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Preface

The core of my Ph.D. activity has been spent in the study and modeling of quantum
transport effects in wide- and narrow-gap semiconductor devices. The choice of such topic
came rather straightforwardly since my first degree in physics and the ensuing specializa-
tion in physics engineering in the field of nanotechnologies and device modeling. So, the
interest in tunneling mechanisms arose very naturally already as undergraduate student.
Anyway, I would not to dedicate more words on this topic than what I’ve done in the
almost 2-hundred pages following this introduction. Here I wish commenting my work as
Ph.D. candidate in a wider sense, by re-browsing the years passed within the Electronics
and Telecommunications department.

As my first occupation, in the early 2014 I had the possibility to more deeply develop as
main investigator the study started with my Master’s thesis, namely the physics-based nu-
merical simulation of direct tunneling mechanisms in reverse-biased HgCdTe p-i -n struc-
tures for infrared detection. As undergraduate student this activity dealt with purely
theoretical investigations, while the first months of 2014 have been dedicated to adapt my
results to real case-study devices thanks to a collaboration, in which I had the pleasure
to be partially involved, between my department and the German company AIM Infrarot
Module.

Very soon the efforts put into this area gave their tangible results (by the scientific
standpoint) and the simulations coming also from my previous work provided several
results suitable for the first publications (from here one journal paper and a number of
conference contributions arose).

The first year also represented, more than the others, the year dedicated to the aca-
demic training. Both as student and as tutor. From April to June 2014, indeed, I was
allowed to give my contribution to the laboratory classes about devices numerical simu-
lation intended for undergraduate students afferent to the electronics and physics courses
held by professors Simona Donati and Francesco Bertazzi. This represented one of the
most enriching experiences I had during the Ph.D. because nothing gives the feeling of
what it has really been learned and understood as the teaching practice.

Contemporarily and immediately after the activity on photodetectors I started my
research on LEDs, again, as main investigator searching for tunneling signatures. Thanks
to a collaboration with colleagues from Padua University and to the data on the first
(grown-on-SiC) structure fabricated by OSRAM they provided us, I’ve been able to enter
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Preface

into this new framework. After studying a bit of related literature and performing some
conjectures and modeling activities, in the 2014 summer I yet had the opportunity to give
my first two talks, at NUSOD international conference (Palma de Mallorca) and also at
the annual meeting of the Italian Physical Society (SIF) held in Pisa, Italy. The NUSOD
experience and the poster presented at the International Workshop on Nitrides (IWN)
held in Wroc law (Poland) were fundamental since they represented the casus fostering the
papers I wrote the following year.

The 2014, moreover, saw a big bunch of efforts spent in setting up a self-consistent
library of GaN-based material properties suitable for LED simulations. The other relevant
activity in which I’ve been involved was the supervision of a graduating student working
on a thesis focusing on LED efficiency-related issues.

In 2015 the proposals to write a journal paper coming both from the NUSOD president
J. Piprek and from IWN experience became realities: in the first months of the second year
I wrote a paper for a special issue on nitride semiconductors of Physica Status Solidi A and
also for another special issue, of the Journal of Computational Electronics, dealing with
numerical simulations of GaN-based LEDs. The first work was more engineering-oriented,
being related to some modeling technicalities and methodologies. Instead, the second one
was especially intended for a physicist-like audience since there I presented a big section
concerning the results of my theoretical studies on phonon emission effects on trapping
processes related to defect-assisted tunneling transitions.

During the 2015 I enriched my formative career thanks to some courses and seminars
offered by the Politecnico, as the excellence course held by Goeffrey Grossman from MIT
(Boston) on nanoscale modeling, or the summer school for researchers “SCS2015” focusing
on dissemination and scientific communication for which I ranked among the 40 people
elected to participate after a national-based selection. At the same time I attended also
external courses, as the one about defects in GaN and GaN for power electronics held in
Pisa, Italy, on June 2015 and organized by Infineon Technologies and University of Pisa, or
the school for researchers about detectors for high-energy physics experiments organized
by the Italian Institute of Nuclear Physics (INFN). In the second year I was also one of the
nine people selected by our Doctoral School among all the Ph.D. students in Politecnico
to carry out a part-time collaboration activity for an overall amount of 100 hours which
was dedicated to assist the management of doctoral didactics.

By the research standpoint, 2015 saw again a little contribution of mine on infrared
photodetectors with the analysis of impact ionization modeling strategies. But the most
intensive efforts have been directed towards the comprehension of trap-assisted tunneling
by heavy holes in LEDs grown-on-Si (again, provided by OSRAM and characterized in
Padua). Here the most advanced data analysis I conducted on LEDs measurements saw the
light, is appropriate to say. Then, in this second year I worked also within a certain number
of collateral research areas: for instance, this is the period in which I gave my contribution
to a collaborative study with colleagues from Padua about defects implications on LED
reliability and robustness that resulted in a couple of publications totally uncorrelated to
the topic of tunneling: I collaborate with M. Meneghini and his group for a 2015 paper
published in the Microelectronics Reliability journal and I was also involved in a conference
contribution presented at the 26th Symposium on Reliability of Electron Devices, Failure
Physics and Analysis (ESREF2015). Also uncorrelated to any tunneling phenomenon is
the contribution I gave within the area of LED efficiency droop. Here the publications
were numerous: as an example I report here the paper written in 2015 and published the
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following year in the Journal of Applied Physics, as reported in the list of my publications.
Also in 2016 I was selected (resulting the first ranked) to carry out the same part-time

collaboration activity I gave the year before, again, for a total budget of 100 hours. By
the scientific standpoint, the last year has been connoted by a change of perspective in
my research on tunneling. Moreover, having the unique opportunity to meet and talk
with the Nobel Laureate in Physics, Professor H. Amano, at the GaN Marathon held in
Padua on April 2016 has been illuminating for my consideration about the future of GaN
in solid-state electronics.

After being involved also in several methodological studies where different commercial
simulation tools have been compared for what concerns classical and quantum physical
models (some results can be found in the contributions presented on February 2016 at
the 20th SPIE International Conference on LEDs in San Francisco and at other minor
events), already since the last months of 2015 my research focus – albeit still tunneling-
related – moved from semiclassical to full-quantum modeling approach. In this context I
started to be increasingly involved in the development of an in-house code for NEGF sim-
ulations which has led me to explore the world of advanced programming: so, I attended
a course on parallel computing organized by the CINECA university consortium. To this
purpose, my third year of Ph.D. was definitely oriented towards the genuine quantum sim-
ulations, both via NEGF method and also by developing hand-made codes for the solution
of confinement problems in nanostructures, as explained in the very last part of this thesis.

Marco Mandurrino,
Pinerolo, October 2016
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Abstract

The undiscussed role of solid-state optoelectronics covers nowadays a wide range
of applications. Within this scenario, infrared (IR) detection is becoming crucial by the
technological point of view, as well as for scientific purposes, from biology to aerospace. Its
commercial and strategic role, however, is confirmed by its spreading use for surveillance,
clinical diagnostics, environmental analysis, national/private security, military purposes
or quality control as in food industry. At the same time solid-state lighting is emerging
among the most efficient electronic applications of the modern era, with a billion-dollar
business which is just destined to increase in the next decades.

The ongoing development of such technologies must be accompanied by a sufficiently
fast scientific progress, which is able to meet the growing demand of high-quality produc-
tion standards and, as immediate but not obvious consequence, the need of performances
which would be the highest possible. One issue affecting both kinds of applications we
mentioned is the quantum efficiency, no matter the signal they produce is coming from
absorbed or emitted photons. At any rate, the balance between the stimulus coming from
the surrounding environment is and the generated electrical current is absolutely crucial
in each modern optoelectronic device.

More in depth, since IR detectors are asked to convert photons into electrons, device
designers must ensure that mechanisms concurring to this conversion should be dominant
with respect to any opponent phenomenon. Symmetrically, light-emitting diodes should
realize the inverse process, where electrons are converted into photons. In real life this
mechanism never take place in a one-to-one electron-photon correspondence. Indeed tun-
neling, a quantum effect related to the probabilistic nature of particles and, thus, also of
charges, contributes to unbalance this correspondence by degrading the signal produced
within the device active region. In IR photodetectors this translates into of a current
even in absence of light (and, by virtue of this fact, this current is known as “dark cur-
rent”) while in light-emitters tunneling is responsible for leakages that may undermine the
quantum efficiency and the power consumption also below the optical turn-on.

The present dissertation is part of such framework being the result of studying and
modeling different tunneling mechanisms occurring in narrow-gap infrared photodetectors
(IRPDs) for mid-wavelength IR (MWIR) applications (3 to 5 µm) and in wide-gap blue
LEDs (around 450 nm) based on nitride material system. This study has been possible

ix



Abstract

thanks to the collaboration with several academic institutions (Boston University, Padua
and Modena e Reggio Emilia Universities) and two important German industries, AIM
Infrarot Module and OSRAM Opto Semiconductors, which provided the case-study devices
here analyzed. After reviewing basic concepts of solid-state physics, the first part of this
work deals with the description of the above cited optoelectronic devices, along with their
constituent materials: the HgCdTe alloy, in the case of photodetectors, and GaN and its
ternary alloys with In and Al, for what concerns blue LEDs.

Since the literature focusing on this research area is still not mature enough, in the
second part different tunneling mechanisms and models are proposed, described in detail
and then tested for the first time, as in the case of a novel formulation intended for direct
tunneling in IRPDs or the description of defect-assisted tunneling in LEDs which also
includes elements coming from the microscopic theory of multiphonon emission (MPE) in
solids. Simulations are carried out by means of several numerical simulation approaches,
using either commercial TCAD (Technology Computer Aided Design) tools and codes
developed ad hoc for this purpose.

The encouraging and fully satisfying results of numerical modeling here proposed con-
firm, on the one hand, the widely accepted relevance of tunneling in modern electronics
and, on the other hand, also propose a new perspective about possible tunneling mecha-
nism in optoelectronic devices and their appropriate physical, mathematical and numerical
investigation tools. Furthermore, the role of device modeling does not end here because
many physical details and technological information can be inferred from simulations, with
enormous beneficial effects for the electronic industry and the quality improvement of its
fabrication processes such those invoked above.
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�Nature, as we understand it today, behaves in such a way
that it is fundamentally impossible to make a precise pre-

diction of exactly what will happen in a given experiment�

Richard P. Feynman — “Six Easy Pieces” (1964)



General Introduction

For many decades electronics considered carriers as classical particles. The real
breakthrough came, probably, in the early 90s with the work done by C. Zener, who
realized that electronic devices could no longer be considered as classical systems due
to the presence of excess currents unpredicted by the standard transport models: for
the first time the technology and a newborn quantum mechanics came into contact,
and real-life objects experienced effects that only laboratories did before. This
dissertation deals with quantum phenomena in solid matter that are at the origin of
such kind of currents and, in particular, with tunneling in electronic nano-systems
for optoelectronic applications.

In the next paragraphs we shall introduce the framework in which the present
work is collocated and then a brief perspective about the organization of the pre-
sented topics will be also provided.

I Motivation and Research Focus

The rapidly growing field represented by lighting and light detection is known to
be affected by the quantum probabilistic nature of carriers in solids, especially when
devices dimensions tend to be reduced down to the nanoscale. Moreover, photon
emission or absorption, more than other areas of interest as power electronics or
digital ones, requires a certain signal quality, besides standard noise controlling. Let
us mention, for instance, night vision for security purposes or the use of particular
emission wavelengths to reproduce specific natural habitats essential for the artificial
breeding of certain fauna.

Quantum tunneling represents, seen from the optoelectronics applications per-
spective, a cause of current leakage. Thus it may heavily contribute to the sig-
nal degradation, no matter whether is coming from emitted or received photons.
Nonetheless, the rigorous description of these effects is not yet mature like for sil-
icon technology, where tunneling is under study since several decades: think, for
instance, to all the developments made about direct or Fowler-Nordheim tunneling
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control in MOSFETs. In some other applications, moreover, tunneling became a re-
source, an underlying operation principle, like for resonant tunneling diodes (RTDs)
or tunneling-field-effect transistors (TFETs).

The present dissertation has been developed with the aim of trying to fill, in part,
this gap through the study and modeling of different tunneling-related phenomena
occurring in different kinds of optoelectronic devices, by means of different theoret-
ical and analytical approaches offered by the computational physics applied to the
simulation of electronic devices. To do so, the author focused both on photodetec-
tors (in our case intended to detect IR light) and light-emitters (here GaN-based
LEDs have been studied). Since the materials constituting our devices highly differ
from the well-known silicon and its properties this research activity has been a bit
challenging and – for such reason – extremely exciting and mentally stimulating.

In order to make this work as clear as possible, we next present the thesis plan,
discussing how it articulates throughout the chapters sequence.

II About this Work

This work is divided into two main parts, plus a section which includes three
important appendices that will be described in the following. Let us start from
Part I, concerning “Fundamentals of Solid-State Optoelectronic Devices”.

After a very short, but necessary, introduction about some basic concepts con-
cerning semiconductors, theory of bands and carrier statistics/dynamics, Chapter 1
also provides several important information about one of the most relevant category
of physical processes occurring in semiconductor devices: generation/recombination
(GR) mechanisms. This is absolutely propaedeutical to the continuation of all the
thesis since tunneling mechanisms could involve a GR event or, they could be some-
how assimilated to a GR process as net result of a carrier transition across the band
gap. The last part of this chapter also deals with a brief recall about one of the most
used model among classical theories about carrier transport in semiconductors: the
drift-diffusion (DD) formalism and its computational/mathematical properties, as
boundary conditions and geometrical discretization of space-time domain. This for-
malism will be used in the following chapters when semiclassical tunneling models
will be explained and applied.

Chapter 2 is intended to introduce the theory of solid-state infrared (IR) photon
detection along with a complete description of all the physical properties of the
elective material system used in today IR industry: the narrow- and tunable-gap
semiconducting ternary alloy HgCdTe, also known as “Mer-Ca-Tel”, or MCT. These
first two topics correspond to as many subsection of the chapter and, in part, have
their origin in the research work done by the author during the Master’s thesis
development, which was focusing on a theoretical investigation of direct tunneling
within (unrealistic) MCT-based p-i -n structures. The chapter concludes with a
description of modern devices and of the most relevant transport properties of which
they are characterized. Knowing the standard behavior of these objects is crucial
in order to recognize the famous excess current we mentioned at the beginning
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which is referred, in our case, to particular (direct) tunneling transitions occurring
in HgCdTe-based devices.

Chapter 3 opens retracing the history of solid-state lighting, from first attempts
with macroscopic samples made of SiC in the first years of the 20th century to the
modern era, dominated by light-emitting diodes (LEDs) and laser diodes. Then we
immediately focus on our area of interest, represented by GaN-based blue LEDs, by
describing the properties of narrow-gap III-nitride semiconductors (essentially GaN
and its ternary alloys made with Al and In used as Ga-substitutional) and also by
analyzing some important LED operation principles. These topics deal with a new
research area in which the author worked during its Ph.D. activities: in particular,
setting up and calibrating a material library (here reported) has represented one of
the main prerequisite to be accomplished before entering more deeply in tunneling
analysis and modeling. The chapter concludes by treating some advanced descrip-
tions of quantum confinement in LED active regions and also about light emission
and efficiency-related issues, of which also tunneling makes part.

The first three chapters complete Part I of the present dissertation. Part II,
or “Tunneling in Direct Band Gap Semiconductor Devices”, represents the core of
the author’s scientific production, meant as relevant theoretical results and their
practical impact on published studies over real devices. However, as pointed out in
the Preface, we are not talking about all the scientific production, but only of that
one concerning the main topic, which is tunneling.

Chapter 4 is surely the most important of all the dissertation. Its articulation is
quite complex and its purpose is to bring the reader from pure theoretical principles
of quantum mechanics to the art of modeling them with a calculator. The passage is
conceptually rather crucial since the physics must necessarily be simplified in order
to be modeled and the way of doing this finally determines the accuracy level of
the adopted strategy and, substantially, even the outcoming results of the overall
modeling procedure. For these simple but important reasons it has been decided to
organize the treatment starting from one of the most used and, at the same time, also
the most effective approximations that can be adopted, known as the semiclassical
approximation of quantum mechanics or “WKB approximation”, from the names of
the three scientists, G. Wentzel, H. A. Kramers and L. N. Brillouin, who separately
came to the same formalism, in 1926. From here we shall progressively move to-
wards more accurate descriptions, by shrinking the observation scale and decreasing
the number of approximations. Being the WKB formalism at the basis of a wide
part of scientific literature dealing with the modeling of quantum particles within
confining potentials in solids, its analysis becomes even more useful for us. So, after
the initial theoretical section, shall be able to present through the WBK perspective
two important tunneling effects, i.e. the direct (BTBT) and trap-assisted tunneling
(TAT). Then some of the most relevant models for both processes are browsed and
reviewed: we are talking about the rigorous theory of BTBT by E. O. Kane and the
widely-used TAT formalism developed by G. A. M. Hurkx. Since the target here is
to deviate from standard framework towards ad hoc applications conceived for not
fully conventional materials as MCT or III-N, the treatment continues presenting a
novel BTBT formulation intended for MCT-based p-i -n structures to which the au-
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thor began working in 2013 thanks to the above mentioned Master’s thesis and here
fully developed. The model takes origin from Kane’s studies and introduces some
new elements allowing its application to realistic mid-wavelength-infrared (MWIR)
HgCdTe-based photodetectors under opportune conditions about the electric field
across the diode junction. For what concerns TAT, a third section focuses on a
microscopic general theory here supposed to be valid to describe also defect-assisted
tunneling in wide-gap light-emitters: this theory is referred to as the multiphonon-
emission (MPE) theory. The reader can find its derivation as a theoretical intro-
duction of the 2015 paper published in the Journal of Computational Electronics,
vol. 14 no. 2. On the basis of such rigorous approach, some new features have been
described and then added – as in the case of a WKB-related probabilistic term or
as for nonlocal-effects terms – in order to obtain a formulation of trapping rates
suitable for semiclassical simulations of TAT in GaN-based blue LEDs. Still moving
towards the microscopic world, the chapter closes with a brief but intense descrip-
tion of two of the most advanced full-quantum modeling approaches for tunneling
mechanisms in semiconductor devices: the first class is represented by the so-called
density-matrix approach (here only described) while the second one concerns the
promising Non-Equilibrium Green’s Functions (NEGF) method, which has been de-
scribed both by the theoretical and computational standpoint. This method will
be used in the following when a code developed by our group will be applied to a
realistic GaN-based structure.

After the digression about tunneling mechanisms and models, Chapter 5 begins
the series of applicative chapters dedicated to the results of simulations obtained in-
cluding all the previously exposed theories in real optoelectronic structures. Here the
case-study involves two HgCdTe IR photodetectors (IRPDs) manufactured by AIM
Infrarot Module GmbH which are nominally identical except for their p-type dop-
ing technology. After a parametric calibration, the measured dark characteristics of
both devices have been successfully reproduced with semiclassical simulations which
included the author’s novel BTBT formulation and also suitable impact ionization
models. The second part of the chapter is somehow a review of the publications in
this field and, in particular, of one journal paper (Journal of Electronic Materials,
vol. 44 no. 9, 2015) and two conference papers (presented at the 2014 US Work-
shop on II-VI materials, Baltimora, and at the 2015 Infrared Colloquium, Freiburg).
Besides the review, even some unpublished results are included. The author would
thank the collaboration with AIM Infrarot Module and its researchers (among all,
W. Schirmacher, S. Hanna and H. Figgemeier) and also with Boston University (espe-
cially Prof. E. Bellotti, from the Electrical & Computer Engineering group), without
which this study could not have been developed.

Another collaboration with a well-known German company, OSRAM Opto Semi-
conductors GmbH, is at the center of my second research area. Thanks to two
InGaN/GaN single quantum well (SQW) blue LEDs fabricated by such company,
Chapter 6 analyzes the structures searching for tunneling signatures and then de-
scribes the results of semiclassical TAT simulations performed accounting for the
MPE model previously discussed which demonstrate, for the first time in the litera-
ture, its efficacy in reproducing forward electrical characteristics of such GaN-based
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light-emitters. Besides the defect-related transport across the band gap, the present
thesis proposes the existence of a further tunneling mechanism occurring between
quasi confined states within the quantum well (QW) and the surrounding barriers:
the intra-band-to-band tunneling (BTBT), a direct transition involving only one
band, conduction for electrons or valence for holes. The formalism chosen in order
to investigate this hypothesis is the full-quantum NEGF method since, in the au-
thor’s opinion, only a genuine microscopic description could capture the quantum
essence of a mechanism involving quasi-confined fermions. After choosing a further
(realistic) case-study structure, the NEGF code developed by our Computational
Electronics group is tested, confirming – at least via simulations – the presence
of the inferred intra-BTBT mechanism. In summary, this chapter essentially pro-
poses, in a completely rearranged form, all the studies published about tunneling in
light-emitters, also including some unpublished analysis and results: in particular,
at least two special-issue journal papers (Physica Status Solidi A, vol. 212 no. 5,
and Journal of Computational Electronics, vol. 14 no. 2, both dated 2015) and
as many conference papers (presented at the 2014 International Conference on Nu-
merical Simulation of Optoelectronic Devices (NUSOD), Palma de Mallorca, and
at the 14th SPIE International Conference on Solid-State Lighting and LED-based
Illumination Systems, San Diego) plus other less prestigious but even important
national/international conference papers. Besides OSRAM Opto Semiconductors,
this research was possible also thanks to our collaboration with Padua University,
Italy (and particularly with Prof. E. Zanoni, G. Meneghesso and Dr. M. Meneghini)
and Prof. G. Verzellesi from Modena e Reggio Emilia University, Italy.

Chapter 7, finally, reports some useful global comments and considerations about
this work. Then a section dedicated to three Appendices has been included. In Ap-
pendices A and B we described the way of implementing the most relevant material
parameters of MCT and III-nitrides, respectively, into the simulator used for semi-
classical numerical modeling. Lastly, Appendix C presents the C++ code used to
perform simulations via the author’s BTBT formulation: being a novel model, the
commercial simulator employed for semiclassical analysis needs to receive the rou-
tine as external file. So, for the sake of completeness (and also to give reproducibility
to the present work) we reported it for the reader benefit.
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Fundamentals of Solid-State
Optoelectronic Devices
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Chapter 1

General Concepts concerning Semiconductors

Before introducing the two main categories of optoelectronic devices presented
in this thesis, that is the narrow gap photodiodes for infrared light detection (see
Chapter 2) and the wide gap, GaN-based, light-emitting diodes (see Chapter 3), a
general introduction about classical solid-state physics in semiconductors must be
provided. To this purpose we present here a propaedeutic description organized as
follows: Section 1.1 is devoted to recalling the origins of energetic band structure,
the fundamental ingredient for each electronic transition, as tunneling mechanisms
are. A simple derivation of the k · p method, one of the most exploited in order to
predict the energy band structure in semiconductors, is also included. Then, among
these transitions, Shockley-Read-Hall, radiative and Auger processes, which are the
most important occurring in both devices categories, will be the topic of Section 1.4.
As we shall see, both mechanisms dynamics and the equations commonly used to
represent them in the classical framework will be described.

1.1 From Orbitals to the Theory of Bands

According to the Bloch theorem, electrons in solid matter experiencing a periodic
lattice potential U(r) has a wavefunction of the form

Ψn,k(r) = un,k(r) eik·r (1.1)

(see panel (a) in Figure 1.1), where eik·r is a propagating plane wave and the term
uk(r) has the same period of U(r): if R is the unitary vector in the real space, K
its reciprocal (i.e., referred to the lattice in the k-space) and U(r + R) = U(r) by
construction, than also uk(r + R) = uk(r) and Ψk+K(r) = Ψk(r) are automatically
verified.
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Figure 1.1. (a) Graphical representation of a generic monodimensional Bloch-wavefunction
Ψn,k(x) = un,k(x) eik·x and its components: the slowly oscillating plane wave eik·x and the lattice-
period function un,k(x). Grey dots are crystal nuclei and U(x) is the relative 1D lattice periodic
potential (Kronig-Penney). (b) Energy bands formation in a tetrahedral crystal cell (Si or Ge): as
one can see from the plot representing the transformation of electronic energy levels as a function
of the interatomic distance, orbitals may overlap and degenerate into bands which open at the
equilibrium radius a0 determining a typical forbidden gap Eg = EC − EV.

The first observation about Eq. (1.1) is that the wavefunction Ψn,k(r) cannot
be any possible function but it must be eigensolution of the (time-independent)
Schrödinger equation

− ~2

2m∗
∆rΨn,k(r) + U(r)Ψn,k(r) = En(k)Ψn,k(r) , (1.2)

where ~ is the reduced Plank constant, m∗ the carrier effective mass,

En(k) ' En +
~2k2

2m∗
with n = 1, 2, 3, . . . (1.3)

(n is the principal quantum number of the state/sub-band) and

H = − ~2

2m∗
∆r(r) + U(r) (1.4)

is the Hamiltonian operator of the system. The other important consideration has
to do with the presence of the subscript k, and consists in the fact that we can
find a completely different solution of Eq. (1.1) by changing the wavevector k: the
wavevector here becomes a true quantum number, labeling in Eq. (1.2) the complete
basis of Bloch-wavefunctions.

As a consequence of the Bloch theorem, also energy eigenvalues are periodic as
Ψn,k(x) in the reciprocal lattice, so:

En(k + K) = En(k) . (1.5)
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Figure 1.2. (a) Simplified 2D representation of a periodic cubic crystal, where the lattice param-
eter a0 is highlighted. (b) Corresponding band structure of a direct band gap material in the first
Brillouin zone (FBZ), i.e. for |k| ≤ π

a0
, where k is the crystal wavevector k projected along one

of the three axes of the real space. First conduction and valence band states En(k) around the Γ
symmetry point (k = 0) are also represented, while the grey area is the band gap.

These results represent a remarkable difference from what one can observe in free
atoms, where the electronic potential of nuclei determine a well-defined spectrum
of energy levels and wavefunctions, whatever the value k. In case of solids, valence
electrons are seen as an ensemble of fermions whose wavefunction is represented
by a term un,k(r) with the same period of lattice potential (Kronig-Penney poten-
tial [1]) modulated by a slowly oscillating plane wave eik·r. The energy spectrum
now depends on the lattice momentum ~k and is no more a set of discrete spec-
trum of possible states but the orbital levels result to be degenerated into a system
of allowed (or forbidden) “bands”, where states are energetically dense. When k
assumes real values the band is allowed, otherwise we are in presence of forbidden
states, since there the eigenfunctions are exponentially decaying. The framework we
developed is at the basis of the energy band theory, a formalism merging quantum
mechanics and solid-state physics in a unique model which is able to predict the
behavior of electrons in a periodic crystal.

Now we have the fundamental elements to investigate the energy structure of
each solid. What makes the difference between a descriptive model and another one
is the way of approximating the lattice potential (see, for instance, the virtual-crystal
approximation in Section 2.2.2). Rigorous approaches consist in the tight-binding
approximation and the k ·p perturbation method : the first one describes the system
accounting for atomic orbitals of only nearby atoms, and the second one is based on
an Hamiltonian with perturbation terms in the momentum space. Before entering
in the details of this last method, let us start from the bands formation (see panel
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(b) in Figure 1.1). Typically, in direct band gap semiconductors, atoms are con-
nected through σ-bonds, consisting in a superposition of p-orbitals in a three-fold
sp3 hybridization (p-lobes are lying on all the three directions of the real space: px,
py, pz). These bonds give the major contribution to the shape of un,k(r) and the
related probability density |un,k(r)2| while, at the same time, they are responsible
for the differentiation of valence electrons in at least three sub-bands. Moreover,
if we include also spin-orbit interactions, that is the overlapping term (s × L) of
interaction between the intrinsic electron angular momentum (i.e. the spin s) and
the magnetic field generated by the nuclei (or their momentum L, almost equal to
the electron orbit momentum), the energy splitting becomes even more evident.

Similarly, for what concerns conduction states, the s-orbitals and their quasi-
spherical symmetry dominate the shape of the rapidly oscillating part of the wave-
fuction. Thanks to this symmetry, the formation of a conduction band could be
explained solely through the overlap/degeneration of s-orbitals, without accounting
for any sub-band splitting effect, as we did instead for valence band. Nevertheless,
the lack of orbital momentum L in s-states does not allow spin-orbit effects. The
only possible degeneration, at this stage of approximation, could be a slight contri-
bution of the p-orbital to the conduction band at high energies (see, again, panel
(b) in Figure 1.1). But as long as we assume L ' 0 the sp two-fold splitting in this
case will be considered negligible.

As we may appreciate from Figure 1.2, panel (b), in direct band gap semiconduc-
tors like Hg1−xCdxTe, GaN, InxGa1−xN or AlxGa1−xN the conduction band (CB)
minimum and the top of the valence band (VB) are located at the critical point Γ of
the first Brillouin zone (FBZ), i.e. at k = 0. This represents an advantage for some
kinds of applications, especially in optoelectronics, where the most probable part
of direct transitions between CB and VB can be established without interactions
in the momentum space (∆k = 0), as instead occurs in phonon-assisted processes.
Being the conduction and valence band trend almost parabolic in k (see again panel
(b) in Figure 1.2 and also Eq. (1.3)), if we neglect the tensorial notation for carrier
effective masses around Γ, then one can see that m∗ can be considered proportional
to the curvature of the function E(k). In fact:

1

m∗
' 1

~2

d2En(k)

dk2
. (1.6)

The lower the concavity, the higher m∗.
Now we briefly derive the k · p formalism starting from the substitution of a

generic Bloch-wavefunction into the Schrödinger equation:(
− ~2

2m∗
∆r +

~
m∗

k · p +
~2k2

2m∗
+ U(r)

)
un,k(r) = En(k)un,k(r) (1.7)

where p = −i~∆ is the momentum operator. Supposing to know the Hamiltonian
and the wavefunction at a given k0

Hk0 = − ~2

2m∗
∇2

r +
~
m∗

k0 · p +
~2k2

0

2m∗
+ U(r) (1.8)
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and
Ψn,k0(r) = un,k0(r) eik0·r , (1.9)

then Eq. (1.2) becomes(
Hk0 +

~
m∗

(k− k0) · p +
~2

2m∗
(k2 − k2

0)

)
un,k0(r) = En(k)un,k0(r) , (1.10)

where
un,k0(r) =

∑
n′

An′,n (|k− k0|)un′,k0(r) , (1.11)

If we plug Eq. (1.11) into Eq. (1.10), after multiplying both sides by u∗n,k0
(r) and

integrating over the volume of a unit cell, we obtain the eigenvalue secular equation:∑
n′

[(
En(k0) +

~2

2m∗
(k2 − k2

0)

)
δn′,n +

~
m∗

(k− k0) · pn′,n
]
An′,n = En(k)An,n

(1.12)
in which ~

m∗ (k− k0) · pn′,n is our perturbation term and where

pn′,n =

∫
u∗n,k0

(r) pu∗n′,k0
(r) dr . (1.13)

Now one can proceed to solve the k · p secular equation written for k ' k0, deter-
mining the coefficients An′,n and then also the eigenvalues En(k) of the system in
the perturbation framework. As we shall see in next chapters, the most important
transitions in direct band gap semiconductors involve the main conduction band
(CB) and at least three valence bands, depending on the effective hole mass m∗h: so
we have the heavy hole (HH) band, the light hole (LH) band and the split-off (SO)
band. The presence of three different valence bands is due to the state separation
produced, in turn, by spin-orbit interaction effects, since otherwise they would be
degenerate.

1.2 Carrier Statistics

The classical picture describing a charge population in solids and its related
density is usually based on the Fermi-Dirac statistical distributions

fFD(E) =
1

e
E−EF
kBT + 1

, (1.14)

with kB the Boltzmann constant and EF the Fermi energy, which represents the
highest possible energy of carriers when T = 0. This formalism is straightforward
for electrons, which are fermions (1/2-spin particles obeying to the Pauli exclusion
principle) and, by symmetry, is also applied to holes.

Now, differential carrier densities are given by{
dn = ρC(E) fFD(E) dE

dp = ρV(E) (1− fFD(E)) dE
, (1.15)
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Figure 1.3. Density of states (DOS), Fermi function and carrier density represented as a function
of energy in intrinsic semiconductors (EF ' (EV +EC)/2 and n = p = ni at equilibrium) for T > 0.

where ρC(E) and ρV(E) are the so-called density of states (DOS)
ρC(E) =

dNC(E)

dE
=

4π
√

8m∗e
h

√
E − EC , for E ≥ EC

ρV (E) =
dNV(E)

dE
=

4π
√

8m∗h
h

√
EV − E , for E ≤ EV

, (1.16)

which indicate how many states (occupied or not) can be found for a given energy E,
and where NC(E) and NV(E) are the effective densities in conduction and valence
band

NC,V = 2

(
m∗e,hkBT

2π~2

) 3
2

, (1.17)

where m∗e,h is the electron/hole effective mass.
At T = 0 the function fFD(E) is a step-function such that

fFD =

{
1 if E ≤ EF

0 if E > EF

(1.18)

while, as represented in Figure 1.3 for a generic intrinsic semiconductor, when T
is greather than zero the Fermi-Dirac distribution function becomes smoothed in a
region approximately wide ∼kBT . This implies that only at thermal equilibrium
(T = 0) EF represents the energy which corresponds to completely filled VB and
empty CB. At higher temperatures we have that f(EF) = 1/2. So, if EF stays within
the band gap (i.e. for low doping densities) and the energy gap is sufficiently greater
than kBT , then the semiconductor can be still considered somehow at thermody-
namic equilibrium. If the gap is narrower, instead, the finite probability fFD(E) to

12



1.3 Doping and Carrier Concentrations

have an electron in CB (and, at the same time, the probability (1− f(E)) to have
a hole in VB) can induce “spontaneous” band-to-band transitions typical of these
materials, as we will see talking about tunneling phenomena.

The Fermi-Dirac distribution is not only valid for intrinsic semiconductors, i.e.
the one in which the Fermi level equals the intrinsic one

EF ≡ EFi =
1

2

(
(EC + EV) + kBT log

[
NV

NC

])
, (1.19)

but it can be also applied to other materials like degenerate semiconductors, where
doping levels are very high. Nonetheless, the choice of an approximated description
is common when we study non-degenerate materials. This approximation consists
in using the Boltzmann distribution function

fB(E) = e
−E−EF

kBT (1.20)

in place of fFD, where now the carrier population no longer obeys to the Pauli
exclusion principle. Comparing the two formulations one can notice that

fFD(E) ' fB(E) ⇔ exp

[
E − EF

kBT

]
� 1 , (1.21)

i.e. for E � kBT . At this limit the classical Boltzmann treatment in place of the
semiclassical Fermi-Dirac one is rather well acceptable.

Finally, integrating the differential density for electrons and holes in Eq. (1.15)
with respect to the bands we obtain their concentrations at equilibrium:n = NC e

EF−EC
kBT

p = NV e
EV−EF
kBT

, (1.22)

where

n p =
√
NC NV e

− Eg
2kBT ≡ ni . (1.23)

Alternatively, one can also writen = ni e
EF−EFi
kBT

p = ni e
EFi
−EF

kBT

. (1.24)

1.3 Doping and Carrier Concentrations

A building-block of each solid-state system is constituted by the feature of artifi-
cially enhance the native carrier concentrations through the introduction of impurity
atoms. These dopants elements may act as donors or acceptors and their energy
ED or EA tipically lies just below the CB minimum or above the top of the VB,

13



1.4 Generation/Recombination Mechanisms

respectively. The difference between this energy and the corresponding band edge
is called ionization energy Eion:

ED,ion = EC − ED or EA,ion = EA − EV . (1.25)

In neutral conditions the new Fermi level due to doping is determined by the
balance equation

ntot = n+ nD = p+ pA = ptot (1.26)

where the ionized carrier densities, still obeying to the Fermi statistics, are
nD = ND

1

1 + gD e

(
EF−ED
kBT

)

pA = NA
1

1 + gA e

(
EA−EF
kBT

) , (1.27)

being gD and gA the degeneracy factors (usually gD = 2 and gA = 4). Eq. (1.27) is
known as the incomplete ionization law, since nD and pA determine the fraction of
thermally ionized dopant, once their nominal values ND and NA are given. In other
words, effective doping can reach the concentration of implanted chemical dopants
only in the limit of high T , so: {

nD
T→∞

= ND

pA
T→∞

= NA

. (1.28)

When a doped semiconductor is out of equilibrium (by carrier injection or other
external stimuli), the Fermi level changes its position going close to the CB in n-type
materials and to the VB in p-type ones:{

EFn = EFi + kBT ln (ntot/ni)

EFp = EFi − kBT ln (ptot/ni)
. (1.29)

These two new energies are called quasi-Fermi levels.

1.4 Generation/Recombination Mechanisms

The usual operation state of semiconductor-based electronic devices consists in
a non-equilibrium condition. In this regime the external energy given to the system
is partially converted into a signal (optical or electrical) through specific transitions
which can take place in the energy domain, as well as in real or momentum space.
In the case of direct band gap semiconductors, most of the common transitions
between bands occur at the Γ symmetry point, where the gap reaches its minimum
energy, Eg. This is the condition in which electron/hole pairs are generated or
recombined (annihilated), depending on whether the energy is absorbed or delivered,
respectively. This energy can involve a photon, i.e. a quantum of light, as in case of
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1.4 Generation/Recombination Mechanisms

optical processes. But, in general, interband transitions may occur also in the non-
radiative regime. Generation/recombination mechanisms change the availability of
carriers in CB and VB, both majority and minority, determining relaxation processes
towards equilibrium which can affect and limit the device performance by means of
carriers lifetime enhancement.

So, GR processes can be divided into two main categories, non-radiative and
radiative mechanisms. In both, generation consists of an electron coming from CB
that occupies an empty state (hole) in VB, while recombination is its inverse, and
these two competitive processes are perfectly balanced at equilibrium. Electron/hole
pairs are generated or recombined through a characteristic lifetime, depending on
the material and on the particular GR mechanism involved. Out of equilibrium the
algebraic sum of the generation G and recombination R rate is the so-called net
generation/recombination rate U = G − R, i.e. the number of pairs recombined
per volume in the unit time (cm−3s−1), which is a function of the carrier densities
at equilibrium n0, p0 and out of equilibrium n′, p′ such that U 6= 0 if and only if
∆n 6= 0 and ∆p 6= 0, where ∆n = n′ − n0 and ∆p = p′ − p0. This set of properties
goes under the name of relaxation time approximation, according to which we have:


Un '

n′ − n0

τn
=

∆n

τn

Up '
p′ − p0

τp
=

∆p

τp

, (1.30)

where τn and τp are the electron and hole lifetimes, respectively. For small excess
carrier concentrations ∆n, ∆p and within the Boltzmann statistics framework:

∂∆n

∂t
' −∆n

τn
∂∆p

∂t
' −∆p

τp

(1.31)

that yields: {
n(t) = ∆n e−t/τn + n0

p(t) = ∆p e−t/τp + p0

, (1.32)

from which it is even more clear why τ are called relaxation times, being the time
constant needed to restore the original equilibrium concentrations n0, p0.

Under the same assumptions given before, the lifetime contribution coming from
each GR process (non-radiative, radiative and others) can be treated as independent.
For this reason:

1

τtot

=
∑
j

1

τj
(1.33)

where index j stands for the contribution from a j -th GR process.
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Figure 1.4. Single-level model of Shockley-Read-Hall (SRH) generation and recombination pro-
cesses in a direct band gap semiconductor. Solid arrows represent: (a) electron capture. (b)
electron emission. (c) hole capture. (d) hole emission. Completing the processes with dashed
arrows we have recombination in (a) and (c) and generation in (b) and (d).

