12’2.99”N 55◦45’40.00”E 0.16

result. The 10-min average wind velocity is recorded with a sampling interval in time ∆t = 1 hour at all the anemo-195

metric stations (sampling rate 24/144). The actually available datasets at the selected anemometric stations include196

missing data due to anemometric breakdowns and/or operational problems. Missing data are in average equal to 4%197

of the complete dataset. They are evaluated to be almost uniformly distributed along the day. Both the sampling rate198

and missing data are sources of incompleteness of the dataset. In literature (see e.g. Burlando et al., 2013) is widely199

accepted that randomly distributed data incompleteness is usually not influential on the probability distribution of the200

10-min average wind velocity, while it may lead to underestimations of the extreme values. It is worth recalling that201

windblown sand drift potential R is mainly induced by the cumulated values of current values of Q over time, result-202

ing from the 10-min average wind velocity in turn. Hence, data incompleteness is not expected to affect the obtained203

results. Finally, the resultant drift potential R is expressed over a reference time T = 1 year.204

The results discussed in the next Subsections are obtained by MC approach. Hence, results convergence should be205

discussed every time a random variable is introduced and numerically generated. Convergence is classically evaluated206

by referring to weighted residuals of the first statistical moments of each random variable. The cardinality of the set207

of realizations for each random variable is chosen in order to reach a weighted residual lower or at least equal to 1e−2.208

In the following, the cardinality of each random variable is reported for the sake of completeness, while convergence209

studies are not reported for the sake of brevity.210

3.2. Results for site 1211

The characteristics of the in-situ sand subfield is summarized by d = 0.35 mm (Table 1). The related input random212

variable is the threshold shear velocity. Its probability density function f (u∗t |d = 0.35 mm) is derived from Raffaele213

et al. (2016). Related u∗t statistics are reported in Table 2 in terms of mean value µ, standard deviationσ and coefficient214

of variation c.o.v. It is worth recalling that f (u∗t |d) is the same in each wind direction, since it depends solely on sand215

characteristics.216

The wind subfield is obtained by mean wind speed in-situ measurements. U10 variability is assessed in terms of both217

non-directional and directional statistics.218

Non-directional statistics is summarized in Figure 4. U10 time history is shown in Figure 4(a). Both mean wind speed219
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µ(U10) and mean threshold velocity µ(Ut) are plotted on the same graph. U10 variability is described by the Hybrid220

Weibull (HW) model (Takle and Brown, 1978). HW probability density function f (U10) is defined as follows:221

f(λ,k) (U10) =


F0 for U10 = 0

(1 − F0)
k
λ

(U10

λ

)k−1

e−U10/λ
k

for U10 > 0
(10)

where F0 is the rate of zero values, i.e. the frequency of calm wind, k is the shape parameter and λ is the scale222

parameter. HW f (U10) is plotted in Figure 4(b).
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Figure 4: Site 1. Non-directional statistics of mean wind speed: Wind time history (a) and Hybrid Weibull fitting (b)

223

Wind shear velocity is recovered from mean wind speed in-situ measurement. HW f (U10) is rescaled into HW f (u∗).224

u∗ statistical parameters and moments are reported in Table 2, where they can be compared with u∗t ones. In particular,225

the threshold shear velocity is higher than the shear velocity in mean terms, while the highest variability is addressed226

to the wind subfield.

Table 2: Site 1. Statistical parameters and moments of the non-parametric f (u∗t |d = 0.35 mm) and Hybrid Weibull f (u∗)

Random variable F0 [−] k [−] λ [m s−1] µ [m s−1] σ [m s−1] c.o.v. [−]
u∗t - - - 0.34 0.06 0.18
u∗ 0.12 2.09 0.29 0.25 0.13 0.50

227

Directional statistics is shown by means of the wind rose and the polar diagram in Figure 5. Calm wind, i.e. U10,θ228

null values, is filtered since it is non-directional by nature and does not contribute in defining directional statistics.229

Figure 5(a) shows a very broad wind directionality. However, North and South-SouthEast are the directions having230

the highest occurrence frequency. In Figure 5(b), the empirical probability density function of the wind speed in231

