
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Pain Points for Novice Programmers of Ambient Intelligence Systems: An Exploratory Study / Corno, Fulvio; DE
RUSSIS, Luigi; Saenz, JUAN PABLO. - STAMPA. - 1:(2017), pp. 250-255. (Intervento presentato al convegno 41st IEEE
Computer Society International Conference on Computers, Software & Applications (COMPSAC 2017), Symposium on
Software Engineering Technologies & Applications (SETA) tenutosi a Torino (Italy) nel July 4 - 8, 2017)
[10.1109/COMPSAC.2017.186].

Original

Pain Points for Novice Programmers of Ambient Intelligence Systems: An Exploratory Study

Publisher:

Published
DOI:10.1109/COMPSAC.2017.186

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2669243 since: 2017-09-12T12:01:23Z

IEEE

Pain Points for Novice Programmers of Ambient
Intelligence Systems: an Exploratory Study

Fulvio Corno
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

Email: fulvio.corno@polito.it

Luigi De Russis
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

Email: luigi.derussis@polito.it

Juan Pablo Sáenz
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

Email: juan.saenz@polito.it

Abstract—This paper presents an exploratory study aimed at
identifying the pain points that novice programmers experience,
from the software engineering perspective, when developing and
deploying smart and distributed systems, that may be classified as
Ambient Intelligence (AmI) systems. The exploratory study was
conducted among undergraduate students, that worked in groups
for developing AmI projects during a university course. Based
on their own experiences, individually and as a group, the pain
points were identified and prioritized over a common architecture
and a set of software development activities. The quantification of
the pain points was based on the difficulty level that the students
perceived on the development activities and the time they spent
completing them. Results represent a starting point for the design
of tools and methodologies targeted at overcoming the complexity
that novice programmers face when developing AmI systems.

I. INTRODUCTION

The Internet of Things (IoT) is positioning itself as one
of the most influential paradigms in the Information and
Communications Technology (ICT) landscape. The idea of
embedding computing and communication capabilities into
objects of common use [1] leads to the development of all
kinds of solutions that might be used in contexts like Ambient
Intelligence (AmI), which focuses on the study of how IoT
systems integrate and interact with users. The development of
IoT systems, and specifically AmI systems, has aroused the
interest of programmers, and has raised the need to introduce
undergraduate IT students to their design and implementation.
Nevertheless, several challenges emerge for novice program-
mers when attempting to develop AmI systems.

Implementation challenges are numerous, and mainly stem
from the fact that AmI systems integrate several subsystems
that are heterogeneous. Each subsystem has its own set of lan-
guages, protocols, devices, and communication mechanisms.
Nevertheless, these subsystems are required to interact with
each other in such a way that the whole system is able to
cooperatively accomplish a certain goal.

The technical development of AmI solutions requires the
understanding of several ICT areas such as database design,
embedded systems development, mobile applications develop-
ment, push notifications, and service oriented architectures, to
name a few. Since undergraduates are not expected to have
deep knowledge nor experience in these areas, the Ambient
Intelligence course at the Politecnico di Torino uses an active

learning approach to engage them with several concepts that
are applied in the implementation of a course project.

Based on the students’ experiences in the course, this
paper aims at identifying which are the most painful points
that novice programmers experience when developing AmI
systems. For this purpose, first, we identified the common ar-
chitectural decisions across the design and implementation of
several course projects. Then, we represented these decisions
into an overall architecture in which a set of subsystems were
defined, along with their associated software development
tasks. Lastly, upon the understanding of the AmI projects in
terms of their architecture and software development tasks, an
exploratory study involving students from the last version of
the course was designed. This study was divided in three parts:
in the first part, students were asked to grade the development
tasks in which they participated according to their difficulty
level and the time spent completing them. In the second part,
students had to choose and prioritize the most complex tasks
of each subsystem by ranking them. Finally, as a group, they
discussed and reached a consensus about the overall most
painful points.

Besides identifying the most painful issues experienced
by the AmI course students, the outcomes of this study are
intended to act as an objective basis for researching and
proposing new tools and languages to support novice AmI
developers, from the software engineering perspective.

II. RELATED WORKS

The literature presents approaches directed at facilitating
novice programmers to learn, while developing IoT systems
in realistic scenarios.