1.4.1 Non-radiative mechanisms

1.4.1.1 SRH generation/recombination

A first class of non-radiative processes involves a certain density Ntrap of en-
ergy levels within the semiconductor band gap, like dopants, impurities or defects.
These states, also called Shockley-Read-Hall (SRH) centers, can assist interband
transitions which are typically stimulated by energies lower than Eg. As depicted
in Figure 1.4 for a single-level model, these transitions may follow four different
channels. In panel (a) an empty SRH trap (with and energy Etrap) is occupied by
a conduction electron with capture cross-section σn and capture rate cn = σn vthn ,
where vthn is the thermal speed of the electron. In (b) an electron escapes from a
trap with emission rate en and is promoted into CB. Panels (c) and (d), instead, re-
spectively represent the capture and emission of a valence hole with rates cp = σp vthp

and ep. Likewise, vthp is the thermal speed of the hole and:

vthn,p =

√
3kBT

m∗e,h

. (1.34)

Deriving Eqs. (1.32) with respect to time and recalling Eq. (1.30), which is valid
for small ∆n and ∆p, one can write the time-evolution of carriers in SRH processes
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1.4 Generation/Recombination Mechanisms

for direct band gap semiconductors as [2]
USRHn = −dn(t)

dt
= −cn n(t)Ntrap (1− ftrap(Etrap)) + enNtrap ftrap(Etrap)

USRHp = −dp(t)

dt
= −cp p(t)Ntrap ftrap(Etrap) + epNtrap (1− ftrap(Etrap))

(1.35)

that, thanks to the charge neutrality law, are linked via

n(t) +Ntrap ftrap(Etrap) = p(t) , (1.36)

where ftrap(Etrap) is the occupation function of the trap level. At steady-state equi-
librium (i.e. when dn

dt
= 0, dp

dt
= 0, n ≡ n0 and p ≡ p0):
en0

cn0

= ni e
Etrap−EFi

kBT ≡ n1

ep0

cp0

= ni e
EFi
−Etrap

kBT ≡ p1

(1.37)

and 
τn0 =

1

cnNtrap

=
1

σn vthn Ntrap

τp0 =
1

cpNtrap

=
1

σp vthp Ntrap

, (1.38)

where n1 and p1 are valid when Etrap ≡ EF.
Now, assuming N±trap = Ntrapftrap(Etrap) the fraction of occupied (charged) traps

and N0
trap = Ntrap(1−ftrap(Etrap)) the same quantity referred to unoccupied (neutral)

ones, we can rewrite Eq. (1.35) as
dn(t)

dt
= −cn (nN0

trap − n1N
±
trap)

dp(t)

dt
= −cp (pN±trap − p1N

0
trap)

. (1.39)

Then we have (still in steady-state conditions) that

dN±trap

dt
= −dn(t)

dt
+

dp(t)

dt
= cn (nN0

trap − n1N
±
trap)− cp (pN±trap − p1N

0
trap) (1.40)

which must be null by definition (except for transient regimes). Thus:
N0

trap = Ntrap
cn n1 + cp p

cn(n+ n1) + cp(p+ p1)

N±trap = Ntrap
cn n+ cp p1

cn(n+ n1) + cp(p+ p1)

. (1.41)
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By using all the previous relations, the relaxation process involving excited carrier
densities n′, p′ can be written as

dn′(t)

dt
=

dp′(t)

dt
=

(n0 + ∆n) (p0 + ∆p)− n2
i

τp0 (n0 + ∆n+ n1) + τn0 (p0 + ∆p+ p1)
= USRH . (1.42)

So, for electrons:

τSRHn = −
(

dn′

dt

)−1

∆n (1.43)

= −τp0 (n0 + ∆n+ n1) + τn0 (p0 + ∆p+ p1)

(n0 + ∆n) (p0 + ∆p)− n2
i

∆n (1.44)

= −σn vthn (n0 + ∆n+ n1) + σp vthp (p0 + ∆p+ p1)

σn vthn σp vthp N
2
trap [(n0 + ∆n) (p0 + ∆p)− n2

i ]
∆n (1.45)

and similarly for the holes. Then, recovering our previous steady-state assumptions:

USRH =
np− γnγp n2

i

τp

(
n+ γn ni e

Etrap−EFi
kBT

)
+ τn

(
p+ γp ni e

EFi
−Etrap

kBT

) (1.46)

(from which is evident that USRH is maximized when Etrap = EFi) and

τSRHn,p =
1

σn,p vthn,p Ntrap

, (1.47)

where the functions γn,p are equal to 1 in case of Boltzmann statistics (as supposed
so far) otherwise, in the Fermi statistics picture

γn =
n

NC

e
−EFn

−EC
kBT

γp =
p

NV

e
−
EV−EFp
kBT

(1.48)

and the carrier densities become
nF = NCF1/2

(
EFn − EC

kBT

)
pF = NVF1/2

(
EV − EFp

kBT

) , (1.49)

where NC,V are the conduction/valence band effective densities, F1/2(ε) represents
the 1/2-th order Fermi integral

F1/2(ε) =
2√
π

∞∫
0

√
E

1 + eE+ε
dE (1.50)

and EFn,p are the quasi-Fermi levels for electrons and holes, which generate from the
Fermi level when the material is out of equilibrium.

Now, since τn = ∆n/USRH and τp = ∆p/USRH, as stated by Eq. (1.43), by using
one of the possible representations of carrier densities (Boltzmann or Fermi) one can
appreciate the T -dependence of the SRH rate, which is increasing with temperature.
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1.4 Generation/Recombination Mechanisms

1.4.1.2 Auger generation/recombination

Besides defect-assisted non-radiative GR processes, a very important family of
processes is represented by Auger mechanisms, “three-body” interactions classified
depending on which carriers or sub-bands are involved. So, in principle, different
types of Auger GR can exist. The most important are depicted in Figure 1.5: in
panel (a) we find the “eeh” transition, which is the recombination of a CB electron,
where the excess energy is released to a second electron that can be promoted to
a higher conduction level; then in (b) the “ehh” process is represented, where the
energy is released to a hole, contrarily to the previous case; finally (c) represents the
“hhe” generation due to a hole promoted into the CB, where the excess energy is
transferred to another hole that is excited into a deeper valence state.

As just mentioned, processes (a) and (b) involve the recombination of an elec-
tron/hole pair before interacting with a third carrier. The case (c), instead, rep-
resents an example of Auger generation, a process which is commonly referred to
as impact ionization. In this sense Auger and impact ionization are symmetric pro-
cesses, whatever the kind of carriers involved. If Auger GR can be heavily present in
forward-biased light-emitting diodes based on wide band gap materials, especially
at high T or injection regimes, impact ionization can be more important in narrow
band gap IR photodiodes, which operate in reverse bias conditions.

Being a three-body mechanism, the net Auger recombination rate is fundamen-
tally different from traditional non-radiative rates. Moreover one has to observe that
its rate roughly goes like ∼n2p for “eeh” processes or ∼np2 for “ehh” ones and, in
general, it is proportional to the third power of the total carrier density or, in turn,
to the doping level. Now we go through the derivation of a macroscopic description
of the Auger recombination rate and lifetime, starting from quantum theory based
on microscopic quantities towards the common expressions used in experimental or
modeling studies. To do this, a formalism among all those present in the literature
has been chosen, which is the one developed by P. T. Landsberg and well discussed
in Ref. [3].

Let us start with considering as a template example the process CHCC. A new
detailed scheme is proposed in Figure 1.6, where all the single steps constituting
the whole process are highlighted and properly labeled: numbers 1 and 1′ indicate
respectively the initial and the final states of the first “direct transition”, i.e. the
band-to-band recombination of an electron/hole pair, while 2 and 2′ are the initial
and final state of the second process, which we shall call “exchange interaction”. In
the Landsberg formalism they are all described by Bloch states.

So, by using the Fermi golden rule in the first-order perturbation theory, the
overall transition rate as a function of time t can be written as

|W1→2′(t)| =
2πt

~

∣∣∣H(1)
2′→1

∣∣∣2 δ (E(0)
2′ − E

(0)
1

)
, (1.51)

where H
(1)
2′→1 is the first-order perturbed interaction Hamiltonian while energies at

the initial and final state E
(0)
1 , E

(0)
2′ are evaluated as zero-th order (non-perturbed)

terms. Notice that H(1) is time-independent and also Hermitian, so H
(1)
2′→1 ≡ H

(1)∗
1→2′ .
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Figure 1.5. Most important Auger generation/recombination processes in a direct band gap
semiconductor (without any phonon- or defect-assisted mechanism). (a) “eeh” Auger recombina-
tion also named CHCC where, after the electron/hole has recombined, a second electron is excited.
(b) “ehh” Auger recombination, or CHHL, in which the same recombination is followed by a tran-
sition involving a hole. Process (b′) is only a slight variant of the previous one and is labeled as
CHLH. (c) “hhe” Auger generation (or, better, impact ionization) where, after the electron/hole
pair generation, a second hole is promoted to another valence energy state. Notice that this scheme
also includes the third carrier participating to the GR transition, here represented by filled/empty
grey dots, respectively for electrons and holes.

Moreover: ∣∣∣H(1)
2′→1

∣∣∣2 = 2 β
(
|Md|2 + |Me|2

)
, (1.52)

where β is a spin-related term such that 1 < β < 2 while Md and Me are the
Bloch matrix elements for direct and exchange transition, respectively. It can be
demonstrated that they can be approximated as

|Md| '
4πq2

εV

|F1,2F1′,2′ |
λ2 + |k1 − k1′ |2

δk1+k2,k1′+k2′ (1.53)

and

|Me| '
4πq2

εV

|F1,2′F1′,2|
λ2 + |k2 − k1′|2

δk1+k2,k1′+k2′ , (1.54)

in which q is the elementary charge, ε and V are the material dielectric constant and
volume, respectively, λ−1 is the Coulomb screening radius, the four F represent all
the possible Bloch wavefunction overlaps and k1 , k1′ , k2 and k2′ are the momenta
corresponding to the states involved in the “eeh” process (see Figure 1.6).

Putting together the equations we reported, the interaction Hamiltonian can be
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Figure 1.6. CHCC Auger (“eeh”) recombination process, where the four Bloch states and their
momenta have been labeled. The first “direct” transition corresponds to the electron/hole recom-
bination while the subsequent “exchange” interaction due to momentum conservation consists of
an excitation of a second electron within the conduction band (CB).

rewritten as follows:∣∣∣H(1)
2′→1

∣∣∣2 ' 32π2q4

ε2V 2

{
|F1,2F1′,2′ |2(

λ2 + |k1 − k1′ |2
)2 +

|F1,2′F1′,2|2(
λ2 + |k2 − k1′|2

)2

+

∣∣∣∣ F1,2F1′,2′

λ2 + |k1 − k1′ |2
− F1,2′F1′,2

λ2 + |k2 − k1′ |2
∣∣∣∣2
}
δk1+k2,k1′+k2′ . (1.55)

Now the CHCC Auger recombination probability per unit volume and per unit
time is given by:

P ' 2t

~2V

∫
Φ
∣∣∣H(1)

2′→1

∣∣∣2 1− cosx

x2
dk1dk2dk1′ dk2′

' 32π2q4t

V 3~2ε3

(
∆n

n0

+
∆p

p0

)(
V

8π3

)3 ∫
f(1) f(2) (1− f(1′)) (1− f(2′))

×{· · · }
(

1− e
−
EFn

−EFp
kBT

)
1− cosx

x2
dk1dk2dk1′ dk2′ (1.56)

where Φ is computed at equilibrium as

Φ = f(1) f(2) (1− f(1′)) (1− f(2′))

(
1− e

−
EFn

−EFp
kBT

)
, (1.57)

in which the f ’s are the Fermi-Dirac occupation functions, and where

x =
t

~

(
E

(0)
2′ − E

(0)
1

)
. (1.58)
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The term omitted for reasons of brevity in Eq. (1.56) is the same within braces
in Eq. (1.55). If one notices that the total CHCC recombination probability is
intrinsically dominated by the “direct” process, then the bracketed term can be
reduced to the only first addend.

At this point, lifetimes and recombination rate of any Auger process can be
computed from the CHCC probability P through

1

τA

=
1

τn,A
+

1

τp,A

=
P

n− n0

+
P

p− p0

= Cn
n(np− n0p0)

∆n
+ Cp

p(np− n0p0)

∆p

' Cnn

∆n
+
Cpp

∆p
(np− n2

i ) , (1.59)

in which the last equality becomes exact for intrinsic semiconductors. From lifetimes,
as usual, we can derive the recombination rate in equilibrium conditions (∆n = ∆p)
remembering that R = ∆n/τ . So:

RA = (Cnn+ Cpp) (np− n2
i ) . (1.60)

Coefficients Cn,p represent a macroscopic (and somehow semi-empirical) descrip-
tion of the many-body theoretical probability integral P . They are material and
process dependent and are expressed in cm6s−1 units.

1.4.2 Radiative mechanisms

The last important category of GR processes is represented by radiative mech-
anisms. They are essential in optoelectronics since (spontaneous) radiative recom-
bination is the building-block physical mechanism in light-emitters and photogen-
eration, its symmetrical process, is at the basis of light detection. Discarding at
this moment all tunneling or trap-assisted transitions, one can say that the sim-
plest way to define radiative GR is that they are processes where the excess energy
released (absorbed) during the band-to-band transition is given to (by) a photon,
as schematically reproduced in Figure 1.7. Due to the finite probability of having
optical transitions at k > 0, usually the emission spectrum of a given semiconduc-
tor does not coincide with a δ-Dirac function but it corresponds to a broad curve,
typically modeled by a Lorentian as

L(ν) =
Γ (ν)

2π

1

(Eg − 2π~ν + ~ν)2 + (Γ (ν)/2)2 , (1.61)

where Γ (ν) is a Gamma function of the photon energy Eph = hν.
Now we re-propose here a very short derivation of the radiative recombination

rate Rrad from quantum principles, which finds its origins in the k · p method.
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Figure 1.7. Simplified representation of spontaneous radiative recombination with photon emis-
sion at different energies and, thus, involving states with different wavevectors: for transitions at
the symmetry point Γ (i.e. k = 0) the photon energy hν exactly corresponds to the energy gap Eg

otherwise, at higher wavevectors, must be hν2 > Eg.

Again we exploit the Fermi golden rule to write the recombination rate probability
in multi-photon emission mode, which is [3]

Prad(E, νk) =
∑

i,f

4q2n̂νk
m̄2V c3~2

|Mi,f(k)|2 δ (Ei − Ef − ~νk) (Nk + 1) , (1.62)

where “i” and “f” label the initial and final state in conduction and valence band,
respectively, ~νk is the k-dependent photon energy, Nk the number of emitted pho-
tons per each k point, c is the speed of light in vacuum, V the material volume, n̂
its refractive index, m̄ = m∗C |m∗HH| / (m∗C + |m∗HH|) and Mi,f is the transition matrix
element

|Mi,f(k)|2 = Pi,f |Fi,f(k)|2
(
m∗C(k)

m0

− 1

)
m0Eg (Eg + ∆SO)

12
(
Eg + 2

3
∆SO

) , (1.63)

being Pi,f a polarization term (due to spontaneous piezoelectric charges induced by
lattice bond potentials), ∆SO is the spin-orbit splitting energy responsible for the
gap between HH/LH bands and the SO band in Γ and, finally, Fi,f is the wavefunc-
tion overlap integral of conduction/valence band states involved in the radiative
transition.

The expression which describes the probability rate is k- and E-dependent, so
(as we published in the paper of Ref. [4]) we can obtain the total net recombination
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rate by integrating it over all the possible wavevectors and energies:

Rrad =

∫∫
Prad(E, νk) dk dE

=
∑

i,f

∫∫
4q2n̂νk
m2V c3~2

|Mi,f(k)|2 f(Ef) (1− f(Ei)) L(νk) k dk dE (1.64)

where f are the Fermi-Dirac functions and L(νk) is the wavevector-dependent Loren-
tian broadening.

Again, as well as for Auger processes, even the rate in Eq. (1.64) can be modeled
via an empirical point of view. The typical simplified description is

Rrad ' B (n0 + ∆n) (p0 + ∆p)

= Bnp , (1.65)

being B, also called ‘bi-molecular’ coefficient, a material dependent parameter (in
cm3s−1). The second equality in Eq. (1.65) is valid for intrinsic semiconductors. In
these conditions

τi,rad =
ni

2Rrad

=
ni

2Bnp
, (1.66)

from which the radiative lifetime at equilibrium

τrad =
2niτi,rad

n+ p
. (1.67)

Coefficients A = τ−1
SRH, Brad and Cn,p define the so-called “ABC model” describing

GR processes in semiconductors.

1.5 Classical Transport in Semiconductors

In order to describe electrical/optical operation of semiconductor devices and to
model them the knowledge about carriers dynamics is essential. In addition, de-
vice simulation isn’t only a strategy to predict specific structure behaviors, but it
also represents today’s workbench for investigating advanced device performances.
Although solving the electrical problem may constitute a formidable mathematical
challenge – especially in three-dimensional (3D) simulations – it is possible to sim-
plify the real physics by modeling only the dynamic description of locally averaged
variables through approximated solutions of opportune partial differential equations
(PDEs). Such average values are obtained thanks to a geometrical discretization
method, like the finite element (FEM), finite boxes (FB) or finite volume (FVM).
These spatial discretization schemes allow to reduce the PDE equations to a dis-
crete system of ordinary differential equations (ODEs) that it is possible to linearize
under specific theoretical hypotheses.

In the present chapter we analyzed some of the most important GR mechanisms.
Moreover, in Chapter 4 direct (BTBT) and defect-assisted tunneling (TAT) models
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1.5 Classical Transport in Semiconductors

designed for physics-based numerical simulation of optoelectronic devices will be
treated and finally expressed through opportune rates (number of carriers which
tunnel per volume per second). These rates may correspond to generation rates, in
case of BTBT in narrow band gap reverse biased diodes, or recombination rates, as
for TAT in wide band gap forward biased junctions. This section has the purpose
to clarify the framework in which both standard GR and such tunneling rates play
and how they can enter into device-level numerical simulation.

1.5.1 Short recall about drift-diffusion (DD) model

The simpler starting point in semiconductor transport theory is represented by
the Poisson equation, given by the PDE

∇2
rφ(r) = −q

ε

(
ND(r)−NA(r) +NV(r) exp

(
qφ(r)− χ(r)− Eg(r)

kBT

)

−NC(r) exp

(−qφ(r)− χ(r)

kBT

))
, (1.68)

where φ is the electrostatic potential, ε the dielectric constant, ND, NA, NV and
NC are, respectively, the concentrations of donors and acceptors and the effective
densities in valence and conduction band, χ is the electron affinity and q the ele-
mentary charge. Note that Eq. (1.68) is written in its most generic form since all
the possible spatial dependencies have been made explicit. By introducing now the
Boltzmann statistics we have carrier distribution functions f (k, r, t) that must obey
the so-called Boltzmann transport equation (BTE):

∂f (k, r, t)

∂t
+ v(k) · ∇rf (k, r, t) +

F

~
· ∇kf (k, r, t) =

df (k, r, t)

dt

∣∣∣∣
coll

(1.69)

where v(k) is a group velocity and F is the specific force field acting on the particles
constituting our system, such that F = ~(dk/dt). The left-hand side expression
represents a drift term while (df/dt)|coll is a collision term. Furthermore, under
relaxation time approximation (see Section 1.4):

df (k, r, t)

dt

∣∣∣∣
coll

= −|f (k, r, t)− f0(k)|
τ(k)

, (1.70)

where f0(k) refers to thermodynamic equilibrium.

Once the acting field is set, there are several techniques to solve the BTE.
One of these is the Hydrodynamic (HD) model, suitable for systems with many
electron-electron scattering events, like in submicrometric and micrometric devices,
heterostructures or quantum wells. Its unknowns are the carrier concentrations n
and p, their energy E and the electrostatic potential φ. Besides HD we find the
Drift-Diffusion (DD) model, used in the analysis of micrometric devices (down to
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1.5 Classical Transport in Semiconductors

0.5 µm) in diffusive transport regime, by self-consistently solving Eq. (1.68) and the
continuity equations for electron/hole current densities Jn,p(r, t)

∂n(r, t)

∂t
= +

1

q
∇rJn(r, t)− Un(r, t)

∂p(r, t)

∂t
= −1

q
∇rJp(r, t)− Up(r, t)

, (1.71)

where U(r, t) = G(r, t) − R(r, t) is the net generation/recombination rate, i.e. the
algebraic summation of terms G and R, and current densities are

Jn(r, t)

q
= Dn∇rn(r, t)− µn (∇rφ(r, t)) n(r, t)

Jp(r, t)

q
= Dp∇rp(r, t)− µp (∇rφ(r, t)) p(r, t)

, (1.72)

where Dn,p are the diffusion coefficients and

µn,p =
vdrift
n,p

E = − vdrift
n,p

∇rφ(r, t)
(1.73)

the electron/hole mobilities.
The DD model is valid under the assumption according to which field variations

produce in all the unknowns – n(r, t), p(r, t) and φ(r, t) – slower changes with respect
to the energy relaxation time of the system τ . A formal link between BTE and DD
model can be established through the so-called method of moments, according to
which the generalized statistical moment is computed by integrating in the k-space
Eq. (1.69) multiplied by λ, an opportune function of k:

∂

∂t

∫
k

λ f dk +∇r

∫
k

v(k)λ f dk− F

~

∫
k

∇k λ f dk =

∫
k

λ
df

dt

∣∣∣∣
coll

dk , (1.74)

where f = f (k, r, t) and assuming

λ = λ(k) =
N∑
j=0

aj kj

= a0 + a1 k + a2 k2 + . . . (1.75)

with 

a0 = 1

a1 = ~k

a2 =
~2 k2

2m∗e
...

. (1.76)
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Now we are able to define

Mj =

∫
k

λj(k) f (k, r, t) dk (1.77)

as the so-called j-th order moment of f (k, r, t). So one can see that the first three
moments correspond, respectively, to the carrier concentration, the carrier average
momentum and the carrier average energy. In particular, by using

M0 =

∫
k

f (k, r, t) dk = n(r, t) (1.78)

into Eq. (1.69) one can obtain the charge conservation law for electrons

∂n(r, t)

∂t
+∇r (v̄n n(r, t)) =

dn(r, t)

dt

∣∣∣∣
coll

, (1.79)

that, being

Jn = −q v̄n n(r, t) (1.80)

and
dn(r, t)

dt

∣∣∣∣
coll

= −Un(r, t) , (1.81)

coincides with the electron continuity equation, where

v̄n =

∫
k

v(k) f (k, r, t) dk∫
k

f (k, r, t) dk
(1.82)

is the average electron velocity.

Now notice that Eq. (1.71) states that each carrier is characterized by a con-
servation law where the outgoing charge in the transport term ∇rJn,p is (fully or
partially) balanced by the generation/recombination contribute Un,p. Not only elec-
trons and holes obey this conservation principle but also fixed charges – like defects
or dopants – do so, even if they don’t have a transport counterpart at play. Defining
the effective concentration of these level k as

C±k (r, t) =

{
N+

D,k(r, t) for donors

−N−A,k(r, t) for acceptors
(1.83)

we can write the corresponding continuity equation

∂C±k (r, t)

∂t
+
∑
k

(
Un,k(r, t)− Up,k(r, t)

)
= 0 (1.84)
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The final set of DD equations, in a 3D time-variant framework, is

∂n(r, t)

∂t
= −∇

(
n(r, t)µn∇rφ(r, t)−Dn∇rn(r, t)

)
− Un(r, t)

∂p(r, t)

∂t
= ∇

(
p(r, t)µp∇rφ(r, t) +Dp∇rp(r, t)

)
− Up(r, t)

∂C±k (r, t)

∂t
+
∑
k

(
Un,k(r, t)− Up,k(r, t)

)
= 0

∇2
rφ(r, t) = −ρ(r, t)

ε

, (1.85)

where the overall charge density ρ has become

ρ(r, t) = q

(
p(r, t)− n(r, t) +

∑
k

C±k (r, t)

)
(1.86)

and where all generation/recombination (and tunneling) mechanisms we discussed
in the present chapter can enter by means of their G or R rate.

1.5.2 Boundary conditions

In this subsection we deal with the solution of PDEs which constitute the sys-
tem (1.85), starting with a suitable ensemble of initial conditions (IC) and boundary
conditions (BC), then by applying a certain spatial discretization allowing to reduce
the PDE complexity.

Typically, the IC stem from the specific physical problem one has to solve,
whereas BC are quite standard in numerical simulations and deserve special at-
tention as well as the GR models included into the continuity equation. These
conditions can be of Neumann-type if applied to the unknowns derivatives or of
Dirichlet-type when applied to the unknowns only. They obviously can be mixed or
used together contemporarily in different part of the device, according to the energy
exchange between the system and the external environment. Anyway, in the first
kind of BC the (simplest) homogeneous condition is defined as

∂n(r, t)

∂n̂
= 0 ,

∂p(r, t)

∂n̂
= 0 and

∂φ(r, t)

∂n̂
= 0 (1.87)

where n̂ is the unit vector normal to a given boundary surface or interface. The
conditions stated in Eq. (1.87) are often used for surrounding insulators since they
are equivalent to impose the requirement of a zero normal component of the current
density, that corresponds to the situation given by an ideal insulation. In presence
of a dielectric medium in place of the insulator the Neumann conditions are no more
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homogeneous and read 

n(r, t)µn
∂φ(r, t)

∂n̂
= Dn

∂n(r, t)

∂n̂

p(r, t)µp
∂φ(r, t)

∂n̂
= −Dp

∂p(r, t)

∂n̂

εs
∂φ(r, t)

∂n̂

∣∣∣∣
s

= εdiel
∂φ(r, t)

∂n̂

∣∣∣∣
diel

(1.88)

Often applied at contacts, we find Dirichlet BC. Supposing to have ideal metals,
i.e. ohmic (behaving as a short-circuit) and equipotential (the electrostatic potential
φ(r, t) ≡ φ(t) is the same at each point of the metal), our BC are

n(r, t) =
1

2

√∑
k

C±k
2
(r, t) + 4n2

i +
∑
k

C±k (r, t)


p(r, t) =

1

2

√∑
k

C±k
2
(r, t) + 4n2

i −
∑
k

C±k (r, t)


φ(t) = Vbias(t) + const.

, (1.89)

where the constant potential can be referred, eventually, to a built-in potential.
In case of Schottky rectifying contact a linear drop affects the potential across

it. To solve the DD system the “Sze-Bethe theory” is often used, where current
densities are re-written as functions of the surface recombination:

J⊥n(r, t) = q vsurfn(r, t)
(
n(r, t)− nsurf(r, t)

)
J⊥p(r, t) = q vsurfp(r, t)

(
p(r, t)− psurf(r, t)

)
φ(t) = Vbias(t) + Vbi + const.

, (1.90)

where J⊥ , J · n̂, Vbi is the Schottky barrier built-in potential and where vsurf, nsurf,
psurf are the surface recombination velocity and carrier concentrations, respectively.

1.5.3 Discretization procedure

In order to implement an iterative solving method for the DD system – like
Newton’s one – and reduce the complexity of its coupled PDEs a spatial discretiza-
tion is required. This procedure allows to relax the computational density by consid-
ering only average unknowns, evaluated at the nodes of a pre-calculated optimized
mesh grid. Also the mathematical complexity is reduced, by passing from PDEs to
ODEs and, finally, to linear algebraic equations.

Among the various discretization procedures here we present one of the most
used, a technique also exploited in all the semiclassical simulation described in
this thesis. Following the 1934 work by B. Delaunay, a Russian mathematician
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Figure 1.8. Delaunay-Voronöı finite boxes (FB) discretization scheme referred to the node i and
one of its neighboors, the node j. Symbols are explained in the text.

(and mountain climber) [5], we make use of a procedure that generates a triangula-
tion through non-obtuse triangles. Subsequently these triangular sub-domains are
treated via finite boxes (FB) method [6], which computes the physical quantities
under n-order approximation technique for each box and finally, by averaging, for
each mesh node. At the first order all differential operators for scalar and vectorial
quantities occurring in the DD model transform according to the following scheme
(here in two dimensions)

∂

∂t

∫
S

x ds⇒ ∂xi
∂t

Si (1.91)

∮
Γ

F⊥ dγ ⇒
∑
j

lij 〈F⊥〉ij (1.92)

∫
S

c ds⇒ ci Si (1.93)

where x and c are, respectively, a generic scalar unknown and constant, F is a generic
vectorial unknown, Si represents the area S (or the volume V , if we operate in 3D)
of a finite box surrounding the i-th mesh node and Γ its contour, lij is the side of
the box surrounding node i and located between i and j and, finally, 〈F⊥〉ij is the
average value of the normal vector F⊥, which has its perpendicular foot lying along
lij. Figure 1.8 shows a possible criterium through which FB is implemented: in this
case we chose to represent the so-called Voronöı scheme, according to which boxes
are defined by connecting the bisectors of each Delaunay triangle.

Through the Delaunay-Voronöı discretization procedure, and by applying a first-
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order finite difference (FD) approximation, the DD system at a generic node i re-
duces to

q

ε

(∑
k

pi(r, t)− ni(r, t) + C±k,i(r, t)

)
Si =

∑
j

lij 〈E⊥〉ij

≈
∑
j

lij
φi(r, t)− φj(r, t)

dij
(1.94)

and
∂ni(r, t)

∂t
Si =

1

q

∑
j

lij 〈J⊥n〉ij − Un,i(r, t)Si , (1.95)

where dij is the length of the segment connecting nodes i and j and where in the
second line we used the 1-st order FD scheme

〈E⊥〉ij = −∂φij(r, t)
∂r

≈ φi(r, t)− φj(r, t)
dij

, (1.96)

being r a generic vector in space. Since at interfaces between boxes normal current
densities J⊥n,p are conserved by construction, one can write:

1

q
〈J⊥n〉ij ≈

1

q
∇J⊥n

= −µn n(r)
∂φij(r, t)

∂r
+Dn

dn(r, t)

dr

≈ −µn n(r, t)
φi(r)− φj(r, t)

dij
+Dn

dn(r, t)

dr
(1.97)

where total derivatives have been used in place of partial derivatives thanks to the
assumption of constant J⊥n between two nearby nodes. By solving Eq. (1.97) in the
unknown n we obtain the non-linear solution

n(r, t) = ni(r, t) [1− g (r,∆ij)] + nj(r, t) g (r,∆ij) (1.98)

in which

∆ij = q
φi(r, t)− φj(r, t)

kBT
=
φi(r, t)− φj(r, t)

VT

(1.99)

and

g (r,∆ij) =
1− e

r∆ij
dij

1− e∆ij
. (1.100)

According to the so-called Scharfetter-Gummel (SG) approximation, ODEs can be
spatially linearized through

1

q
〈J⊥n〉ij

SG≈ Dn

dij
[nj(r, t)B (∆ij)− ni(r, t)B (−∆ij)] , (1.101)
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where
B(α) =

α

eα − 1
(1.102)

is the Bernoulli function. Finally:

∂ni(r, t)

∂t
=
∑
j

Dn lij
dij Si

[nj(r, t)B (∆ij)− ni(r, t)B (−∆ij)]− Un,i(r, t) (1.103)

and

∂pi(r, t)

∂t
= −

∑
j

Dp lij
dij Si

[pi(r, t)B (∆ij)− pj(r, t)B (−∆ij)]− Up,i(r, t) (1.104)

while, concerning fixed charges:

∂C±k,i(r, t)

∂t
= −

∑
j 6=k

(pk,ji(r, t)− pk,ij(r, t)) . (1.105)

The system composed by Eq. (1.94), (1.103), (1.104) and (1.105) represents the FB
discretized version of the DD model for each i-th node of the Delaunay grid. From
this set of equations is now possible to extract the approximated current at the
contacts

Icont ≈
∑
i,j

[
q Dn

dij

(
nj(r, t)B (∆ij)− ni(r, t)B (−∆ij)

)
+
q Dp

dij

(
pi(r, t)B (∆ij)− pj(r, t)B (−∆ij)

)]
dcont l

∗
ij +

+q

(
−∂ni(r, t)

∂t
+
∂pi(r, t)

∂t
− Un,i(r, t) + Up,i(r, t)

)
Si dcont , (1.106)

where dcont is the contact length an

l∗ij =

lij for internal nodes j

lij
2

for nodes j on the boundary
. (1.107)

So far we have seen how to rewrite the drift-diffusion PDE system into a sys-
tem of ODEs via spatial discretization, subsequently linearized in space thanks to
the SG approximation. Also time evolution has to be treated under the numerical
standpoint. In order to do that, simulators exploit the so-called quasistationary pro-
cedure, where time-variant quantities are considered as fixed step-by-step quantities
in a sort of discretized time scale in which at each instant the quasi-equilibrium
approximation is assumed. Iterating this procedure for a certain number of states
one can reproduce the time variation of any parameter of interest, like in case of
voltage or current ramps at contacts.
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Chapter 2

Narrow Gap Infrared Photodetectors (IRPDs)

This chapter will focus on one of the most prolific and interesting material
within the electronic industry working on infrared (IR) light, both in terms of quan-
tum efficiency and, in turn, by the standpoint of its commercial business and diffu-
sion within the framework of solid state IR detection: the narrow-gap ternary alloy
HgCdTe, also knows as “MCT” (from the acronym of mercury cadmium telluride, or
also “Mer-Ca-Tel”). Besides introducing MCT, we will also briefly present the phys-
ical principles at the basis of light detection and, in particular, for what concerns
the IR spectrum (conventionally, from λ ' 0.7 µm to λ ' 1000 µm).

The chapter is organized as follows: first, in Section 2.1, a review about the
technological development in the field of IR detection is presented, and the reasons
leading to modern electronics intended for these applications are also exposed. Then,
in Section 2.2 a set of material properties, essential to understand the operating
principles of MCT detectors, will be listed and commented. Finally, Section 2.3 will
show the state of the art about HgCdTe-based electronic devices for IR detection,
their physical and optoelectronic properties, the most relevant figures of merit and
performance limitations, with a special attention to quantum processes, the main
topic of Part II of this thesis.

2.1 Historical Overview

2.1.1 The origins

At its beginning, in the early XIX century, the IR detection was entirely relegated
to thermometric measurements [7]. This means that the only way to explore this
range of electromagnetic spectrum consisted in exploiting the thermoelectric effect
discovered by T. J. Seebeck in 1821, which is correlated to the capability of a material
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to change its electrical potential as a function of the thermal gradient or, if you want,
as a function of the absolute temperature T , by choosing a reference within the
material as the ‘zero-point’ of thermal distribution. The technological milestones of
this era have been essentially fixed by three different inventions: the thermometer,
introduced by Sir W. Herschel in 1800, then the thermopile, invented by L. Nobili in
1829, an finally the bolometer in 1881, by S. P. Langsley.

In parallel, discovering the photoconductive effect by W. Smith dated 1873 [8],
which consists in the conductance variation of matter under lighting conditions (in
the original study a sample of selenium was used), determined an increasing interest
in capturing the electromagnetic radiation through solid-state principles in order to
generate an electrical signal. In this sense, the first device exploiting the mechanism
of photoexcitation to transduce the energy of incoming photons into an electrical
potential can be considered the IR photo-electric detector composed of thallium,
oxygen and sulphur developed by T. W. Case in 1917 and described in his 1920
work [9].

Following the same methodological approach of Case, in the following years, and
especially throughout the World War I, other researchers focused their study on
different materials, as lead or thallium sulfides, in order to improve the efficiency of
photoelectric effect under IR illumination. This is the way the modern solid-state
IR detection was born.

2.1.2 Extrinsic detection

During the World War II, with the theoretical achievements of Quantum Mechan-
ics, initial difficulties affecting the first generation of devices made of polycristalline
salts, especially by the fabrication point of view, were partially fixed thanks to the
definitive introduction of bulk semiconductor alloys (in those early days, PbSe or
PbTe) as the best choice for solid-state light detection. This, still active, fortu-
nate season has been further strengthened by the invention of the transistor, due
to J. Bardeen, W. B. Shockley and W. H. Brattain in December 1947, and also by
setting up various techniques in order to introduce and control impurity elements in
solids (as in Ge, for instance: Cu, Zn, Au or Hg). This particular innovation opened
the way to a new mechanism in the family of photoexcitation processes, namely
the extrinsic absorption. As represented in panel (a) of Figure 2.1, this mecha-
nism involves the energy of states located within the forbidden gap that very often
correspond to those dopant atoms we just referred to. In this way the electronic
transition consequent to the released of the photon energy Eph = hν can occur even
for Eph ≤ Eg, since electron-phonon scattering here can also be ‘partial’ (inelastic),
as well as ‘total’ (elastic), regardless the energy gap amplitude Eg.

The two major conflicts characterizing the XX century, the World War II and
the Cold War, pushed scientists’ mind in the direction of an increasing interest
in IR detection, mainly driven by telecommunication needs for military purposes.
These applications concentrated their attention on two specific wavelength windows
for atmospherical signal transfer, named Mid-Wavelength Infra Red (MWIR) band,
which is ranging from 3 to 5 µm, and Long-Wavelength Infra Red (LWIR) band,
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Figure 2.1. Representation of three fundamental photoexcitation processes in semiconductors:
(a) Extrinsic absorption between a (donor) trap and conduction band. (b) Intrinsic absorption,
i.e. direct transition between band edges. (c) Free carrier absorption.

from 8 to 14 µm. Besides these two, the Very Long-Wavelength Infra Red (VLWIR)
band, from 15 to 30 µm, completes the set of a typical domain for the Ge-based
photodetection exploiting the extrinsic absorption principle.

2.1.3 Intrinsic detection

Being trap-to-band transitions due to standard thermal fluctuations in atmo-
sphere competitive with extrinsic absorption of IR radiation at the approximate
wavelength of 3 µm, beyond this threshold solid-state IR detection is heavily char-
acterized by stringent cooling requirements that must be overcome. To this purpose,
a second generation of detectors, based on intrinsic absorption, depicted in panel
(b) of Figure 2.1, were introduced in the market with the hope to get rid of all
technological and physical issues related to the implantation and the subsequent
controllability of impurities, and without the need of cooling systems. These efforts
could, in principle, also produce a theoretical gain in terms of device reliability and,
in turn, by the standpoint of quantum efficiency (a concept that will be properly
developed in next sections). Then, to stimulate direct band-to-band transitions in
LWIR and VLWIR sub-domains the use of narrow-gap semiconductors became es-
sential. These materials are characterized by Eg ≤ 0.5 eV or, in other words, they
can exhibit an absorption decay of 3 dB at λcut-off ' 2 µm. In the first era (early
50s of the last century) III-V alloys have been employed: one of them, for instance,
has been the compound InSb, a zincblende crystal with Eg = 0.17 eV at room
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Figure 2.2. IR transmission spectrum in atmosphere for a 2 km long horizontal path at sea level
(data published in Ref. [7]) where the three main ground atmospheric windows, SWIR, MWIR
and LWIR, are highlighted. The lack of transmission around 6 µm and above 14 µm is due to the
absorption bands of H2O and CO2, respectively.

temperature and with a gap broadening law of the form [10]:

Eg(T ) = α− β T 2

T + γ
, (2.1)

a typical behavior in narrow gap semiconductors, where in this specific case usual
values are α = 0.24 eV, β = 6 · 10−4 eV and γ = 500 K [10].

2.1.4 The modern era

After InSb, other semiconductor alloys from IV-VI and II-VI groups have been
synthesized and exploited to cover the most part of the IR detectable spectrum. In
the late 1950s and at the beginning of 60s also ternary compounds, as Pb1−xSnxTe
(IV-VI), were introduced with the aim of having tailored bandgaps through a com-
positional engineering. Figure 2.3 shows the phase-space of some of the most inter-
esting ternary and binary alloys for IR detection, represented in the plane lattice
constant versus Eg. The plot allows us to better appreciate the matching properties
of these alloys and, at the same time, their operating range in the electromagnetic
domain.

Besides some of the most famous materials of this category as InAs1−xSbx (III-V),
also MCT is represented in Figure 2.3. As shown, its precursors are the binaries
HgTe and CdTe, that are linked by an almost vertical straight line representing all
the possible states Hg1−xCdxTe (II-VI). By exploiting this very low lattice mis-
match, in 1959 W. D. Lawson and co-workers [11] demonstrated for the first time
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Figure 2.3. Phase-space of binary and ternary alloys for IR detection representing Eg versus the
lattice constant. Points represent the binary compounds, while lines are the transitional states
among them.

its producibility. In their paper the innovative properties of MCT have been high-
lighted, including the above mentioned capability of band gap engineering, from the
configuration HgTe (with cadmium mole fraction x = 0), which ideally is a pure
gapless semimetal alloy with λcut-off ' 38 µm, to the binary semiconductor CdTe
(x = 1) connoted by λcut-off ' 0.8 µm. In Section 2.2 a detailed review of all the
relevant physical properties of Hg1−xCdxTe will be provided.

Despite the high vapour pressure of Hg represents one of the most critical issues
in the MCT fabrication technology, this alloy has probably become the most stud-
ied and exploited material of modern solid-state IR detection. Nevertheless, using
HgCdTe rather than other semiconductors – as, among all, the well appreciated Si
or GaAs – brings some particular benefits in terms of optical absorption and carrier
mobility, especially with respect to other narrow-gap colleagues like InAsSb.