North direction is shown as an example. Figure 5(c) depicts the variation of probability density function of both wind232

speed U10,θ and erosion threshold Ut by means of their directional mean values values and extreme percentiles (i.e.233

5th percentile p5 and 95th percentile p95), as a function of wind direction θ = 1, . . . , n. µ (Ut) is higher than µ
(
U10,θ

)
234

for every direction, but the 95th percentile of the wind speed p95(U10,θ) overcomes the corresponding percentile of the235

threshold velocity p95(Ut) for winds blowing from around North and from South-SouthWest.236

U10,θ is converted into u∗,θ dataset. Classic Weibull probability density function f (u∗,θ) are fitted for each direction.237

Numerical realizations of u∗t and u∗,θ, consistent with f (u∗t) and f (u∗,θ) respectively, are generated in order evaluate238

the sand transport rate Q within MC approach. u∗t and u∗,θ cardinality # = 1e+6 is adopted for each direction. Sand239

transport rate results are organized in the form of sand rose in Figure 6(a) in analogy with the wind rose in Figure240

5(a). In fact, the length of each bin is the same in both roses. The wind rose and the sand rose have the same di-241

rection frequencies. Hence, the relative length of each bin is the same in both roses. This is due to the fact that one242
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Figure 5: Site 1. Directional statistics of mean wind speed: wind rose (a), empirical probability density function of the wind speed in North
direction (b), polar diagram of U10 and Ut statistics (c)

realization of Q for a given direction results from the corresponding realization of U10 along the same direction θ.243

Conversely, the probability density function f (Qθ) for each direction does not result from a simple rescaling of the244

corresponding f (u∗,θ), because of the piece-wise, non-linear transformation (Eq. 1). In particular, for 0 < u∗,θ < u∗t,245

Qθ = 0 even if this does not correspond to wind calm conditions. Hence, the color pattern in each bin significantly246

varies. An example is explicitly given by the empirical probability density functions for North direction (Fig. 5-b and247

6-b). Figure 6(c) depicts the mean value and the 95th percentile of the sand transport rate as a function of θ. µ(Qθ) and248

p95(Qθ) are higher for winds blowing from around North and from South-SouthWest, that are the direction for which249

p95(U10,θ) > p95(Ut) (see Fig.5-c).
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Figure 6: Site 1. Sand transport rate statistics: sand transport rate rose (a), sand transport rate empirical probability density function in North
direction (b), polar diagram of sand transport rate statistics (c)

250

The following remarks can be outlined. First, the distribution is no longer a continuous distribution: its hybrid nature251

is due to the first part of the piece-wise transformation, i.e. Qθ = 0 if u∗,θ ≤ u∗t. Second, the distribution is no longer252

a Weibull-type one, due to the non-linear transformation. In particular, distributions are strongly right-sided skewed.253

Finally, the sand transport rate directional statistics are strongly bimodal, with North and South prevailing directions,254

in contrast with the very broad wind directionality (Fig.5-a). This is due to the fact that the sand transport rate Qθ255

depends on the cube of the effective shear velocity u3
∗,θ,e f f = u3

∗,θ − u2
∗,θu∗t. Referring to Figure 5(c), low-speed winds256

from West and East do not contribute to Qθ, while high-speed winds from North and South almost solely contribute257
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to Qθ.258

The drift potential over the sampling interval Dθ,∆t [m3 m−1hr−1] is simply obtained from Qθ [Kg m−1s−1] consid-259

ering the packed bulk sand density ρb = 1.8e+3 kg m−3.260

The number of occurrences Nθ is assessed by bootstrapping a sample of cardinality N = 8768 (i.e. the number of ∆t261

in T ) from the actual wind velocity dataset. The wind direction frequencies Nθ/N are shown by box plots in Figure262

7(a). On the same graph, calm wind frequency is plotted too. It should be highlighted that the influence of calm wind263

on Dθ is taken into account by Nθ. In fact, wind direction frequencies are computed considering the frequency of calm264

wind (see Eq.3).265

Once Dθ,∆t and Nθ are assessed over each direction, the drift potentials Dθ over T = 1 year are obtained following266