He et al. [2] describe the experience of using a single-
board embedded computer (a BeagleBone Black) in teaching
embedded systems courses. Particularly, with the purpose of
improving students’ awareness of IoT single-board hardware
and software features, while teaching them to develop basic
IoT applications. In the opinion of the authors the set of
pre-installed software development tools (Node.js, Bonescript,
and Cloud9) would make the implementation of simple IoT
applications easier for novices. Kortuem et al. [3] present their
experience on imparting a distance course called My Digital
Life (Open University) using a set of tools, expressly designed

for the course. They developed these tools to enable students
learning and experimenting with sensing, actuation, and net-
working. The set consisted of: an embedded network sensor
device; a visual programming language and environment (built
upon the Scratch); and a cloud platform that connects all the
networked devices together. According to the authors, this
approach was effective in helping the students quickly develop
an understanding of the principles of programming simple IoT
applications. Dobrilovic et al. [4] describe the design of a
low-cost, easy to deploy platform to be used in university
courses for teaching IoT. This platform relies on Arduino Uno
on the hardware side, Python as the programming language,
and ThingSpeak as the platform to store and visualize in a
web layout, all the data generated by the sensors. Authors also
identified a set of low-cost hardware components to be used in
the platform. However, the platform did not include Wi-Fi nor
Bluetooth modules, and the integration with SQL or NoSQL
databases was not achieved. Despite the good comments,
students’ feedback was not collected nor formally analyzed.
Hahm et al. [5] present an open source platform to facilitate
the development of IoT applications. It is targeted to bachelor
and master students that have only basic knowledge in systems
programming and little time to get deeply involved in learning
specific programming environments. It enables the developers
to code in standard programming languages (C and C++) using
standard debugging tools, supports basic networking protocols,
and allows the setup of arbitrary virtual networks so multiple
native instances can run on a single computer.

The presented works aim at identifying a safe and compre-
hensive development environment for enabling student devel-
opment. In this paper, however, we examine the difficulties
encountered when novice developershave to develop a com-
plete system with the variety of technologies and languages
that are nowadays required in the IoT.

III. THE AMBIENT INTELLIGENCE COURSE

Ambient Intelligence is defined as “a digital environment
that proactively, but sensibly, supports people in their daily
lives” [6]. As a field, it is at the intersection of artificial in-
telligence, human-computer interaction, ubiquitous computing,
and sensor networks. Four cyclical steps comprise the behavior
of an AmI system: sensing from the environment, from the
users, and/or from the Internet; reasoning about sensed data;
acting upon the environment and/or towards the users; and
interacting with the users, to keep them always in the loop.

To provide its students with the systems-level skills needed
to understand and develop complete IoT systems, in 2014 Po-
litecnico di Torino initiated a course in “Ambient Intelligence”.
In this project-based course, a teamwork and design-driven
paradigm is applied to teaching AmI system design [7]; core
student skills acquired in previous courses are exploited in a
multidisciplinary project work.

The main topic of the course is the design and the realization
of AmI systems. This entails a strong focus on the application
and on user needs. From the beginning of the course, students
form three- to four-people teams, and are guided to define

the requirements for an AmI system, and then to design and
implement it. This system and the “deliverables” produced
throughout the semester are the focus of the course exam,
which also includes a presentation of the team projects and
an oral discussion on. Every year, a theme is chosen for the
projects; in 2016 it was the “Health and Well-being” (in a
broad sense). Target environments could be homes, offices,
vehicles, open spaces, gyms, etc.

From the university point of view, a course is over once
the exam is passed. However, students’ hard work and the
quality of many of their projects, allow course results to be
transformed into a public technology event. All students who
passed the exam were invited (on a voluntary basis) to present
their project to the public, during a dedicated open event,
the “AmI Student Showcase”. During the Showcase, projects
are voted by the public, and the three most voted project are
awarded some high-tech gadgets. In 2016, the three winning
projects were: “Safety Mama” (a system for helping pregnant
women with their anxiety), “Emergency Quest” (for elderly
persons with mild cognitive impairments), and “Study Station”
(a wearable device for maintaining the right posture while
studying).

IV. EXPLORATORY STUDY

This section describes the exploratory study that we carried
on to gain knowledge about the difficulties and issues that AmI
students encountered during the development of their projects.
We first present a generalized structure of AmI projects, so that
we may map and compare specific projects. Starting from the
general project architecture, we designed a study based on a
questionnaire, and we conducted the study on a subset of the
AmI course students.

A. General AmI project structure

Despite the specific goals of each AmI project, common
architectural decisions and development tasks can be recog-
nized. To gain a common understanding of the most painful
issues that students across different projects experienced, it
was necessary to represent those common architectural deci-
sions, and their associated development tasks, into a general
interpretation framework.