Thanks to less stringent cooling systems of IR detectors required by intrinsic
generation rather then extrinsic one, and due to the progresses of new lithogra-
phy standards, the late 60s have been accompanied by the advent of devices which
have got rid of the detrimental competition between thermal generation and photo-
generation. This ultimate generation of LWIR sensors, defined as Background-
LImited Performance (BLIP) detectors, are characterized by a limitation exclusively
coming from the noise generated by the system background flux and not by the sen-
sor itself, as well explained by M. A. Kinch in his book [12]. So, these devices started
to be produced in Focal Plane Array (FPA) configuration and with a single cryo-
genic stage. The 70s, instead, were distinguished by the CCD introduction due to
W. S. Boyle, G. E. Smith and M. F. Tompsett [13,14]. This invention coincided with
the development of system and device architectures increasingly complex and com-
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Figure 2.4. Detectivity curves measured for photovoltaic (PV), photoconductive (PC), photoe-
missive (PE) and photoelectromagnetic (PEM) devices at 300 K. Data published in Ref. [7].

pact, combining photon absorption and signal read-out in the same chip (monolithic
detectors).

However, organizing electronics and detection all together very soon imposed
even more attention to some physical features like tunneling effect within the pho-
todiode junction, electromagnetic cross-talk between (CCD or FPA) pixels and field
interactions involving the integrated sensor and the surrounding system. Consider-
ing also the high-impedance requirements in interfacing the detector with field-effect
transistors (FETs) in order to properly manage the signal, what became good solu-
tions are: PtSi Schottky barriers, InSb and HgCdTe photodiodes or PbSe, PbS and
extrinsic Si photoconductors (PC).

At the beginning of 80s and later two elements driven the IR technology towards
the use of MCT: on the one hand the invention of SPRITE (Signal PRocessing In The
Element) devices exploiting the Time Delay and Integration (TDI) technology in a
single elongated detector element, which pushed the interest in HgCdTe-based PC
detectors; on the other hand the need of low-power dissipation and high-impedance
went in the direction of photovoltaic (PV) configurations, leading to 2D-array devices
still in use (and under continuous development).
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2.2 MCT Material Properties

TABLE 2.1. Infrared Photodetectors

TYPE TRANSITION SIGNAL EXAMPLES

intrinsic interband photoconductive PbS, PbSe, InSb, HgCdTe

photovoltaic InSb, InAs, PbTe, HgCdTe,

PbSnTe

capacitive InSb, HgCdTe

extrinsic from impurity to CB photoconductive Si:In, Si:Ga, Si:As, Ge:Cu, Ge:Hg

free carriers intraband photoemissive Schottky barriers GaAs/CsO,

PtSi, Pt2Si, IrSi

photoconductive InSb electron bolometer

QWs to/from quantized levels photoconductive InGaAs/AlGaAs, InAs/InGaSb,

HgTe/CdTe, GaAs/AlGaAs

photovoltaic InSb/InAsSb, InAs/InAsSb

Comparison between different technological solutions for IR detection (adapted from Ref. [7]).

In their most recent version, these devices have been optimized for near-room-
temperature operating regimes. This is what is called ‘High-Operating Temperature’
(HOT) technology. To incorporate specific performance demands, also multi-color
detectors are under development. They represent, probably, the ultimate frontier of
high-quality IR detection for night vision applications.

Besides the structure engineering, very active on the side of Quantum Well In-
frared Photodetectors (QWIPs) or quantum dots, by the standpoint of materials and
systems choice the framework is rather steady. The only real competitors of HgCdTe,
which remains the best compromise between technological issues and performances
with a billion-dollar business, are Schottky barriers on Si, SiGe heterojunctions,
AlGaAs multiple QWs, GaInSb strain layer superlattices, high temperature super-
conductors and thermo-detectors, some of which are listed in Table 2.1. There, the
most important characteristics of some examples of modern IR photon detectors are
reported, classified by type, physical mechanism (see the column ‘transition’) and
output signal.

2.2 MCT Material Properties

This section is devoted to the analysis of some relevant physical parameters and
properties of Hg1−xCdxTe alloys, which in the last 30 years has represented and
still represents one of the most interesting materials for IR detection. Thanks to
its noticeable performance in terms of quantum efficiency, absorption coefficient,
detectivity and responsivity [15], and since the high operating temperature, espe-
cially for LWIR detection, the gap tunability and, in turn, the possibility to have
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2.2 MCT Material Properties

tailored cut-off wavelengths, mercury cadmium telluride has become the material
for IR sensors, and its properties now are well known. In particular, it is widely
accepted that HgCdTe-based photodetectors can exhibit both better performances
and more robust reliability by the standpoint of doping stability and regularity of
composition and wafer surface with respect to traditional Si extrinsic devices [7],
which are characterized by a wider (and indirect) bandgap. All these features al-
lowed the spread of MCT photodetectors in all fields of IR industry, from military
purposes to astronomy, passing through medical diagnostics and quality control in
food industries.

As a matter of fact, the direct bandgap of Hg1−xCdxTe – null (or, better, neg-
ative) in HgTe and going up to about 1.6 eV in CdTe – is responsible for the high
absorption coefficient in the IR domain but, at the same time, presents the draw-
back of being rather narrow, seen from the quantum standpoint. Indeed, since 60s
of the last century the presence of quantum transport effects in semiconductors –
among which, tunneling – was perfectly known, as attested by A. G. Chynoweth and
H. S. Sommers works [16, 17]. Then J. A. del Alamo and R. M. Swanson in 1986 [18]
and, soon later, D. K. Blanks [19] and Y. Nemirovsky [20] in 1988 and 1989, re-
spectively, merged previous theories pointing out the high relevance of direct band-
to-band tunneling (BTBT) transitions in narrow-gap semiconductors, especially in
both forward and reverse biased HgCdTe junctions.

Not only direct tunneling is influenced by the narrowness of bandgap: also
thermal-assisted processes, especially the Shockley-Read-Hall (SRH) [21], are en-
hanced by the gap narrowing with decreasing temperature Eg(T ), as occurs in the
phenomenological law described by Eq. (2.1). And, in general, all band-trap-band
processes might be driven by T , as well as by the impurity energy Etrap. A good
representative of this family is trap-assisted-tunneling (TAT), which combines both
energetic and spatial transitions. Since in HgCdTe, as we will see later, the cur-
vatures of conduction band (CB) and light-hole (LH) band differ from a negligible
quantity (in first approximation) then the maximum probability of TAT and SRH
processes probabilities occurs for transitions via near-midgap states. As stated in
Ref. [7, 12, 22], having the most used n- and p-type dopants for HOT applications
ionization energies of few units/tens of meV (levels are quite far from band edges)
then we can conclude that in HgCdTe the presence of defects rather than doping is
the main responsible for generation-recombination (GR) mechanisms via intergap
states, like SRH and TAT.

Even if controlling the formation of defects in HgCdTe during fabrication (epi-
taxy, MOCVD or MBE) is still a crucial issue, detecting in the LWIR range mainly
depends on the bandgap, that must be as narrow as possible. This enhances another
class of processes, i.e. the already mentioned direct transitions. By the engineering
standpoint one solution is to properly design the shape of bands in correspondence
of the junction, in order to reduce the longitudinal electric field. Unfortunately, a
compromise has to be chosen in order to find the trade-off between leakage currents,
due to band-to-band transitions, and the increasing of other detrimental phenomena
which are dominant at low fields and room temperature – like dynamical resistance
and Auger GR – and responsible for shot noise and Johnson noise occurrence [23].
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2.2 MCT Material Properties

Here the temperature comes back again as a subtle parameter that allows to mediate
between two competitive leakage mechanisms: tunneling and Auger.

Recent experience shown up the features that an optimized HgCdTe structure
for IR should have. First of all a proper passivation should be adopted to prevent
surface GR leakage currents [24], then the active region should be lightly doped
(to mitigate the junction field). By the structure design point of view, moreover,
several solutions have actually been proposed. We will analyze some relevant device
structures in the next section but, for the time being, one can say that, among the
most promising, those worthy of note are the active regions realized with wide-gap
barriers or double-junctions. An interesting example from the latter class of devices
can be found in Ref. [25], where a p+-ν-n+ structure is proposed through experimen-
tal characterization and numerical modeling. The reverse bias operating principle of
such device is based on removing more holes in unit time from the ν absorbing active
region through the p+-ν interface (which, therefore, is called extraction junction)
rather than from the n+ layer via the ν-n+ exclusion junction. This yields a hole
concentration in the active region lower than p at thermal equilibrium, which fi-
nally results in a drop of the Auger recombination rate and in the subsequent higher
operating temperature (up to about 145 K in the LWIR window). This increase
of T also allows a slight bandgap widening which implies a beneficial reduction of
band-to-band transitions like BTBT.

Several other mechanisms are reported in the literature as source of dark/leakage
current in HgCdTe-based photodiodes: surface state current, thermal diffusion of
minority carriers, ohmic current and impact ionization from high energy carriers.
But presently only tunneling and Auger seem to be the major limitations to devices
performance. To clarify this behavior we will now analyze the main solid-state
and electronic issues, as well as the most relevant HgCdTe properties: its crystal
arrangement, the band structure and some important features relevant for carrier
transport.

2.2.1 Lattice growth and structure

The two primary II-VI compounds which constitute MCT, CdTe and HgTe, are
both made of a transition metal (Cd and Hg) bound to a tellurium atom, a metalloid
element with six valence electrons (5s2 5p4). The lattice constants of an Hg1−xCdxTe
unit cell follows the empirical law [7]

a0(x) = 6.4614 + (8.4x+ 11.68x2 − 5.7x3) 10−3, (2.2)

where a0 is expressed in Ångström unit, going from a0(0) = 6.4614 Å in HgTe to
a0(1) = 6.4758 Å of CdTe, with a negligible mismatch between them. In the resulting
zincblende cell of a given ternary alloy (i.e. fixing the mole fraction x), two inter-
penetrating face-centered-cubic (“fcc”) sub-cells displaced by a vector

(
a0

4
, a0

4
, a0

4

)
coexist. These two sub-lattices are such that Te always occupy one of the two,
whereas Cd and Hg (whose configurations are 5s2 and 6s2, respectively) the other
one, sharing the sites around Te almost randomly although x has been technolog-
ically fixed during the growth process. Moreover, being four the net number of
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2.2 MCT Material Properties

atoms per unit cell – two cations (Cd+ or Hg+) and two anions (Te−) – there are
five possible configurations of Cd and Hg as neighbor sites of Te, all located along
tetrahedral directions (see Figure 2.5 and Table 2.2).
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Figure 2.5. (a) Conceptual representation of the HgCdTe zincblende “fcc” lattice structure.
(b) First Brillouin zone (FBZ) and its standard symmetry points. Adapted and re-edited from
Ref. [26].

Since in Te the lowest unfilled electronic state is less energetic then the topmost
filled states of Cd and Hg, the bonds Cd-Te and Hg-Te are mainly covalent, with a
slight ionic component due to a deeper potential located near the anion that allows
a net charge exchange. Figure 2.5 shows, in the left panel, a representation of the
two merged sub-lattices in a standard conformation, i.e. without accounting for
statistical deviations from the expected “fcc” configuration. However, it is worth
noting that both long-range and short-range fluctuations in composition may occur.
In particular, a Bernoulli distribution Z(x) of charges depending on the mole fraction

TABLE 2.2. Cation-cation complexes in HgCdTe

ARRANGEMENT INDEX, i IONIC COMPLEX CELL COMPOSITION

0 four Hg-ions HgTe

1 four Cd-ions CdTe

2 two Cd-ions and two Hg-ions Hg0.5Cd0.5Te

3 three Cd-ions and one Hg-ion Hg0.25Cd0.75Te

4 three Hg-ions and one Cd-ion Hg0.75Cd0.25Te

Classification of Te-neighbor complexes occurring in HgCdTe which determine the cell composition.
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x with the form of Eq. (2.3) can be observed [26]:

Z(x) =

(
4

i

)
xi (1− x)4−i, (2.3)

where i = 0, 1, 2, 3, 4 indexes the five configurations of neighbor cations around Te
(see Table 2.2). From this distribution the probability of finding Cd-Cd or Hg-Hg
complexes arises, which are respectively expressed by:{

PCd-Cd(x) = x+ γ (1− x)

PHg-Hg(x) = (1− x) + γ x .
(2.4)

In Eqs. (2.4) the short-range order (SRO) parameter γ ∈ [−1, 1] varies depending
on the energy factor

ε =
2EHg-Cd

EHg-Hg + ECd-Cd

, (2.5)

in which the bonding energies of the two binary complexes are involved (see also
Table 2.3).

TABLE 2.3. Lattice Arrangements in HgCdTe

ENERGY PARAMETER, ε SRO, γ ALLOWED/ENHANCED CONFIGURATION

0 1 only i = 0 (HgTe) or i = 1 (CdTe) allowed

< 1 > 0 i = 0 or i = 1 populations enhanced

1 0 random fluctuations as described by Eq. (2.3)

> 1 < 0 i = 2 (both HgTe and CdTe) population enhanced

� 1 − 1 ordered crystal

List of main HgCdTe lattice configurations in terms of cation-cation complex energy and probability
(adapted from Ref. [26]).

What determines one of the most crucial parameters in MCT alloys, the cadmium
mole fraction, is the growth process: in this regard, just consider that only an
uncertainty of ∆x < 0.003 is tolerated in order to manage cut-off fluctuations of
detectable LWIR window as ∆λcut-off < 1 µm [27]. This requirement could seem too
stringent but, as we will see in a moment, it can be even overcome.

When Lawson and co-workers synthesized the first HgCdTe sample, in 1959,
they did grow the two CdTe and HgTe crystals separately. Successively they mixed
them in a vacuum chamber, heated slightly above the melting temperature, until the
ternary state of the alloy was steadily reached. Nowadays there are essentially four
primary methods to epitaxially grow HgCdTe from its constituents: bulk crystal
growth, liquid phase epitaxy (LPE), molecular beam epitaxy (MBE) and vapor
phase epitaxy (VPE).
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Belonging to the first class of bulk processes we find the “Bridgman method” [28]
(somehow similar to the “Czochralski method” used for Si or GaAs growth) which
allows to produce pretty big ingots of material from liquid to solid phase through
a furnace where, starting from a seed of nucleation, a slowly shifting temperature
gradient is applied along the forming structure when it comes out of the furnace,
providing a progressive crystallization. Among epitaxial methods we find the “solid
state re-crystallization” which exploits a first stoichiometric mixture of Hg, Cd and
Te close to the Te-HgTe eutectic point (T e

HgTe ' 970 K) and then a fast rise of
temperature as high as above the melting point (Tm

HgTe > 1050 K), where HgCdTe
then grows spontaneously. Finally a rapid quench cooling is provided to the furnace
in order to obtain a pretty fast crystallization (tcr ' 250 µm/h) that allows to lower
the compositional fluctuations up to ∆x < 0.002.

The second epitaxial process is the LPE. It essentially consists in the precipita-
tion of a saturated precursor solution on the substrate surface. The mole fraction
(again, ∆x < 0.002) can be predicted and managed by controlling both the relative
concentration of each reagent and the processing temperature (620 K to 820 K). As
in all epitaxial techniques, the growth temperature is sensibly lower with respect to
bulk methods. Since energies involved in the process here are reduced, higher levels
of homogeneity with reasonably fast growths (some tens of µm/h) are ensured, and
also the inclusion of dopant atoms (if any) in the grower becomes viable.

When the fabrication of HgCdTe thin films is needed, one of the most used
techniques is the MBE. Even if growth rate is rather low (few units of µm/h) the
fluctuations control can be highly precise, thanks to the value of both precursors
sticking coefficients and reaction temperature (less than 470 K): in fact, ∆x typically
covers the range from 0.01 down to 0.0006. In this technique typical sources are
CdTe, Te2 and Hg, while substrates can be CdZnTe, Si or GaAs (with a ZnTe buffer
layer).

The last important epitaxial process is the VPE. Developed in 1968, it originally
consisted in the ISOthermal Vapour Phase Epitaxy (ISOVPE), a quasi-equilibrium
technique in which a precursor HgTe(vap) was transported at T = 670-870 K from
a source and then condensed on the substrate. However, at present day the most
used method is the Metal-Organic Chemical Vapor Deposition (MOCVD) where
the substrate (among all, CdZnTe, sapphire or GaAs) is exposed at about 620 K
to some precursors carried by H2 like Hg(met), dimethylcadmium (DMCd) plus di-
isopropyltelluride (DIPTe) or diethyltelluride (DETe). Reactive process takes place
in non-equilibrium conditions, which provide a dynamical control of all growth fac-
tors, dopant fluxes as well as the preparation and passivation of surfaces/interfaces.
Unfortunately the high controllability of composition (∆xMOCVD ∼ ∆xMBE) comes
at the expense of growth velocity: only 2-10 µm/h.

2.2.2 Energy dispersion

The compositional fluctuations we previously seen are responsible for the absence
of a true potential periodicity in Hg1−xCdxTe alloys, an important requisite to apply
the Bloch theorem and, in turn, to derive an approximated form of the MCT band
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Figure 2.6. Left: MCT band structure in the FBZ around Γ, where we highlighted the bottom of
CB, i.e. Γ6, the top of both LH and HH valence bands and the top of the SO band, respectively Γ8

and Γ7. Finally, also some characteristic gaps as Eg = Γ6 − Γ8 and ∆SO = Γ8 − Γ7 are indicated.
Right: Full-band Hg0.7Cd0.3Te electronic structure calculated via Monte Carlo simulation (from
Ref. [29]). The grey rectangle corresponds to the region of bands magnified on the left side.

structure. In absence of that, the VCA framework comes in our help, making use
of a virtual-potential model interpolating throughout all compositional states, with
the form

UVCA = xUCd + (1− x)UHg (2.6)

and weighted on the potentials at Cd and Hg sites (UCd and UHg respectively), where
x is the usual Cd mole fraction.

However, it has been pointed out that VCA fails, especially far from the char-
acteristic points of the reciprocal lattice [26]. In those regions of the k-space an
alternative approach may consist in using the Coherent Potential Approximation
(CPA), which is as effective as high-computational-cost.

For the reasons mentioned above, one of the most proficuous strategies to com-
pute the MCT band structure consists in the k · p method with perturbation cor-
rections (see 1.1). Before analyzing the results of this formalism, we have to notice
that in MCT the top of valence band is essentially composed by p-symmetry states
(mostly p-Te ones), which also include a spin-orbit term. Whereas, the s-symmetry
at the bottom of CB – which is twofold degenerated – is mainly due to s-Cd and s-Hg
states. Moreover, since the atomic numbers of Hg, Cd and Te are rather high, the
description of orbitals and the equation of motion should account also for relativistic
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Figure 2.7. Band structure and energy gap Eg modulation in MCT as a function of cadmium
mole fraction x. Going from left to right we start from a semimetal HgTe configuration, then the
bands with Γ6 and Γ8 points reverse their sign and position at x = x0 and a gap increasingly opens
up to the CdTe configuration, which is purely semiconducting. Note that at points Γ6 and Γ8 the
dispersion law E(k) is quite linear around x = x0. Adapted and re-edited from Ref. [26].

corrections. The resulting MCT Hamiltonian has the typical form

H =

H0︷ ︸︸ ︷(
− ~2

2m
∆r + U(r)

)
+

Hmv︷ ︸︸ ︷(
mc2 + U(r)− E

4m2c2
~2∆

)
+

HD︷ ︸︸ ︷(
− ~2

4m2c2
∇U(r) · ∇

)
+

(
~2

4m2c2
(∇U(r)× p) · σ

)
︸ ︷︷ ︸

Hso

(2.7)

where H0 is the non relativistic contribution, Hmv and HD describe the mass-velocity
and Darwin interactions, respectively, Hso models the spin-orbit effect (which in-
cludes also a k ·p perturbation term) and σ is the spin operator. Solving the secular
equation (1.12) with the Hamiltonian reported in Eq. (2.7) means finding the eigen-
values of the problem and then predict the trend of the energetic bands (i.e. compute
the value of the energy E for each wavevector k of the reciprocal space in the first
Brillouin zone).

Now it is possible to compute, in a first-order perturbation approximation, the
dispersion equations from the Hamiltonian. The four main expressions, valid around
the FBZ center, are hereinafter reported [30]:

EC(x,k) =
Eg(x)

2

(
1 +

√
1 +

8k2Q2

3E2
g(x)

)
+

~2k2

2m0

(2.8)
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EHH(x,k) = − ~2k2

2m∗HH(x)
(2.9)

ELH(x,k) = −Eg(x)

2

(
1−

√
1 +

8k2Q2

3E2
g(x)

)
+

~2k2

2m0

(2.10)

ESO(x,k) = −∆SO(x) +
~2k2

2m0

− k2Q2

3(E2
g(x) + ∆SO(x))

(2.11)

where Q is the momentum matrix element, ∆SO(x) = EHH(Γ, x) − ESO(Γ, x) and
m0 is the electron rest mass. Typical values and trends of these parameters are
Q = 8.4 · 10−8 eV and ∆SO(x) = 1.08− 0.12x eV.

First, one should notice that both Eg and ∆SO are x-dependent, as graphically
reported in Figure 2.7. Moreover, observing the curvature of CB and LH for small k,
it can be inferred that m∗C ' m∗LH. Getting all band effective masses from Eqs. (2.8)–
(2.11), one comes at the same conclusion. In addition, it is worth noting the high
heavy-hole effective mass that, generally, is assumed m∗HH ' 0.5 m0

Being m∗C (as well as m∗HH) a crucial parameter in terms of GR processes, it
deserves a special attention. In particular, two main regimes may be distinguished
according to the alloy composition:

EC(k) '


k2

Eg

2
+

~2k2

2m0

+

√
2

3
Qk

⇒ m∗C '


~2Eg

2Q2
, for E2

g �
8

3
k2Q2

m0 , for E2
g �

8

3
k2Q2

.

(2.12)
Equations above mean that for wider gaps (i.e. for high cadmium mole fraction

x) CB is approximately parabolic around Γ, and the effective electron mass is linear
with Eg (that, in turn, implies that m∗C proportionally increases with x). On the
other hand, if the gap is narrower than a certain threshold the dispersion law for CB
becomes linear with respect to k and the effective mass is close to the electron rest
mass m0. As occurs for graphene, when CB and VB are linear, symmetric and touch
themselves only by one point in correspondence of Γ the electron mass becomes the
highest possible. Unfortunately, in the case of MCT this symmetry is tainted by the
first valence band (for a comparison, see Figure 2.7 at x ' x0), then no relativistic
transport nor ultra-high mobilities are admitted here.

By the experimental point of view, there are several empirical models describing
the trend of m∗C(x). A first noticeable result comes from M. H. Weiler [27] and
consists in

m0

m∗C(x)
= −0.6 +

Ep

3

(
2

Eg(x)
+

1

Eg(x) + ∆SO

)
, (2.13)

where Ep = 19 eV and ∆SO is assumed to be equal to 1 eV. A further implementation
of Eq. (2.13) came recently thanks to J. Chu and A. Sher [26]. It reads:

m0

m∗C(x)
=

1

0.05966

Eg(x) + 0.667

Eg(x)(Eg(x) + 1)
. (2.14)
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Figure 2.8. Experimental trend of energy gap in MCT, where dots denote measurements and
lines are fitting curves. (a) Eg(x) plotted at various temperatures. (b) Eg(T ) for different mole
fractions. Data published in Ref. [26].

Finally, what we need to fully appreciate the meaning of Eqs. (2.13) and (2.14) is
the behavior of the energy gap as a function of x. As already said, and according to
Figure 2.7, HgTe is a semimetal alloy with negative gap (few meV) due to the fact
that Γ6 lies at the uppermost state of a negative-concavity band, whereas the higher
point Γ8 represents the lowest bound of a positive-concavity band. This determines
∆SO = Γ6 − Γ8 < 0. While x increases, the modulus of ∆SO progressively decreases
until, for x = x0, Γ6 and Γ8 change the sign and their respective bands invert the
curvature. In this configuration, which may occur for x0 ' 0.15 at T = 77 K or
x0 ' 0.1 at T = 300 K, these two points are in contact at E(k = 0) = 0. From
now on, a gap opens and any further increase of x implies an increase of Eg too.
This is the Hg1−xCdxTe semiconducting regime. With a non-linear dependency, this
trend leads to x = 1, where the unit cell is only CdTe-based and the gap is about
1.5-1.6 eV, depending on T .

As a matter of fact, not only cadmium fraction can affect the gap amplitude, but
also temperature does so. In other words, both m∗C = m∗C(x, T ) and Eg = Eg(x, T )
are functions of temperature and compositional stoichiometry. Several empirical
models have been developed to describe these two functions and in particular the
latter, which is the one through which the former subsists.

Calculating interband recombination rates of photoluminescence processes through
carrier lifetime τ measurements and determining another physical parameter of MCT
which depends on x and T , i.e. the absorption coefficient α (in cm−1), one can
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write [31]:

α(x, T ) '
√

2c

τ

√
1− λ

λcut-off(Eg(x, T ))

√m∗C(Eg(x, T ))λ

m0 ~

3

, (2.15)

where c is the speed of light in vacuum, λ the wavelength of the employed electro-
magnetic radiation and

λcut-off(Eg(x, T )) ' 1.24

Eg(x, T )
. (2.16)

From Eq. (2.15) some models can be experimentally derived. Among the most
common, one is for sure the one developed in 1982 by G. L. Hansen, J. L. Schmit
and T. N. Casselman [32], a mixed polynomial expression of third-order in x and
first-order in T :

Eg(x, T ) = −0.302 + 1.93x− 0.81x2 + 0.832x3 + 5.35 · 10−4 (1− 2x) f(T ) , (2.17)

where f(T ) = T . Few years after, in 1990, D. G. Seiler and coworkers [33] published
a slightly different model, via magneto-optical experiments at low temperature, in
which the thermal factor is replaced by the expression

f(T )|x=x =
−1822 + T 3

255.2 + T 2
, (2.18)

valid only with mole fraction x ∈ [0.2, 0.3].

2.2.3 Carrier transport

Photogeneration critically depends on thermal, optical and transport properties
of the material under investigation. In particular, density of states (DOS) affects
carrier concentrations that, finally, determines the transition rates. This is true not
only for what concerns optical generation but also for the remaining spectrum of
competitive GR processes like tunneling, SRH or Auger. Nevertheless, if densities
essentially derive from alloy composition or thermodynamical conditions, what is
intrinsically due to microscopical properties are carrier mobilities. Being MCT elec-
tron and hole effective masses (and mobilities) x-dependent, we saw that they also
tune together with energy gap. This is particularly evident for very narrow gaps
(x ' x0), where bands become linear and mobilities increase drastically. Moreover,
as we already observed, near the Γ symmetry point both m∗C and m∗LH are in gen-
eral pretty low while m∗HH is rather high, yielding electron mobility two or three
orders of magnitude greater than heavy-holes: typically for MCT photodetectors it
is assumed [30]

µh(x, T ) ' µe(x, T )

100
, (2.19)

where a unique notation for all holes mobilities has been used (by virtue of the fact
that GR processes are mainly governed by electrons and heavy-holes). Furthermore,
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Figure 2.9. (a) Measured m∗C(x)/m0 ratio plotted as a function of the cadmium fraction, with its
related empirical model (line) represented by Eq. (2.13). (b) Experimental trend of MCT electron
mobility with respect to x for two different temperatures, accompanied with theoretical curves
described by Eq. (2.20). Data published in Refs. [7] and [26], respectively.

µh at room temperature is commonly assumed to be between 40 and 80 cm2V−1s−1,
while at 77 K it is almost one order of magnitude higher.

From a microscopic point of view, MCT mobilities are limited by scattering
mechanisms: up to 50 K µhh, as well as µe, is dominated by scattering with dislo-
cations whereas for intermediate T with ionized impurities. At higher temperature,
and above 200 K, polar phonon scattering (especially from LO phonons) governs
while µlh, instead, is mainly driven by acoustic phonon scattering.

Concerning electrons, several expressions are used to describe the mobility trend
according to thermodynamic and compositional conditions. One of the most used
in the range 0.2 ≤ x ≤ 0.6 and for T > 50 K – also reported in Ref. [7] – is

µe(x, T ) ' 9 · 108
(

0.2
x

)7.5

T

[
2·( 0.2

x )
0.6
] (2.20)

which at room temperature is approximated by the polynomial expression

µe(x) ' 1

8.754 · 10−4x− 1.044 · 10−4
. (2.21)

By the experimental standpoint, below 200 K and for 0.285 ≤ x ≤ 0.290, µe has
been measured in the range 2 to 4 ·104 cm2V−1s−1 while at 77 K and x = 0.2 it rises
to 2 ·105 cm2V−1s−1. Also minority carrier mobility can be crucial for the transport.
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In p-type MCT samples µe does not differ too much from the value found in n-type
ones, provided the acceptor concentration is NA < 1015 cm−3, otherwise electron
mobility drastically goes down.

Regarding the intrinsic concentration ni(x, T ), another important feature to de-
fine the state of a semiconductor, we report one of the most exploited approximations
derived from k · p theory:

ni(x, T ) '
(
A+B x+ C T +DxT + F x2 +GT 2

)
· 1014E

3
4
g T

3
2 e
− Eg

2kBT , (2.22)

where A = 5.242566, B = − 3.5729, C = −4.74019 · 10−4, D = 1.25942 · 10−2,
F = 5.77046 and G = −4.24123·10−6. This formula was determined by J. L. Lowney
[34] by obtaining Eg(x, T ) through a 3-bands model with non-parabolicity effects
and thanks to experimental magnetoabsorption data. Other alternative approaches
(which essentially differ in the way of expressing Eg(x, T )) can also be found in
Refs. [32, 35,36].

To conclude this paragraph we mention some general properties about lifetimes
that will be developed more deeply in Section 2.3. Doping, obviously, is one of the
main issues affecting lifetimes: typically, for impurity densities in MCT lower than
5 · 105 cm−3, minority carriers lifetime spreads very widely in the range 10−10 to
10−5 s. Differences between n- and p-doped samples also occur. Depending on the
growth technique, values from 0.4 to 8 µs are reported in the literature for n-HgCdTe
at 80 K (see, e.g., Ref. [7]) when carrier concentrations are below 1015 cm−3 and
for x ' 0.2. In p-doped materials, instead, we may find lifetimes from a broader
spectrum, mainly governed by the temperature which allows a maximum for τ at
intermediate T . The action of temperature results even more evident in n-type
samples with the two-fold dominance of Auger (high-T ) and SRH (low-T ). It is
straightforward that the highest growth quality the lowest impurity presence and,
in turn, the highest lifetime experienced by carriers. Indeed, the highest τ have been
observed in undoped samples grown via LPE and MOCVD.

The last important feature in terms of lifetimes is the nature of dopants: in fact
it has been observed a τ in Au- and As-doped HgCdTe 2-5 times larger than in
samples with the same concentration of native dopants. This is probably due to the
activation process (annealing) that minimizes internal energies within the lattice.

2.2.4 Photon absorption

We have already spent some general words about the absorption coefficient α
and its dependence on the cadmium mole fraction (see Eq. (2.15) and Section 2.2.2).
Here we want to discuss the behavior of α as a function of the photon energy Eph.

According to the theory of bands, since both CB and LH are quasi parabolic
around Γ, we should observe α(Eph) ∼

√
Eph in correspondence of the absorption

edge due to a square-root-like attenuation of the photogeneration transitions. Except
for very high quality samples, this effect is almost never found. On the contrary,
larger tails at hν < Eg (see panel (a) of Figure 2.10) are typically observed. This is
due in part by compositional fluctuations or impurities/defects, which respectively
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Figure 2.10. (a) Absorption coefficient in Hg0.557Cd0.443Te as a function of photon energy and
at different temperatures (data published in [26]). Below the knee at the edge (i.e. for hν < Eg)
the Urbach-like trend is observable, as well as the Kane-like above it. Also the convergence of all
curves to the same point, called “focal point”, is pretty evident. This point is x−sensitive and in
this particular case it has coordinates (0.441; 10). Re-plotting these curves at fixed temperature
but for increasing mole fraction we should note an horizontal shift towards the direction indicated
by the arrow. (b) Experimental variation of ∆λcut-off and cadmium fraction as a function of the
cut-off wavelength. Data published in Ref. [7].

determine local variations of Eg or the presence of intergap states, or it is imputable
to inter-band transitions.

The first scientist who, in 1953, described and modeled this kind of behavior in
solids was F. Urbach (see Ref. [37]). In its work he reported and described in great
detail the exponential trend of the absorption coefficient of AgBr salt with respect
to the photon frequency. Soon after, in 1957, W. Martienssen [38,39] extended these
observations to some alkali-halide crystals, and in particular to KBr salt, by applying
the Urbach model

αU(ν) = α0 exp

(
(hν − E0)σ

kBT

)
, (2.23)

where σ, α0 and E0 are fitting parameters. As demostrated in 1966 by D. T. F. Marple
[40] and C. A. Hougen [41], Eq. (2.23) is still valid for II-VI materials like MCT, pro-
vided that

E0,MCT = −0.355 + 1.77x [eV] (2.24)

lnα0,MCT = −18.5 + 45.68x (2.25)

σMCT = 3.267 · 104 (1 + x) . [K/eV] (2.26)
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As represented in panel (a) of Figure 2.10, αg ≡ α(Eg) is x- and T -dependent
(see black dots). Thus,

σ

kBT
=

lnαg − lnα0

Eg − E0

(2.27)

is verified. From this equation and from experimental data fit for HgCdTe samples
one can also write the following Urbach-like version of the absorption trend at the
edge:{

αg(x) = 500 + 5.6x 0.17 ≤ x ≤ 0.443, T = 300 K

αg(x) = −65 + 1.88T + (8694− 10.31T )x otherwise
(2.28)

valid for E . Eg, i.e. when band-to-band transitions start to dominate. Above this
regime the Kane rule

αK(ν) = A

√
1 + x

B + T

√
(hν − Eg) , (2.29)

is more suitable, where AMCT = 2.109 ·105 and BMCT = 81.9.
As we already mentioned, the absorption strength depends on bands curvature

around k = 0 (and on m∗, obviously) and it decreases as the gap narrows. Since
non-parabolicity effects can induce variations in the absorption mechanism via fluc-
tuations of bands shape and energy gap, a new model has been recently developed
(see Ref. [7]):

α(ν, x, T ) '
√

(hν − Eg(x, T ) + γ)2 − γ2 (hν − Eg(x, T ) + γ)

hν
(2.30)

where γ is the hyperbolicity parameter. Eq. (2.30) has been explicitly written as
a function of x and T through the energy gap because it is well known that the
non-parabolicity degree increases as both x and T decrease.

One of the last parameters playing a role in the photon absorption is the refractive
index n. In MCT, usually, a Kramers-Kronig description is used. However, since n
is heavily T -dependent, in particular for 0.276 ≤ x ≤ 0.540 and 4.2 ≤ T ≤ 300 K
(or, also, for 0.205 ≤ x ≤ 1 and at room temperature), a specific phenomenological
model [7, 22,41,42] is used for convenience:

n2(λ, x, T ) = A+
B

1−
(
C
λ

)2 +Dλ2 (2.31)

in which A, B, C and D are x- and T -dependent fitting parameters.
Regarding the static and high-frequency dielectric constants, ε0 and ε∞ respec-

tively, it can be said that while the influence of temperature is very weak [7,43], the
cadmium mole fraction acts as follows:

ε∞(x) = 15.2− 15.6x+ 8.2x2 (2.32)

and
ε0(x) = 20.5− 15.6x+ 5.7x2 . (2.33)
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If now we put together Eqs. (2.16) and (2.17), after some passage we obtain

λcut-off =
1

−0.244 + 1.566x− 0.65x2 + 0.671x3 + 4.31 · 10−4 (1− 2x)T
, (2.34)

and also

∆λcut-off

∆x
= λ2

cut-off (1.566− 1.3x+ 2.013x2 − 8.62 · 10−4 T ) . (2.35)

In Figure 2.10, panel (b), Eqs. (2.34) and (2.35) are reported for a fixed composi-
tional average fluctuation ∆x = 0.001 and at T = 77 K.

2.2.5 Macroscopic properties

In this last introductory paragraph we will briefly discuss some of the variational
features affecting the local composition of MCT alloys, property which is at the
basis of all the mole fraction dependencies so far analyzed.

First, a special mention is reserved for substitutional impurity dopants. A com-
mon choice for acceptors in Cd or Hg sites is represented by elements from I-group
(both IA- and IB-subgroups) like Ag, Cu or Au while, for donors, elements from
IIIB-subgroup are typically implanted, as in the case of Ga, Al and In. To substitute
the Te, elements from VIB- and VIIB-subgroup are often used as donors whereas
elements from VB-subgroup are employed as acceptors. Furthermore, As and In
are considered some of the most effective dopands for p- and n-type MCT alloys,
respectively, while both point defects (like vacancies or interstitials) and lattice de-
fects (dislocations and grain boundaries) have a twofold role, behaving as acceptors
and sometimes as donors.

By the standpoint of lattice sites, there are several donors (B, Al, Ga, In, Si,
O, Cl, Br, I) acting either as impurity and as standard activated dopants, and the
same occurs for some acceptors (Li, Cu, Ag, Au, As, Sb, P). But, in general, the
most difficult challenge in MCT growth is to reduce defects and impurities at all,
being among the major sources of performance degradation. In fact, acting as trap-
assisted or SRH recombination centers, they determine carrier lifetime and mobility
decrease, current leakage and 1/f -noise, allowing an increased dark current or, even,
the formation of dead pixels. The role of some of these elements will be re-analyzed
in Chapter 5 by discussing the experimental data from real devices and numerical
modeling. Moreover, for dislocation levels above 5 · 105 cm−2, the typical dimen-
sion of IR detectors implies a degradation threshold of about 12 dislocations per
photodiode [30]. This can be avoided only controlling the presence of damages, con-
taminations and other lattice imperfections like stacking faults, mismatches, grain
boundaries, precipitates, striations, pinholes, interstitials, terracing and inclusions
during the growth process.

Finally, a special category of impurities consists in native defects which, in un-
doped HgCdTe, are typically represented by vacancies. Metals, instead, are con-
sidered native acceptors (this kind of donors is almost negligible). The growth
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parameter determining the presence of native defects is essentially the mercury par-
tial pressure, since hole density is inversely proportional to PHg [7]. To mitigate this
effect the annealing procedure is mandatory, provided it is conducted at a precise
temperature otherwise further issues, like p-to-n conversion, surface layers formation
or strain effects, can appear in the final sample.

2.3 Detectors Performance and Figures of Merit

In the present paragraph we will conclude the introduction about IR detection
by first describing the basic solid-state detection principles and then by listing some
important detector features and limitations, both in terms of intrinsic factors and
under the system conditions standpoint. Finally, some engineering and technological
solutions to optimize the state-of-the-art devices will be given.

2.3.1 Light detection and photocurrent

In Section 2.1 we briefly analyzed the intrinsic and extrinsic absorption mech-
anisms. At the basis of these processes there is a generation of carriers due to
the energy released by an absorbed photon. Moreover, in Section 2.2.4 we also
discussed the fact that, even for energies hν . Eg, the absorption coefficient can
assume non-null values (the so-called “tail” of the absorption edge).

Figure 2.11 represents two competitive optical transitions between CB and VB
occurring in semiconductors. In panel (a) there is the process of our interest, the
photoexcitation, i.e. the generation of an electron/hole couple stimulated by the
absorption of a photon. This mechanism is very simple: the energy released (it
must reasonably be not too much less than the energy gap) can promote a valence
electron into the conduction band, by generating a heavy-hole at the initial state.
The process can be direct, as in our picture, or not, depending on the presence of
impurity states within the gap which may assist the transition.

Panel (b) of the same figure shows another process, inverse of the previous one:
the radiative recombination. By its nature, it is competitive with the photogenera-
tion. Nevertheless several authors (see, for instance, Refs. [12,44]) point out that in
HgCdTe photon-recycling may destructively add up to the radiative recombination
producing an overall null effect. It is obvious that both of these mechanisms can
not occur for each incoming/escaping photon. In other words, due to the presence
of defects, material re-absorption, electro-optical leakages or photon-recycling, their
efficiency can never reach the ideal limit of 100%.