Equation 9. In particular, Equation 9 is applied by bootstrapping a sample of Dθ,∆t and Nθ realizations, both having267

cardinality # = 1e+5. The same cardinality #Dθ
for each Dθ follows from MC. In Figure 7(b), drift potential mean268

values and percentiles are plotted as a function of θ to summarize directional statistics and related f (Dθ). The non-269

parametric probability density function f (Dθ) which describes the incoming sand drift from North in T = 1 year, is270

shown in Figure 7(c) by way of example.
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Figure 7: Site 1. Wind direction frequencies by Nθ/N box plot (a). Drift potential Dθ directional statistics (b), drift potential probability density
function in North direction (c).

271

Three remarks follow. First, Nθ variability is low, at least for this site. Hence, the variance of Dθ is mainly due to272

the variance of Dθ,∆t, while the variance of Nθ is relatively small (see Eq.8). Second, the drift potential directional273

statistics are strongly bimodal with North and South prevailing directions in accordance with the sand transport rate274

ones (see Fig.6-c). Finally, the cumulative sum of the very skewed f (Qθ) gives rise to almost symmetric f (Dθ). This275

is compliant to the central limit theorem: the sum of independent random variables tends to a normally distributed276

random variable even if the original random variables are not.277

Figure 8 provides a synopsis of the uncertainty propagation from erosion threshold and wind speed to sand trans-278

port rate and drift potential. The coefficient of variation and skewness modulus of these random variables are plot-279

ted as a function of the direction θ in Figures 8 (a) and (b), respectively. The c.o.v. of the input random variables280

(U10,θ, Ut) is relatively small (c.o.v. ≈ 1e−0.5). Uncertainty is magnified by an order of magnitude proceeding to281

Qθ (c.o.v. ≈ 1e+0.5), while c.o.v. is damped again passing from Qθ to Dθ (c.o.v. ≈ 1e−0.5). Indeed, on the one282

hand, transformation of random variables done in order to assess Q (i.e. Eq.1) magnifies the uncertainty of the initial283

random variables U10,θ and Ut. On the other hand, the random sum of identically and independent distributed random284

variables (Eq.9) damps c.o.v. The c.o.v. of the random variables above shows slight differences over θ. Ut does not285

depend on θ at all, c.o.v.
(
U10,θ

)
is almost constant for this site, c.o.v.(Qθ) and c.o.v.(Dθ) in turn are higher for winds286
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blowing from East and West, i.e. the less frequent wind directions. The skewness modulus shows approximately the287

same behavior of c.o.v. |sk(Qθ)| increases significantly with respect to |sk(Ut)| and |sk(U10,θ)|, while |sk(Dθ)| decreases288

again. In particular, |sk(Dθ)| is lower for winds blowing from around North and South directions.
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Figure 8: Site 1. Uncertainty propagation from U10 and Ut to Qθ and Dθ in terms of polar diagrams of coefficient of variation (a) and skewness (b)

289

Finally, in Figure 9(a), each black dot represents a single realization the resultant drift potential R. The radial290

coordinate of the dots is the vector magnitude |R|, while the angular coordinate is the vector direction R̂. Each real-291

ization of R is numerically obtained from one realization of D through Equations 4 and 9 by bootstrapping (Efron292

and Tibshirani, 1993). The ensemble of black dots graphically visualizes the whole set of numerical realizations of R.293

The cardinality of R is #R = 5e+4. In the following we call ”realization cloud” the ensemble of black dots. The mean294

resultant drift potential vector µ(R) is depicted by the red arrow on the same graph. R can be described in probabilistic295

terms by the joint probability density function f (|R|, R̂) of the two random variables |R| and R̂. f (|R|) and f (R̂) marginal296

densities are shown in Figure 9(b) and (c), respectively.297

The realization cloud appears to be comma-shaped in circular coordinates, i.e. tear-shaped in cartesian coordinates.298

This shape indicates a significant skewness of R̂, as testified by its marginal distribution. The radial width of the299

realization cloud provides a qualitative graphical reading of the variability of R magnitude. The circumferential extent300

of the cloud qualitatively describe the variability of R direction. For this site, the variability of R̂ is by far higher than301

the one of |R|. This is confirmed by the marginal distributions in Figures 9(b) and (c). From a qualitative point of302

view, it is worth pointing out that the only mean value (red arrow) is a poor description of the sand drift phenomenon.303