Figure 1 represents an overall architecture of the AmI
projects. Five interconnected subsystems are identified: Sen-
sors, Gateways, Back-end, Actuators, and End-user. Different
projects need to implement different parts of the subsystems
illustrated in the diagram; therefore, the proposed abstraction
represents more a reference model in which all the projects’
architectures could fit, than a unique common architecture that
all of them had to implement. The following is a description
of the identified subsystems.

Sensors generate data resulting from continuously moni-
toring the End-user behavior and activities, as well as envi-
ronmental variables. In the context of the considered projects,
they generally consist of wearable devices and wireless trans-
mitters.

End-user

3GWi-Fi

Wearable
devices

Sensors

Sensors

Embedded system Smartphone

Gateways

Actuators

Notification
service

Changes in
environment

PersistenceApplication
server

Third-party
service API

Back-end

invoking custom APIs

R
ea

so
ni

ng

R
ea

so
ni

ng

invoking custom APIs

surrounded by aware of

RESTful
web services

consumed through

exposed through

OAuth

Se
ns

in
g

Ac
tin

g

End-user
application

interacts
through

communicates with

communicates
with

Fig. 1. Overall architecture of a typical Ambient Intelligence course project

Gateways gather the data produced by the Sensors and
process this data, do some computation or reasoning over it,
establish communication and transmit it to the main applica-
tion server in the Back-end, and finally control the Actuators
and send them commands and notifications. In the scenario
of the course projects it encompasses embedded systems such
as Raspberry Pi, and smartphones with their corresponding
mobile applications.

In some cases, it is possible to gather the data directly from
the Sensors via Bluetooth or Wi-Fi, but in some other it is
necessary to gather the data through the consumption of these
devices’ specific cloud APIs, which usually requires OAuth
authentication.

The Back-end encompasses the third-party service APIs,
the main application server and the persistence component.
Third-party service APIs, as just said, are commonly used to
interact with wearable devices, such as Fitbit. The main appli-
cation server and the persistence component, in the context of
the course projects, consists of a set of RESTful web services
and a relational database, correspondingly.

In some projects the functions of the Back-end components
are delegated to the Gateways. However, no matter where the
back-end services are deployed, they can be clearly distin-
guished as another subsystem.

Actuators span actuating devices, such as smart lighting
systems, that may trigger changes in the physical environment,
and remote push notifications on the end-user smartphone,
through which he is notified about the occurrence of a given
event. In the course projects the acting devices were generally
controlled by the gateway devices via Bluetooth or Wi-Fi,
while the remote push notifications are commonly generated
by the Back-end server and delivered by the Android and iOS
push notifications platforms.

End-user subsystem groups the interaction systems by
which the end-user is able to interact with the Sensors and
Actuators that surround him. A mobile or web application
in the end-user smartphone is the most feasible alternative
to enable this interaction. However, this application does

not typically communicate with the Sensors and Actuators,
instead, it communicates with gateway devices and the back-
end components, which are able to control the behavior of the
actuators and generate remote push notifications.

B. Method

The study was conducted by inviting the students to in-
terview sessions, with one group invited per each session.
Each session consisted on three phases: an introduction, the
questionnaire, and a discussion. The sessions were conducted
by two researchers, and were held in English.

1) Introduction: One researcher briefly explained the ob-
jective of the study, the structure of the questionnaire and in
general the organization of the session. It was clarified that the
questionnaire had to be filled from the personal point of view
(each student should respond to those activities in which he
was directly involved, only), while the following discussion
would involve their evaluation as a group.

2) Questionnaire: A questionnaire was designed with the
purpose of identifying, based on the personal experience of
each member participating in the chosen projects, the most
painful issues when developing an AmI system. Starting from
the overall architecture, the structure of the questionnaire was
defined focusing on three subsystems, only: the ones whose
implementation and integration with other subsystems, relied
mainly on software development activities. These subsystems
were: End-user, Gateways, and Back-end. In the considered
projects, in fact, sensors and actuators were off-the-shelf
devices and didn’t require software development activities (but
only integration).

As Gateways and Back-end subsystems resulted quite large,
in terms of number of tasks, their corresponding sections were
divided in two: the first one for the subsystem development
tasks, and the second one for the subsystem integration tasks.