Now consider the simplest prototype of an IR photodetector: a reverse-biased
p-n junction. The positive voltage applied at the n-contact contributes to the drift
current generated by the space charge field E and contemporarily acts against the
diffusion current which, instead, would tend to compensate the gradient of minority
carriers across the junction and between the two doped regions. This leads to
an increment of the space charge ad to a depletion region widening. In presence
of light illuminating the p-region all intrinsic and extrinsic absorption phenomena
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Figure 2.11. Semplificate scheme representing two of the most important optical transitions
in direct-gap semiconductors, involving CB and HH band: (a) photogeneration and (b) radiative
recombination. In each of these mechanisms, the absorption/emission of a photon with hν & Eg is
expected due to the energy conservation principle.

taking place will contribute to the electron/hole pair photogeneration: minority
electrons generated in the p-type region will diffuse within this region and here will
recombine with holes, while the viceversa will occur for minority holes in the n-side.
Pairs generated in the depletion region or not far than a diffusion length Le,h from
it, instead, are separated and drifted into their respective sides. This produces a
small detectable reverse current which depends on the absorption efficacy and on
the quantum efficiency η of the generation process, which is the number of pairs
generated per second N0 over the number of incident photons per second Ninc. This
photocurrent constitutes the signal of our p-n photodiode.

Let’s analyze the first intrinsic limitation provided by the crystal: the absorption
efficacy. As pointed out by Lambert and Beer in their famous law, the optical power
flux of an incident electromagnetic radiation Pinc (in W) drops to 1/e at a penetration
depth z = 1/α according to the expression

Pabs(z, ν) = [Pinc (1− rν)]
(
1− e−α(ν)z

)
(2.36)

where rν is the facet reflectivity of the material, α the absorption coefficient, Nabs

is the number of absorbed photons per second, Pabs = Nabs hν and Pinc = Ninc hν
represent, respectively, the absorbed and the incident power.

Once the radiation – or, better, a part of it – is absorbed, the generation mech-
anisms takes place. Then, as already mentioned, the photocurrent Iph = q N0 is
generated with a particular internal quantum efficiency (IQE), that can be modeled
as

η =
N0

Ninc

=
Iph

q Ninc

=
Iph hν

q Pinc

, (2.37)
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which depends on the rate at which optical transitions occur and, in turn, on the
presence of effects that could limit this mechanism.

Like the optical power, also the IQE experiences a z-dependence of the form

η(z, ν) = (1− rν)
(
1− e−α(ν)z

)
. (2.38)

This equation suggests that, to maximize η, the reflectivity should be the lowest as
possible so that most of the optical power can concentrate in the depletion region.
Another way to improve the photogeneration is tu grow the junction reasonably
close to the irradiated surface.

Panel (a) of Figure 2.12 shows a generic p-n photodiode and its bias circuit, while
panel (b) schematically illustrates how I(V ) characteristics change with respect to
the dark configuration (dashed) when the p-type region is illuminated. The usual
operating regime of an MCT photodiode for IR detection is the plateau denoted by
“II”, that is at a low reverse bias (few Volts) where current saturates. Regions “I”
(below the breakdown voltage Vbd) and “III” typically concern avalanche photode-
tectors (APDs) and solar cells operating regimes, respectively.

Panels (c) and (f), moreover, show the simplified structure of a p-n and p-i -n
photodiode. (d) and (f) are the related band diagrams at a generic reverse bias and
(e) and (h) their corresponding electric field profiles through the junction.

The ideal equation describing what shown in (b) without illumination is the
well-known Shockley diode equation

Idark = I0

(
e
q Vbias
kBT − 1

)
, (2.39)

where the saturation current I0 is, in first approximation, a diffusion current of
electrons towards the p-side and holes into the n-side [7]:

I0 '
q Dh pn
Lh

+
q De np
Le

, (2.40)

with Dn,p = µe,hkBT/q the minority carrier diffusion coefficients.
The width of the depletion region is bias-dependent and for a p-n junction can

be written as

wdep (Vbias) =

√√√√2ε
[
kBT
q

ln
(
NAND

n2
i

)
± Vbias

]
qNAND (NA +ND)

, (2.41)

where NA and ND are the acceptor/donor concentrations, ε is the dielectric constant,
np and pn are the minority electron/hole densities. Eq. (2.41) holds only within the
so-called “short-diode approximation”, i.e. for diffusion lengths Le,h larger than the
quasi-neutral region (where E ' 0).

Neglecting other generation/recombination (GR) mechanisms, the ideal expres-
sion of the total current in light conditions consists in the sum of two terms, Idark

and Iph = η q Ninc (see Eq. (2.37)):

Itot (Vbias, T,Ninc) = Idark + Iph (2.42)

= I0

(
e
q Vbias
kBT − 1

)
+ η q Ninc .
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Figure 2.12. (a) Circuital scheme of a generic reverse-biased p-n photodiode, where Vbias and
RL are, respectively, the supply voltage and the load resistance. (b) Typical diode-like trend of
I(V ) characteristics in reverse (I, II) and forward bias regime (III). It is well noticeable the current
increase (in modulus) with respect to that one in dark conditions (dashed curve) when the number
of incident photons increases. At high negative voltages (I) the diode breakdown occurs at Vbd.
(c)-(f) Detailed representation of a p-n and p-i -n structure, respectively, with their (d)-(g) band
diagrams and (e)-(h) electric field profiles along the junction. Striped area in (c) represents the
depletion region and wdep is its width. Adapted and re-edited from Ref. [45].
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In presence of impurities or defects, as often occurs in real cases, other contri-
butions should be added to the r.h.s. of Eq. (2.42). One of the first implications is
that the zero-bias current will no longer be null as in the ideal case. Also the shape
of Idark(V ) will change by reason of new transport or GR processes as trap-assisted
tunneling (TAT) or band-to-band tunneling (BTBT), as we will extensively discuss
in this work.

For instance, the presence of lattice defects at the external facets or in corre-
spondence of interfaces between different layers produces typical energy levels in
the bandgap that could generate the flow of so-called surface leakage currents. If
we suppose a mid-gap state due to a surface defect acting as a SRH recombination
center, its current contribution will be of the form [46]

Isurf ∼ q Ani σtrap vth Ntrap , (2.43)

i.e. proportional to the surface involved A and to the carrier thermal velocity vth

as well as to some defect-related properties like their cross sections σtrap and den-
sity Ntrap. Furthermore, Isurf is also T -dependent, since ni(T ) ∼ exp (−Eg/2kBT ).
In order to prevent the formation of surface states devices are usually passivated
through oxidation procedures.

Apart from surface states, also bulk regions are interested by trap-assisted trans-
port phenomena, as we have already seen in Section 1.4. In particular, SRH genera-
tion within the depletion region can in principle heavily degrade the reverse current
by increasing Idark(V ), especially at low temperature.

As has already been said, most of the carriers are photogenerated within the
depletion region (plus one diffusion length around it). For this reason a certain
compromise between Le,h and the optimum absorption path zop ' 1/α(ν) must be
found in device designing, especially for HOT HgCdTe detectors where zop is rather
large. This can be obtained, for instance, by interposing an intrinsic layer between
the two doped regions: see the p-i -n device in panel (f) of Figure 2.12. The intrinsic
region can be either undoped or lightly doped, typically with Ni ∼ 1014-1015 cm−3

and its purpose is to take advantage of fully depletion along all the i -type layer
width wi, whatever Vbias. In order to maximize the IQE, the junction should be
buried at an optimum depth from the illuminated window and wi is require to be
as larger as possible. On the contrary, wi must also be chosen such that the transit
time of carriers determine a fast photoresponse. This can be achieved with a short
intrinsic layer. So, again, a trade-off is mandatory.

Supposing to be in the ideal case of maximum efficiency η = 1, what constitutes
the photocurrent components of a p-i -n photodiode is [46]:

Ipinph = Ipindrift + Ipindiff

= (1− rν)qNinc

[(
1− e−αwi

)
+

(
αLe

1 + αLe

e−αwi +
q De np
Le

)]
(2.44)

Another design scheme for IR photodetectors passes through the separation of
the absorbing layer from the active region. This is the case of n+-p-π-p+ multi-
junction APD detectors, where the multiplication layer is the p-type region while
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the absorber is represented by the lightly doped intrinsic π-type material. In this
way the high multiplication electric field occurs at the n+-p junction, far from the
illuminated window. Here the photocurrent in avalanche regime is mainly of the
drift-type, and is

IAPD
ph = M Iph , (2.45)

where Iph is the low-bias current and M the multiplication factor, related to several
physical details, and defined as

M−1 = 1−
∣∣∣∣Vbias

Vbd

∣∣∣∣m , (2.46)

with m a material- and doping-dependent parameter of the APD device. It is worth
noting that, besides this scheme there are many other structures designed for specific
IR applications. Some few examples are: Schottky barrier photodiodes, Metal-
Semiconductor-Metal (MSM) and Metal-Insulator-Semiconductor (MIS) devices or
the promising, and relatively new, nBn structures [47–49].

2.3.2 Transport performance and limitations

What experiences the effects of various detrimental mechanisms in the photocur-
rent production mechanism is the charge transport. So, a good indicator about how
fast and efficient the energy conversion is, can be represented by carriers lifetime.
Let us start by analyzing the first process competing with photogeneration: the ra-
diative recombination. For small ∆n and ∆p we can approximate radiative lifetimes
with [50]

τn,rad =
n2
i

Brad n
(2.47)

and

τp,rad =
n2
i

Brad p
, (2.48)

respectively for n- and p-doped samples. According to the van Rosbroeck-Shockley
theory [51] the MCT radiative coefficient entering in the related recombination co-
efficient B (see Eq. (1.65)) is expressed by

Brad =
8π

h3c3

∞∫
0

ε(E)α(ν)E2

e
E
kBT − 1

dE . (2.49)

Very often the high-frequency dielectric constant ε∞ is used in place of ε(E) within
Eq. (2.49) while α(ν) is usually computed through the Bardeen expression

α(ν, x, T ) =
m0 q

2

3~2

√(
2m∗e m

∗
h

m0(m∗e +m∗h)

)3(
1 +

m0

m∗e
+
m0

m∗h

)√
hν − Eg(x, T )

ε∞(x)m0 c2
. (2.50)
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By plugging Eq. (2.50) into (2.49) and performing the integration one obtains [52]:

Brad(x, T ) = 5.8 · 10−13

√
ε∞(x)

(
m0

m∗e +m∗h

)3(
1 +

m0

m∗e

)
(2.51)

×
√(

300 K

T

)3 (
E2

g(x, T ) + 3 kBTEg(x, T ) + 3.75 k2
BT

2
)

that enters the general formula, valid under equilibrium condition approximation,

τrad =
1

Brad (n+ p)
, (2.52)

and where one should notice that also electron and hole effective masses (especially
the former) depend on cadmium mole fraction.

The second mechanism, by importance, affecting Idark in IR photodetectors is
the Shockley-Read-Hall generation. Even if it is very complicated to predict SRH
lifetimes – because this process depends on growth technology – for x < 0.28 and
T ' 300 K typical τSRH should be only slightly greater than τrad, in the order of
magnitude of 10−6 s. Due to its remarkable T -dependence, well reproduced by the
empirical Sharfetter-like model [53,54]

τSRH =

τmin +
τmax − τmin

1 +
(
NA+ND

Nref

)γ
( T

300 K

)α
, (2.53)

at 77 K radiative lifetime returns to be dominant, with τrad from 10 to 40 µs.
But the mechanism really governing dark current even at room temperature

and with a very strong T -dependence, whatever the mole fraction x, is the Auger
generation. As reported by A. R. Beattie and A. M. White [55] the possible Auger
mechanisms in narrow gap semiconductors are essentially ten. In particular, in
HgCdTe, two of these are dominant: “Auger 1” (A1, or CHCC), typical of n-type
Hg1−xCdxTe with x ' 0.2 and high-T , and “Auger 7” (A7 or CHLH), especially in
p-HgCdTe but not only.

As one may notice in Figure 2.13, only processes A1 and A2 involves two electrons
and one hole (“eeh”) while the others are all “ehh”-like, which partially explains the
dominance of A1 in n-type and A7 in p-type MCT. For each of them no phonon-
assisted transitions have been accounted for, as well as radiative or trap-assisted
ones.

Following the same formalism reported in Refs. [56,57], assuming parabolic band
dispersions and in absence of any external stimulus, we can write the GR rates for
A1 as 

GA1 =
n′

n0

G0

RA1 =
n′ 2 p′

n2
0 p0

R0

, (2.54)
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Figure 2.13. Simplified illustration of all the Auger recombination mechanisms occurring in
direct narrow gap semiconductors, described for the first time in 1996 by A. R. Beattie and
A. M. White [55]. “Auger 1” and “Auger 7” are dominant in MCT, closely followed by “Auger
3” (especially in p-HgCdTe). Adapted and re-edited from [45].

where G0 and R0 are the steady-state rates. Since, as we have already said in
Section 1.4, in equilibrium conditions ∆n = ∆p then it follows that

τA1 =
n4
i

n′ p0(n′ + p0)

1

GA1

. (2.55)

By evaluating the transition probability and integrating it over the wavevector k
under the hypothesis of negligible screening effects, G0 (which in general dominates
over R0) can be expressed by

G0(x, T ) =
8(2π)

5
2 q4m∗e(x, T ) |F1,2|2 n0

h3 ε2
√

1 +M∗(x, T ) (1 + 2M∗(x, T ))

(
kBT

Eg(x, T )

) 3
2

× exp

(
−1 + 2M∗(x, T )

1 +M∗(x, T )

Eg

kBT

)
. (2.56)

So it can be demonstrated that

τA1(x, T ) =
2n2

i

n0(n0 + p0)
τi,A1(x, T ) , (2.57)
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where
τi,A1(x, T ) =

ni
2GA1(x, T )

(2.58)

is the intrinsic “Auger 1” lifetime,

M∗(x, T ) =
m∗e(x, T )

m∗hh

, (2.59)

εr is the relative dielectric constant and |F1,2| is the Bloch-wavefunctions overlap
between the involved CB and HH band states (ranging from 0.1 to 0.3, as reported
in literature [7]). By merging Eqs. (2.56) and (2.57) we obtain the so-called “BLB
model” (from its developers A. R. Beattie, P. T. Landsberg and J. S. Blakemore).

By applying the same theoretical assumptions also to the process “Auger 7”,
A. R. Beattie and G. Smith [58] found that

τA7(x, T ) =

[
1 +

2n0 ∆phh

p0,hh ∆n
− n0 ∆plh

p0,lh ∆n

]−1
τi,A7(x, T )

2

' 2n2
i

p0(n0 + p0)

τi,A7(x, T )

2
(2.60)

where the intrinsic “Auger 7” lifetime τi,A7 is a function of the threshold energy
Eth(x, T ) of this process. As it can be clearly seen by comparing Eqs. (2.57) and
(2.60),

τA7

τA1

' n0

p0

τi,A7

τi,A1

=
n2
i

p2
0

τi,A7

τi,A1

=
n2
i

p2
0

γ , (2.61)

where the debated value of γ is spanning from 3 to 8 for 0.16 ≤ x ≤ 0.40 and
50 ≤ T ≤ 300 K. See, for instance, several experimental results in Refs. [55,59,60].

Once the Auger dominant lifetimes have been derived, we can write the total
Auger generation rate as [7]

GA(x, T ) =
np− n2

i

2n2
i

(
n

(1 + a n) τi,A1(x, T )
+

p

τi,A7(x, T )

)
=

(
Cn(x, T )n+ Cp(x, T ) p

)(
np− n2

i

)
(2.62)

where aMCT ∼ 10−18 cm3 and coefficients Cn,p are

Cn(x, T ) =
1

2n2
i τi,A1(x, T )

(2.63)

and

Cp(x, T ) =
1

2n2
i τi,A7(x, T )

. (2.64)

Eqs. (2.63) and (2.64) can be computed by using the BLB relation

τi,A1(x, T ) = 3.8 ·10−18ε∞(x)2
√

1 +M∗(x, T ) (1 + 2M∗(x, T ))
exp (A(x, T ))

B(x, T )
(2.65)
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or the semi-empirical law due to Kinch [60]

τi,A1(x, T ) =
2.12 · 10−14

√
Eg(x, T ) exp

(
Eg(x,T )

kBT

)
|F1,2|2 (kBT )3/2

, (2.66)

where

A(x, T ) =
1 + 2M∗(x, T )

1 +M∗(x, T )

Eg(x, T )

kBT
(2.67)

and

B(x, T ) = m∗e(x, T )|F1,2|2
(
Eg(x, T )

kBT

)3/2

. (2.68)

Now, remembering that the total lifetime is related to the lifetimes of each single
GR contribution (except for tunneling mechanisms that we will introduce in the
following chapters) via Eq. (1.33), one can finally write

1

τ
=

1

τrad

+
1

τSRH

+
1

τA1

+
1

τA7

. (2.69)

At low temperature Eq. (2.69) is dominated by τrad, especially for low mole fractions.
While T increases, and in particular at near room temperature, τSRH becomes more
important, then at high-T Auger lifetime definitely governs among all limitations to
the ideal dark photoconduction.

Not only fundamental processes affect the device performance, but also techno-
logical or system-related features can do. Other important figures of merit belonging
to a generic IR photodetector are the responsivity R (in A/W), which depends on
the IQE η through the relation

R(ν) =
Iph

Pinc

g(Vbias) = q
η(ν)

h ν
g(Vbias) , (2.70)

where g(Vbias) = Iph/ηNinc is the detector gain.
The Noise Equivalent Power (NEP, in W units), i.e. the signal required - at

fixed λ - to have a unitary signal-to-noise ratio (SNR), is also relevant being

NEP(ν) =
1

R(ν)

√
〈I〉2
∆αf

, (2.71)

where 〈I〉2 is the total mean square current and ∆αf is the frequency noise band-
width or, in other words, the peak FWHM in the spectrum of α as a function of the
operating electrical frequency f .

The last parameter, i.e. the detectivity D (in W−1), is defined as

D(ν) =
1

NEP(ν)
(2.72)
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and, similarly, the normalized detectivity D∗ (cm Hz1/2 W−1) is

D∗(ν) = D(ν)
√
A∆αf =

√
A∆αf

NEP(ν)
, (2.73)

where A is the area of the active region.
By setting Φ as the background flux (cm−2 s−1), it can be demonstrated [7] that

the normalized detectivity (hereinafter, only detectivity) is also

D∗(ν) =
η q

h ν

[
4
kBT

R0A
+ 2 q2Φ η

]− 1
2

, (2.74)

in which R0 represents the zero-bias resistance. From Eq. (2.74) is pretty evident
that two operating regimes can be defined, that is:

• the already mentioned BLIP, if 4 kBT
R0A
� 2 q2Φ η;

• the thermal noise limited performance, if 4 kBT
R0A
� 2 q2Φ η

from which emerges that in order to increase D∗(ν) the product R0A must be
maximized (and, obviously, also the IQE).
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Chapter 3

Wide Gap Light-Emitting Diodes (LEDs)

Here we conclude the general part of the present thesis by introducing the last
area of interest concerning our main target of tunneling modeling in optoelectronic
devices: this chapter is entirely devoted to presenting GaN-based light-emitting
diodes (LEDs) and their relevant features seen both by the performance and physics-
based description standpoint.

Similarly to what has been done about IRPDs, we articulate our discussion on
light-emitters starting from the origins of lighting (Section 3.1). Then in Section 3.2
the most important technological issues and physical features about GaN and its
alloys will be analyzed, having been this an important part of my work during the
first year of Ph.D. Section 3.3, finally, examines the operating principles of the state-
of-the-art InGaN/GaN blue LEDs and, besides this, their major operating figures
of merit. This section will also allow us to introduce the so-called “efficiency-droop”
problem (one of the most hotly debated issues about LEDs performances at high
injection levels) partly related to some specific tunneling mechanisms.

3.1 Historical Overview

3.1.1 From SiC to nitrides

The history of solid-state lighting starts with the first assured testimony of a
light-emitting diode produced in laboratory which dates back to the early XX cen-
tury and, more precisely in 1907, when H. J. Round reported his observations about
electroluminescence effect in a SiC macroscopic sample put in contact with a con-
ductive electrode. Round’s explanation for light emission was partly based on the
electromotive force and, secondly, on thermoelectric effect. Nowadays we know that
this kind of photoemission is due to a rectifying Schottky junction under forward bias
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Figure 3.1. Evolution of lighting technologies from 1800 to nowadays in terms of devices efficiency.
Adapted and re-edited from Ref. [61].

where, at high applied voltage, a strong injection of minority carriers occurs from
the metal to the semiconductor by tunneling through the Schottky barrier. Then
within bulk SiC the radiative recombination of these carriers takes place, giving rise
to the light observed by Round.

Soon after, in 1928, also the russian scientist O. V. Losev reported similar experi-
mental observations not only about SiC but also in ZnO. Moreover, he tried to give a
more microscopic explanation to the physical origin of this phenomenon by studying
the emission spectra and its threshold onset. In the following decades the fabrication
parameters of SiC became more controllable (mainly thanks to the contribution by
E. E. Violin) allowing the production of very-low efficient blue LEDs (0.005-0.03%).

What pushed a lot the development of these devices was the demonstration of
a reliable production of III-V compounds, in the early 50s of the last century. The
first alloy employed in LED development was GaAs. In the form of bulk substrates,
GaAs was initially used to grow p-n junctions via VPE or LPE epitaxial procedures
or through the horizontal Bridgman method already seen concerning IRPDs [28].
With Zn-diffusive doping, the first IR LEDs were based on these technologies [62–64].
Then, approximately in 70s, the era of Si-doped GaAs LEDs arrived mainly thanks
to the work done by J. Woodall at IBM (NY), allowing the production of devices
with external efficiencies up to 6%, five times higher than Zn-doped ones.

But the very breakthrough was represented by a step occurred few years before,
in 1962, when N. Holonyak and S. F. Bevacqua [65] published on the first number of
a newborn Journal of Applied Physics their recent discoveries about a compound,
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Ga(As1−xPx), and its capabilities to emit withint the visible spectrum of the electro-
magnetic radiation. Almost contemporarily a series of attempts to develop a reliable
technology based on GaP materials for green LEDs started. And despite the big
issue of obtaining acceptable efficiencies, at the end of 60s this targed was definitely
achieved, although with values not greater than few percentage units, depending on
the N-doping dose [66,67].

3.1.2 Blue LEDs

The 70s have also been the era of orange and yellow emission, with several
studies focusing on the radiative recombination properties of GaAsP under dif-
ferent N-doping levels [68, 69], even if the efficiency of these devices were heavily
degraded by dislocations generated from the substrate/epilayer mismatch. After-
wards, this problem was partially fixed by introducing a significative technology
step in the GaP-based LED production, consisting in an optically-active doping
procedure (through N or O, see Refs. [70, 71]), allowing to reach high efficiency
(∼2% at room-T ) through trap-assisted radiative emission, rather than via direct
band-to-band transitions as in GaAsP-based devices [72,73].

At that point the mass production of a new generation of trichromy-LED TVs
was almost mature, except for the lack of a blue-light emitter. Several studies on
the optical properties of GaN and its band gap were already indicating from 30s
that it was the material in which to invest. As a matter of fact, in late 60s GaN
was produced from ammonia and liquid gallium only in the form of powder or
small crystals [74]. Who gave the pulse to develop new technological methodologies
was P. Maruska, a guy from the Radio Corporation of America (RCA). In 1969 he
realized the first epitaxy of a “vapour-deposited single-crystal-line GaN” film on
sapphire using hydride vapor phase epitaxy (HVPE), as reported in his work [75].
Only two years later, the researches by Maruska, fostered and supported also by
Pankove, led to the first blue-light-emitter, a MIS structure consisting of an In
metal surface, a Zn insulation layer and a non-intentionally doped n-GaN [76].

The challenge of having high-quality single-crystal and impurity doped p-GaN
remained unresolved, despite several attempts by Pankove himself and his cowork-
ers with Zn and Mg. So the possibility to grow p-n structures has been practically
impossible till more than a decade after: in 1989 H. Amano from Nagoya University
demonstrated the Mg activation in GaN through “low-energy electron beam irradia-
tion” [77] and, almost contemporarily, both I. Akasaki (scientific mentor of the young
Amano, inventor of new MOVPE and MBE technique suitable for GaN) [78,79] and
S. Nakamura [80], Nichia Corporation (who introduced improvements in the VPE
method), contributed to the development of reliable growth and doping procedures
essential for p-n GaN diodes production.

In 1992 Akasaki presented at the “GaAs and related compounds” conference
the first example of a blue LED made of GaN on sapphire, with an efficiency of
∼1%. This opened the door to a rapid diffusion of nitrides for lighting, such that
just the year after Nakamura was presenting the first green and blue InGaN/GaN
heterostructures [81,82] with the historical achievement of efficiencies ∼10%.
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Figure 3.2. Photon-Recycling Semiconductor LED (SPR LED) as in Ref. [83] (adapted and
re-edited pictures). (a) Schematic structure. (b) Room-temperature luminescence spectrum.

3.1.3 Today lighting

Besides displays and traffic signals, one of the most important applications of
modern LEDs is the lighting technology, both for domestic and public utilise. Nev-
ertheless, it has been very difficult for a long time to obtain one of the fundamental
ingredients of this area, i.e. the emission of white light. This is so important that,
for their parallel breakthrough results in the field of solid-state lighting, in 2014
I. Akasaki, H. Amano and S. Nakamura have been honoured with the Nobel Prize in
Physics whith the following motivation:

“for the invention of efficient blue light-emitting diodes which
has enabled bright and energy-saving white light sources”.

The involvement of three scientists mainly dedited to the development of blue LEDs
in a so important award with such a kind of motivation has to be reconducted to
the nature of white light itself.

Strictly speaking, white light does not actually exists, by the physical stand-
point, since white is not properly a color with a specific wavelength as real colors.
When a certain ratio of three or more wavelengths stimulates the photosensitive
cells of human eye, the response of our brain experiences the feeling of a white
light. What we can do with technology is to emulate this effect by using two
or three different monochromatic sources. To this purpose, the primary emission
is partially converted via photon-recycling into a second radiation with different
wavelength through the use of phosphors, particular types of semiconductors (as
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AlGaInP [83]) or with dyes. Figure 3.2 shows a famous example from early litera-
ture about Photon-Recycling Semiconductor (SPR) LEDs in which the main active
region, consisting in a InGaN/GaN heterostructure with emission line at 470 nm
and a second active layer, made of AlGaInP, which partially absorbs the primary
radiation and than re-emits at 630 nm. The ratio between the two wavelengths is
carefully engineered to obtain the so-called “white”-light-effect we mentioned.

Despite all the still ongoing technological and theoretical developments that
started in the past century and although only solid-state lighting (SSL) can reach
efficiencies close to 100% (see Figure 3.1), LEDs are still far from being at their ul-
timate stage. The business in GaN-based LEDs was about 7 billion dollars in 2008
and it expected to triplicate within next decade, but the technology of III-nitrides
(essentially AlN, InN and GaN) is still young and costly. The main issues arise from
the absence of a reliable bulk GaN industry. This represents a big limiting factor
for its diffusion. This forces the growth of GaN on different substrates – as Si or
SiC – whose lattice mismatch (∼17%) often induces additional costs and, worst,
structural defects like dislocations which propagate along the growth direction from
substrates to epi-GaN [84]. Defects, in turn, generate traps for electrons (and/or
holes) which further make increase the production costs and the need for processes
control.

In the power electronics industry, a rising application field of GaN, traps intro-
duced via GaN-on-Si technology are responsible for the main performance degrada-
tion such as threshold voltage shift (originating from gate region traps), saturation
current collapse (coming, instead, from access region traps) and reduction of on-
state resistance (dynamic RDS,on). Thus, the development of a proper GaN-on-GaN
technology would be auspicable, both in terms of both growth and doping quality,
given also the thermal instability of dopant activation process suffered by the actual
GaN-on-Si technology [85].

Within the SSL area, instead, defects are mainly at the origin of trap-assisted
transport phenomena occurring under forward-bias conditions (see, e.g., Ref. [86]).
These mechanisms can produce leakage currents like tunneling [87], a very com-
mon phenomenon in low-injection regimes but partly relevant also at high applied
currents [88,89].

Besides defects, other two big issues affect the GaN development for lighting
in terms of quantum efficiency: one is the so-called green gap, i.e. the performance
degradation in the range of emitted radiation between ∼500 and ∼600 nm [90] (from
which comes the name). Another debated problem is the efficiency droop (or, only
droop), i.e. the drop of the internal quantum efficiency as a function of injection
currents and/or temperature (see Figure 3.3). While the first effect is essentially a
matter of technology, and it is somehow compensated by a higher sensitivity of the
human eye within the green window, the second one concerns more fundamental
physical principles and its origin is still under debate, even because a solution for
this problem could furtherly improve GaN-based LEDs reliability and at the same
time reduce SSL costs.

As one may notice in Figure 3.3, panel (a), the green gap (often also called
“yellow-green gap”) is determined by the tail of InGaN-based emitters, decreasing for
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Figure 3.3. (a) Representation of the green gap: points are measurements while dotted lines
represent fitting curves. The black-solid line is the human eye responsivity curve (adapted and
re-edited from Ref. [91]). (b) Schematic illustration of the efficiency droop, where the ideal trend
of efficiency without performance degradation is also represented.

peak intensities at ∼525 nm, and the raising trend of AlGaInP-based LEDs starting
from approximately ∼600 nm. As already said, this lack is partially compensated
by the human eye responsivity curve centered at ∼555 nm. In panel (b), instead, we
find a simplified and schematic representation of the efficiency droop phenomenon.
For increasing injection currents (or temperature) the real trend of the internal
quantum efficiency (IQE) reaches a maximum, which depends on the device quality,
then experiences a decrease. In the ideal case (dashed curve) the IQE should saturate
at a certain value (again, depending on the particular manufacturing technology).

3.2 Properties of III-nitride materials

As light-emitters, LEDs are devices mainly working through radiative recombi-
nation mechanisms. In order to enhance it, their design requires that the emission
is maximized in terms of efficiency. This means that, first, optical dispersions and
carrier leakages have to be prevented and, on the other hand, that radiative recom-
bination itself has to be optimized. This result is achieved by localizing the process
strictly within the active region, exploiting the quantum confinement of carriers. To
this purpose, LEDs are realized with the intercalation of thin layers of different ma-
terials with different energy gaps, which generate discontinuities and valleys along
the potential called quantum-wells (QWs).
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Figure 3.4. (a) Hexagonal cell of wurtzite (In-Al)GaN in the real space and its lattice parameters
a0 and c0. Notice the two elementary tetrahedral coordinations: on the left the one centered on
nitrogen and on the right the other one centered on a III-group element. (b) First Brillouin zone
(FBZ) of wurtzite (In-Al)GaN in the reciprocal space, where the most important symmetry points
and the main crystal planes and directions have been highlighted. The c-axis usually corresponds
to the MOCVD growth direction.

In this section we focus on the properties of GaN, the direct band gap compound
used as bulk material for blue LEDs fabrication, and the ternary alloys (still direct
band gap semiconductors from III-V groups) InxGa1−xN, used as the QW active re-
gion material and AlxGa1−xN, a wider band gap material often employed to prevent
the unwanted transport of electrons from the n-type material to the p-side of the
diode (in the so-called Electron-Blocking Layer, or EBL).

3.2.1 Growth techniques and lattice structure

As already mentioned in our brief historical review, one of the most impor-
tant techniques for bulk GaN production is the MOCVD and, in particular its
MOVPE variant. By controlling the flow of precursor gases into the reactor cham-
ber it is possible to manage both compositions and epitaxy velocity. Typically, in
III-nitride-based production trimethylgallium (TMGa), trimethylaluminum (TMAl)
and trimethylindium (TMIn) are used as main ingredients of the growth process,
while H plays the role of carrier gas (as in NH3, which introduces the nitrogen). Also
dopants are added as organic precursors: for instance, the precursor of Mg, one of
the most common p-type dopant in GaN, is dienyl magnesium (Cp2Mg).

Since the final lattice composition is proportional to the flux ratio between com-
ponents, in order to grow a certain InxGa1−xN or AlxGa1−xN ternary alloy with a
precise indium or aluminum mole fraction x it is almost sufficient to linearly control
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the molar ratio of their respecting precursors. So:

x =
[Al-In](gas)

[Al-In](gas) + [Ga](gas)
, (3.1)

where the label “gas” refers to the gaseous phase of metalorganic precursors that
contain In or Al. The unique difference between the process involving the indium is
the temperature, higher (and up to 1120 K) than in case of aluminum.

The III-N stable phase of GaN, AlN and InN at room temperature and at-
mospheric pressure is the wurtzite (see Figure 3.4) but also the zincblende can be
obtained via epitaxial procedures. Both are characterized by a tetrahedral coordina-
tion where each site is surrounded by four nearest-neighbor atoms, but the wurtzite
(in which we are interested for SSL applications) has an hexagonal cell while the lat-
ter is characterized by a “fcc” cell like in HgCdTe. As shown in Figure 3.4, panel (a),
the elementary cell of (In-Al)GaN has two lattice parameters (which are summarized
in Table 3.1). In the same image one may also notice the tetrahedral coordination
around V- and III-group sites. Panel (b), instead, illustrates the FBZ (in reciprocal
space) as well as some of the most characteristic crystal directions (like the growth
c-axis) and planes. As usual, the Γ symmetry point lies at the center of the cell.

TABLE 3.1. Lattice parameters

MATERIAL PRIMARY PARAMETER, a0 SECONDARY PARAMETER, c0

InN 3.533 Å [92] 5.693 Å [92]

AlN 3.112 Å [93] 4.982 Å [93]

GaN 3.189 Å [75,94] 5.185 Å [75,95]

Basic lattice parameters concerning 300 K wurtzite InN, AlN and GaN.

Since Ga-N bonds are polar and thanks to the fact that there is no inversion point
in the lattice symmetry, such that it is impossible to find at coordinate (x, y, z) the
same atom present at (−x,−y,−z), III-N materials exhibit an intrinsic spontaneous
polarity which manifest at cleavage planes, interfaces or external facets as net po-
larization charges.

Figure 3.5 shows the lattice constants a0 of wurtzite GaN, AlN and InN and their
relationship with the energy gap. The plot also represents the visible spectrum, for
a comparison with the Eg of InxGa1−xN and the indium mole fraction x. As already
said, one of the hardest problems related to GaN growth is the substrate. The reason
is shown by the example of 6H-SiC (wurtzite SiC), whose principal lattice constant
is a0,SiC = 3.07 Å, as one may notice. Often also n-Si(111) substrate (with minimum
interatomic distance dSi(111) = 3.84 Å and lattice constant a0,Si = 5.431 Å) is used
and, on top of it, intermediate layers (e.g., AlN) are grown before GaN in order to
gradually relax the strain forces induced by lattice mismatch.

Not only InxGa1−xN and AlxGa1−xN lattice parameters are affected by the alu-
minum or indium content, but also the temperature play an important role in de-
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Figure 3.5. Multiple plot representing the room-T energy gap (and the emission wavelength) as
a function of the primary lattice constant a0 for ternary alloys AlGaN and InGaN. In this latter
case, also the trend of Eg as a function of the indium mole fraction is highlighted. The grey area
represents the visible region of the electromagnetic spectrum (with main color lines highlighted on
the left). The graph also shows the lattice constant of a 6H-SiC (wurtzite SiC) substrate (vertical
dashed line).

termining the lattice structure and its conformation. As reported by several authors
(e.g., see Ref. [96]) the primary parameter follows the same law valid for GaN, so:

a(T ) = a0

(
1 + AT +B T 2

)
, (3.2)

where our a0 is such that a0 ≡ a(0 K) and in which A and B are fitting parameters.
Moreover, a similar second-order trend can be demonstrated also for c(T ). Then,
calculated via VCA or measured through diffraction experiments, the x-dependence
of both a and c parameters in InGaN and AlGaN show to follow an almost linear
law with small bowing factors [97].

3.2.2 Band structure

Never as important as in III-nitride materials intended for emitting QWs the
study of energy dispersion is, since bands shape can heavily determine the prob-
ability of optical transitions in the LEDs’ active region. Several approaches have
been employed in the past to derive the trend of E(k), but all of them are based on
the k ·p perturbation method under effective mass approximation (see Section 1.1),
with the inclusion of spin-orbit and strain effects.
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Generally, since most of the optical and transport mechanisms involves a reason-
ably small region around Γ, two CBs and six VBs are considered (8×8 k ·p Hamilto-
nian formalism), where the conduction states are assumed to be approximately sym-
metric with respect to Γ with a parabolic k-dependence. The CB Luttinger-Kohn
Hamiltonian for wurtzite III-nitrides has the form

HC(k, ε) =
~2k2

z

2m∗e||
+

~2
(
k2
x + k2

y

)
2m∗e⊥

+ a1cεzz + a2c (εxx + εyy) , (3.3)

where m∗e|| and m∗e⊥ are the electron effective mass (at the Γ point) parallel and
perpendicular to the growth direction, respectively, a1c and a2c are the Bir-Pikus
deformation coefficients [98] and ε represents the strain tensor components, which
depend on the lattice constant and on the eventual strain force, where

ε⊥ = εxx + εyy , (3.4)

ε± = εxx − εyy ± 2iεxy (3.5)

and
ε±z = εxz ± iεyz . (3.6)

Furthermore, for the valence bands we have

HV(k, ε) = ∆1L
2
z + ∆2Lzσz +

√
2∆3 (L+σ− + L−σ+)

+
(
A1 + A3L

2
z

)
k2
z +

(
A2 + A4L

2
z

)
k2
⊥ − A5

(
L2

+k2
− + L2

−k2
+

)
−2A6kz

(
[Lz, L+] k− + [Lz, L−] k+ + iA7 (L+k− − L−k+)

+
(
D1 +D3L

2
z

)
εzz +

(
D2 +D4L

2
z

)
ε⊥ − D5

(
L2

+ε− + L2
−ε+

)
−2D6 ([Lz, L+] ε−z + [Lz, L−] ε+z)

)
, (3.7)

where ∆2 = ∆3 = ∆SO/3 depend to the spin-orbit splitting energy ∆SO (already seen
for MCT) and ∆1 = ∆CR the crystal-field splitting energy (an effect of degeneracy
removal caused by charges distribution in the lattice producing the splitting of HH
and LH sub-bands), the orbital and spin momentum operators L±, σ± and k⊥, k±
are defined as

L± =
Lx ± iLy√

2
, (3.8)

σ± =
σx ± iσy

2
, (3.9)

k⊥ = k2
x + k2

y , (3.10)

and
k± = kx ± iky , (3.11)

being valid the rule

[Li, Lj] =
LiLj + LjLi

2
, (3.12)
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and where Di are the Bir-Pikus shear deformation potentials (in eV) and Ai the
inverse hole effective mass parameters.

Since the wurtzite configuration represents a particular case of the zincblende,
some terms are derived from the latter as perturbation corrections so that one can
finally write that [99]

A1 − A2 = −A3 = 2A4 = 4A5 −
√

2A6 , (3.13)

A7 = 0 (3.14)

D1 −D2 = −D3 = 2D4 = 4D5 −
√

2D6 . (3.15)

Now we have all the ingredients to derive the energy dispersion relations of
wurtzite GaN. For what concerns the main CB, around Γ Eq. (3.3) yields a quasi-
parabolic trend of the form

EC(k) ' Eg
k2

2m∗C
+ strain effects . (3.16)

In the case of valence bands it is convenient, due to the complexity, to reduce the
problem in a matrix form. Following the theoretical approach described in Ref. [100]
we chose a set of (normalized) basis functions

φ1 =
(

1/
√

2
)
|(X + iY ) , α〉 (3.17)

φ2 =
(

1/
√

2
)
|(X + iY ) , β〉 (3.18)

φ3 = |Z, α〉 (3.19)

φ4 = |Z, β〉 (3.20)

φ5 =
(

1/
√

2
)
|(X − iY ) , α〉 (3.21)

φ6 =
(

1/
√

2
)
|(X − iY ) , β〉 (3.22)

that allow the diagonalization of the Hamiltonian in Eq. (3.7), where |X〉, |Y 〉
and |Z〉 represent Bloch functions near Γ and |α〉, |β〉 are spin-up and spin-down
functions, respectively. The Hamiltonian, then, can be rewritten as

HV(k) =



F 0 −H∗ 0 K∗ 0

0 G ∆ −H∗ 0 K

−H ∆ λ 0 I∗ 0

0 −H 0 λ ∆ I∗

K 0 I ∆ G 0

0 K 0 I 0 F


, (3.23)
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where F = ∆1 + ∆2 + λ + θ, G = ∆1 − ∆2 + λ + θ, H = iA6kzk+ − A7k+,
I = iA6kzk+ + A7k+, K = A5k

2
+, ∆ =

√
2∆3, λ = A1k

2
z + A2(k2

x + k2
y) and

θ = A3k
2
z + A4(k2

x + k2
y).