Conversely, realization cloud and related high-order statistics provide a more complete description. In general, SD-304

WA approach loses fundamental information of R, while the proposed SWP approach provides complete statistics.305

The quantitative statistics of R for this Site and all remaining Sites are reported in the following Subsection.306

3.3. Comparative analysis Sites 1-5307

In the following, all the selected Sites are accounted for. Both wind and windblown sand fields are probabilisti-308

cally evaluated and critically compared.309

In Figure 10, U10 wind roses and polar diagrams of resultant drift potential R are represented on Arabian Peninsula310

map. Realization clouds of the resultant drift potential and marginal densities are plotted as well. On the same graphs,311

the mean values of R are reported (red arrows). In short, Figure 10 collects the results of the initial and final step of the312

proposed procedure. Wind rose shape testifies a variety of wind regimes: wide unimodal, i.e. Site 2, acute bimodal,313

i.e. Site 3, obtuse bimodal, i.e. Sites 1 and 5, complex, Site 4. Realization cloud shape, dimension and density change314

significantly moving from a site to another. The realization clouds appear to be comma-shaped in polar diagrams315

(i.e. tear-shaped in cartesian coordinates), or kidney-shaped (i.e. elliptical-shaped in cartesian coordinates). Comma316
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Figure 9: Site 1. Resultant drift potential (a), resultant drift potential magnitude marginal density (b) and resultant drift potential direction marginal
density (c).

shape (Sites 1 and 5) indicates a significant skewness of R̂, while kidney shape (Sites 2,3,4) indicates weakly skewed317

magnitude and direction. The wider the realization cloud in radial and/or circumferential direction, the higher the318

variation of R, in magnitude and direction, respectively. Variations of both |R| and R̂ are small at Sites 2 and 3, so319

that kidney-shaped cloud appear as elliptical. Site 4 is remarkably characterized by very high variation of R̂ and a320

small variation of |R|. The marginal densities f (|R|) and f (R̂) clearly reflect these differences. In particular, while in321

some cases they recall Gaussian distributions (Sites 2 and 3), in others they appear asymmetric, mainly with respect322

to the direction ( f (R̂) at Sites 1 and 5). In general, the relation between wind rose and realization cloud is not straight-323

forward, because of the non-linear relation between U10 and Q. Furthermore, wind roses graphically point out wind324

direction frequencies much more effectively than wind speed frequencies. However, it is worth pointing out that the325

more complex the wind rose, the wider the realization cloud.326

Non-dimensional statistics of both |R| and R̂ are reported in Table 3 to summarize the obtained results and quan-327

titatively compare the Sites. Variation and skewness of |R| and R̂ are assessed in order to understand how much the328

random variables are dispersed and how far are from Gaussianity. The variability of |R| is expressed by means of329

c.o.v., while the variability of R̂ is directly expressed by the angular deviation σ. It is worth to point out that since R̂330

is a circular random variable, circular statistics is assessed (Fisher, 1995; Berens, 2009). The lowest variability is ad-331

dressed to Site 2, i.e. the Site with unimodal wind regime, while the highest variability is addressed to e.g. Sites 1 and332

4, i.e. the Sites with obtuse bimodal or complex wind regimes. Concerning probability density functions symmetry,333

Sites 1 and 5 show the most skewed distributions, while Site 3 one is almost symmetric.334

The design of infrastructures in arid environments should be based on sand drift magnitude related to a low prob-335

ability of exceedance. Hence, characteristic values (i.e. extreme percentiles) of both R magnitude and direction are336

included in Table 3. The ratio between 95th percentile and mean value p95/µ is assessed as regards R magnitude. The337

study gives rise to characteristic values up to ≈ 1.6 times the mean value (Site 1). In other words, the evaluation of338

|R| in mean terms only significantly underestimates the amount of transported sand. The angular distance |p95 − p5| is339

evaluated, regarding R̂. Both percentiles are referred to anti-clockwise circular direction from East. In other words,340

|p95−p5| provides a quantitative measure of the variability of R̂ based on characteristics directions. This measure is the341

well posed probabilistic reading of the estimate of drift direction variability proposed by Fryberger and Dean (1979)342
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Figure 10: Sites 1-5. Wind roses and resultant drift potentials around Arabian Peninsula13



in deterministic terms through Equation 5. The highest |p95 − p5| angular distance is observed for Site 4, i.e. ≈ 88◦,343

while the lowest, ≈ 8◦, is observed for Site 2.