In this manner, the questionnaire was structured in five
sections, 20 tasks, and 62 sub-tasks. The resulting structure
of the questionnaire in terms of subsystems and their tasks

is shown in Table I, that also report the number of sub-tasks
defined per each task.

The questionnaire asked students, for each section:
• to identify the complexity of each of the sub-task in

which they were involved. To quantify the complexity of
each sub-task, they had to be graded according to their
difficulty level and the time spent completing them. Two
ordinal scales ranging from 1 to 5 were included in the
questionnaire for each sub-task, as shown in Figure 2.

• to identify the three sub-tasks that were most difficult to
complete. In this case, such sub-tasks had to be ranked
as the first, second and third most difficult task in the
section.

• to justify their ranking choice with an open question,
where they could also mention any other tasks that was
not listed but resulted complex to achieve.

Rank Section A: End-user Difficulty Time spent

Develop a native end-user mobile application

 Become familiar with the mobile application platform-specific programming
language 1 2 3 4 5 1 2 3 4 5

 Configure the development environment 1 2 3 4 5 1 2 3 4 5

 Develop the models' classes 1 2 3 4 5 1 2 3 4 5

 Develop the controllers' classes 1 2 3 4 5 1 2 3 4 5

 Develop the user interface (views) 1 2 3 4 5 1 2 3 4 5

 Connect the push notification module with the platform notification service 1 2 3 4 5 1 2 3 4 5

 Handle the notifications received in the end-user's smartphone 1 2 3 4 5 1 2 3 4 5

Fig. 2. Example of a task decomposed in sub-tasks

3) Discussion: After all students completed the question-
naire, a final discussion was held to identify, as a group, the
most complex and painful tasks. The discussion was prompted
by a single question: “As as group, which are the most
difficult tasks you encountered in developing your system?”
The students were free to discuss among themselves, and with
the researchers.

C. Participants selection

In the last version of the AmI course 18 projects related
to Health and Well-Being were developed. To identify the
most painful issues that the students faced, from the software
development perspective, two of these projects were chosen
to be deeply analyzed in this preliminary study. The selection
criteria for the two projects were based on their good results
at the course showcase (they were among the winners) and on
the software intensive nature of their implementation.

The first project, called Safety Mama, was targeted at
pregnant women helping them to keep their stress and agitation
levels low during their pregnancy. The system detects when
the pregnant woman becomes stressed or agitated based on her
heart rate and physical activity (number of steps), in which
case, a relaxing setup is deployed until the moment in which
the system detects again that the stress-levels are down.

From the implementation perspective, the system employs
a wearable activity tracker that senses and monitors the heart
rate and the number of steps of the pregnant woman. The
data generated by the bracelet is transferred via Bluetooth to

a mobile application that forwards it to the Raspberry Pi. This
controller is responsible for reasoning over the data to generate
remote push notifications to warn the pregnant women about
the increasing detected stress levels and suggests her to move
to a relax area, where the smart lighting system, the music
player and the smart fragrances diffuser, are deployed.

The second project, called Emergency Quest, was aimed at
improving the quality of life for people suffering from mild
dementia or Alzheimer, while granting them greater autonomy
and allowing their caregivers to be aware of their situation.
By means of a wearable device, the system could constantly
monitor the stress levels, location and activities performed by
the patient. If the system detects, by means of the acceleration
sensors of the bracelet, that the patient becomes agitated, it
will react trying to calm him down through the deployment of
a relaxing setup that includes music and lighting. Moreover, if
the patient moves towards an artifact that might represent some
sort of danger for him, such as a stove, the system would react
by playing pre-recorded messages on the patient smartphone
warning him about the dangerous situation. Additionally, if the
patient abandons a certain area, the system would react warn-
ing his caregivers by generating and delivering notifications
on their smartphones.

Technically speaking, the system uses a wearable activity
tracker that monitors the patient location and sends the cor-
responding data, via Wi-Fi, to a micro-controller. This micro-
controller communicates and transmits this data to the main
application server, whose function is to generate and deliver
push notifications into the end-user mobile application, and
delegate the micro-controller to activate the relaxing system.
To do the latter, the micro-controller communicates via Wi-Fi
with the smart lighting system and the music player.

The Safety Mama group was composed by 4 students
and Emergency Quest group was composed by 3 students.
However, one of the members of the second group was an
international student who returned to her home university,
therefore a total of 6 students were involved in the study.