By using now Eqs. (3.13)–(3.15) the dispersion relation for valence states can be
calculated by solving the equation

det |HV(k)− E(k)I| = 0 , (3.24)

in which I obviously represents a 6×6 identity matrix. In absence of split-orbit
coupling interaction the first valence eigenvalues in Γ are simply given by

E1(0) = ∆1 + ∆2 (3.25)

and

E2,3(0) =
∆1 −∆2 ±

√
(∆1 −∆2)2 + 8∆2

3

2
, (3.26)

as indicated in Figure 3.6. Under the same current hypotheses, the dispersion rela-
tions become

E1(k) = F ′ −K ′ (3.27)

and

E2,3(k) =
F ′ −K ′ + λ±

√
(F ′ −K ′ − λ)2 + 8H ′2

2
, (3.28)

being

F ′ = ∆1 + (A1 + A3) k2
z + (A2 + A4)

(
k2
x + k2

y

)
, (3.29)

K ′ = A5

(
k2
x + k2

y

)
(3.30)

and

H ′ =
√

(A2
6k

2
z + A2

7)
(
k2
x + k2

y

)
(3.31)

from which the HH, LH and split-off hole effective masses can be obtained by deriving
the energies E1(k), E2(k) and E3(k), respectively (for positive ∆1, otherwise 2↔ 3),
with respect to k. Moreover, one may notice from Eqs. (3.27)–(3.31) that E(k) are
almost isotropic in the plane kx × ky, so for this reason Figure 3.6 shows only
two axes of the k-space. From panels (b) and (c) we can appreciate the effect of
split-off interaction removing the degeneracy between HH and LH sub-bands (in
the kz-plane) and also the one at LH-SO intersection point. Notice also that from
Eqs. (3.16) and (3.27) it is possible to calculate the energy gap as Eg = EC−E1(0).
Typical values of GaN band parameters at 300 K are Eg = 3.39 eV, EA = 4.7-5.5 eV,
EL-M = 4.5-5.3 eV, ∆SO = 0.008 eV and ∆CR = 0.04 eV (see Ref. [100]).

Starting from the proper Luttinger and Bir-Pikus parameters of AlN, InN and
their ternary alloys with gallium one could, in principle, calculate the energy disper-
sion for all these materials through the same ab initio procedure we briefly derived
here. The mole fraction shapes InGaN and AlGaN bands through the x-dependence
of the primary lattice constant and, in turn, via all the Hamiltonian terms as, among
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Figure 3.6. (a) Band structure of wurtzite GaN without strain effects. For the meaning of labels,
see the text. (b)–(c) Zoom of the valence band structure without and with spin-orbit coupling
effects, respectively. Notice that in the case with interactions some degeneracies are removed, as
between HH and LH sub-bands in the space of vertical crystal momenta and the ones in LH and
SO sub-bands near their intersection point in the kx × ky plane (as highlighted by arrows).

all, the strain tensor ε. The most common law for describing the dependence of the
gap to the alloy composition and temperature is (see, e.g., Ref. [101])

Eg,◦GaN(x, T ) = (1− x)Eg,GaN(T ) + xEg,◦N(T ) − x (1− x) b◦GaN , (3.32)

where the T -dependence

Eg(T ) = Eg(0 K)− αT 2

β + T
(3.33)

derives from the well-known Varshni model [102], b is the bowing factor already
mentioned in this section, α and β are fitting parameters and the symbol “◦” stands
for In or Al, alternatively.

3.2.3 GaN, InGaN and AlGaN material libraries

Part of the first year of my Ph.D. has been dedicated to fitting out and optimizing
the materials input files afterwards employed in (semiclassical) numerical simulations
of tunneling in GaN-based blue LEDs. The present subsection represents a summary
of self-consistent results derived from both theoretical and comparative studies, also
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thanks to some experimental feedback provided by the colleagues and collaborators
from Padua University. For a detailed treatment of implementing methods employed
in semiclassical LED simulations see Appendix B.

The first important property of each semiconductor is the energy gap, since
most of the relevant transport and recombination mechanisms occur at the center
of the Brillouin zone. Concerning the implementation of Eqs. (3.32) and (3.33), the
physical and fitting parameters we adopted are listed in Table 3.2.

TABLE 3.2. Energy gap parameters

MATERIAL Eg(0 K), eV α, eV/K β, K b, eV

GaN 3.507 [103] 9.09 · 10−4 [103] 830 [103] –

InN ∗0.735 2.45 · 10−4 [104] 624 [104] –

AlN ∗6.230 17.99 · 10−4 [104] 1462 [104] –

InGaN – – – 3 [105]

AlGaN – – – 1 [105]

Physical and fitting parameters used to model the x- and T -dependence of energy gap in GaN,
InGaN and AlGaN with Eqs. (3.32) and (3.33). ∗Note: values in accordance with Ref. [105]

By fixing x and changing T , or viceversa, the functions Eg(T ) and Eg(x) for
ternary alloys InxGa1−xN and AlxGa1−xN are represented in Figure 3.7.
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Figure 3.7. (a) GaN, InGaN and AlGaN energy gap versus T where we arbitrarily chose
xIn = 0.18 and xAl = 0.15. (b) Eg(x) for InGaN and AlGaN at fixed temperature T = 350 K.
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As one may notice, the increase of indium content reduces the gap (this is the
reason why InGaN is actually the material for QWs in blue LEDs) whereas, increas-
ing the aluminum fraction, Eg furtherly widens, and this is why AlGaN can often
find a place in EBL for preventing electron leakage from the active region.

Knowing the energy dispersion and recalling Eq. (1.6) we can obtain another
fundamental electronic property: the carrier effective mass. In performing semiclas-
sical simulations the most relevant values are those of electrons and heavy holes. We
report in Table 3.3 the masses used in this work and, for the sake of completeness,
also some values extracted from literature.

TABLE 3.3. Effective mass

MATERIAL SOURCE m∗e , m0 m∗hh, m0 m∗lh, m0 m∗so, m0

GaN Ref. [100] (1995) 0.18 1.74 1.74 0.15

Ref. [106] (2001) 0.20 0.54-2.20 – –

Ref. [105] (2003) 0.18-1.23 0.54-2.20 – –

this work 0.20 1.50 1.50 –

InN Ref. [107] (2003) 0.137 2.493 2.493 0.137

this work 0.133 2.444 2.444 –

AlN Ref. [107] (2003) 0.232 2.370 2.370 0.209

this work 0.200 2.300 2.300 –

List of electron and hole effective masses, as reported in the recent literature and as chosen in this
work.

It has to be noticed that, although only binary effective masses have been re-
ported, the values concerning ternary alloys InxGa1−xN and AlxGa1−xN can be
self-consistently deduced from them by using the fitting law [107] (see Figure 3.8)

m∗◦xGa1−xN(x) = m∗GaN + x (m∗◦N −m∗GaN) . (3.34)

Moreover, in Refs. [100, 105–107] hole effective masses are computed under the
low-k approximation from Luttinger-Kohn parameters as follows:

m∗hh = −m0 (A1 + A3)−1 , (3.35)

m∗lh = −m0

(
A1 + A3

E2(0)− λ
E2(0)− E3(0)

)−1

(3.36)

and

m∗so = −m0

(
A1 + A3

E3(0)− λ
E3(0)− E2(0)

)−1

(3.37)

Since band structure is critically dependent on the method used for its cal-
culation, it is straightforward the fact that effective masses, related to the band
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Figure 3.8. InxGa1−xN and AlxGa1−xN (a) electron and (b) hole effective mass according to
Eq. (3.34)

concavity, can be method-dependent. And even if there are different experimental
procedures to evaluate them, the literature is not fully agree about m∗ values.

Another electrical parameter, still dependent on bands trend and in particular on
Eg, is the electron affinity χ(x, T ). Also in this case common Varshni/interpolating
combined rules have been used to calculate ternary alloys parameters from those of
binary compounds GaN, InN and AlN

χInGaN(x, T ) = χGaN − (Eg,InGaN(x, T )− Eg,GaN(x, T )) ∆off (3.38)

and

χAlGaN(x, T ) = χGaN − (Eg,AlGaN(x, T )− Eg,AlGaN(x, 300 K))

− (Eg,AlGaN(x, 300 K)− Eg,GaN(300 K)) ∆off , (3.39)

(see Figure 3.9) where χGaN = 4.07 eV (according to Refs. [95,105]) and ∆off is the
conduction band offset at InGaN/GaN and AlGaN/GaN heterointerfaces calculated
as ∆off = ∆EC/∆Eg.

Before introducing the last electrical material parameter we now briefly see how
the relative dielectric constant (or permittivity) ε has been treated. Again, we used
an interpolating equation to deduce binary permittivities:

ε◦GaN = εGaN + x (ε◦N − εGaN) , (3.40)

in which the values εGaN = 9.5, εInN = 15 and εAlN = 8.5 have been used in accordance
with Ref. [108], [92] and [93], respectively (see panel (a) of Figure 3.10).
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Figure 3.9. Electron affinity of InGaN and AlGaN described by Eqs. (3.38) and (3.39) and
plotted (a) as a function of temperature, by fixing xIn = 0.18 and xAl = 0.15, and (b) as a function
of the mole fraction at fixed T = 350 K. In both cases ∆off ' 0.67.

As previously anticipated, GaN-based semiconductors are characterized by an
intrinsic polarization, which is due to the polarity of III-N bonds and to the lack
of a central symmetry in the lattice. As pointed out by O. Ambacher et al. (see
Ref. [109]), besides this spontaneous component also piezoelectric effects can con-
tribute to the total polarization charge. So, the overall polarization vector can be
expressed by

P = Psp(x) + Ppe(x) , (3.41)

in which the general form of the ‘piezoelectric’ term, which is strain- and x-dependent,
it is demonstrated to be

Ppe(x) = e33(x)εz + e31(x) (εx + εy)

= e33
c(x)− c0

c0

+ e31 2
a(x)− a0

a0

= e33

(
−2

C13

C33

a(x)− a0

a0

)
+ e31 2

a(x)− a0

a0

= 2
a(x)− a0

a0

(
e31 − e33

C13

C33

)
, (3.42)

where a0 and c0 are the usual primary and secondary wurtzite lattice parameters at
T = 0 K, ε are the strain vector components such that εz(x) = (c(x) − c0)/c0 and
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εx(x) = εy(x) = (a(x)−a0)/a0, e13 and e33 are the piezoelectric coefficients and C13,
C33 are elastic constants.

It is worth noting the fact that the lattice constant here explicitly depends on
the mole fraction. The most common approach to model this dependency exploits
the so called Vegard’s model [110]

a◦xGa1−xN(x) = A+Bx , (3.43)

where A and B depend on the material (as usual, the symbol “◦” stands for Al or
In).

Few years later with respect to these results, in 2002, Ambacher together with
V. Fiorentini and F. Bernardini [111] obtained from first principle calculations very
compact equations describing the nonlinear trend of polarization charges with re-
spect to the alloy composition in III-V nitrides. First of all they pointed out that
in InGaN and AlGaN Eq. (3.43) has coefficients AInGaN = AAlGaN = 0.31986,
BInGaN = 0.03862 and BAlGaN = −0.00891. Moreover, they demonstrated that in
III-nitrides the two components of the polarization vector can be rewritten as

Psp,InxGa1−xN(x) = −0.042x− 0.034 (1− x) + 0.038 (1− x) (3.44)

and

Psp,AlxGa1−xN(x) = −0.090x− 0.034 (1− x) + 0.019 (1− x) (3.45)

concerning the spontaneous term, and via the Vegard’s form

Ppe,◦xGa1−xN(x) = xPpe,◦N (εbas(x)) + (1− x) Ppe,GaN (εbas(x)) , (3.46)

being

εbas(x) =
asub − a(x)

a(x)
(3.47)

the “basal strain”, which depends on the substrate lattice parameter asub. Fiorentini
and coworkers finally found that

Ppe,InN(x) = −1.373 εbas(x) + 5.264 εbas(x)2 , (3.48)

Ppe,AlN(x) =

{
−1.808εbas(x) + 5.624 εbas(x)2 for εbas < 0

−1.808εbas(x)− 7.888 εbas(x)2 for εbas > 0
(3.49)

and

Ppe,GaN = −1.373 εbas(x) + 7.559 εbas(x)2 . (3.50)

By using Eq. (3.43) within Eq. (3.47) and substituting the latter in Eqs. (3.48)–
(3.50) and, in turn, into Eq. (3.46) one can obtain the overall formalism known as
Fiorentini-Bernardini model [111,112] of polarization charges, that we implemented
in our numerical simulations as described here.
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Figure 3.10. (a) Dielectric constant in InxGa1−xN and AlxGa1−xN alloys as a function of x, as
stated by Eq. (3.40). (b) Temperature-dependent electron and hole mobility in GaN, InGaN and
AlGaN calculated with Eq. (3.52).

Once the total polarization vector has been assembled, one can compute the
polarization charge density (cm−2) at a given surface or interface A as

σpol = −div{P}
A

. (3.51)

As we will see talking about LEDs performance, σpol represents a crucial parameter
in the electrical characterization of the diode. Furthermore Eq. (3.51) implies that,
chosen an arbitrary surface A at given depth of a bulk III-nitride sample, a certain
charge density σpol can be found depending on the local composition/symmetry of
lattice sites intercepting the plane of the surface itself.

Due to its enormous potentiality, most of the possible applications of GaN re-
main still largely unexplored, nowadays, as emerged during a pleasant conversation
I had the great honor to have with the Nobel Laureate Hiroshi Amano at the meet-
ing “GaN Marathon 2016” in Padua. One of these areas of interest, in the author’s
opinion, could exactly involve the polarization properties we just discussed. Let
us briefly see how. As pointed out in several works, GaN and its ternary com-
pounds with indium and aluminum exhibit a particular robustness against particles
and ionizing radiation damages (see, for instance, Refs. [113–115]). Besides this,
P. Kivisaary et al. [116] have recently proved that, by combining the effect of intrin-
sic GaN polarization with the x-dependent piezoelectric charge induced in ternary
alloys, an effective charge density can be produced. Such charge acts as a traditional
impurity-based chemical doping (reaching 3D densities up to 1018 cm−3) which can
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be managed to produce true density profiles simply by exploiting compositional
grading of indium or aluminum, both of n- and p-type (see also Ref. [117]). This
feature could, in principle, overcome doping removal issues at high radiation fluences
typical of Si-based high-energy particle detectors. For these reasons, after lighting
and power electronics, the family of III-V nitrides could find a new application
framework in high-energy physics, as already claimed by some authors [118,119].

We continue our digression about III-N material properties introducing now some
transport-related parameters. An important member of this class is without doubts
the carrier mobility. In accordance with Ref. [120] electron and (heavy) hole mobil-
ities (cm2V−1s−1) have been modeled as an exponential function of T :

µe,h(T ) = µe,h(300 K)

(
T

300 K

)γe,h

, (3.52)

where the values µe,h(300 K) have been chosen in accordance with actual literature
(see Refs. [120–123]), i.e. µe(300 K) = 300 cm2V−1s−1, µh(300 K) = 10 cm2V−1s−1,
γe = −1.5 and γh = −2 (see panel (b) of Figure 3.10).

Regarding GR mechanisms in III-nitrides, this work assumes parameters ac-
cording to Ref. [120], i.e. τSRH = 5 · 10−8 s both for GaN and InGaN while
τSRH = 10−7 s in AlGaN. Radiative and Auger coefficients have been respectively
adopted as B = 2 · 10−11 cm3/s and C = 2 · 10−30 cm6/s for binary and ternary
compounds. Although several authors claim the x-dependence of these parameters
(see, for instance, Ref. [124]), in our simulations and on the particular devices we
will analyze this choice revealed to be sufficiently accurate, yielding values pretty
consistent with those coming from such composition-dependent approaches.

3.2.4 Doping and defects

Impurities in III-nitride materials can be usually represented by chemical dopants
or by native defects. As already pointed out in the introductive part of this chapter,
p-type doping has been a challenge for a long time, at least until Amano’s contribu-
tions in the 80s of the last century. This is a common issue – as well as any doping
type – in wide band gap semiconductors. Besides chemical doping, induced through
implantation processes, native defects can modify the material conductivity in both
p- and n-type sense, acting with or against traditional dopants (where the latter is
often called compensation effect).

Among the most common native defects one may find vacancies (way of example,
nitrogen vacancy behaves like a donor), antisites or self-interstitials [125]. Moreover,
also incorporated species, if not prevented during growth process, can act as effective
dopants. This is the case of oxygen or silicon, which can form shallow donor levels.
For this reason GaN and its alloys can be easily negatively doped.

For what concerns positive doping (p-type) of GaN, InGaN and AlGaN the
element of choice is without doubts Mg. Even if this solution is now well estab-
lished, it still remains challenging to reach high hole concentrations by Mg doping.
This occurs because the reaction forming interstitial or N-substitutional magne-
sium, which generates acceptors, is less favorable than the competitive formation of
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Ga-substitutionals. Furthermore, the above mentioned compensation by nitrogen
vacancies (VN) has the effect of mitigating the positive doping of Mg acceptors,
especially in AlGaN alloys at high xAl.

Negative (n-type) doping, instead, is commonly obtained with C, Si or Ge when
used as substitutionals on cation sites. C, as well as Si, has been demonstrated to
form shallow donor levels [126]. Nevertheless it can also act as shallow acceptor if
on the N site [127].

By using Eq. (1.27), the following doping ionization energies have been adopted:
ED,ion = 20 meV for donors in GaN, InGaN and AlGaN and EA,ion = 199 meV,
170 meV and 210 meV for acceptor levels in GaN, InGaN and AlGaN respectively
(with concentrations in the range 0.15 ≤ xIn,Al ≤ 0.18). Notice that, as widely
discussed in literature, the Mg ionization energy is roughly proportional to the mole
fraction x [128]: for instance, the AlGaN EA,ion ranges from 170 meV to 530 meV
when x increases from 0 to 1 [129–132].

3.3 Operation Principles and Efficiency Problem

This conclusive section presents some important details concerning the physics
behind light-emitters. After recalling the building-blocks of photons production,
in Section 3.3.1 quantum confinement of carriers, needed for localizing radiative
processes, will be introduced and explained. On the basis of this discussion, the
framework regarding LED’s efficiency will be introduced. So, in Section 3.3.2 all
the concepts mentioned about GR and transport mechanisms will be applied to
describe the standard regime of carriers flow and leakage. This will give us the
right perspective to understand the meaning of quantum efficiency and the role
of some relevant mechanisms which participate (concurring or competing) to the
light-to-signal conversion.

3.3.1 Carrier confinement in QWs and light emission

As we learned by describing light absorption in MCT-based IRPDs, the power
dissipation of an electromagnetic propagating wave within a solid medium follows
the exponential-like Lambert’s law. In order to optimize the optical absorption,
photodetectors have to be designed in such a way that the region where the absorp-
tion and the subsequential photogeneration occur lies at an optimum depth from the
illuminated facet. This allows to concentrate most of the electron/hole generation
in a restricted volume: the active region. Specularly, light-emitters need to do the
same and, since it would be no control in the propagation of photons emitted from
anywhere in the device, LED structure has to be engineered to confine optical pro-
cesses in an “optimal” region. Besides these macroscopical reasons, there is another
– more subtle – motivation leading to clearly define the LED active region: being a
wide band gap material, GaN would not be the best choice in generating monochro-
matic blue light (see Figure 3.5 for a fast reference). From these considerations the
need for a specific region with optimized energy gap arises. To this purpose LEDs
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are designed with one or more very thin layers (few nm) of narrower gap materials
(in our case, InGaN) alternating with GaN which form band discontinuities and
act as confining potentials for radiatively recombinating electron/hole pairs: the so-
called quantum wells (QWs). This feature not only assures a geometrical control of
photoemission but also introduces a proper filter for the emitted wavelength, being
the energy gap the decisive tuner allowing to select a specific line in the emission
spectrum.

In principle, the photons so generated should have all the same energy. In real
life, they don’t. Besides uncontrolled compositional fluctuations, which induce en-
ergy gap oscillations within the active region, some microscopic or quantum effects
intervene. First of all, growing thin InGaN layers interleaved with GaN can be very
critical by the mismatch standpoint, especially for high indium fractions. So, lattice
strains may generate band deformations or energy gap deviations from standard
trends. Second, the band structure of a bulk material (as described in Section 3.2.2)
may significantly differ from that of a QW because the radius of potential interac-
tions between different layers of different alloys become comparable with the dimen-
sion of the unit cell and its reciprocal representation. On the other hand, quantum
confinement could be weak enough to generate deviation from the bulk conditions.

Apart from these considerations, to understand what regime characterizes elec-
trons and holes in QWs one has to recall the behavior of fermions in a potential
well. In order to achieve a full comprehension of this physical system the tool which
comes to our aid is the well-known time-independent (1D) Schrödinger equation

− ~2

2m∗
∂2

∂z2
Ψn(z) + U(z)Ψn(z) = EnΨn(z) , (3.53)

that we wrote here at the FBZ center and along the confining direction z.
By solving this eigenvalues equation for the potential well we find a discrete

set of solutions, represented by a certain number of eigenenergies En coupled with
Bloch eigenfunctions Ψn(z), being z the direction perpendicular to the InGaN/GaN
interfaces (which usually corresponds to the growth c-axis). The number N of solu-
tions depends on the well width LQW and on its depth, i.e. the amount of potential
discontinuity at the QW boundary interfaces. The simplest (ideal) case is repre-
sented by an infinite square well. In these conditions one finds that all electron/hole
wavefunctions Ψn(z) are pinched at the well boundaries and are described by stand-
ing waves. This means that all carriers are perfectly confined there because the
probability density |Ψn(z)|2 of those states is null outside.

In Figure 3.11 a more realistic case is represented. In panel (a) we find a
schematic picture of a single quantum well (SQW) consisting of a double GaN/InGaN
heterojunction. The electron potential Ue(z) = E(z)/q along the z-direction expe-
riences a discontinuity which, at equilibrium, generates a finite square well where
electrons are quasi-confined. We expressly said quasi confined because, as one may
notice in panel (b), non null wavefunction tails propagate in the forbidden region
along the z coordinate. This result is a direct consequence of the Schrödinger eigen-
value equation which allows full confinement only in the ideal case of a potential
well with infinite depth. Then, for the same system, in panel (c) the 2D electron
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Figure 3.11. (a) Schematic picture representing an InGaN/GaN quantum well (QW). Also the
electron potential (or energy) is represented. (b) Electron eigenenergies En and Bloch eigenfunc-
tions Ψn(z) in a finite square potential well, as the one generated by the structure in (a). The same
occurs in valence band of quasi-confined holes. (c) Density of states (DOS) for confined electron
sub-bands compared with bulk DOS.

density of states

ρ2D
C (E) =

m∗e(En)

π~
(3.54)

is plotted and compared with the standard 3D (bulk) DOS. Similar definition holds
for holes. From this picture five important considerations arise:

1. Bloch wavefunctions are not well-confined. Nonetheless, in the scenario here
depicted we can assume a full confinement since conduction band do not offer
any available state for those quasi-bound electrons. Anyway, very often occurs
that, out of equilibrium, band bending or in-gap impurities offer to these
states a finite probability of tunneling from one of the two surrounding barriers
towards the well.

2. Quantum confinement (although partial) acts only along the z-direction. This
means that electrons and holes in QW can be safely considered particles in a
“free” motion regime within the xy-plane (if we are under parabolic band and
effective mass approximation).
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Figure 3.12. (a) Graphical solution of the electron Schrödinger equation for the InGaN/GaN
structure of panel (b) implemented via a numerical routine which solves the trascendental system
written in Eq. (3.55). (b) Eigenvalues and (properly normalized) eigenfunctions calculated with
Eqs. (3.55) and (3.56). Notice the penetration of wavefunctions into the barriers I and III.

3. The ground-state energy E0 does not correspond to the conduction band min-
imum EC but is higher (viceversa for holes).

4. As noticeable in (b) and (c), the energy spacing between quantized levels is
increasing with the increase of E, a feature deriving from the particular shape
of the well.

5. Notice the wavefunctions parity trend with varying the principal quantum
number n, which identifies the state. The first eigenfunction has no zeros and
is an odd function, while the second has one zero and is an even function,
and so on. Thus, n indicates also parity and number of zeros. Note: here we
does not represented the spin degeneracy but, being fermions, it is obvious
that, according to the Pauli exclusion principle, for each level En there are
two electrons with opposite spins satisfying the Schrödinger equation.

Supposing to solve the Schrödinger problem for a finite square well, it can be
demonstrated that (see, for instance, Ref. [133]) the energy spectrum is given by

kLQW = nπ − 2 arcsin

(
~k√

2m∗∆E

)
, with n ≥ 1 , (3.55)

where ∆E is the energy offset at the heterojunction measured from the bottom of
the QW. By solving Eq. (3.55) one obtains a discrete set of k to be inserted into
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wavefunctions of the form 
ΨI(z) = C1ekz

ΨII(z) = C2 sin (kz + φ)

ΨIII(z) = C3e−kz
, (3.56)

valid, respectively, for regions I, II and III (see Figure 3.12), where coefficients C1,2,3

have to be determined via normalization and where sinφ = ~k/
√

2m∗∆E.
By virtue of energy (or momentum) conservation, the photon emitted via spon-

taneous radiative recombination must have the momentum equal to the difference
between the momenta of the electron and hole that recombined. Moreover, the
photon momentum is some orders of magnitude lower than electron momentum,
leading to quasi-vertical optical transitions. However, this does not exclude that
vertical transitions at k 6= 0 can take place (as we already shown in Figure 1.7)
and, on the other hand, ρ2D(E) is such that that high-energy sub-bands can be
populated. Combining carriers statistics and their DOS, rough estimations of LED
emission lineshapes can be obtained. In a very simple, case invoking Boltzmann
statistics, the emission peak corresponds to an energy of about Eg + kBT/2 with
FWHM ' 1.8 kBT .

Besides these effects related to the energy conservation, we have to consider also
that neither electrons nor holes have ground-state energies equal to their respecting
band minimum/maximum. This induces a wavelength shift in the emission spec-
trum. Indeed, if choosing a particular semiconductor for light emission depends on
its Eg – since, neglecting thermal energy (kBT � Eg), we have Eph ' Eg – this
quantum effect has the consequence to induce an effective energy gap which is, in
general, wider than bulk one (see Figure 3.13). Moreover, the influence of strains,
polarization charges and external fields (as the one induced by an applied bias)
can model the well shape out of equilibrium such as to enable other static effects
which act on the emission spectrum. In Figure 3.13, for instance, one of these has
been represented: accounting for band non-idealities, confined (2D) electron and
hole density profiles may assume asymmetric distributions with respect to the well
such that higher densities are found in correspondence of its deeper region (where
|EC,V| in the QW assumes lower values). So, this asymmetry can furtherly shift the
emission lineshape by means of modulating the energy distribution of spontaneous
radiative recombination.

Not only static phenomena may occur. In fact, when the LED is subjected to
a rising applied voltage more and more carriers are injected into its active region.
This increases the sub-bands occupancy whithin the well and, in turn, the separation
between quasi-Fermi levels. This produces a blue-shift of the emission peak.

In Figure 3.13 we can see some hypothetical spontaneous radiative recombina-
tion processes occurring in an InGaN quantum well. Notice that, perpendicular to
the band diagram, parabolic approximations of energy dispersion En(k) have been
drown. Moreover, also polarization is included, since EC and EV are tilted along the
QW because of the presence of a polarization field. In case (1) we have the most
simple recombination process, involving ground electron and hole quantized levels
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in Γ (notice that Ee,0 − E0,h > Eg). Then, in cases (2) and (3) transitions are still
vertical (no momentum exchange) but they occur at k′ > 0 and k′′ > k′ respectively.
These – less probable, according to the selection rule – transitions can contribute
to the emission lineshape broadening. It is also worth stressing that representing
confined eigenenergies Ee,0, Ee,1, Eh,0 and Eh,1 as single-line levels does not account
for any degeneracy removal effect: first, no field-related spin splitting has been in-
cluded, then nor any carrier-carrier or carrier-phonon scattering is accounted for (we
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Figure 3.13. Spontaneous radiative recombination in a quantum well (QW), schematically rep-
resented in the band diagram space E versus z and, at the same time, developed for small k
deviations from the FBZ center (see parabolas lying on the plane perpendicular to the band dia-
gram). Three examples of emission processes are represented: (1) at the FBZ center (k = 0); (2)
between ground electron and hole states at k′ > 0; (3) between second electron level and first hole
level at k′′ > k′. Also confined carrier densities n2D(z) and p2D(z) have been plotted.
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are in the so-called ballistic regime). All these effects, otherwise, would result in a
broadening of each quantized level.

Finally, also notice how quantized (2D) electron and hole densities n2D(z) and
p2D(z) does distribute along the confining z-direction: they depend on the sub-band
carrier wavefunctions via their probability density as

n2D(z) =
kBT

~LQW

∑
i

|Ψe,i(z)|2 ρ2D
C (Ee,i) ln

[
1 + e

EFn
(z)−Ee,i
kBT

]
(3.57)

and

p2D(z) =
kBT

~LQW

∑
i

|Ψh,i(z)|2 ρ2D
V (Eh,i) ln

[
1 + e

Eh,i−EFp
(z)

kBT

]
(3.58)

(where i labels each sub-band and LQW is the well width) thus, as predicted by the
Schrödinger equation, peaks lies where the QW shape reaches deeper energy since
carriers are more attracted there.

In order to better control carrier confinement and, thus, the radiative recom-
bination, modern LEDs are designed with a certain number of quantum wells in
sequence, a structure that is called multiple quantum well (MQW). This expedient
also allows to obtain more than one emitted wavelength by using wells with different
indium mole fraction [134–137].

3.3.2 Electronic transport and quantum efficiency

Quantum wells constitute only one part of an LED structure, although being the
most important. As the name suggests, LEDs are essentially based on a p-n diode,
which normally operates under forward-bias conditions. In particular, since the
InGaN-based active region is usually lightly doped or not doped at all, we should
more properly speak of p-i-n junction. The model best describing its dynamical
behavior is the already mentioned Shockley diode equation, but in its simplified
version valid under forward bias regime (and for Vbias � kBT/q) and given by

Ifwd(Vbias) = I0 exp

(
qVbias

ηkBT

)
, (3.59)

where I0 is the diode saturation current written in Eq. (2.40), q is the electron
elementary charge and

η =
q

kBT

(
∂{Ifwd(Vbias)}

∂Vbias

)−1

(3.60)

here represents the so-called diode ideality factor, a macroscopic parameter which
collects different physical mechanisms (GR, tunneling, . . .) acting on the slope of
the forward I(V ) diode characteristics. Theoretically η should be equal to 1, but
experimentally this is almost never achieved and thus the ideality factor is very
often greater than unity – up to several units – depending on the phenomenon
which produces deviations from the ideal trend. In this sense deducing η through

92



3.3 Operation Principles and Efficiency Problem

b)a)

equilibrium

forward bias

I II III

forward bias, a.u.
fo

rw
ar

d
cu

rr
en

t
(l

o
g)

,
a.

u
.

em
ission

in
ten

sity
(log),

a.u
.

forward bias

equilibrium

qVbi

EV

EC

qVbias

p-GaN n-GaNi-InGaN

z

E

EFp

EFn

EF

c©MMandurrinoPhDThesis2017

Figure 3.14. (a) Band diagram of a single quantum well (SQW) LED structure at equilibrium
and under forward bias conditions. The most important energies have been highlighted, as Fermi
energy EF (at equilibrium), quasi-Fermi levels EFn,p

(out of equilibrium), the built-in energy
qVbi (where Vbi represents the built-in junction potential) and the bias-dependent band bending
qVbias. (b) In the upper part: simplified QW electron filling at equilibrium and forward bias,
showing the carrier density increase for increasing bias. In the lower part: I(V ) and output power
characteristics. Regimes “I”, “II” and “III” are described in the text below.

the I(V ) analysis can be used as a tool to identify the fingerprint of specific leakage
mechanisms.

Panel (a) of Figure 3.14 represents both equilibrium and forward bias band
diagram of a generic SQW InGaN/GaN blue LED. The diffusion-type transport of
standard p-n junctions here is heavily modified by reason of quantum confinement
just discussed, which limit the radiative recombination no more to the usual diffusion
lengths Ln,p but only to the active region width (in this case the well width LQW).
As a consequence carriers in the well reach higher densties than in usual diodes
and, in turn, radiative recombination is stronger since Rrad is roughly proportional
to the product pn. As the bias goes up – see upper sub-figures of panel (b) –
carrier density within the active region furtherly increases until radiative mechanisms
become dominant (the same trend holds for valence band, here not depicted).

Taking a look to the lower sub-figure, one can observe that the electric charac-
teristics experience three different regimes. In “I” the transport is mainly affected
by series resistance and SRH processes. Here the slope suffers from the presence
of high defect densities and non-radiative recombination occurring at SRH centers.
Then in regime “II” SRH is still present but also defect-related tunneling processes,
which require higher electric fields than simple non-radiative transitions, begin to
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3.3 Operation Principles and Efficiency Problem

be more and more relevant with the bias increase. Finally in “III”, when the onset
of radiative mechanisms occurs (the so-called optical turn-on) spontaneous emis-
sion definitely drives the characteristics. Besides radiative recombination also Auger
mechanisms are heavily carrier density dependent, as we already stated in this work.
Indeed, at very high injection regimes (here not represented) three-particle mecha-
nisms intervene such that the radiative one begins to experience carrier losses and,
consequently, efficiency decrease.

In an LED we can define two types of efficiency. Accounting only for microscopic
radiative mechanisms, we find the internal quantum efficiency IQE given by the ratio
between the number of photons emitted from the QW per unit time and the number
of electrons injected into the whole device per second. So, symmetrically to what
we said for IR photodetectors:

ηLED
int ≡ IQE =

qPint

Iinj~ν
, (3.61)

where Pint is the optical power generated in the active region and Iinj the injected
current. If we include also the absorption properties of GaN, which partially ab-
sorbs generated photons, one has to define an overall external efficiency (EQE).
This quantity considers the capability to extract the light from the device to the
surrounding free space and makes use of a new quantity called extraction efficiency,
which is the ratio between the number of photons propagating outside per second
and the number of photons emitted by the active region per second. Thus, the EQE
is given by:

ηLED
ext ≡ EQE = ηLED

extraction · IQE

=
Pout

Pint

· qPint

Iinj~ν

=
qPout

Iinj~ν
, (3.62)

where Pout = Nout~ν, being Nout the number of photons emitted into free space per
unit time.

As pointed out by G. Verzellesi in Ref. [123], if only radiative processes take place
then the IQE would be 1, and all injected carriers would produce photons. In this
case Iinj = VQWqBradn

2 and Eq. (3.61) becomes

IQE =
VQWBradn

2

Iinj/q
, (3.63)

where VQW is the QW active volume. When other GR mechanisms participate and
compete to the LED operation, the IQE must be re-written as

IQE =
Bradn

2

ASRHn+Bradn2 + CAugn3
, (3.64)
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Figure 3.15. Mechanisms competing with spontaneous radiative recombination in a generic
double heterojunction (DH) single quantum well (SQW) LED structure (adapted and re-edited
from Ref. [123]).

in which ASRH = 1/τSRH (in s−1). Here we account only for SRH, radiative and
Auger processes. If we include also leakage, escape mechanisms from QW, tunneling
or carrier delocalization the order of n in the denominator would increase thanks to
additional summands.

As schematically depicted in Figure 3.15, several processes concur to the net
balance between injected carriers and emitted photons. On the one hand only
Bradn

2 contributes to the light emission, on the other hand there are several mech-
anisms undermining this process. As we said, each of them has a different field-
and carrier-dependence, resulting in a marked dominance within a particular bias
regime. At low injection ASRHn term is the most relevant leakage channel. Nonethe-
less, high defect densities can affect the LED performance also at higher bias and
may also assist tunneling-related inter-band transitions. Other material features,
like carrier delocalization, or mechanisms, as in case of QW carrier capture/escape,
can contribute to decrease the radiative efficiency. In particular, the latter repre-
sents an interesting example of intrinsic quantum effect due to the finite probability
to have excited or relaxing carriers traveling via phonon-assisted transitions across
the heterojunctions and between energy sub-bands belonging to states in the well
and in the surrounding barrier.

The process most indicated as the main competing with radiative recombina-
tion and among the most debated causes for the efficiency droop is Auger. Direct
Auger transitions have a strong temperature dependence and are characterized by a
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threshold onset energy [138]. Theoretical calculations point out that expected values
for the coefficient CAug in InGaN QWs range from 10−32 (or less) to 10−30 cm6s−1.
Indirect (phonon-assisted) Auger transitions instead have no threshold and may af-
fect the performance also at low temperature and even at room-T , with a power-law
dependence [139]. In this case values in the order of 10−31 cm6s−1 [140] have been the-
oretically obtained. In general, Auger coefficients exhibit enhanced values in QWs
with respect to bulk materials due to the kz-conservation removal at the heterojunc-
tions. However it is commonly accepted that already since CAug ∼ 10−31 cm6s−1 the
Auger influence on droop becomes appreciable [141–143].

Among the candidates responsible for droop we find also trap-assisted tunneling
(TAT). In particular N. I. Bochkareva et al. [89] claimed that horizontal processes
from the well towards defects in the p-side barrier are correlated with an IQE de-
crease in SQW InGaN/GaN structures.
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Tunneling in Direct Band Gap
Semiconductor Devices
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Chapter 4

Tunneling: From Quantum Theory to Modeling

As we have seen in the case of quantum wells (QWs), when one or more
spatial dimensions are remarkably reduced every classical description of fermions
becomes completely unreliable. This is the reason why, for instance, Bloch states
are unavoidable in describing quasi-confined electrons and holes in LEDs active
region. Moreover such a topic is even more crucial because of the actual trend of
shrinking devices size in all electronics application fields.

However, not only system dimensions do affect our description of carriers. As a
matter of fact, junctions made of narrow gap semiconductors may produce bands
bending such that the path between two states in conduction and valence band fac-
ing each other on either side of the gap could be comparable with the electron/hole
wavelength. No classical framework could never account for quantum effects occur-
ring in such a case, unless suitable corrections are adopted.

This theoretical chapter is devoted to describing one of the most important, in-
trinsic, unavoidable and common quantum effect in solid-state applications: quan-
tum tunneling. Starting from basic theory we will come to its description suitable
for numerical modeling as it has been developed for the specific devices introduced
in Part I. With the aim of being as much exhaustive as possible, the present work
took into consideration different tunneling mechanisms, within different devices and
under different modeling techniques. Thus, the subject is organized as follows. In
Section 4.1 we propose a physical review about quantum origins of tunneling through
the semiclassical formalism and under the envelope wavefunctions approximation.
Here the simplest direct band-to-band tunneling (BTBT) and trap-assisted tunnel-
ing (TAT) mechanisms are described. Furthermore, in Section 4.2, the reader will
also come across some author’s original results about BTBT modeling in p-i-n MCT
photodetectors, which found their theoretical origin in my Master’s thesis [45] and
which have been fully developed during the Doctorate research activity. Thanks to
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4.1 Tunneling and WKB Approximation

a proficuous collaboration between our Department of Electronics and Telecommu-
nications and AIM Infrarot-Module GmbH, Theresienstraße 2, D-74072 Heilbronn,
Germany, a leader company in the production of IR detectors, such novel formalism
has been applied for the first time in the literature to real device simulations, as we
will discuss in Chapter 5.

Section 4.3 deals with a detailed description about the physical mechanism of
multi-phonon emission (MPE), which is at the basis of defect-assisted tunneling
transitions, a process not so relevant in IR photodetectors but absolutely crucial in
wide gap GaN-based light emitters, as we will demonstrate. A compact model for
trap-assisted tunneling (TAT) in these devices is derived here from solid-state prin-
ciples. This description, moreover, can be found as a theoretical introduction of the
invited paper [144] we published on a Special Issue of the Journal of Computational
Electronics (see Ref. [145]), thanks to the opportunity given by its then Editor in
Chief J. Piprek, and represents – to the best of our knowledge – the first success-
ful example of such an MPE-based formalism applied to InGaN/GaN blue LEDs
simulations. All this part of work has been possible especially thanks to the collab-
orations with OSRAM Opto Semiconductors GmbH, Leibnizstraße 4, 93055 Regens-
burg, Germany, and with colleagues from the Information Engineering Department
of Padua University, who provided us all the experimental characterizations which
have been essential to test our theoretical models on real LED structures.