Table 3: Sites 1-5. Statistics of resultant drift potential magnitude and direction

|R| [m3m−1yr−1] R̂ [◦]
c.o.v. [−] sk [−] p95/µ[−] σ [◦] sk [−] |p95 − p5|[

◦]
Site 1 0.32 0.37 1.57 20.77 2.61 77.22
Site 2 0.06 0.02 1.09 2.52 0.38 8.28
Site 3 0.10 0.01 1.16 3.88 -0.05 12.78
Site 4 0.27 0.11 1.46 24.09 0.60 87.80
Site 5 0.10 0.28 1.17 7.11 1.05 23.22

344

4. Conclusions345

The present study introduces a new Sand-Wind Probabilistic (SWP) approach to evaluate incoming windblown346

sand drift potentials and resultant drift potentials. The approach adapts the general framework proposed by Fryberger347

and Dean (1979) in order to deal with the sources of uncertainty related to both wind and sand subfields. The input348

uncertainties on U10 and u∗t propagate to the final result, i.e. R, passing through the definition of Qθ and Dθ.349

The following concluding remarks can be outlined, bearing in mind the three kickoff questions raised in Intro-350

duction. First, uncertainty of both threshold shear velocity and mean wind velocity are magnified passing to the351

directional sand transport rate Qθ by about an order of magnitude. Subsequently, uncertainty is damped from Qθ to352

the drift potential Dθ, and it is further damped to the resultant drift R. Magnification is due to the cubic dependency353

of Q versus u∗ and u∗t, while damping results from cumulating in time and vector summing over directions. Second,354

the probability distribution of the resultant drift potential changes significantly form a site to another in the same355

region. Complex wind regimes are particularly prone to cause windblown sand drift with high inborn variability. For356

instance, the highest c.o.v(|R|) and σ(R̂) are referred to sites showing obtuse bimodal or complex wind roses. Changes357

in the sand granulometry and related shear threshold velocity probability distribution from one site to another also358

affect R. Finally, the proposed SWP probabilistic approach allows to obtain characteristic values of R, while the Sand359

Deterministic-Wind Averaged (SD-WA) approach adopted up to now in scientific literature and engineering practice360

does not provide sufficient statistics to describe correctly the phenomenon. The gap between characteristic and mean361

value of RDP makes the approach of interest for engineering practice and grounds the semi-probabilistic approach362

to design of civil infrastructure in arid regions. Regarding sites with complex wind regimes, on the one hand, the363

characteristic value of |R| is about 1.5 times the mean value. On the other hand, the angular distance between the mean364

direction and the characteristic values of R̂ is about 40◦.365

In the light of the obtained results, we suggest four research perspectives. First, the role played by each considered366

random variable in variability of sand drift should be ascertained by means of a numerical sensitivity study, i.e. by367

setting a constant grain diameter (and hence the probability density function of u∗t) and varying the wind field, and368

vice versa. Second, the proposed approach needs to be validated by in-situ, long-term, continuous and automatic369

recording of the sand drift, analogously to wind speed measurements. Traditional sand trap (Nickling and Neuman,370

1997; Weaver and Wiggs, 2011) are not adequate to this purpose. Piezoelectric sand flux sensor (Udo, 2009) proved371

encouraging performances during prototype testing in operational conditions. This technology will enable in the next372

future years-long site measurements. Third, having in mind the vast amount of sand transport rate models in litera-373

ture, Q model uncertainty should be investigated and, if significant, incorporated in the adopted probabilistic method.374

Finally, sand drift extreme values statistics would worth to be described in order to assess how much stand storms375

weigh on the total amount of the resultant drift potential and on disastrous events.376
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