V. RESULTS AND DISCUSSION

The study was conducted over two separate sessions, one
for Safety Mama (with 4 students), the second for Emergency
Quest (2 students). The completion of the questionnaire took
each student, in average, approximately 50 minutes. The later
discussion about the most painful issues as a group took
around 20 minutes. From this study, three types of outcomes
emerged: 1) the grading of each sub-task in terms of their
associated difficulty level and completion time; 2) the set of
tasks that were ranked as the most difficult and time-spending
on each subsystem; 3) and the perception of the group about
the most complex tasks.

The first kind of sub-tasks, in which the time-spent was
high and the difficulty was low, corresponded mainly to
configuration tasks. The second kind of sub-tasks, in which
the task was perceived as difficult but not time-consuming,
barely occurred. The third type of tasks, perceived as the
most difficult and time spending, generally involve software

TABLE I
SUBSYSTEMS AND TASKS IN THE QUESTIONNAIRE

Section A: End-user subsystem # Sub-Tasks

Develop a native end-user mobile application 7
Develop a hybrid end-user mobile application 8
Develop a web responsive end-user mobile application 6
Develop the integration between the end-user application and the gateways [computation node, smartphone] 2
Deploy the end-user mobile application into the smartphone 1

Section B: Gateways subsystem (Part I: Development)

Configure the development environment 2
Develop the business logic of the gateway device [computation node, smartphone] application 2
Configure the OAuth authentication between the gateway device [computation node, smartphone] and third-party services APIs 3
Develop the module for generating notifications to be displayed on the end-user application 2
Deploy the software into the gateway devices [computation node, smartphone] 1

Section C: Gateways subsystem (Part II: Integration)

Develop the integration between the gateway device [computation node, smartphone] and the sensors [wearable devices, static sensors] 4
Develop the integration between the gateway device [computation node, smartphone] and the back-end [third-party service API, application
server, persistence] by consuming these last ones’ custom APIs

4

Develop the integration between the gateway device and the actuators responsible for changes in environment 2

Section D: Back-end subsystem (Part I: Development)

Configure the development environment 2
Design and develop the persistence component 3
Develop the business logic on the application server 2
Develop the RESTful web services 3

Section E: Back-end subsystem (Part II: Integration)

Develop the integration between the application server and third-party services 2
Configure OAuth between the application server and third-party services 3
Develop the integration between the application server and the persistence component 3

configuration tasks for mobile applications, the integration
with notification services and their invocation, and receiving
and handling sensor data in real time.

From the second outcome, the most difficult sub-tasks could
be distinguished from other sub-tasks and prioritized according
to the ranking. Table II presents the list of highest-ranked sub-
tasks that were chosen by the students in each section. The
numbers in the right column represent the number of times in
which the given sub-task was ranked as the first, second and
third most difficult sub-task of the section, respectively.

From the third outcome, the members of the Safety Mama
project identified as the most painful tasks, the following ones:

• The integration between the wearable activity tracker
API (Fitbit bracelet), and the presentation layer of the
End-user mobile application. Particularly when updating
or changing the views, and the application was forced to
re-fetch remote data.

• The poor or absent documentation regarding the integra-
tion between the Fitbit bracelet and the Android mobile
application, especially in what concerns to available tools
or libraries that would facilitate the OAuth authentication.

• The communication between the End-user mobile appli-
cation and the Gateway reasoning devices in connection
with the proper way to query the RESTful web services

exposed by the latter and the data synchronization with
the mobile application background services.

The members of the Emergency Quest project identified as
the most painful tasks, the following ones:

• Regarding the communication between the mobile ap-
plication and the main server, they experienced unpre-
dictable problems, since the request that was outgoing
from the hybrid mobile application towards the main
server sometimes did not received back any response.
Moreover, they did not have any tool to debug the
communication.

• Dealing with the remote push notifications in the End-
user hybrid mobile application, since the integration with
the Android and iOS specific notification services had
to be addressed. Therefore, the parametrization, and the
inability to test the proper functioning of the notifications,
represented to the group a major issue both in the End-
user and the Gateways development.