Then, after analyzing BTBT and TAT through the semiclassical perspective,
Section 4.4 introduces a full-quantum methodology, more and more employed in
electronic and – also in some still rare cases [146–148] – optoelectronic devices mod-
eling. The treatment concerning Non-Equilibrium Green’s Functions (NEGFs) will
conclude this theoretical chapter, before leaving space to the application of what
developed here to real device simulations, the main topic of the next two chapters.

4.1 Tunneling and WKB Approximation

Here we explore the semiclassical approximation of quantum mechanics, which is
at the basis of almost all tunneling analytical descriptions, both for direct (BTBT)
and indirect (TAT) processes. In this section also some relevant examples of tun-
neling current and rate expressions, that are based on this theory, will be provided
to the reader.

Let us start with describing the tunneling effect per se. We already seen that the
Bloch wavevector must be purely imaginary within the forbidden band gap, so that
k ≡ ik. This means that the Bloch plane-wave part of Ψk(z) for a particle supposed
to travel in that region along z should in principle become an exponentially decaying
function of the form ∼e−kz. Then its probability density |Ψ(z)|2 calculated at fixed
k within the band gap will be a vanishing function of the distance z, since the plane-
wave component has the property of modulating the wavefunction amplitude in real
space.

When a material offers the capability to bring two allowed states (separated by
a forbidden region) closer at a distance shorter than, say, the Ψ(z) damping then
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4.1 Tunneling and WKB Approximation

the probability of having a particle at state |Ψ(z)〉 which tunnels across the gap
becomes non negligible. From this statement three fundamental observations arise.
The first one is that tunneling can be explained only under the quantum mechanical
wave-particle dualism, so that no classical theory could reach these conclusions. The
second important fact to be noted is that, unlike all the transitions we previously
mention in this work, tunneling (at least in its simplest conceptual prototype) rep-
resents a transition in real space and not in the energy domain (a property often
referred to as the “non-locality” of tunneling). Even if, as we will see in a moment,
(phonon- or) defect-assisted processes can also involve (‘oblique’ or) vertical transi-
tions. The last thing to stress – and probably the most important – is that tunneling
represents an unavoidable effect whose origin comes from probabilistic nature of par-
ticles, an intrinsic property of matter. This means that no activation energies are
required and that also off-state devices are affected by tunneling. Actually, the only
important physical parameter is the spatial distance between the initial and the
final state (although it might depend on other quantities as the electric field in the
forbidden region).

The trend of modern electronics to boost the power density of integrated systems
via the reduction of devices dimensions has the drawback to give its side to parasitic
effects like tunneling. One must also say that in some particular cases tunneling is
even exploited as the operating principle: think, as an example, to tunneling-field-
effect transistors (TFETs) or resonant tunneling diodes (RTDs). However tunneling
mechanisms are commonly seen as a source of unwanted leakage currents. As we
briefly mentioned in Chapter 2, direct tunneling can heavily affect and compromise
the reverse dark current of IR photodetectors, an essential feature to be reduced
in order to keep under control the sensor noise: in this case the effect is rather
subtle since band bending in the absorber region governs the process, no matter
the detector size. At the same time defect-related tunneling processes are typical
of LEDs in low-medium bias regime, as we said in Chapter 3. However, TAT can
also occur in IRPDs, even if defects in MCT seem less relevant than in GaN-based
materials. Moreover, being an intrinsic effect, tunneling can be only reduced via
proper design (as band engineering) or controlling fabrication processes, but not
eliminated at all. This should be the key point of each approach about tunneling-
related issues in solid-state (opto-)electronics and it is just from this particular
consideration that the importance of studying quantum tunneling arises.

Figure 4.1 shows two examples of direct (BTBT) – panel (a) – and defect-assisted
(TAT) – panel (b) – electron tunneling in narrow and wide gap p-n junctions under
reverse and forward bias, respectively. Both mechanisms here depicted belong to
the class of inter-band transitions, being involved both bands. The first scheme
represents an electron tunneling from a valence state towards a conduction state.
Coordinates za and zb are usually referred to as classical turning points of motion.
Since BTBT can be also seen as a hole tunneling in the inverse direction (this process
is not represented here), it finally corresponds to a net electron/hole (non-radiative)
generation mechanism. If the reverse bias increases the two quasi-Fermi levels be-
come furtherly splitted and the tunneling path `tunn = zb− za progressively reduces,
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Figure 4.1. (a) Electron band-to-band tunneling (BTBT) in a reverse-biased narrow gap p-n
junction. The transition of an electron from valence band at za to the conduction band at zb
(where za and zb are called turning points) corresponds to a net generation process. The striped
area represents the tunneling window. (b) Electron trap-assisted tunneling (TAT) in a forward-
biased wide gap p-n junction. TAT is a three-step process: after a pure tunneling transition (1)
the electron is captured by a trap of energy Etrap with a certain statistics (2), then it recombines
with a hole in valence band (3).

because

`tunn =
Eg

q |Erev(Vbias)|
, (4.1)

assuming Erev the electric field within the gap in correspondence of the junction.

More complex is TAT represented in panel (b). Here we have only one of the pos-
sible tunneling mechanisms, where an electron leaves a conduction state and tunnels
towards a defect with energy Etrap in the p-side. After the electron is captured by the
trap, it can recombine with a hole in valence band at the same position of trap ztrap.
Unlike previous mechanism, here we have a net recombination. This is essentially
due to the opposite polarization, since wide gap emitters usually work in forward
bias. Also in this case we have an inter-band transition and, again, the inverse
process involving a hole with the arrows pointing in the opposite directions with
respect to what shown in figure is also possible, in principle. It is straightforward
that not the same statistics should be applied because the electron and hole capture
are normally characterized by different coefficients cn,p (see Subsection 1.4.1.1), de-
pending on their effective masses and on microscopical process details that will be
analyzed in depth in Section 4.3.

Moreover, in Figure 4.2 one may find other – less relevant – tunneling processes
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Figure 4.2. (a) Electron intra-band-to-band tunneling (intra-BTBT) between conduction states
across the heterojunction of a single quantum well (SQW) structure under forward bias conditions.
Here the final state is represented by a quasi -confined level in the well with energy Ee,n. (b) Alter-
native TAT mechanism with respect to what shown in Figure 4.1 where the electron recombination
with the empty trap (1) at coordinate ztrap is followed by the capture process (2) and then by the
pure tunneling (3).

occurring in wide gap light-emitters that we include for the sake of completeness.
Panel (a) shows the intra-band-to-band tunneling (intra-BTBT) between two con-
duction states in the barrier and in the QW of an LED in forward bias conditions.
Such process will be again useful in Section 4.4 when we will discuss the full-quantum
formalism of Non Equilibrium Green’s Functions (NEGF). Panel (b) instead shows
different TAT paths in the same device represented in panel (b) of Figure 4.1.

At the beginning of this section we talked about spatial distance as the crucial
parameter in tunneling mechanisms. In general, and more rigorously, the transition
between classical and quantum mechanics occurs when the De Broglie wavelengthts
λ̄ = ~/p at play (where p is the particles momentum, not to be confused with the
crystal momentum ~k) are comparable with the characterizing dimensions of the
system under investigation. So, very often the complexity of a microscopic problem
can be reduced invoking the classical limit of quantum mechanics, occurring when
~→ 0, which is the only way allowing us to neglect λ̄ since the particle momentum
can not be a priori modified. This strategy can be obviously applied also to the
case of a particle tunneling through a potential barrier. If we take into account the
most general (time-dependent) Schrödinger equation

i~
∂

∂t
Ψ(r, t) = − ~2

2m∗
∆rΨ(r, t) + U(r)Ψ(r, t) (4.2)

102



4.1 Tunneling and WKB Approximation

we notice that unfortunately the limit ~ → 0 produces a non-sense equation. This
drawback has been brilliantly overcome in the work of three scientists who, in
1926, separately attained the same result [149–151]. These guys are G. Wentzel,
H. A. Kramers and L. N. Brillouin, and in their honor this method has been called
the WKB approximation (also known as semi- or quasi-classical approximation of
quantum mechanics). This formalism consists in writing the wavefunction in the
form

Ψ(r, t) = A e
i
~S(r,t) , (4.3)

where A is a normalization prefactor and the (complex) function S(r, t) has the
dimensions of an action (eVs) as well as ~. By substituting Eq. (4.3) in Eq. (4.2)
one obtains

− ∂

∂t
S(r, t) =

1

2m∗
(∇rS(r, t))2 − i~

2m∗
∆rS(r, t) + U(r) . (4.4)

Now if we assume ~ = 0 the simplified Schrödinger equation

− ∂

∂t
S(r, t) =

1

2m∗
(∇rS(r, t))2 (4.5)

becomes the Hamilton-Jacobi equation

− ∂

∂t
S(r, t) = H(r,p), (4.6)

written for the (real) classical action

S(r, t) ≡ Scl(r, t) =

t∫
t0

L(r, ṙ, t′) dt′ , (4.7)

where

H(r,p) =
p2

2m∗
+ U(r) (4.8)

is the classical Hamiltonian operator of the system (here p = ∇rScl(r, t) has been
substituted) and L is the classical Lagrangian. This means that, in the limit ~ = 0
Eqs. (4.3) and (4.6) describe a system following all the possible classical trajectories
perpendicular to the surfaces with constant wavefunction phase Scl(r, t).

As it emerges from previous calculations, the WKB approximation is legitimate
only when

i~
2m∗

∆rS(r, t)� 1

2m∗
(∇rS(r, t))2 + U(r) (4.9)

like, for instance, in the case of particles with sufficiently high p travelling in a
slowly variant potential U(r), which actually satisfies the plane-wave hypothesis of
Bloch theorem. For this reason we will consider hereinafter electron (and hole) Ψ(r)
including only the exponential term of the Bloch wavefunction, as in Eq. (4.3), i.e.
what is commonly called envelope wavefunction, forgetting the other term related
to the rapidly-oscillating lattice potential.
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Operating now with a variable separation in the action expression we have

S(r, t) = σ(r)− E t , (4.10)

being E the particle energy and where we define σ(r) the Hamilton’s principal
function, the wavefunction can be rewritten as

Ψ(r, t) = Ψ(r) e−
i
~Et

= A e
i
~σ(r) e−

i
~Et . (4.11)

Focusing only on the stationary solution, we develop the principal function according
to this series expansion in ~:

σ(r) = σ0(r) +
~
i
σ1(r) +

(
~
i

)2

σ2(r) + . . . , (4.12)

which represents the core of the whole WBK method. Now the target is to determine
σ and Ψ by iterative approximations. Confining our calculations to the station-
ary regime, the governing equation now becomes the time-independent Schrödinger
equation

(∇σ(r))2 − i~∆σ(r) = 2m∗ [E − U(r)] . (4.13)

By plugging Eq. (4.12) into Eq. (4.13) one obtains a system of coupled equations in
the unknowns σj(r) to be solved in sequence for j = 0, 1, 2, . . .:

(∇σ0(r))2 = 2m∗ (E − U(r))

(∇σ0(r) · ∇σ1(r)) +
1

2
∆σ0(r) = 0

(∇σ1(r))2 + 2 (∇σ0(r) · ∇σ2(r)) + ∆σ1(r) = 0

. . .

. (4.14)

In a monodimensional problem along the z-axis, and stopping to the first order
solution (j = 0, 1) by imposing

σ(z) ' σ0(z) +
~
i
σ1(z) (4.15)

(the second important statement of the WKB method), the system of Eq. (4.14)
reduces to σ̇

2
0(z) = 2m∗ (E − U(z)) ≡ p2

z

σ̇0(z)σ̇1(z) +
1

2
σ̈0(z) = 0

, (4.16)

in which dotted variables represent the spatial derivatives of their respecting undot-
ted quantities. System (4.16) returns two solutions:

σ0(z) = C ±
z∫

z0

pz′ dz
′ (4.17)
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and
σ1(z) ' − ln (

√
pz) . (4.18)

Using these solutions and remembering Eq. (4.15) one finds the final form of the
WKB wavefunction:

ΨWKB(z) =
C√
pz

e
i
~±

z∫
z0

pz′ dz
′

, (4.19)

where the lower integration limit z0 is arbitrary unless the constant C is specified.
Written in the general form of Eq. (4.19), the WKB wavefunction is valid for each

region of the k-space. Supposing to use this formalism to describe an electron (or a
hole) in a periodic lattice structure, now we can replace the free-particle momentum
p with the crystal wavevector k with the common assumption ~ = 1. Recalling now
the first equation of system (4.16), we have

kz =
√

2m∗ (E − U(z)) , (4.20)

so if E > U(z) then kz is real, otherwise if E < U(z) we have a purely imaginary
kz. As one may understand, this exactly corresponds to the propagation condi-
tions encountered by plane wave travelling within an allowed or a forbidden region,
respectively. And this also corresponds to the physics of a particle wavefunction
tunneling through a potential barrier, under the WKB hypotheses. The points
where kz is zero (i.e. at E = U(z)) coincide with the already mentioned turning
points. In correspondence of these points the WKB approximation is typically rather
weak. For this reason the particle propagation through the barrier is described by
means of some mathematical manipulations which allow to join the WKB solu-
tions calculated inside and outside the barrier with specific connection-functions at
the turning points, whatever the potential shape. This procedure, however, is also
useful to determine the constant of integration C we leaved undefined in previous
calculations.

Before proceeding with the theoretical treatment of a tunneling WKB wave-
function is interesting to note some additional information given by Eq. (4.19). In
particular, since |Ψ| ∝ 1/

√
k, then we have that

P [z′; z′′] =

∫ z′′

z′
Ψ∗(z) Ψ(z) dz

= |Ψ(z)|2 ∆z

' ∆z

kz
∼ ∆t , (4.21)

where P [z′; z′′] is the probability to have the particle described by Ψ(z) located
within the interval ∆z = z′′ − z′. Hence Eq. (4.21) states that this probability is
somehow proportional to the time interval ∆t which is necessary to travel along ∆z.

Now let us call za and zb the two turning points (as also depicted in Figure 4.3).
They split the (semi-)classical wavefunction trajectory in the real space into three
different regions: in region I we suppose to have a forward propagating Ψ(z). At
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Figure 4.3. Solving scheme for a particle (envelope) wavefunction tunneling from left to right
under WKB hypotheses. The range included between za and zb is the forbidden region (II) rep-
resented by a potential barrier. It is worth noting that connection functions at turning points do
overlap with asymptotic solutions written for regions I, II and III.

the point za the energy of the incoming particle E equals the barrier energy U(z):
here the wave is partially transmitted through region II (as a vanishing exponential)
and in part is reflected backward into region I (as oscillating wave). Finally, at the
turning point zb the wave is transmitted into region III and, at the same time, re-
flected into region II (we neglect second-order counter-reflections or other resonance
effects).

Let us start from region III. Operating the change of variables Ψ(z) = ϕ(z) 3
√
u

with

u =

u∫
zb

√
2m∗U
~2

(u− zb) du , (4.22)

in which U is a potential energy term, and substituting it into the time-independent
Schrödinger equation we obtain

d2ϕ(z)

du2
+

1

u

dϕ(z)

du
+

(
1− 1

9u2

)
ϕ(z) = 0 . (4.23)

Eq. (4.23) is the Bessel’s differential equation. This means that its solution ϕ(z)
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assumes the role of a Bessel function J± 1
3
(u) of the order ±1

3
. Remembering that

Jj(u) =
∞∑
n=0

(−1)n
(
u
2

)j+2n

n! Γ (j + n+ 1)
, (4.24)

where Γ is the gamma function, then, after some calculations, one obtains

Ψ(u) = 3
√
u
(
AJ 1

3
(u) +B J− 1

3
(u)
)
. (4.25)

Now our Ψ(u), which is for the moment expressed as a function of the auxiliary
variable u, must be reconducted to a suitable function of the real coordinate z. In
order to do so we operate again a substitution assuming that

ζ(z) =

z∫
zb

√
2m∗

~2
(E − U(z)) dz . (4.26)

From Eq. (4.26) follows that

Ψ(z) '
√
ζ(z)

kz

(
AJ 1

3
(ζ(z)) +B J− 1

3
(ζ(z))

)
. (4.27)

By its construction, Eq. (4.27) satisfies all the connection requirements at the turning
points. To ensure to have a propagating wave in III we must choose

AIII =
2

i+ ei
π
6

(4.28)

and

BIII =
2

e−i
π
6 − e

π
2

, (4.29)

thus

ΨIII(z) ∼
√

2

πkz
exp

(
i
ζ(z)− π

4

)
. (4.30)

In the same way we can operate at the turning point za, where the condition
expressed by Eq. (4.26) here reads

ζ ′(z) =

za∫
z

√
2m∗

~2
(E − U(z)) dz . (4.31)

By plugging Eq. (4.31) into Eq. (4.27) and using

AII = BII =
i e|ζ(z)|+|ζ

′(z)|

cos π
6

(4.32)
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we have

ΨII(z) ∼ i

√
2

π|kz|
exp (|ζ(z)|+ |ζ ′(z)|) , (4.33)

where

|ζ(z)|+ |ζ ′(z)| =

∣∣∣∣∣∣
zb∫

za

√
2m∗

~2
(E − U(z)) dz

∣∣∣∣∣∣ , (4.34)

and, finally,

ΨI(z) ∼
√

2

πkz

[
AI

2

(
e−i

5π
2 + e−i

π
12

)
eiζ(z) +

AI

2

(
ei

5π
2 + ei

π
12

)
e−iζ(z)

]
, (4.35)

with AI ≡ AII. Notice that Eqs. (4.35), (4.33) and (4.30) are all in the general
WKB form written in Eq. (4.19). It is also worth stressing that the WKB method
can be applied to any shape of potential U(z), provided that proper normalization
coefficients are calculated for each region. In particular, for potential discontinuities
at turning points (as for the barrier surrounding a QW), the use of suitable Airy
functions in place of the Bessel-like join-wavefunctions in Eq. (4.25) is often adopted.

Figure 4.3 shows the WKB scheme we proposed to solve the problem of a particle
(envelope) wavefunction impinging on a potential barrier, where za and zb delimit
the forbidden region (II). The wavefunction is not to scale since it is demonstrated
that in order to obtain a reliable connection between solutions at turning points
and far from them the domain of Eq. (4.25) should include a certain number of
wavelengths.

Performing the ratio

T =

∣∣∣∣ΨIII(z)

ΨI(z)

∣∣∣∣2 =
1∣∣∣AI

2

(
e−i

5π
2 + e−i

π
12

)∣∣∣2
= exp

−2
√

2m∗

~2

∣∣∣∣∣∣
zb∫

za

√
(E − U(z)) dz

∣∣∣∣∣∣
 (4.36)

we obtain the tunneling transmission factor, also known as barrier transparency,
i.e. the tunneling probability. It has to be observed that T (E) is a function of
the energy E, a characteristic quantity of the considered particle which remains
conserved during the tunneling process, even if |ΨI(z)|2 6= |ΨIII(z)|2.

Let us consider an interesting case, which is useful to introduce tunneling effect in
semiconductor devices. Suppose to have a band diagram as in panel (a) of Figure 4.1
and a valence electron tunneling from the p-side to the n-side across the energy gap,
from za to zb. If the semiconductor is a direct band gap material (as in the case of
HgCdTe) the wavevector perpendicular to the motion k⊥ is conserved (otherwise, in
case of indirect band gap semiconductors the energy conservation is assured through
phonon emission). Moreover, suppose also that the energy E⊥ associated to the
perpendicular wavevector k⊥ is finite and positive. As pointed out by S. M. Sze [152]
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the potential shape within the forbidden gap does not affect so much the tunneling
behavior. The most generic representation involves a triangular barrier

E − UM(z) = −
(
Eg

2
− Eg/2(z)

)
, (4.37)

where Eg/2(z) = −qErevz is the mid-gap energy. Otherwise, as claimed by J. H. Moll
(see Ref. [153]), also the parabolic trend can be assumed

E − Ua(z) = −
(Eg/2)2 − E2

g/2(z)

Eg

, (4.38)

which derives from band dispersion calculations performed via k · p perturbation
method in the near-zero-gap InSb alloy (after E. O. Kane [154]). The narrower the
band gap the stronger the quadratic correction E2

g/2(z) needed to describe the barrier

at the forbidden gap. Performing the calculation of T (E) for both shapes one obtains

TM(E) = exp

(
−4
√

2m∗E3/2
g

3q~Erev

)
(4.39)
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x = 0.2946. Both triangular and parabolic barrier approximations are represented where, re-
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increasing mole fraction or temperature the curves shift towards high electric fields.

and

Ta(E) = exp

(
−π
√
m∗E3/2

g

2
√

2q~Erev

)
, (4.40)

from which results to be pretty evident that, as we said, the barrier choice is rather
irrelevant, since the expressions in Eqs. (4.39) and (4.40) are formally identical
except for a small constant.

Let us take into account the last case, i.e. consider a parabolic barrier with the
most general expression for the total energy

E = Ez + E⊥ , (4.41)

which is the sum of energy components parallel and perpendicular to the tunneling
trajectory.

In order to obtain E −U(z) = 0 at turning points we have to shift our reference
frame in such a way that the origin is Eg/2(0) = 0 (see Figure 4.4). So, za and zb
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are given by

za,b = ± 1

qErev

√(
Eg

2

)2

+ EgE⊥ , (4.42)

where + and − signs stand for zb and za, respectively. Notice that if no transver-
sal momentum occurs then turning points are separated by the quantity Eg/qErev.
Introducing a component E⊥ this distance (i.e. the tunneling path) increases by
reason of Eq. (4.42). Rewriting now the tunneling probability of Eq. (4.40) we have

Ta(E) =

Ta(Ez)︷ ︸︸ ︷
exp

(
−4
√

2m∗E3/2
g

3q~Erev

) Ta(E⊥)︷ ︸︸ ︷
exp

(
−2E⊥

Ē

)
, (4.43)

where “parallel” and “transversal” components, again, have been highlighted, and

Ē =

√
2q~Erev

π
√
m∗Eg

. (4.44)

Notice that from expressions above the thermal trend of BTBT probability in
HgCdTe p-n photodiodes under reverse bias can be inferred. Combining Eq. (2.17),
which describes the band gap widening with increasing T , and Eq. (4.43) the inverse
proportionality between Ta(E) and temperature is well evident. To enhance direct
tunneling also low effective masses, narrower energy gap and high electric field have
to be invoked: as plotted in Figure 4.5, the role of BTBT becomes relevant when
the electric field in correspondence of the junction is of the order of ∼106 V/cm,
where the field is supposed to be constant within the depletion region (average field
approximation). Moreover, in the case considered of MCT with cadmium fraction
x = 0.2946 at T = 200 K the assumption of parabolic barrier differs from the trian-
gular one at fixed T by a field factor ∼ 2· 106 V/cm.

For the sake of brevity, let us confuse the notation Ta with simply T , since we
will hereinafter make implicit the use of a parabolic barrier. In order to have a
tunneling transition across a diode junction two fundamental conditions have to be
met: the first is the availability of the initial state in valence band and the second
is the availability of a final state in conduction band, requirements that are usually
described in the Fermi-Dirac statistics by the well-known Fermi functions fV(E) and
(1− fC(E)), respectively. If in non-degenerate semiconductors these conditions are
automatically fulfilled (at least at 0 K) in degenerate ones the availability of states
has to be carefully managed and verified. Thus, in general, the net tunneling flux
per unit of differential volume (dV = A dz) is

Φtunn = T (E) (fC(E)− fV(E)) , (4.45)

thus the differential current is given by

dItunn = ΦtunnA dz

=
q2Erevm

∗

2π2~3
T (E) (fC(E)− fV(E)) A dE⊥ dz

=
qm∗

2π2~3
T (E) (fC(E)− fV(E)) A dE⊥ dE , (4.46)
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where qErev = dE/dz has been used in the last passage. Hence, the tunneling net
current can be obtained by integrating over the energy:

Itunn =
qm∗

2π2~3
exp

(
−π
√
m∗E3/2

g

2
√

2q~Erev

)∫
(fC(E)− fV(E)) e−2E⊥/Ē A dE⊥ dE . (4.47)

In order to write Eq. (4.47) in a less generic form, suitable for specific device
structures, one has to account for some hypotheses. Let us assume, for instance, to
apply a bias such that Vbias � Ē/q. This is needed to have discontinuous quasi-
Fermi levels at the borders of the depletion region. Suppose also to neglect the
perpendicular contribution given by E⊥, whose integration would be∫

e−2E⊥/Ē dE⊥ '
∫ (

1− e−2Emin/Ē
)

dE , (4.48)

where Emin is the minimum between E − EC,min and EV,max − E, as pointed out in
Ref. [152] (with EC,min and EV,max the band edges in neutral regions). Under these
hypotheses:

Itunn =
q3
√

2m∗ErevVbias

4π3~2
√
Eg

exp

(
−π
√
m∗E3/2

g

2
√

2q~Erev

)
. (4.49)

Eq. (4.49) represents the most general WKB (analytical) expression of inter-band-
to-band tunneling current in a direct band gap semiconductor p-n junction (under
reverse bias conditions).

For the sake of completeness it has to be mentioned that WKB is not the only
analytical method used to solve tunneling problems. In 1966 K. H. Gundlach [155]
found an alternative procedure to solve the time-independent Schrödinger equation,
rewritten as

d2

dz2
Ψ (α(z))− α(z) Ψ (α(z)) = 0 , (4.50)

where α(z) = β − z/γ,

β = − 3

√
2m∗

q2E2~2
(E − U(za) + zaqE) (4.51)

and

γ = − 3

√
~2

2qm∗E . (4.52)

Eq. (4.50) is the Airy differential equation and its solutions are the first- and
second-type Airy functions Ai (α(z)) and Bi (α(z)). Thus the wavefunction is defined
as a linear combination of Airy functions:

Ψ (α(z)) = C1 · Ai (α(z)) + C2 · Bi (α(z)) , (4.53)

where C1,2 are normalization constants. The resulting transmission factor, that in
Gundlach formalism is very compact, has been demonstrated to be almost coincident
with the WKB one [156].
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The last category of solving methods consists in the transfer matrix method.
By approximating the potential barrier as a discrete set of N linear- or constant-
piecewise potential segments and by writing the wavefunction Ψ in each sub-domain
as a sum of a progressive and regressive plane wave, the total transmission is the
product of N matrices each of those represents a complex transfer matrix, i.e. the
matrix connecting the amplitude of the incoming and reflected wavefunctions at the
boundaries of each respective domain.

Besides these important analytical methods there are also numerical strategies
allowing to solve the Schrödinger equation for any kind and any complexity of po-
tential. One of the most important procedure is based on the finite element method
(FEM), which assumes again to divide the whole domain in a grid of sub-domains.
With opportune approximations (details and results of this method will be presented
in Section 4.4) one can obtain eigenvalues and eigenfunctions only by imposing ap-
propriate boundary conditions.

In the next subsection we will introduce some relevant examples taken from the
literature which allow us to describe the transition between purely analytical for-
malisms as the WKB, useful to represent small and static problems through their
microscopic quantities, and the framework of device simulation, where physical com-
plexity and non-linearity of the systems under analysis dominate and where the de-
scription focus is shifted towards average or collective variables in a quasi-stationary
framework. So, we will start from theoretical principles and then we will present
approaches that can be still considered belonging to the area of analytical solutions
but, as it will result more clear, they are specifically concieved for the implementa-
tion into numerical solvers.

4.1.1 From pure analytical to numerical-oriented picture

Several researchers derived ad hoc equations in order to describe specific mecha-
nisms of their interest, as the author also did concerning HgCdTe p-i-n IR photode-
tectors (see Subsection 4.2). However, the formalism just derived for band-to-band
transitions – based on WKB wavefunction approximation and Kane’s band disper-
sion – is subtended to almost all tunneling processes, both direct and defect-assisted.

The aim of this subsection is to present the most robust theories of band-to-band
and trap-assisted tunneling mechanisms and then to move towards a device-level
description of these phenomena. Being the physics behind TAT strictly dependent
on the defect density, here we present only basic calculations due to G. A. M. Hurkx
and valid for lightly defective materials, as narrow gap semiconductors used for
IR detection. Then in Section 4.3 his formalism will be extended to other systems
thanks to the multi-phonon-emission (MPE) theory, which introduces a higher order
of complexity into our physical description.

4.1.1.1 Band-to-band tunneling (BTBT): Kane formalism

The study of direct tunneling processes in MCT IR photodetectors started in
70s-80s with works as those by M. A. Kinch and J. P. Rosbeck [157, 158] but the
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discovery of BTBT in electronic devices has a longer history. Since 1934, when
C. Zener suggested the possibility to observe electrons tunneling through the for-
bidden region [159], the effect of this quantum process in electronic devices was
known. Some years later, in 1957, A. G. Chynoweth and K. G. McKay [160] were
able to associate some new experimental features occurring in p-n junctions under
reverse bias to Zener tunneling mechanism. Then, late 50s have been character-
ized by a series of interesting theoretical investigations on direct tunneling (see, for
instance, the works by G. H. Wannier, E. N. Adams, W. Franz and L. V. Keldysh in
Refs. [161–164]) which essentially focused their attention on perturbation effects
to the system Hamiltonian and their impact on the integral within the tunneling
probability.

Following Kane’s 1960 paper [154], a true milestone in this area of research,
we account for a 1D time-independent Schrödinger equation written in the lattice
momentum representation in the form[

En(k)− iE ∂

∂kz
− Etot

]
φn(k)−

∑
m

E Xn,m φm(k) = 0 , (4.54)

where n, m are band indices, E is the (reverse) electric field, φn(k) are wavefunction
such that, in the real space representation,

ψ(r) =
∑
n,k

φn(k) Ψn,k(r) (4.55)

(with Ψn,k(r) a Bloch wavefunction), En are electron energies, Etot is an overall
system energy term and where i∂/∂kz and Xn,m are the so-called “intra-band” and
“inter-band” operators, respectively. Being Eq. (4.54) written in the wavevector
space, also diagonal elements Xn,n have an intrinsic intraband nature, which depends
on the electron energy via

En(k, E) = En(k)− E Xn,n , (4.56)

in which only a first-order dependence on the electric field has been accounted for.
At the same time off-diagonal elements are defined

Xn,m = i

∫
u∗n,k(z)

∂

∂k
um,k(z) dz , (4.57)

with un,k(z) the rapidly oscillating part of Bloch wavefunctions Ψn,k(r).
The interband transition matrix elements, which Kane demonstrated to be valid

both for first- and second-order field dependence, are given by

Mn,m(kz) = − E
K

∫
Xn,m exp

(
i

E

∫ kz

0

En(k′, E)− Em(k′, E) dk′
)

dkz , (4.58)

where K is the principal vector of the reciprocal lattice. Supposing to have a
two-band dispersion relation like

EC,V(k) =
Eg

2
+

~2k2

2m0

±

√
E2

g + Eg~2k2

m∗r

2
, (4.59)
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where

m∗r =
m∗C +m∗V
m∗C m

∗
V

(4.60)

is the reduced effective mass, the interband operator reads

XC,V = i
~E2/3

g

2
√
m∗r (EC − EV)2 . (4.61)

Assuming a sufficiently small and constant electric field E and approximating the
integral in Eq. (4.58) by expanding its integrating in the vicinity of the point giving
the maximum contribution to the integral and then extending the domain from −∞
to +∞, one can rewrite Eq. (4.58) as

Mn,m(kz) =
πE
3K

exp

(
−πE

3/2
g

4~E

)
. (4.62)

The tunneling rate Rtunn (in cm−3s−1) can be found multiplying the transition
probability per electron per unit time

WV→C =
2π

~
|Mn,m(kz)|2 ρ(E) (4.63)

(being ρ(E) ' K/2πE the DOS under constant field approximation) by the number
of electrons per volume and integrating for all occupied states. The result is

Rtunn =
q2√m∗r

18π~2
√
Eg

E2 exp

(
−π
√
m∗rE

3/2
g

2q~E

)
. (4.64)

Some considerations follow:

1. Eq. (4.64) holds for direct band gap semiconductors, where momentum is
conserved during tunneling transitions.

2. Since we are modeling direct transitions from valence to conduction band in
reverse biased junctions, the rateRtunn actually represents a BTBT generation
rate GBTBT.

3. Notice that Eq. (4.64) can be written in the more general form

Rtunn = A E2 · exp (−B/E) , (4.65)

where Kane expressions for coefficients A and B are

AKane =
q2√m∗r

18π~2
√
Eg

, (4.66)

which is adimensional, and

BKane =
π
√
m∗rE

3
g

2q~
(4.67)
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in V/cm units as an electric field. As a matter of fact, B is the critical field
governing the exponential growth of Rtunn, as will become more clear in the
following.

4. In semiconductors where m∗e � m∗h we can safely assume that m∗r ' m∗e (for
electron tunneling).

5. Here it has not been demonstrated but it is worth noting that in the forbidden
region wavefunctions in Kane formalism have the same asymptotic trend of
WKB wavefunctions.

By taking inspiration from Kane theory, almost three decades later G. A. M. Hurkx
developed a tunneling model suitable for direct band gap reverse biased p-n junc-
tions under the hypothesis of constant electric field [165, 166]. According to Hurkx
the BTBT rate can be expressed by

Rtunn = AE2D
(
ϕ(z), EFn , EFp

)
· exp (−B/E) , (4.68)

where

D
(
z, ϕ, EFn , EFp

)
=

1

exp
(
−EFp (z)−qϕ(z)

kBT

)
+ 1
− 1

exp
(
−EFn (z)−qϕ(z)

kBT

)
+ 1

, (4.69)

where ϕ(z) is the electrostatic potential and EFn,p the electron/hole quasi-Fermi
levels. In the Hurkx model the “perpendicular energy” has not been neglected,
indeed the function D is an approximation of the integral in Eq. (4.48), thus:

D
(
z, ϕ, EFn , EFp

)
'
∫ (

1− e−2Emin/Ē
)

dE . (4.70)

To obtain the Hurkx rate for indirect semiconductors it is sufficient to use, in
Eq. (4.68), the exponent 5/2 in place of 2.

Once the material-dependent parameters A and B have been fixed, Eq. (4.68)
allows to model BTBT in each device (also under forward bias), thanks to the
function D which depends on macroscopic quantities that can be easily computed
by numerical simulators. It is also interesting to highlight the effect of temperature
on tunneling current pointed out by Hurkx in Ref. [165]. As reported there,

d (ln Itunn)

dT
= − 3

2Eg(T )

B (Eg(T ))

E
dEg(T )

dT
, (4.71)

which gives an almost linear trend of Itunn(T ), whose slope essentially varies by
reason of the material band gap widening with T .

Thanks to more recent works by R. Adar and K. Jóźwikowski et al. [167, 168] it
has been demonstrated that the most suitable choice of A and B for MCT material
system is

AMCT(x, T ) =
q2
√

2m∗(x, T )

4π3~2
√
Eg(x, T )

(4.72)
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Figure 4.6. Comparison between different tunneling rate formulations computed for an MCT p-n
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Inset: same plot in log-linear scale.

and

BMCT(x, T ) =
π
√
m∗(x, T )E3

g(x, 300 K)

2
√

2q~
, (4.73)

where m∗(x, T ) and Eg(x, T ) are given, respectively, by Eqs. (2.14) and (2.17), and
where AMCT(x, T ) and BMCT(x, T ) have to be inserted into Eq. (4.65).

Figure 4.6 shows the number of electron/hole pairs generated by tunneling per
unit volume per second (tunneling rate Rtunn) calculated as a function of the reverse
electric field in an MCT p-n junction at T = 200 K and with x = 0.2946 via different
models. In the inset a log-linear version of the same plot has been included to
appreciate the different “threshold” of each curve. The Moll-Adar model refers to
the WKB-based Moll formalism for a triangular barrier (see Eq. (4.39)) from which
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R. Adar [167] deduced the rate expression

RMoll-Adar =
q2
√
m∗E2

4
√

2π2~2
√
Eg

exp

(
−4
√

2m∗E3
g

3q~E

)
. (4.74)

The Kane-Jóźwikowski curve, instead, is mixing Kane model (see Eq. (4.65))
with MCT parameters reported in Eqs. (4.72) and (4.73) [168]. Notice that by
tuning the critical field B also the threshold rate (i.e. the point where Rtunn starts
to grow) changes significantly (inset of Figure 4.6). While for standard parabolic
and triangular barriers the rate onset lies approximately at Erev ' 104 V/cm, the
Kane formula with AMCT(x, T ) and BMCT(x, T ) MCT parameters has a critical field
at least two times greater.

In Figure 4.7 we represented some examples of calculated I(V ) characteristics
for an MCT-based abrupt p-n diode in dark conditions via the simulation procedure
that has been explained in Section 1.5 and through the Kane-Jóźwikowski model.
In panel (a) device temperature is tuned and the BTBT onset changes consequently
while in (b) T has been fixed and the critical field is varied in order to highlight
the dependence of BTBT current raising with respect to B. Moreover, in the inset
of panel (a) we included also an example of measured characteristics of an MIS
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4.1 Tunneling and WKB Approximation

photodetector (taken from Ref. [19]) showing the same qualitative trend plotted
both in (a) and (b).

4.1.1.2 Trap-assisted tunneling (TAT): Hurkx formalism

Trap-assisted tunneling (TAT) in electronic devices is known since 1958, when
T. Yajima and L. Esaki [169] were investigating Ge p-n junctions in the energy regime
where direct transitions are not allowed. They supposed that the diode excess
current was in part due to transport mechanisms assisted by defects in the crystal.
Few years later, in 1961, A. G. Chynoweth et al. [16] developed a first TAT model
to explain the behavior of Si-based Esaki diodes.

Here we are interested in inter-band TAT processes occurring in GaN-based
LEDs. As we mentioned in Section 4.1, TAT is a three-step mechanism composed
by tunneling, capture (or trapping) and recombination (see panel (b) of Figure 4.1).
However, Hurkx pointed out that there are no quantum criticisms in describing the
whole process as a unique SRH event [165,166,170]. From this perspective TAT can
be seen as a recombination mechanism mediated by SRH centers, that in III-nitrides
can be lattice (deep) defects or dopant (shallow) impurities. The recombination rate
is weighted by the carrier probability density at the trap site |Ψ(ztrap)|2 and, at the
same time, by the probability of scattering occurring between the tunneling particle
and the trap itself. This scattering event can be globally described by the capture
cross section

σn,p =
cn,p
vthn,p

=
(
τSRHn,p Ntrap vthn,p

)−1
, (4.75)

where Ntrap is the trap density, cn,p are the carrier capture rates, τSRHn,p and

vthn,p =

√
2Ekin

m∗n,p
=

√
3kBT

m∗n,p
(4.76)

their SRH lifetimes and thermal velocities, given by Eqs. (1.47) and (1.34).
The formalism developed by Hurkx in 1989 considerably simplifies the physics

behind TAT in a very smart and intuitive way: to describe tunneling via defects a
modified form of the usual SRH rate is used, where the new trap cross section is
multiplied by a field-effect factor (following the approach of G. Vincent et al [171])
which, in turn, accounts for the wavefunction probability density calculated under
WKB approximation. This strategy returns a very simple formulation which offers a
model highly suitable for the implementation into numerical solvers. For this reason
we propose Hurkx theory at this point of the work, leaving more complicated treat-
ments of TAT in the next sections, were additional quantum effects and nonlocality
properties will be introduced in our description.

Regarding Figure 4.8, the mechanism considered by Hurkx seems to differ from
the TAT we already described. However, as we will see talking about the MPE
theory, after some hypotheses we can safely bring the case of Hurkx to our case by
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Figure 4.8. Left: scheme of Hurkx trap-assisted tunneling (TAT) in a forward biased p-n junction.
The process is composed as follows: (1) pure electron tunneling from CB to a state with energy
Eexc at position ztrap; (2′) energy relaxation down into the trap with energy Etrap; (2′′) trapping;
(3) recombination with VB hole. Right: zoom of the process scheme around the trap.

simply introducing the role of phonons in the capturing step. Now let us suppose to
have an electron in conduction band with a finite probability of tunneling towards
the p-side of a diode under forward bias. Its energy non necessarily coincides with
the trap energy Etrap so we can assume that, in general, the electron energy lies
in the range ∆En = EC(ztrap) − Etrap. Calling this energy Eexc, then a relaxation
process from the excited state to the trap may occur. So, the electron is captured
by the trap with a certain rate cn and then it recombines with a hole in valence
band. The symmetrical process occurs for holes, where ∆Ep = Etrap − EV(ztrap).
Notice that, since LEDs normally operate at high temperature (> 300 K) there are
always allowed valence states in the p-side for a tunneling electron, even in case of
non-degenerate semiconductors.

The idea of Hurkx was to introduce proper field-effect enhancement functions
Γn,p(E) into Eq. (4.75) in order to account for the higher carrier concentration in
the depletion region due to such kind of tunneling. Thus, in the Hurkx formalism
we have

σn,p(E) = (Γn,p(E) + 1) σn,p

=
Γn,p(E) + 1

τSRHn,p Ntrap vthn,p

=
(
τn,p(E)Ntrap vthn,p

)−1
, (4.77)
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with

τn,p(E) =
τSRHn,p

Γn,p(E) + 1
, (4.78)

under the hypothesis of constant electric field and supposing to apply a local cor-
rection only at the trap site. In fact

Γn(E) + 1 =
en
e0n

=
n(ztrap)

n0(ztrap)

Γp(E) + 1 =
ep
e0p

=
p(ztrap)

p0(ztrap)
,

(4.79)

being en,p and e0,n,p the emission rates in standard conditions and under zero-field
conditions and similarly for carrier concentrations n(ztrap), p(ztrap) and n0(ztrap),
p0(ztrap). Eqs. (4.79) can be also expressed in terms of capture rates, which is more
useful in our case, by recalling the balance equations [172]

cn =
en

n(ztrap)

ftrap

1− ftrap

cp =
ep

p(ztrap)

1− ftrap

ftrap

,

(4.80)

where ftrap represents the trap occupation function.
As already mentioned, for the TAT rate we can exploit the SRH-like expression

in Boltzmann statistics (see Eq. (1.46))

RTAT =
np− n2

i

τp(E)

(
n+ ni e

Etrap−EFi
kBT

)
+ τn(E)

(
p+ ni e

EFi
−Etrap

kBT

) , (4.81)

where ni is the intrinsic density and EFi the intrinsic Fermi level. From the definition
of the field-effect functions, with the use of balance equations (4.80), it follows that
TAT rate reduces to [166]

RTAT = Ntrap
cn cp n(ztrap) p(ztrap)− en ep

cn n(ztrap) + cp p(ztrap) + en + ep
. (4.82)

To compute the field-effect functions, since the trap position is a priori un-
known, let us to rewrite n(ztrap) as ntrap(z) (and, similarly, p(ztrap) ≡ ptrap(z) for
holes). This simple change in notation is useful to appreciate the local carrier con-
centration variation with respect to spatial coordinate. In the same way we indicate
the standard concentrations n0(ztrap) and p0(ztrap) as n0,trap(z) and p0,trap(z) respec-
tively. By using the Airy asymptotic trend of WKB wavefunctions under triangular
barrier approximation we have, for electrons,

ntrap(z) = n0,trap(z)−
∫ z0

zn

dn(z)

dz

∣∣∣∣
z0

P (z0) dz0 , (4.83)
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where the integration is performed along the range of all the possible initial states
from zn to z0 (see labels in Figure 4.8). The function

P (z0) =

Ai2
(

3

√
2qEm∗n

~2 (ztrap − z0)

)
Ai2(0)

(4.84)

represents the probability to have electrons tunneling from z0 to ztrap, where the
denominator holds for z0 = ztrap. It is worth noting that Hurkx formalism accounts
only for electron energies Eexc ≥ Etrap, neglecting electrons tunneling with energy
lower than the trap and their subsequent capture via excitation. This requirement
will be partially relaxed within the MPE theory which includes lattice oscillations
at the trap site.

By using Eq. (4.83) and the second equalities in Eq. (4.79) one may write

en = e0n

1 +
1

kBT

∫ ∆En

0

e
E
kBT

Ai2
(

2m∗nE
~2

3

√
~4

4q2E2m∗n2

)
Ai2 (0)

dE

 , (4.85)

which transforms into cn according to Eq. (4.80). Now comparing the first equalities
in Eq. (4.79) with Eq. (4.85) we have

ΓHurkxn,p(E) =
∆En,p
kB T

∫ 1

0

exp

[
∆En,p
kB T

u+ Λn,p(E)u
3
2

]
du , (4.86)

where u is an energy auxiliary integration variable normalized in the range 0 to 1
and with

Λn,p(E) = −4
√

2m∗n,p∆E
3
n,p

3q~E (4.87)

the exponential argument of the tunneling probability through a triangular barrier
TM(E) (see Eq. (4.39)) where Eg here is replaced by the energy differences ∆En,p.
Notice also that at high forward electrostatic fields the band bending is such that
Etrap can lie below the CB minimum EC,min in neutral n-type region. In this case
we define ∆En = EC − EC,min. Symmetrically, for holes, ∆Ep = EV,max − EV.

In Figure 4.9 we plotted room-temperature Hurkx field-effect function – panels
(a), (c) and (e) – and TAT lifetime – panels (b), (d) and (f) – for electrons in
GaN, InGaN and AlGaN as functions of the local average electrostatic field E and
for different trap energies, defined from the intrinsic Fermi energy via Etrap − EFi .
As occurs in case of SRH recombination, while the defect level shifts towards EFi

(high ∆En) the field-enhancement function increases and, in turn, the tunneling
lifetime decreases (i.e. the TAT rate is maximized). Notice also that under low-field
conditions Γn(E)→ 0 and both RTAT and τn(E) tend to the SRH regime.

4.2 A Novel BTBT Formulation for MCT IRPDs

As anticipated in the introduction, the present section deals with a particular
model of direct band-to-band tunneling conceived by the author to model BTBT in

123
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reverse bias p-i-n HgCdTe photodetectors. The model, originally presented in my
Master’s thesis [45] and for the first time applied to real MCT IRPD structures in
a 2015 paper we published in the Journal of Electronic Materials (see Ref. [173]),
takes inspiration by Kane formalism and merges some recent results coming from
different areas of electronics applications.

All the models we discussed about direct tunneling are based on physical assump-
tions valid for p-n junctions. However, since most of modern MCT IR photodetec-
tors are essentially constituted by p-i-n structures the need of a specific description
arises. With this motivation the author proposed a novel formulation strictly suit-
able for this kind of devices. We focused our reasoning on the electric field, because
this is the critical quantity which makes the major difference between the depletion
region of a p-n diode with respect to that of a p-i-n diode. Moreover, the Kane
approximation of constant field allows us to make some physical assumptions.

As already pointed out by W. Vandenberghe et al. in their theoretical work [174],
the electric field in the depletion region can be splitted into an effective and an
average component. Soon after A. S. Verhulst et al. [175] and K. Ahmed et al. [176]
have exploited this hypothesys attaining the same result: the dependence of Kane
BTBT rate by E2 can be rewritten in p-i-n diodes as

E2 ' E · E (D−1)
av , (4.88)

i.e. as the product of the effective field times a certain power of the average field,
where D is an adimensional empirical parameter to be determined ad hoc for each
simulated structure. This allows to rewrite the BTBT generation rate in the form

Gpin = A · E · E (D−1)
av · exp

(
− B

Eav

)
. (4.89)

Let us now derive the above mentioned novel formulation starting from the most
general expression of the average field depending on the energy gap and tunneling
path that can be found in Eq. (4.1) and which reads

Eav =
Eg

q `tunn

. (4.90)

For what concerns instead the effective field, and referring to the p-i-n junction in
Figure 4.10, we know that its theoretical maximum, due to space charge regions,
reaches

|Emax| =
qNA

ε
zp , (4.91)

where zp is the depletion region extension in the p-side. Supposing now to have a
constant effective field E across the depletion region, pinched at |Emax| such that

E(z)|dep = |Emax| = Eav = const. , (4.92)

then it straightforwardly follows

`tunn =
εEg

q2NAzp
, (4.93)
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Figure 4.10. Band diagram of a narrow gap p-i-n homojunction in reverse bias conditions.
The p- and n-type regions are doped by NA and ND, respectively, while the intrinsic region is
non-intentionally (or lightly) doped by Ni. The scheme also represents, superimposed, the assumed
trend of the electric field across the depletion region (energies and distances are not to scale).

where zp has to be determined.
To obtain a close-form expression of zp we recall the charge neutrality law

2ε (Vbi + Vbias)

q
+Niw

2
i −

N2
i w

2
i

ND

= x2
p

(
N2

A

ND

+NA

)
+xp

(
−2NANiwi

ND

+ 2NAwi

)
(4.94)

from which zp stems as

zp =

√
qNAND [qw2

i (ND −Ni) (NA +Ni) + 2Ewdepε (NA +ND)]

qNA (NA +ND)

+
qwiNA (Ni −ND)

qNA (NA +ND)

NA�ND'
√

2εNiEwdep

qN2
A

, (4.95)

where the relation Vbi + Vbias = Ewdep has been used. Notice that zp is (obviously)
field-dependent. Thus, also the tunneling path becomes even more explicitly a
function of the electric field, since

`tunn(E) =
εEg

q2NAzp(E)
(4.96)
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and, in turn,

Eav(E) =
Eg

q `tunn(E)
=
qNA

ε
zp(E) (4.97)

also the average field results to be a function of the constant and bias-dependent
effective field E . By plugging Eq. (4.95) into Eq. (4.97) one may find

Eav(E) ' δ
√
E , (4.98)

where

δ '
√

2qNiwdep

ε
. (4.99)

Then, according to the present new p-i-n formulation, the BTBT rate in Eq. (4.89)
becomes

GMandurrino = A · δ(D−1) · E(D+1
2 ) · exp

(
− B

δ
√
E

)
, (4.100)

which results in a more useful form under the numerical simulation perspective
respecting the previous ones obtained by E. O. Kane, first, and K. Ahmed, subse-
quently. In fact, Eq. (4.100) depends on macroscopic quantities that should be
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known in advance or, otherwise, that can be easily computed by the solver. Also
notice that in the formalism Ni is indicated in place of the usual ni notation to
distinguish eventual non-intentional doping from native intrinsic concentration.

Figure 4.11 shows the results of a numerical test in which different reverse dark
current trends are obtained implementing the Kane-Jóźwikowski model and the
novel formulation of Eq. (4.100) with different values of the parameter D. The
test is performed at 85 K on an Hg0.7054Cd0.2946Te p-i-n structure composed by
2 µm-thick p-type region doped by NA = 1017 cm−3, followed by a 3 µm-thick
intrinsic layer with Ni = 1014 cm−3 and then by a 2 µm-thick n-type region doped
by ND = 1017 cm−3. For the structure we chosen the parameter δ results to be equal
to 124.172 V1/2cm−1/2 (this value has been obtained through the first equality in
Eq. (4.95), i.e. without any approximation, being NA = ND).

As a final remark, it has to be said that the constant field approximation we
invoked results well satisfied in p-i-n homojunctions, in general, and especially in
HgCdTe diodes, so this assumption can be safely adopted for simulation purposes.
Indeed, as already said, satisfactory agreements with experimental data taken on
MCT pixels has been obtained in our paper of Ref. [173] (see Chapter 5).

4.3 MPE Theory for Defect-Assisted Tunneling

The concepts here exposed, as well as the brief description about Hurkx TAT
model, constitute part of the theoretical introduction to the invited paper published
in the 2015 special issue of the Journal of Computational Electronics, vol. 14,
no. 2 [145], on the topic “simulation of GaN-based light-emitting diodes” (see the
editorial presentation by J. Piprek [144]).

In Subsection 4.1.1.2 we have seen that Hurkx TAT model is a “local” descrip-
tion by definition, since all the quantities concurring to the field-effect functions are
computed at the trap site. However a rigorous treatment would not disregard the
non-local nature of tunneling, which is due to the different physical characteristics
experienced by the particle at its initial state, during the transition (trapping in-
cluded) and, finally, at the final state. Moreover, the Hurkx treatment does not
account for some implications involved in the capture process such as lattice vibra-
tions and phonon emission, thus its SRH-like rate may result too much generic until
specific capture processes are included. Nevertheless, Hurkx approach has the great
advantage to be so compact that its low computational cost has represented, in the
last 30 years, one of the most advantageous solutions for many device designers.

An important step towards the description of proper trapping dynamics was set-
tled in early 90s by A. Shenk, a researcher from Swiss Institute of Technology who
was working on microscopic modeling of trap-assisted [177] and direct [178] tunnel-
ing in silicon. Based on the same principle of the previous model, according to which
TAT can be modeled through a field-dependent enhancement of the SRH lifetime,
he described the trapping mechanism in terms of lattice vibrations. Indeed, via
non-radiative multiphonon emission (MPE) mechanisms part of the energy carried
by an electron tunneling towards a defect is released to the trap and then dissi-
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pated by the lattice. As we will see in detail, this explanation allows also tunneling
transitions performed by electrons with energy lower than the trap energy. This is
possible because no carrier excitation has to be invoked since lattice oscillations can
justify, via energetic overlaps of the involved states, the trapping of such electrons.
A symmetric reasoning can be inferred for holes tunneling from the p-type side of
the junction towards defects in the n-side (under forward bias conditions). The last
– but not less important – consideration that may arise about Schenk model before
entering in the details concerns its applicability: although the formalism was con-
ceived for silicon, MPE theory can be safely applied also to the GaN-based material
system since its most crucial requirement, that is the condition about energies ∆En,p
greater than the highest possible phonon energy, is still perfectly fulfilled in case of
typical III-N (deep) impurities.

Starting from basic MPE theory (see, e.g., some famous works in Refs. [179,180])
the probability to have phonon emission can be expressed in the form

PMPEn,p(E , l) =
(l ∓ S)2

S
exp

(
− S (2fBE + 1)

)
exp

(
− l~ω0

2kBT

)
Bl(γ) , (4.101)

where the signs ∓ refer, respectively, to electrons and holes, l is the number of
phonons emitted,

fBE =
1

exp (~ω0/kB T )− 1
(4.102)

and ~ω0 their Bose-Einstein occupation function and energy, respectively (where a
monomodal emission is assumed),

γ = 2S
√
fBE (fBE + 1) , (4.103)

Bl(γ) a l-th order Bessel function and, finally, S is the so-called Huang-Rhys factor
[179]. We will return in more depth on this concept, however, at present it is
enough to state that S gives a measure of how carrier and phonon are coupled. By
simplifying the physics one can say that [181]

S ' | 〈Ψb |U |Ψb〉 |2
2 (~ω0)2 , (4.104)

where U is the interaction potential and |Ψb〉 is the bound state at ztrap, composed
by the carrier-trap coupling. In other words S describes the strength of diagonal
carrier-phonon coupling or, in turn, the average number of emitted phonons [182].

The hypotheses whereby Eq. (4.101) has been written are essentially two: the
first one has already been mentioned and refers to the monomodal emission (also
known as Einstein approximation). The second assumption concerns the bound state
dynamics and goes under the name of Born-Oppenheimer approximation. Assuming
that each lattice site experiences a proper thermal-induced oscillation, according
to this approximation we are simply supposing that, in particular, the state |Ψb〉
behaves like an harmonic oscillator described by the Hamiltonian

Hb = −z
√

2S ~ω0 + const. (4.105)
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Such state is oscillating around a point, z0
b, which results spatially shifted by

√
2S

with respect to z0
f , the center of oscillation of the unbound state (the system consti-

tuted by the “free” carrier plus the unoccupied trap). The Hamiltonian written in
Eq. (4.105) determines a discrete spectrum of occupation probabilities versus energy

Ptrap(~ω) =
(

1− e
− ~ω0
kBT

) +∞∑
n=0

e
−n~ω0
kBT B2

l

(
2
√
S
(
n+ 1

2

))
, (4.106)

where n labels the quasi-levels, which is maximum at Etrap and distributes symmet-
rically around it according to a bell-shaped function. Thus, each of the possible
discrete states, separated by the quantized phonon energy ~ω0, defines a quasi-level
in which the tunneling electron may fall. This is the reason why electrons with
energies symmetrically distributed around Etrap have the possibility to be captured,
even if with probabilities lower than at the center of the distribution.

This kind of trapping mechanism not only shifts the oscillation center along the
lattice coordinate, but produces a shift also in the (electronic) energy domain. The
amount of this difference equals twice the so-called Frank-Condon shift or relaxation
energy εr = S~ω0. See Figure 4.12, panel (b), for a schematic description of the
capture process and its characteristic physical parameters.

In order to obtain the rate of a process which includes the tunneling of an electron
with energy Etrap + l~ω0 from conduction band towards a trap with energy Etrap and
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its MPE capture (see Figure 4.13) one has to account for the electronic wavefunction.
In part this has already been done in Eq. (4.106) since the Bessel function Bl derives
from a Bessel-Fourier series expansion of the wavefunction phase factor [183]. On
the other hand the pure tunneling probability reads

Ptunnn,p(E , l) =
√

~ΘC,V Kn,p

(
∆En,p − l~ω0

~ΘC,V(E)

)
, (4.107)

where l is the number of phonons that are emitted, ∆En,p has the usual meaning,
ΘC,V is the electrooptical frequency such that

ΘC,V(E) = 3

√
q2 E2

2 ~m∗tunnn,p

, (4.108)

with m∗tunnn,p the electron/hole tunneling effective masses, and

K(y) = Ai′
2
(y)− yAi2(y) (4.109)

is a WKB-like electrooptical function, written as dependent from first type Airy
function and its derivative Ai and Ai′.

Thus, the total TAT+MPE capture rate is given by

cTAT+MPE =
∑
l

PMPE(E , l)Ptunn(E , l) f(Etrap + l~ω0) , (4.110)

where f(Etrap + l~ω0) is the Fermi-Dirac probability of finding an occupied (initial)
state in conduction band with energy Etrap + l~ω0. The Schenk field-effect function
can be written as

ΓSchenkn,p(E , l) =

∑
l≥0

ρ0C,V
(l) ftrap(l)Ptunnn,p(E , l)PMPEn,p(E , l)∑

l≥0

ρ0C,V
(l) ftrap(l)PMPEn,p(E , l)

, (4.111)

where ρ0C,V are the zero-field conduction/valence density of states. By inserting
Eqs. (4.101) and (4.107) into Eq. (4.111) the following expression can be obtained
both for electrons and holes

ΓSchenkn,p(E , l) =

π
∑
l≥0

(l − S)2 e
− l~ω0

2kBT Bl(γ)
√
~ΘC,V(E)Kn,p

βn,p
∑

l≥∆En,p
~ω0

(l − S)2 e
− l~ω0

2kBT Bl(γ)
√
l~ω0 −∆En,p

, (4.112)

where βn = 3 and βp = 1.
In order to make Eq. (4.112) more adapt to the numerical implementation,

Schenk provided in Ref. [177] two kinds of approximated formulas valid in the high-
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and low-temperature regime and derived by supposing a high number of emitted
phonons l such that

∆En,p − l~ω0

~ΘC,V(E)
� 1 (4.113)

(this apparently removes the dependency of Γ on l). Such assumption allows to
perform a two-step procedure: at the first stage one can replace summations with
integrals and then develop functions Kn,p and B` in their series expansions, preserv-
ing only the asymptotic trend. Secondly, the arguments of resulting energy inte-
grals, constituted by some exponential terms times opportune prefactors, undergo a
second-order expansion. In this way, for electrons, one obtains

ΓSchenkn(E)
low-T' 1

3

(
1 +

(~ΘC(E))3/2
√

∆En − Eopt(E)

Eopt(E)~ω0

)−1/2

× (~ΘC(E))3/4 (∆En − Eopt(E))1/4

2
√

∆EnEopt(E)

(
~ΘC(E)

kBT

)3/2

× exp

[
−2 (∆En − Eopt(E)) + ~ω0 − kBT

2~ω0

+
∆En + kBT

2

~ω0

× ln

(
∆En
εR

)
− Eopt(E)

~ω0

· ln
(
Eopt(E)

εR

)]

× exp

[
−4

3

(
∆En − Eopt(E)

~ΘC(E)

)3/2
]

× exp

(
∆En − Eopt(E)

kBT

)
(4.114)

and

ΓSchenkn(E)
high-T' 1

3

(
1 +

2εrkBT

(~ΘC(E))3/2
√

∆En − Eopt(E)

)−1/2

× E0,act + ∆En
kBT

(
~ΘC(E)

∆En + εr

)3/2

× exp

(
E0,act − Eact(E)

kBT

)
× exp

[
−4

3

(
∆En − Eopt(E)

~ΘC(E)

)3/2
]

× exp

(
∆En − Eopt(E)

kBT

)
, (4.115)

where the only new terms are the energies Eopt(E), E0,act and Eact(E). These pa-
rameters are defined as

Eopt(E) = 2
2εrkBT

(~ΘC(E))3/2

(√
(2εrkBT )2

(~ΘC(E))3 + ∆En + εr −
2εrkBT

(~ΘC(E))3/2

)
− εr , (4.116)
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Figure 4.13. Schematic representation (not to scale) of electron trap-assisted tunneling (TAT)
including multiphonon emission (MPE) as considered in the present work (and also by Schenk
formalism [177]): TAT (1), MPE of l phonons (2′), trapping (2′′) and recombination (3). The
meaning of labels is explained in the text. Notice also that the overlap between PMPE · Ptunn and
Ptrap determines a non-null probability of TAT even for electron energies below Etrap.

E0,act =
(∆En − εr)2

4εr
, (4.117)

valid for E = 0, and

Eact(E) =
(Eopt(E)− εr)2

4εr
. (4.118)

Figure 4.14 shows in panel (a) the plot of the approximated Schenk field-effect
formulas as reported in Eqs. (4.114) and (4.115). Panel (b), instead, represents
some examples of related electron lifetimes, calculated at different temperature or
relaxation energy εr = S~ω0. Both panels refer to a sample of silicon where the
electric field is directed along the 〈111〉 axis.

Apart from parameters E0,act and Eact(E), which depend on some other already
known quantities, what deserves particular attention is the optimum transition en-
ergy Eopt(E). Stemming from the series expansion we discussed just above, it derives
from the product of probabilities PMPEn,p(E , l) and Ptunnn,p(E , l) appearing in the nu-
merator of Eq. (4.111). So, it results from a combination of an MPE term, whose
probability is roughly represented by a decaying exponential of argument −l~ω0 (see
Eq. (4.101)) with a maximum when l = 0, i.e. at Etrap (the most probable transi-
tion, as already observed, should occur towards the state which implies the lowest
number of emitted phonons), and a pure tunneling term, whose probability instead
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Figure 4.14. (a) Schenk field-effect function Γn(E) in Si 〈111〉 calculated both under high-
and low-T approximation. (b) Electron lifetime for the same material with ∆En = 0.55 eV,
S~ω0 = 238 meV, T = 300 K (1) or T = 200 K (2) and with ∆En = 0.55 eV, S~ω0 = 130 meV,
T = 300 K (1′). A similar trend of (1′) can be obtained by keeping constant S~ω0 and increasing
S at the expense of ω0. Adapted and re-edited from Ref. [177].

is maximum for ∆En,p = 0 (see Eq. (4.107)), since tunneling is maximized when
the trap state lies close to the band edge or, in other words, when the tunneling
path is minimized. This probability overlap translates into a bell-shaped function
of the energy (not to be confused with the trend of Ptrap) which is maximum when
E = Eopt(E). Thus, Schenk Γn,p functions follow the most probable tunneling path,
occurring at the most probable transition energy Eopt(E), where Etrap < Eopt < EC

for electrons and EV < Eopt < Etrap for holes. Typically this value is located close to
the trap energy for high fields or low temperatures and migrates towards the band
edges otherwise.

Despite Eqs. (4.114) and (4.115) are quite complicated due to the fact that they
are accounting also for phonon emission, Schenk formalism overcomes the difficulty
in computing the energy integral within Hurkx field-factor, resulting to be easily
implementable into numerical solvers as well as the Hurkx one. However, as stated
many times in this work, one of the most important features of TAT consists in the
non-local nature of tunneling carriers wavefunction. But, unfortunately, not even
MPE can be considered a non-local formalism. Let us see why. First of all one has to
note that Schenk model is based on a constant-field assumption, essential to ensure
phonon emission: in fact, quantum uncertainty imposes to MPE the requirement to
have a bound state |Ψb〉 spreading in k-space in order to maximize carrier-phonon
coupling in real space. This is automatically ensured by accounting for a constant
field over several lattice constants around ztrap. Thus, all field-dependent quantities,
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as the electrooptical function and frequency Kn,p and Θn,p respectively, are locally
referred to the trap site by definition.

Moreover, field-effect functions are not only functions of the electric field, but
they also strongly depend on the characteristic energies of the process. Phonon en-
ergy ~ω0, that can be obtained both via experimental measurements and theoretical
calculations, in fact, is an important parameter. Then we have the dependency on
the trap energy Etrap which, as well as ~ω0, determines part of the process statistics
via the optimum energy Eopt(E). Finally we have the conduction and valence band
energies EC and EV that are trivially local since they refer just to the trap site.

The most important physical material parameters which are in common among
all the above mentioned quantities are essentially four: the trap energy Etrap, the
Huang-Rhys factor S, the monomodal phonon frequency ω0 and the electrooptical
frequency Θ. Etrap, S and ω0 can be obtained via Deep-Level Transient Spectroscopy
(DLTS) experiments [171,177,183–185] and are local or average quantities by defini-
tion since the transient does not allow to discriminate spatial variations. Thus they
are only mean values within the space charge region (SCR) and by reason of that
the model is unavoidably local. Furthermore, Θ is field-dependent, so all previous
discussions about locality of E hold again. It is also worth noting that the electroop-
tical frequency depends on the effective tunneling mass of carriers m∗tunnn,p , which
not necessarily coincides with the standard effective mass m∗n,p, as deeply argued in
Refs. [132,183,186–189] and essentially due to some inadequacies of standard solid-
state framework in describing trap states, as in case of wavefunction formalism and
E(k) dispersion relation picture.

To capture into MPE treatment some important non-local features related to
the pure tunneling stage of TAT process – still remaining confined within the semi-
classical approximation – now we follow in part the theory coming from the works
by J. H. Zheng et al. [190] and S. Makram-Ebeid et al. [185]. Moreover, we will dis-
tinguish between the case of elastic and inelastic carrier-trap interaction through a
formalism that allows us to explicit the overall TAT capture rate expression as the
sum of two components coming from such scattering regimes. For this reason our
perspective will hereinafter shift from lifetime/cross-section to capture rate modeling
framework.

Again under both Einstein and Born-Oppenheimer approximations, the tran-
sition rate occurring between the initial free state (i.e. decoupled quasi-free car-
rier plus unoccupied trap) and the final bound state (carrier-trap coupling) can be
written through the well-known Fermi golden rule as a sum computed over all the
possible nf free states:

Wf→b =
2π

~
∑
nf

|〈Ψf |Hf→b |Ψb〉|2 δ (Eb − Ef) , (4.119)

where indices “f” and “b” respectively refer to the free and bound states and where
〈Ψf |Hf→b |Ψb〉 is the transition matrix element governed by the perturbation Hamil-
tonian Hf→b between the state |Ψf〉 with energy Ef and |Ψb〉 with energy Eb. As-
suming a linear carrier-phonon interaction in the energy domain and by splitting
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the overall state wavefunction Ψ in its electronic ψ and vibrational φ part we have

〈Ψf |Hf→b |Ψb〉 = 〈ψf |G(z) |ψb〉
〈
φf

∣∣ z − z0
f

∣∣φb

〉
= V 〈φf |∆zf |φb〉 , (4.120)

where G(z) is the optical deformation potential, V the electronic part of the tran-
sition matrix element and ∆zf = z − z0

f , being z0
f the equilibrium position of the

oscillating free state, as already stated in this work, such that

z0
f = −〈ψf |G(z) |ψf〉

~ω0

. (4.121)

By means of modified Bessel functions Eq. (4.119) can be rewritten as

Wf→b '
π

2~
∣∣V ·∆z0

f→b

∣∣2(1− ε

S~ω0

)2

F (ε)

=
π

~
|V |2S

(
1− l

S

)2

F (ε) , (4.122)

in which |∆z0
f→b| = |z0

b − z0
f | =

√
2S is an already known MPE parameter (see,

e.g., panel (b) of Figure 4.12) and where F (E) is an opportune auxiliary function
calculated for the energy

ε =
|Eb − Ef|

2
= l~ω0 . (4.123)

Different researchers obtained approximated forms of the function F (E), however
we follow in particular the work published by K. Huang and A. Rhys [179] which
exploits a Bessel function expansion:

F (E) =
1

~ω0

exp

[
−S (2fBE + 1) +

E

2kBT

] ∑
l

Bl(γ) · δ(l~ω0 − E) , (4.124)

that gives

F (ε) ' 1

~ω0

√
2π

exp

[
−S (2fBE + 1) +

∆En,p + 3
2
kBT

2kBT
+ χ

]
× 1√

χ

(
γ

l + χ

)l
, (4.125)

where Eq. (4.125) stems from the polynomial approximation derived in Refs. [181,
190] and where γ is the same of Eq. (4.103) and χ =

√
l2 + γ2.

Now we have to compute the electronic transition matrix element V that, as
well as 〈φf |∆zf |φb〉, is intrinsically non-local by its nature, since it couples two
states that are related also to quantities spatially (and temporally) separated by the
tunneling path. Following A. Palma et al. [181]:

V ' 2πS (~ω0)2 Ωtrap

ζtrap

∫
ζtrap

||ψf〉|2 dz , (4.126)
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assuming that the trap can be treated as a solid-cube entity [191] whose side is

ζtrap =
~

2
√

2m∗tunnn,p ∆En,p
(4.127)

and Ωtrap = ζ3
trap is the trap volume. It also has to be mentioned that tunneling

effective masses m∗tunnn,p refer to the trap site.
Once we have the transition rate of Eq. (4.122), written by using the auxiliary

function F (εr) of Eq. (4.125) and the (electronic) transition matrix element V of
Eq. (4.126), we are able to obtain the TAT+MPE capture rate from the transi-
tion rate Wf→b as a sum over conduction/valence free state energies weighted by
statistical distributions of states such that:

cMPEn,p = Ω

∫
CB,VB

Wf→b fC,V(E) ρC,V(E) dE

=
2ΩtrapSω0

√
m∗tunnn,p (m0kBT )3

~3
√
χ

(S − l)2

S

(
γ

l + χ

)l
× exp

(
−S(2fBE + 1) +

∆En,p + 3
2
kBT

2kBT
+ χ

)
×F1/2

(
EFn,p (z0)− EC,V (z0)

kBT

) |ψ(ztrap)|2
|ψ (z0) |2 , (4.128)

where Ω is the device volume, fC,V(E) are the Fermi-Dirac distributions of free states
in both bands and ρC,V(E) their DOS.

It is worth highlighting that some quantities now result to be referred to the
trap site, as the energy difference ∆En,p, the tunneling effective masses m∗tunnn,p or
the carrier wavefunction ψ at the numerator of the last term (which is a measure of
the pure tunneling probability, calculated under the WKB approximation). Some
others, instead, have to be calculated at the turning point z0, like quasi-Fermi levels
EFn,p (that, contrarily to previous models, here are no more forced to be constant
along the SCR), band edges EC,V and the carrier wavefunction at the denominator of
the WKB term. This complex framework defines the non-locality we were searching
for since the beginning.

As anticipated, the present formulation can also account for the particular case
of elastic carrier-trap scattering, i.e. when the optimum energy coincides with the
trap energy, determining the absence of phonon emission: Eops ≡ Etrap. In this case
we have

celn,p =
2ΩtrapΘC,V

√
8m∗tunnn,pm

3
0

~4π

×
(
EC,V(ztrap)− Etrap

)2(
Etrap − EC,V (z0)

) 3
2

×F1/2

(
EFn,p (z0)− Etrap

kBT

) |ψ(ztrap)|2
|ψ(z0)|2 , (4.129)
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where Etrap is measured from EFi and the total capture rate is obtained through

cTATn,p = cMPEn,p + celn,p . (4.130)

Notice that in Eq. (4.129) we find band edges EC,V defined both at the trap site and
at the tunring point.

Now one can observe that Eqs. (4.128) and (4.129) have a common form. Thus
they can be expressed by the generic formula

cn,p = A
2Ωtrap

√
m∗tunnn,pm

3
0

~4
F̄ (E)F1/2

(
E∗

kBT

) |ψ(ztrap)|2
|ψ(z0)|2 , (4.131)

where only some terms differentiates in case of phonon-assisted or elastic process.
In particular, prefactors A are

AMPE = S~ω0

√
(kBT )3 (S − l)2

S

Ael =

√
8ΘC,V

π

. (4.132)

Then F̄ (E), partly coming from the auxiliary function F (E), are described by
F̄MPE(E) = exp

(
−S(2fBE + 1) +

∆En,p + 3
2
kBT

2kBT
+ χ

)
1√
χ

(
γ

l + χ

)l
F̄el(E) =

(
EC,V(ztrap)− Etrap

)2(
Etrap − EC,V (z0)

) 3
2

. (4.133)

Finally, the energy parameter E∗, deriving from integrand functions fC,V(E) and
ρC,V(E) in Eq. (4.128), reads{

E∗MPE = EFn,p (z0)− EC,V (z0)

E∗el = EFn,p (z0)− Etrap

. (4.134)

Summarizing our results about TAT, we started in Subsection 4.1.1.2 with the
formalism developed by G. A. Hurkx, who introduced a new way of simulating TAT
through specific field-effect enhancement functions Γn,p(E) acting on carrier lifetimes
τTATn,p(E) = τn,p (Γn,p(E) + 1), where τn,p are the standard Shockley-Read-Hall life-
times that have to be substituted by τTATn,p(E) within the SRH rate of Eq. (1.46)
in order to obtain the TAT rate written in Eq. (4.81). In the Hurkx formalism all
the relevant quantities playing within the model are “local”, in the sense that band
edges EC,V, quasi-Fermi levels EFn,p and electric field E are computed at the trap site
ztrap: thus also lifetimes (and, in turn, capture cross sections) are local. Moreover,
both EFn,p and E are assumed to be constant along the SRC region.

The process considered by Hurkx accounts for a carrier – firstly tunneling with
a certain energy Eexc greater than Etrap – that relaxes and then is capture by a
trap, with a subsequent recombination mechanism. No specifications about the
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nature of relaxation and trapping processes are made explicit. By introducing the
multiphonon emission (MPE), A. Schenk preserved the procedure passing through
field-functions but he also included lattice oscillations in his TAT formalism. This
important further theoretical step allows to model the relaxation/trapping stage as
a consequence of the Born-Oppenheimer approximation, where the unoccupied trap
state interacts with the incoming carrier and with band edges through the emission
of a certain number l of phonons. This mechanism is able to explain and justify
the presence of an optimum TAT path, which follows suitable energy minimization
rules. Also Schenk formalism assumes constant field and quasi-Fermi levels in the
SCR and, again, it is a local tunneling model.

By accounting for a microscopic formulation of transition rates (based on the
well-known Fermi golden rule) we finally included some opportune features to such
MPE picture conferring non-local properties to the TAT model. We derived a for-
malism – already discussed in literature [181, 185, 190] and also implemented in
commercial numerical solvers [192] – which rewrites capture rates as a sum of a
phonon-assisted and elastic component, and where non-locality is given by account-
ing for characteristic energies of the process calculated both at the trap site and
at the turning point. The model also introduces a WKB-based tunneling probabil-
ity term which depends on carrier wavefunctions at the initial and final state. So
the formalism is actually non-local, and no constant fields nor energies have to be
invoked.

4.4 Full-Quantum Tunneling Simulation

All tunneling models we discussed in previous sections of this chapter were based
on the semiclassical approximation of quantum mechanics and, for this reason, they
are explicitly suitable for DD-based numerical simulations. Such kind of formalism
provides the precious advantage of having a device-level description by means of
relatively low-computational cost algorithms. However, this advantage is paid in
terms of number and nature of physical effects that can be captured with a unique
rate equation. If we are interested in specific quantum side effects, not included in
a semiclassical approximation, or if we want to shift the focus towards more mi-
croscopic systems, then full-quantum formalisms are needed. Tunneling represents
the most important mechanism that can be automatically described through such
microscopic framework, being a pure quantum effect.

This kind of description results to be more computationally expensive than semi-
classical one. For this reason many authors take advantage of a mesoscopic simula-
tion framework, in which both semiclassical and quantum models coexist. Nonethe-
less, this procedure can lead to some information leakage when different scales of
description have to be put in reciprocal cross-talk since modeling always implies a
certain level of approximation. So, in the author’s opinion, mesoscopic modeling
should be carefully exploited only in particular cases, where the physics is such that
the lost information do not compromise the final solution of the system: thus, only
in specific ad hoc situations.
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After studying and developing semiclassical theories for BTBT and TAT, which
absorbed the main part of my first two Ph.D. years, the third year has been (also)
devoted to the research in the field of full-quantum modeling.

Several techniques have been developed so far in the area of computational quan-
tum physics. They can be divided into two main families, according to their most
relevant quantity: so we find “density-matrix” models and “Green’s function” mod-
els. In the next subsection these two modeling strategies will be discussed. Starting
with a brief description of the matrix operator in quantum mechanics we will see the
case of tunneling simulations in the Wigner-function approach. Then, a particular
method for solving the Schrödinger equation will be introduced in order to explain
in detail the theory about non-equilibrium Green’s functions (NEGFs).

4.4.1 Density matrix and Wigner functions formalism

A quantum system consists of a collection of states, each of which can be de-
scribed by a wavefunction Ψ(r, t) or, in Dirac formalism, by the ket |Ψ〉. The most
generic representation of a state is not unique because typically it is not a pure state
but a mixed state, i.e. a (linear) superposition of normalized pure states |ψj〉 as

|Ψ〉 =
N∑
j=1

cj |ψj〉 , (4.135)

weighted by opportune coefficients cj, where the total number N can be also infinity.
The density operator related to Eq. (4.135) is

ρ̂ =
N∑
j=1

aj |ψj〉 〈ψj| , (4.136)

where {aj} (aj ∈ R, ∀j) represent the probabilities to find the system in the state

|ψj〉 such that
∑N

j=1 aj = 1. From this property and from Eq. (4.136) stems the

hermiticity of ρ̂ (ρ̂ ≡ ρ̂†) and also that the trace is unitary. In fact, choosing an
arbitrary orthonormal basis {bk} such that

N∑
k=1

|bk〉 〈bk| = 1 , (4.137)

then

Tr (ρ̂) =
N∑
j=1

aj

N∑
k=1

〈bk |Ψj〉 〈Ψj | bk〉

=
N∑
j=1

aj

N∑
k=1

〈Ψj | bk〉 〈bk |Ψj〉

=
N∑
j=1

aj 〈Ψj |Ψj〉 = 1 (4.138)
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and, moreover,
ρ̂ ≥ 0 , (4.139)

such that all of its eigenvalues are non-negative.
In the case of a pure state, instead, the system has a unique representation |Ψ〉.

Consequently in this case the density operator simply reduces to

ρ̂ = |Ψ〉 〈Ψ| (4.140)

because the probability of finding the state |Ψ〉 is actually always 1. This means
that ρ̂2 = ρ̂, in fact

ρ̂2 = |Ψ〉 〈Ψ |Ψ〉 〈Ψ| = |Ψ〉 〈Ψ| = ρ̂ , (4.141)

and then
Tr
(
ρ̂2
)

= Tr
(
ρ̂
)

= 1 . (4.142)

Now let us consider again a mixed state with the same base {bk} of before. Then
the elements

ρα,β =
N∑
j=1

aj 〈bα |ψj〉 〈ψj | bβ〉 (4.143)

give the density matrix ρ. Density operator ρ̂ (and its corresponding matrix ρ) is
an important quantum mechanical operator since it allows to define the expectation
value 〈Â〉 of any operator Â. In fact:

〈Â〉 =
N∑
j=1

aj〈ψj|Â|ψj〉

=
N∑
j=1

aj

N∑
α=1

N∑
β=1

〈ψj | bβ〉 〈bβ|Â|bα〉 〈bα |ψj〉

=
N∑
α=1

N∑
β=1

N∑
j=1

aj 〈bα |ψj〉 〈ψj | bβ〉 〈bβ|Â|bα〉

=
N∑
α=1

N∑
β=1

〈bα | ρ̂ | bβ〉 〈bβ|Â|bα〉

=
N∑
α=1

N∑
β=1

〈bβ|ρ̂†|bα〉〈bβ|Â|bα〉

=
N∑
α=1

N∑
β=1

ρ∗β,αAβ,α δα,β

= Tr
(
ρ̂Â
)
, (4.144)

where δ is the Kronecker delta such that

δα,β =

{
1 if α = β

0 if α 6= β
. (4.145)
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Suppose now to have a closed system described by Eq. (4.136) composed only
by a single electron with two possible energy states Eα and Eβ. Suppose also to
consider a Hamiltonian which is the sum of a coherent single-particle H0 and a
incoherent many-body Hamiltonian H′. Then the time-evolution of ρ̂ is given by
the so-called semiconductor Bloch equation (SBE) given by [193,194]

dραβ
dt

=
dρα,β

dt

∣∣∣∣
H0

+
dρα,β

dt

∣∣∣∣
H′

=
(Eα − Eβ)

i~
δα,β,α′,β′ +

∑
α′,β′

Sα,β,α′,β′

=
∑
α′,β′

Lα,β,α′,β′ ρα′,β′ , (4.146)

where L is a Liouville super-operator. Eq. (4.146) actually represents a quantum
equation of motion that, in the semiclassical limit – i.e. neglecting non-diagonal
terms of ρ̂ – reduces to the BTE. The single-particle SBE for ρα,β gives, for each
density matrix element, the solution

ρα,β(t) = ρα,β(t0) exp

[
(t− t0)

Eα − Eβ
i~

]
, (4.147)

while the many-body component follows a more complicated time-evolution which
involves phonon-assisted and higher-order density matrices and must be treated
separately.