In summary, by combining the information coming from
the grading, from the ranking and from the discussion, some
specific programming areas were recurrently mentioned as
particularly hard and painful. In particular, the integration of
different subsystems, that require over-the-network communi-
cation protocols, and their debugging was extremely difficult,

TABLE II
THE HIGHEST RANKED SUB-TASKS ON EACH SECTION OF THE QUESTIONNAIRE

Section A: End-user subsystem Ranks

Develop a native end-user mobile application
Become familiar with the mobile platform-specific language 2–0–0
Connect the push notification module with the platform service 1–0–0

Integrate the end-user application and the gateways Parse and handle the JSON- or XML-formatted response 1–0–0

Section B: Gateways subsystem (Part I: Development)

Configure the OAuth authentication between the gateway device and
third-party services APIs

Develop the methods or functions required to establish the connection 3–1–0
Set up the parameters needed to establish the connection 1–2–1

Develop the module for generating notifications on the end-user
application

Generate the notifications by invoking the platform notification APIs 1–0–0

Section C: Gateways subsystem (Part II: Integration)

Develop the integration between the gateway device and the sensors Develop a component for receiving real-time data from the sensors 2–0–0

Develop the integration between the gateway device and the actuators
Develop the methods required to handle the actuators behavior 1–1–0
Develop the methods required to establish the connection 1–0–1

Section D: Back-end subsystem (Part I: Development)

Develop the RESTful web services Define the HTTP methods along with their URI and operation 1–0–0

Section E: Back-end subsystem (Part II: Integration)

Develop the integration between the application server and third-party
services

Implement the HTTP asynchronous requests through the RESTful web
services exposed by third-party service APIs

1–0–0

Develop the integration between the application server and the persis-
tence component

Set up the connection between the application server and the database 1–0–0

Configure OAuth between the server and third-party services Develop the methods or functions required to establish the connection 1–0–0

due to the diversity of client and server environments and the
difficulty of tracing the remote calls. This was worsened by the
fact that some third-party services are proprietary, give little
visibility over their behavior, and each of them requires to
follow different approaches and programming patterns. Also,
the configuration of mobile, web or hybrid applications was
perceived as a pain point, since all the plugins, libraries and
dependencies had to be satisfied, and the rules are different in
each environment.

VI. CONCLUSIONS

This paper presents an exploratory study to identify the
most painful points that novice programmers experience when
developing AmI systems. Undergraduate students who devel-
oped an AmI project in the context of a university course
were involved to share their experience. An AmI architecture
was elaborated to abstract the common architectural deci-
sions taken across the projects. Over this architecture, five
interconnected subsystems were identified along with their
associated software development tasks and sub-tasks, and a
questionnaire was developed based on the overall architecture
and the development tasks. The study was conducted in three
phases that enabled identification of the pain points from a
quantitative and qualitative point of view. From the study out-
comes, students perceived as extremely difficult the sub-tasks
regarding: the integration of different subsystems, interaction
with proprietary third-party services, and the configuration of
mobile, web or hybrid applications. Other sub-tasks regarding
configuration of the subsystems were perceived as simple but

time-demanding. By structuring the study around the overall
architecture, a system-level view of the main pain points was
achieved. Future work will consist in designing and developing
mechanisms (tools and methodologies) targeted at supporting
novice programmers in developing AmI systems, thanks to the
analysis of the collected data. In parallel, we are extending the
application of the questionnaire to a larger number of students,
from the last 3 years of the course.

REFERENCES

[1] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497 – 1516, 2012.

[2] N. He, Y. Qian, and H. w. Huang, “Experience of teaching embedded
systems design with beaglebone black board,” in 2016 IEEE International
Conference on Electro Information Technology (EIT), May 2016, pp.
0217–0220.

[3] G. Kortuem, A. K. Bandara, N. Smith, M. Richards, and M. Petre,
“Educating the internet-of-things generation,” Computer, vol. 46, no. 2,
pp. 53–61, Feb 2013.

[4] D. Dobrilovic and S. Zeljko, “Design of open-source platform for
introducing internet of things in university curricula,” in 2016 IEEE
11th International Symposium on Applied Computational Intelligence and
Informatics (SACI), May 2016, pp. 273–276.

[5] O. Hahm, E. Baccelli, H. Petersen, M. Wählisch, and T. C. Schmidt,
“Demonstration abstract: Simply riot - teaching and experimental research
in the internet of things,” in IPSN-14 Proceedings of the 13th Interna-
tional Symposium on Information Processing in Sensor Networks, April
2014, pp. 329–330.

[6] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient intelligence:
Technologies, applications, and opportunities,” Pervasive and Mobile
Computing, vol. 5, no. 4, pp. 277–298, Aug. 2009.

[7] F. Corno and L. De Russis, “Training engineers for the ambient intelli-
gence challenge,” IEEE Transactions on Education, vol. 60, no. 1, pp.
40–49, Feb 2017.