If we apply a Weyl-Wigner transform

uα,β(r,k) =

∫
ψα (r + r′/2)

e−ik·r
′

(2π)3/2
ψ∗β (r− r′/2) dr′ (4.148)

to Eq. (4.136) we obtain the so-called Wigner function [195]

fW(r,k) =
∑
α,β

uα,β(r,k) ρα,β , (4.149)

that can be generalized for a generic set basis {|γ〉}

fW
γ1,γ2

(r) =
∑
α,β

uα,βγ1,γ2
(r) ρα,β

=

∫
Kγ1,γ2(r; r′,k′) fW(r′,k′) dr′ dk′ , (4.150)

where
Kγ1,γ2(r; r′,k′) =

∑
αβ

uαβ(r,k)u∗α,β(r′,k′) . (4.151)

In the same manner we can obtain the expectation value of an operator Â as

〈Â〉 =
1

~3

∫
dr

∫
AW(r,k) fW(r,k) dk , (4.152)
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where
AW(r,k) =

∑
α,β

uα,β(r,k)Aα,β . (4.153)

In order to extend the validity of Eq. (4.149) to the case of open systems, we have
to restrict its domain to a volume Ω by introducing proper boundary conditions,
where fW assumes the value fW

b . Thus, we get

fW(r,k; t) =

∫
Ω

dr′
∫
T̂ (r,k; r′,k′; t− t0) fW(r′,k′; t0) dk′

+

∫
drb

∫
dk′

t∫
t0

T̂ (r,k; rb,k
′; t− t′) fW

b (rb,k
′; t′) v(k′) dt′ , (4.154)

where T̂ is an evolution operator and v(k′) is the group velocity normal to the bound-
ary surface at rb. As one may see in Eq. (4.154), the general function fW(r,k; t)
is the evolution of two components: the first one evaluated at initial time t0 within
the volume Ω and the second one evaluated at boundaries for times t′ > t0.

Contrarily to what may appear from the parallelism with semiclassical BTE, the
function we derived is not a true distribution function. It is a real function and it
can assume also negative values. For these reasons we call fW a pseudo-distribution
function.

The strategies to model quantum transport in electronic devices which include
also tunneling mechanisms are different. For instance N. C. Kluksdahl et al. [196,197]
tested as fW the Gaussian wave packet (GWP)

fGWP(r,k) =
1

a~ (2π)3/2
e−

r2

4a2 e−
4(k−k0)2

a2 (4.155)

to describe a particle impinging on a potential barrier. Through a numerical treat-
ment, i.e. solving Eq. (4.155) by means of a discretization procedure both for space
and momentum, they were able to find the evidence of several quantum effects in a
AlGaAs/GaAs resonant-tunneling diode (RTD), like the bistability in the negative-
differential conductivity (NDC) regime, the zero-bias anomaly and the nonlocality
of the potential term in the equation of motion respecting both position and mo-
mentum.

Another possible methodology is the implementation of a Monte Carlo (MC)
approach based on the WF pseudo-distribution. Before entering in details, we want
to develop the dynamical equations of the WF, following the approach presented by
C. Jacoboni et al. [198], and to this purpose we rewrite Eq. (4.149) as

fW(r,k) =

∫
e−ik·r

′/~ ρ (r + r′/2, r− r′/2) dr′

=

∫
e−ik·r

′/~ 〈r + r′/2 |Ψ〉 〈Ψ | r− r′/2〉 dr′

=

∫
e−ik·r

′/~ Ψ (r + r′/2) Ψ∗ (r− r′/2) dr′ , (4.156)
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where r′ = 2X, with X the “center of mass” vector of the system, are the Wigner
coordinates and where Ψ(r) are ensemble-state wavefunctions. Then, for a generic
noninteracting Hamiltonian

H =
p̂2

2m
+ V (r) (4.157)

we have the dynamical equation

∂

∂t
fW(r,k; t) +

k

m
∇fW(r,k; t) =

1

~3

∫
VW(r,k− k′) fW(r,k′; t) dk′ , (4.158)

where

VW(r,k− k′) =
1

i~

∫
e−i(k−k

′)r′/~ [V (r + r′/2)V (r− r′/2)] dr′ (4.159)

is a real function representing the potential term, which behaves like both “scattering
in” and “scattering out” contributions in the semiclassical BTE. Moreover, VW is a
non-local function of space, since potentials V are evaluated at a point different from
r. Now we extend the analysis by taking into account electron-phonon interactions
through the reduced electron density matrix

ρ̃(r, r′) = Trph

[
ρ(r, {nq}; r′, {n′q})

]
=
∑
{nq}

ρ(r, {nq}; r′, {n′q}) (4.160)

evaluated over the basis |r, {nq}〉 of the electron and lattice vibrational state, where

ρ(r, {nq}; r′, {n′q}) = 〈r, {nq}|Ψ(t)〉 〈Ψ(t)|r′, {n′q}〉 (4.161)

and {nq} represents the occupation number of the phonon mode q having frequency
ωq. The generalized fW(r, {nq}; r′, {n′q}) can be derived with respect to time and
than applied to the Schrödinger equation, in which the electron-phonon Hamiltonian
part is described by

He-p =
∑
q

i~F (q)
[
aq eiq·r − a†q e−iq·r

]
, (4.162)

where F (q) is a real function describing the electron-phonon interaction. This pro-
cedure yields a coupling term of the following form:

∂

∂t
fW

∣∣∣∣
e-p

=
∑
q′

i~F (q′)

×
{

ei(q
′r−ωq′ (t−t0)) fW

−
√
nq′ + 1

− e−i(q
′r−ωq′ (t−t0)) fW

+

√
nq′

+ e−i(q
′r−ωq′ (t−t0)) f

′W
−

√
n′q′ + 1

−ei(q
′r−ωq′ (t−t0)) f

′W
+

√
n′q′
}
, (4.163)
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where 

fW
− = fW

(
r,k− ~q′

2
, {n1, . . . , nq′ + 1, . . .}, {n′q}; t

)
fW

+ = fW

(
r,k +

~q′

2
, {n1, . . . , nq′ − 1, . . .}, {n′q}; t

)
f
′W
− = fW

(
r,k− ~q′

2
, {nq}, {n′1, . . . , n′q′ + 1, . . .}; t

)
f
′W
+ = fW

(
r,k +

~q′

2
, {nq}, {n′1, . . . , n′q′ + 1, . . .}; t

)
. (4.164)

So the total dynamical equation for the Wigner function fW(r, {nq}; r′, {n′q}) reads:

∂

∂t
fW +

k

m
∇fW + F∇kf

W =
1

~3

∫
VW(r,k− k′) fW +

∂

∂t
fW

∣∣∣∣
e-p

dk′ , (4.165)

in which F is a constant or harmonic force. The r.h.s. terms in Eq. (4.163) represent
the possible interactions (vertex ) in which phonon absorption/emission induces a
change of the occupation number {nq} by unity and of the electron momentum
by ∆k = ~q/2. If a second vertex occurs after the first interaction, such that the
momentum is completely transferred, the transition is real. Otherwise, if the half
momentum is returned, the transition is virtual.

The solution of Eq. (4.163) is a nontrivial problem due to non-diagonal terms
involved in the interaction and since the number of variables is very high. The MC
method helps us in the sense that a numerical solution which passes through the
sampling of all the possible phonon modes allows to reduce the complexity of this
problem. The strategy that can be adopted consists in introducing new temporary
variables r̄(t′) = r(r∗,k∗; t′) and k̄(t′) = k(r∗,k∗; t′), where

r∗(r,k; t) = r−
t∫
t0

ṙ(τ) dτ

k∗(r,k; t) = k−
t∫
t0

k̇(τ) dτ

t∗(r,k; t) = t

, (4.166)

in order to finally obtain the following integral form of Eq. (4.165)

fW
(
r,k, {nq}, {n′q}; t

)
=fW

(
r̄(t0), k̄(t0), {nq}, {n′q}; t

)
+

t∫
t0

dt′
1

3

∫
VW

(
r̄(t′), k̄(t′)− k′

)
× fW

(
r̄(t′),k′, {nq}, {n′q}; t′

)
dk′

+

t∫
t0

∂fW(t′)

∂t

∣∣∣∣
e-p

dt′ . (4.167)
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The first term of Eq. (4.167) is a ballistic contribution at initial time t0 whereas the
following addenda, instead, represent phonon and potential interactions under the
integral operator that we call S. Thus, inserting Eq. (4.167) into itself, an iterative
form

fW = fW
0 + SfW

0 + SSfW
0 + · · · (4.168)

can be obtained. This kind of convergent Neumann expansion series represents the
MC solution of the problem. The meaning of the zeroth-order term fW

0 is trivial; the
first-order one, instead, gives all the WF contributions coming from particles with
any position and momentum, scattering at time t′ and, after a proper free flight,
arriving to the state (r,k). During the free flights, trajectories are classical, whereas
at the vertex momentum changes abruptly as discussed above.

Assigning an arbitrary probability Pn (with n = 0, 1, . . .) to each phase space
point, the WF at time t evaluated in one of these points, times a proper weight
term W = 1/Pn, represents an estimated value of the WF itself. By sampling all
the terms in Eq. (4.168) through a MC procedure one is able, in principle, to describe
the system in terms of scattering events and free flight paths: since n denotes the
number of interaction vertices, when n = 0 only the ballistic term is considered, such
that no random selection is required and the WF at (r,k; t) is evaluated starting from
the initial state (r̄(ti), k̄(ti); ti). When n > 0, all the n potential vertices have to be
accounted for. In these cases the initial time and momentum transfer probabilities
P∆ki and Pti can be selected arbitrarily. Thus, the particle momentum just before
the vertex is updated to ki = k̄(ti) − ∆ki, then a new free flight is evaluated.
The phonon interactions, on the other hand, are included by considering random
selection of the vertices and of the infinite possible Wigner paths contributing to the
WF, each of which is weighted by a proper factor. Moreover, the phonon occupation
numbers are allowed to assume all possible values in order to account for a phonon
bath always in equilibrium conditions.

The framework just outlined can be easily extended to the case of many-particle
systems. The only warning to keep in mind is the possibility of particle-particle
interactions. In this case the resulting vertex is considered non-null only if the
momentum transfer satisfies the relation ∆k1 = −∆k2, where k1 and k2 are the
momenta of two generic interacting particles.

An interesting example of such MC scheme here discussed for WF formalism is
constituted by the resonant tunneling diode (RTD), a device commonly based on
AlGaAs/GaAs heterojunctions. The typical barrier height – of the order of some
tenths of meV – is such that resonant states, due to the tunneling transparency, are
present inside the well. As the increasing applied bias reaches the resonant energy,
the diode I(V ) characteristic experiences a current peak then, for higher voltages,
the current becomes smaller giving rise to a NDC regime.

In Ref. [199] P. Bordone et al. tested such MC-WF formalism on a AlGaAs/GaAs
double barrier RTD, in which the two AlGaAs barriers are 0.28 eV high and 2.8 nm
wide and are separated by a GaAs layer of 5 nm. By computing the electron-phonon
term of the dynamical equation via MC sampling of the phonon modes, the authors
have been able to study the resonant tunneling phenomenon, correctly reproducing
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the NDC regime. Quantum nature of NDC behavior was put in clear evidence also
in Ref. [198] for a very similar RTD structure.

4.4.2 Non-Equilibrium Green’s Functions (NEGFs)

Besides Wigner function (WF) formalism another rigorous method providing
full-quantum simulations in micro and mesoscopic systems – whose basic theory
was introduced by L. V. Keldysh, L. P. Kadanoff, and G. Baym in 60s [200,201], but
recently improved mainly thanks to S. Datta [202] – is becoming increasingly impor-
tant. No more based on density matrix and on functions defined in the phase space
(r,k), non-equilibrium Green’s functions (NEGFs) method derives from Schrödinger
equation, although it can not be considered a wavefunction-based formalism. As we
shall see, WF and NEGF are linked by some opportune mathematical transforms.

Let us start from the monodimensional (1D) time-independent Schrödinger equa-
tion

− ~2

2m∗
∂2

∂z2
Ψn(z) + U(z)Ψn(z) = EnΨn(z) (4.169)

where, as usual in the present dissertation, z represents the spatial dimension along
which we are projecting our physical system, U is the potential and m∗ the effective
mass referred to the particles (fermions) which populate the system itself. We know
that Eq. (4.169) is an eigenvalue equation whose solutions, labeled with the index n,
include a certain set of coupled energy eigenvalues En and wavefunction eigenvectors
Ψn. These solutions define a discrete set of allowed states that change according to
the shape of the potential U .

The analytical solution of Eq. (4.169) is trivial but quite cumbersome in the case
of symmetrical problems, i.e. where the potential shape is simple (e.g., think about
the case of a finite square well described and solved in Subsection 3.3.1). If we want
to solve the eigenvalue problem for any kind of potential then we have to resort
to appropriate numerical strategies. Here we present a simplification that somehow
resembles the discretization procedures seen talking about classical transport models
in semiconductors (see Subsection 1.5.3): to this purpose now we introduce a finite
difference (FD) approximation scheme of Eq. (4.169) according to which the second
partial derivative over z is written as

∂2

∂z2
Ψn(z)

FD≈ Ψn (zi + ∆z)− 2 Ψn (zi) + Ψn (zi −∆z)

(∆z)2 . (4.170)

Eq. (4.170) represents the second-orded central difference scheme applied to the
Schrödinger equation where, if we divide our z domain into a number N + 1 of
points, then ∆z becomes the spacing between two consecutive mesh nodes zi and
zi+1, where i = 1, . . . , N . In order to close the system we have to impose opportune
boundary conditions (BC) in the initial z1 and final zN+1 points. A common choice
is represented by homogeneous Dirichlet BCs (see also Subsection 1.5.2) for the
wavefunctions, that give {

Ψn(z1) = 0

Ψn(zN+1) = 0
. (4.171)
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Now let us rewrite Eq. (4.169) in a more suitable form:

HΨn(zi) = EnΨn(zi) , (4.172)

where H represents the Hamiltonian operator

H = − ~2

2m∗
∂2

∂z2
+ U(z) . (4.173)

In order to make Eq. (4.172) numerically implementable we have to discretize also
H. This can be achieved by rewriting it in a matrix form:

[H] = [K] + [U] , (4.174)

where [K] is the kinetic energy matrix and [U] the potential energy matrix. If
the potential shape U is a priori known, the latter can be easily constructed as
a diagonal matrix, whose elements are the potential values calculated at the mesh
nodes U(zi). Thus:

[U] =



U(z1) 0 0 0 · · · 0

0 U(z2) 0 0 · · · 0

0 0 U(z3) 0 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · U(zN+1)


(4.175)

or, in a more compact form:
[U]i,j = U(zi) δi,j (4.176)

where, again, we use the Kronecker delta.
The kinetic energy matrix, instead, deserves more attention. Exploiting the

central difference FD scheme discussed above, it is possible to write [K] as a tri-
diagonal matrix, where the main diagonal includes the terms −2 Ψn (zi) /(∆z)2:

[K]i,j = − ~2

2m∗
−2

(∆z)2 δi,j , for i, j = 1, · · · , N + 1 (4.177)

and the two secondary upper/lower diagonals are Ψn (zi ±∆z) / (∆z)2, so:

[K]i,j+1 = [K]i+1,j = − ~2

2m∗
1

(∆z)2 δi,j , for i, j = 1, · · · , N . (4.178)

Thus:

[K] = − ~2

2m∗
1

(∆z)2



2 −1 0 0 · · · 0 0

−1 2 −1 0 · · · 0 0

0 −1 2 −1 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −1 2


. (4.179)
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Figure 4.15. Monodimensional (1D) AlGaN/InGaN/GaN heteroscructure with quantum well
(QW) simulated through the finite-central-difference Schrödinger solver here described: (a) con-
duction band diagram reporting electron eigenenergies En and eigenfunctions Ψn(z). Note the
wavefunction broadening into the barriers and some tunneling leakage occurring on the right side
of the device. (b) Bidimensional (2D) electron density calculated via author’s routine and also
through a commercial TCAD tool.

Once we discretized both energies and space, we can solve the FD Schrödinger
equation written in Eq. (4.172) through direct or iterative methods. At the end
one should obtain a set of coupled En and Ψn(zi) solutions – both for electrons and
holes – starting from any potential U . By knowing the system eigenfunctions it
is also possible to compute some interesting physical quantities, as the microscopic
expectation values of the energy and momentum operators. Moreover, in confining
systems as quantum wells, one can even compute the 2D charge density according
to formulas written in Eqs. (3.57) and (3.58).

In Figure 4.15 we can find some results from the 1D Schrödinger solver im-
plemented by the author and based on the finite-central-difference scheme we dis-
cussed. Panel (a) represents the electron energy profile (conduction band) for a
test AlGaN/InGaN/GaN heterostructure under forward bias conditions (2.5 V)
where xAl = 15% and xIn = 18%. The device simulated here is very compact
and includes: 2.5 nm-thick p-GaN and 2.5 nm-thick p-AlGaN EBL, both doped by
NA = 2 · 1019 cm−3, followed by non-intentionally doped 2 nm-thick GaN, 3 nm-thick
InGaN quantum well and 2.5 nm-thick GaN barrier. The structure concludes with
a 2.5 nm-thick n-GaN layer doped by ND = 5 · 1018 cm−3. Besides the potential, we
represented also the electron quasi-Fermi level and the outcoming energy levels and
(normalized) wavefunctions. A similar approach can be applied for holes in valence
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band (here not represented).
The potential profile is extracted from the DD solution of a commercial TCAD

simulator [192] and then used as input file for the 1D Schrödinger solver. The same
commercial suite has also been exploited in panel (b), were the electron density
n2D(z) calculated both with the TCAD tool and the method described in this work
through Eq. (3.57) have been compared.

From panel (a) of Figure 4.15 one may clearly appreciate the occurrence of wave-
functions penetration into both barriers surrounding the QW. Moreover, some tun-
neling leakage coming from high-order solutions can be seen overcoming the barrier
on the n-type side. Since these quasi-bound states (QBS) may induce intra-band
tunneling through such triangular barrier also in real devices, we further investigate
the phenomenon developing a strategy to compute the related intra-band tunneling
current density. Let us start considering again the continuity equation for electrons
written without accounting for any generation/recombination process. So we have

∇rJn(z) = q
∂n(z, t)

∂t
. (4.180)

At the same time the density associated to the wavefunction, a concept somehow
linked to the electron density but referred to the Ψ, can be set up as

n(z, t) ' |Ψ(z, t)|2 . (4.181)

By plugging Eq. (4.181) into Eq. (4.180) we obtain

∇rJn(z) ' q
∂

∂t
|Ψ(z)|2 . (4.182)

This means that, if we are interested in the time-variation of charge density, we
have to deal with time-variations of wavefunction probability density. Developing
the calculations:

∂

∂t
|Ψ(z, t)|2 =

∂

∂t
Ψ∗(z, t)Ψ(z, t)

= Ψ(z, t)
∂

∂t
Ψ∗(z, t) + Ψ∗(z, t)

∂

∂t
Ψ(z, t)

= −Ψ(z, t)

i~
(H∗Ψ∗(z, t)) +

Ψ∗(z, t)

i~
(HΨ(z, t)) , (4.183)

where H is the Hamiltonian and were we used the relations
i~
∂

∂t
Ψ(z, t) = HΨ(z, t)

−i~ ∂
∂t

Ψ∗(z, t) = H∗Ψ∗(z, t)
. (4.184)

Assume again to have

H =
p̂2

2m∗
= − ~2

2m∗
∂2

∂z2
+ U(z) (4.185)
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Figure 4.16. Electron intra-band-to-band tunneling (intra-BTBT) current simulated through the
1D Schrödinger solver by integrating the current density computed with the momentum operator
formalism. Note that the zero-bias current is non-null. Moreover at point “1” there is a local
maximum, due to the fact that the fundamental level E1 is fully occupied (it crosses the quasi-
Fermi energy), then at point “2” the current rises again since the second level E2 starts to be
gradually occupied.

where

p̂ = −i~ ∂
2

∂z2
(4.186)

is the momentum operator. Putting together Eqs. (4.182) and (4.183) we obtain

Jn(z) = −q i~
2m∗

(
Ψ∗(z, t)

∂

∂t
Ψ(z, t)−Ψ(z, t)

∂

∂t
Ψ∗(z, t)

)
=

q

2m∗

(
Ψ∗(z, t) (p̂Ψ(z, t)) + (p̂Ψ(z, t))∗Ψ(z, t)

)
=

q

m∗
Re
{

Ψ∗(z) (p̂Ψ(z))
}

(4.187)

where Ψ(z, t) represents the injected wave.
If we multiply Eq. (4.187), calculated at different bias step, by opportune oc-

cupation functions fFD in the QW and in CB, and then performing an integration
over the device volume, it is possible to extract the intra-band-to-band tunneling
(intra-BTBT) current as a function of the applied bias. Figure 4.16 shows the result
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4.4 Full-Quantum Tunneling Simulation

of this calculation, referred to the same device previously described in the text. An
interesting behavior can be observed: in correspondence of the point labeled with
“1” the current experiences a local maximum since at that applied bias the electron
quasi-Fermi energy is crossing the first confined level in QW. Then the curve rises
again by virtue of a progressive occupation of the second level. Also note the finite
current when the device is at equilibrium.

The problem we solved so far represents a considerable simplification of what is
the behavior of electrons in real devices in the sense that our BC refer to contacts
that are supposed to be very far from the active region, such that only a small
subdomain just around the well contributed to the BTBT current. This means that
travelling waves (and, thus, their current density) have been computed within a
sort of pseudo-open BC where quantum particles does not really exit from device
contacts, i.e. without accounting for the environment in which the device operates.
Now we want to overcome this mathematical trick and introduce in our formalism
the features of an open system, by directly acting on its microscopic description.

Let us start, so, with introducing what we call “leads”, namely two segments of
device connecting the core to the extremal contacts. Left and right contacts plus
their respecting leads are modeled by introducing two nodes (say, z0 and zN+2 re-
spectively) in our discretization scheme. They represent semi-infinite prolongations
of the device, each of which is folded in one single point per side, that connect it to
the external environment. Suppose also that we are injecting on the left contact a
quantum particle (i.e. an electron) described by the progressive wavefunction

−→
Ψ L(z) = 1 · eiκLz (4.188)

whose amplitude, for simplicity, is chosen to be unitary and where κL is its wavevec-
tor. To make the formalism complete we have to account for a reflecting component
on the left contact given by the regressive wave

←−
Ψ L(z) = r · e−iκLz , (4.189)

where r is the normalized reflection coefficient. This determines, at the end of the
device (i.e. at the right contact), a transmitted wavefunction

−→
Ψ R(z) = t · eiκRz , (4.190)

again a progressive wave, where t = 1− r is the normalized transmission coefficient
and κR its wavevector at the contact on the right side. The set of equations which
includes Eqs. (4.188), (4.189) and (4.190), is a new set of open-system boundary
conditions which connect our device to the outside world.

Note that the overall expression of the wavefunction on the left side becomes

Ψ(z) =
−→
Ψ L(z) +

←−
Ψ L(z)

= 1 · eiκLz + r · e−iκLz . (4.191)

According to the BC just derived we know that at node z0 – the point which connects
the left lead to the device – the wavefunction reads

Ψ(z0) = 1 + r , (4.192)
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while, at z−1,

Ψ(z−1) = e−iκL∆z + r · eiκL∆z

= e−iκL∆z + Ψ(z0)eiκL∆z − eiκL∆z

= Ψ(z0)eiκL∆z −
(
eiκL∆z − e−iκL∆z

)
, (4.193)

where in the first line we used the relation r = Ψ(z0)− 1 and where we also recalled
that z−1 − z0 = −∆z.

Now we can rewrite the eigenvalue equation written in Eq. (4.172) as(
En[I]− [H]

)
Ψn(zi) = 0 , (4.194)

where I is the (N +1)×(N +1) identity diagonal matrix. Since Eq. (4.193) we know
that, in order to account for our open-BC, all the diagonal terms of [H] have to be
added to

HL = − ~2

2m∗ (∆z)2 eiκL∆z (4.195)

while the r.h.s. is no more null, and becomes the (N + 1)×1 vector [S], where

[S]1 = SL =
~2

2m∗ (∆z)2

(
eiκL∆z − e−iκL∆z

)
, (4.196)

and
[S]i = 0 , for i = 2, . . . , N + 1 . (4.197)

Eq. (4.195) introduces the contribution coming from the injected wavefunction and is
the so-called source term. Fixing the energy of our system, the Schrödinger equation
may be rewritten in the form(

E[I]− [H]− [ΣL]− [ΣR]− [Σscat]
)

Ψn(zi) = [S] = i[g] , (4.198)

where ΣL and ΣR are called self energies, and are due to the influence of leads (and,
in turn, of the environment) on the device. They are defined as

[ΣL] =
~2

2m∗ (∆z)2


eiκL∆z 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


(4.199)

and

[ΣR] =
~2

2m∗ (∆z)2


0 · · · 0 0

...
. . .

...
...

0 · · · 0 0

0 · · · 0 eiκR∆z .


. (4.200)
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Also Σscat is a self energy but it is referred to all inelastic scattering events occurring
between channels at different energies E. Moreover, [g] is an energy broadening
function and is the column vector [gL] defined as[g]1 = gL = −i

(
[ΣL]1,1 − [ΣL]†1,1

)
[g]i = 0 , for i = 2, . . . , N + 1

(4.201)

if the source is at the left contact, or [gR] as[g]i = 0 , for i = 1, . . . , N

[g]N+1 = gR = −i
(

[ΣR]N+1,N+1 − [ΣR]†N+1,N+1

) (4.202)

if the source is at the right contact (daggers refer to Hermitian conjugates). As their
names suggest, broadening functions are correlated to the spread of each channel E
in the energy domain which is due to particles probability to escape into the leads.
A general form of the broadening line-shape σ(E) is

σ(E) ' gL + gR

(E − ε)2 + [(gL + gR) /2]2
, (4.203)

where ε is the diagonal term of the matrix

HL +
[ΣL] + [ΣL]†

2
+

[ΣR] + [ΣR]†

2
. (4.204)

As pointed out by S. Datta [203], two important properties differentiate self en-
ergies from other Hamiltonians which account for boundary effects: first, Σ strictly
depend on energy and, second, they are not Hermitian matrices. For this latter
reason their action produce the effect of having an imaginary source term, which
affects the broadening function g.

Note that Eq. (4.198) is no more an eigenvalue equation since E does not form
a discrete set of values but an energy continuum. If we decide to neglect inelastic
scattering then we have to treat energies as independent channels, i.e. we are in the
ballistic regime. Now, to solve the problem, we can find the solutions of Eq. (4.198)
as we did with the Schrödinger equation or we might notice that its l.h.s. can be
expressed by the equation

E[I]− [H]− [ΣL]− [ΣR] = [G]−1 (4.205)

where G(E) is the (N + 1)×(N + 1) non-equilibrium Green’s function (NEGF)
matrix. From this function we can construct all the relevant quantities of the system
as, for instance, its density operator. In order to do that let us firstly define ΓL and
ΓR as the matrices composed by all zeros except for their main diagonals [gL] and
[gR], respectively. So, being

|Ψ(z)|2 = Ψ(z)Ψ∗(z) =
(

[G][gL]
)(

[gL]†[G]†
)

(4.206)
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Figure 4.17. NEGF calculations performed for a n+-n-n+ GaAs structure: (a) Electron local
density of states (LDOS) calculated at 0.2 V (dashed line represents the conduction band energy).
(b) I(V ) characteristics.

then [203]

ρ̂L(E) =

∫
LDOSL(z, E) fFD(E − EFL

) dE

= 2× 1

2π

∫
dκ

dE(κ)
|Ψ(z)|2 fFD(E − EFL

) dE

= 2× 1

2π

∫
2m∗∆z

~2 sin (κ∆z)
|Ψ(z)|2 fFD(E − EFL

) dE (4.207)

and similarly for ρ̂R(E). Putting together Eqs. (4.206) and (4.207) we have

ρ̂L(E) = 2× 1

2π

∫
[AL] fFD(E − EFL

) dE , (4.208)

where the matrix
[AL] = [G][ΓL][G]† (4.209)

(and also [AR]) is the (N + 1)×(N + 1) spectral function matrix.
Now, since

nL(zi) =

∫
LDOSL(zi, E) fFD(E − EFL

) dE (4.210)

corresponds to the diagonal of ρ̂L(E) and n(zi) = nL(zi) + nR(zi) also local density
of states (LDOS) and carrier densities can be computed by means of the NEGF
G(E).
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In barrier-like problems, as tunneling ones, one can also compute the transmis-
sion coefficient and the related current respectively as [203]

T (E) = Tr
{

[ΓL][G][ΓR][G]†
}

(4.211)

and

IL→R =
2q

h

∫
T (E) fFD(EFL

− EFR
) dE . (4.212)

Figure 4.17 shows some results coming from NEGF simulations performed on
a n+-n-n+ GaAs testing structure (the same considered in Ref. [204]) doped with
N+

D = 2 · 10 19 cm−3 and ND = 2 · 1018 cm−3. In panel (a) we find the calculated
LDOS of electrons, which generates typical quantum interference features. Panel (b),
instead, shows the I(V ) characteristics calculated via Eq. (4.212) by solving the
NEGF system for a set of potentials obtained at different bias.

In this last subsection we seen the genuine quantum formalism of non-equilibrium
Green’s functions for nanosystems and device simulation which includes, by its na-
ture, a number of quantum effects (as tunneling) without introducing specific fea-
tures or hypotheses. In Chapter 6 we will see how NEGF can be applied to simulate
intra-BTBT in LEDs (like in Figure 4.15) however, for the moment, we still want
to stress a couple of important considerations about NEGF. On the one hand it is
worth noting that, passing through the definition of a density matrix, it is possible to
build a formal link between Wigner function and Green’s function frameworks. In-
deed, by applying a Fourier transform to a particular Green’s function G< = iAfFD

called “G-lesser” the WF written in Eq. (4.154) can be recovered. For completeness,
consider that G< is defined via the standard Green’s function G via

G = θ(z, z′) (G> −G<) , (4.213)

where G> = −iA(1 − fFD) is the Green’s function “G-greater” and θ(a, b) is a
function which assumes the value 1 if a is later than b in the system time-contour
(called Keldysh contour) or is 0 otherwise. The Green’s functions G≶ are useful,
moreover, to define the lesser/greater boundary self-energies Σ≶, which obey the
Keldysh equation

[G≶] = [G][Σ≶][G]† . (4.214)

The second observation is that, although the Green’s function here considered is
at least a two-point one-energy function (according to the processes of interest also
time and momentum can be considered), which implies a (6+1)-dimension function,
its formalism turns out to be very useful since: first one has to deal only with
matrices and, second, NEGF provides a robust formalism to solve the single-particle
Schrödinger equation with open BC at different possible description levels, from
effective mass approximation to tight-binding Hamiltonian, according to the specific
problem one wants to study.
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Chapter 5

Tunneling in HgCdTe IRPDs

Here we are going to present the author’s area of research devoted to studying
and modeling direct inter-band-to-band tunneling (inter-BTBT) phenomena in Mid-
Wavelength Infra Red (MWIR) MCT photodetectors. In particular, results coming
from works presented at the “US Workshop on the Physics and Chemistry of II-VI
materials” on October 2014 in Baltimora (Maryland) and at the “42nd Freiburg
Infrared Colloquium” on March 2015 (Germany), and also from a paper published
in the Journal of Electronic Materials on April 24th, 2015 [173], will be proposed
and analyzed.

Before presenting our results, let me thank first of all the Electronics and Telecom-
munications Department (DET) from Politecnico di Torino that allowed the use of
TCAD (Technology Computer-Aided Design) tools needed for 2D simulations of IR
photodetectors. Then a remarkable tribute also goes to Prof. E. Bellotti and col-
laborators from Boston University for their precious contribution in setting up the
library of physical parameters for MCT material system. Lastly, not by importance,
my gratefulness addresses to AIM Infrarot Module GmbH, the company that fab-
ricated and tested all our HgCdTe structures, and in particular to W. Schirmacher,
S. Hanna, and H. Figgemeier, whose remarkable contribution made possible this re-
search.

5.1 Background and Motivations

The undiscussed importance of infrared (IR) light detection covers nowadays a
wide range of applications (see, for instance, Ref. [205]), from biology to aerospace.
Of particular interest are detectors based on the mercury cadmium telluride (MCT)
material system [206,207]. As we learned in Chapter 2, this narrow-gap ternary alloy
allows to vary the forbidden energy gap through the modification of the Cd molar
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fraction, passing stoichiometrically from the semi-metal state (HgTe, for x = 0) to
the semiconductor one (CdTe, with x = 1).

A role of primary importance is assumed by large format MCT photovoltaic IR
detectors, namely the focal plane array (FPA) [7,205,208,209]. Depending on their
intended use, FPAs are designed for imaging in different regions of the IR spectrum,
from SWIR to VLWIR. Within this spectral scale two operating environments can
be identified: detection in the endo-atmosphere and in the exo-atmosphere. Endo-
atmospheric imaging generally is intended for warm objects with high background
irradiance, for example scattered sunlight or irradiance from the earth surface. In
this case, SWIR and MWIR are the bands of interest. Exo-atmospheric applica-
tions instead deal with cool objects with low background irradiance levels and their
operation regimes consist in the LWIR and VLWIR domains [210]. A large de-
velopment effort has led to the fabrication of high performance MCT large format
FPAs able to operate in only one of the possible spectral regions (Ref. [205] and
references therein). These FPAs, normally referred to as one-“color” FPAs, are
characterized by high operability and have been successfully employed in many sys-
tems. The requirements for a new generation of FPAs currently under development
call for the possibility of detecting two or more colors at the same time. This is
becoming of crucial importance for instance in the situation in which both imag-
ing and object-background discrimination has to be performed, where the nature of
the object is uncertain and/or the background itself is changing [210]. This result
is actually achieved through both simultaneous [211–214] and sequential [215–218]
detection schemes. The successful development of multicolor MCT FPAs requires
further improvement of materials quality, adequate processing techniques and a bet-
ter understanding about the sensor operation, either in terms of pixel performance
or interaction between different pixels of the same array.

A second physical issue related to IR detection is represented by the temper-
ature T , either of the scene to be captured and especially of the semiconductor
lattice which constitutes each pixel. As a matter of fact, not only photon absorp-
tion can produce a signal, but also thermal generation can promote electrons to
conduction levels. Such mechanism depends on T , obviously, and is inversely pro-
portional to Eg. In order to get rid of cooling requirements, which noticeably increase
production costs, modern FPAs are designed according to the High-Operating-
Temperature (HOT) paradigm [60,219], where devices (often n-on-p junctions) op-
erate in nonequilibrium conditions such that carrier densities stay near their intrinsic
concentrations (i.e. well below equilibrium levels).

A third (more fundamental) point to be considered in designing optimized IR
photodetectors is the role of quantum processes, due to the trend of progressively
shrinking the dimensions of electronic devices in accordance with Moore’s law. Prob-
ably the most relevant quantum mechanism in this application field is direct tun-
neling (BTBT). The implications of tunneling in IR detection sensors are related
to an electron flux generating an unwanted current flow, even without the presence
of photons, i.e. in “dark conditions”. Since dark current reduction is a prerequi-
site for HOT detection (≥ 150 K) [220–223], we are interested in predicting the
role of BTBT in IRPDs through physics-based modeling. Furthermore, numeri-
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Figure 5.1. Simplified chart summarizing the most important physical and technical issues in-
volved in the operating framework of solid-state IR detection with narrow gap materials. Temper-
ature and band gap are mutually interacting and from thermal issues arises the dichotomy between
cooled and HOT systems. The consequences of this technological choice are also affected – under
the microscopical point of view – by the detector quantum efficiency, a parameter accounting for
all the parasitic or intrinsic (quantum) phenomena, like tunneling.

cal simulation can also provide valuable guidelines for performance and reliability
improvement of pixel structure and array geometries. The chart in Figure 5.1 sum-
marized the most important physical and technical issues related to IR detection
with narrow-gap semiconductors.

Being interested in HOT single-color FPAs composed by MCT pixels, our re-
search is part of the scientific framework just outlined. So, in the next section the
fabrication process of two examples of such devices will be briefly summarized, then
we will take a look to their electrical dark characteristics before proceeding with
numerical simulations.

5.2 Device Fabrication and Characterization

The objects we studied belong to a large detector matrix and are represented
by single 15×15 µm pixels consisting in an MCT back-illuminated MWIR detector
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Figure 5.2. (a) Cross-sectional view of the MCT pixel constituting our p-n−-n+ back-illuminated
IR photodetector. (b) Profile of cadmium mole fraction as measured (symbol) via secondary-ion
mass spectrometry (SIMS) and its least-square fit curve (solid line).

with cut-off wavelength at 80 K equal to λcut-off ' 5.3 µm. As one may observe
in panel (a) of Figure 5.2, they are grown on CdZnTe substrate (via liquid-phase
epitaxy, LPE) and passivated via CdTe superficial growth. In particular, we consid-
ered two structures that, apart from the different implantation techniques for the
p-type doping, are nominally identical: device hereinafter labeled with “A” is doped
via standard Hg-vacancy p-type technology by NAA

= 2 · 1016 cm−3, whereas de-
vice labeled with “B” is doped by implanting Au as acceptor, with nominal density
NAB

= 5 · 1015 cm−3 (and low vacancies density [224,225]). Finally, the junction is
obtained through ion implantation into the p-type layer which led to a maximum
donor density ND = 1018 cm−3 in both devices.

The structure is composed as follows: starting at depth z = 0 from the sur-
face of the CdZnTe substrate (not implemented in our simulations), we have a
7 µm-thick p-type MCT layer, then a 1.5 µm-thick and 10 µm-wide MCT n−-type
region doped by N−D = 4 · 1014 cm−3 whose Cd fraction follows the profile repre-
sented in panel (b) of Figure 5.2. This layer incorporates a 0.5 µm of superficial
n+-type MCT in which donor concentration gradually increases according to an
isotropic error-function trend that reaches N+

D = 1018 cm−3 at the surface. A cath-
ode electrode located at the center of the pixel, put in contact with the n+-type
region, and a p-contact deposed on the pixel corner complete the structure. In or-
der to operate with the diode under reverse polarization the n-contact is biased at a
positive voltage with respect to the (grounded) reference potential of the p-contact.
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Figure 5.3. Dark current densities measured in our AIM Infrarot Module structures: (a) device
A and (b) device B. Notice the higher currents in device A with respect to device B, both at high
reverse applied bias and also at near-zero voltage (data published in Ref. [173]).

By using a liquid-nitrogen evaporation cryostat allowing to vary the temperature
from 80 K to 300 K dark current measurements were performed. As we indicated
in Ref. [173], the data was taken thanks to HgCdTe chips hybridized to fan-out
circuits, with arrays of photodiodes connected in parallel in order to perform low
current measurements. The pixels were surrounded by guard diodes independently
biased such that each current contribution coming from outside the detectors are
wiped out. Figure 5.3 shows the dark current characteristics for device A and B
measured at different temperatures. As one may notice, device A is connoted by
higher currents than device B for all bias regimes. This could be due, for instance,
to higher defect densities originating from Hg-vacancies. In order to investigate this
phenomenon, the eventual presence of tunneling mechanisms and, especially, the
different electrical behavior of these two considered devices we set up a numerical
investigation, presented in the following section, trying to propose a qualitative and
quantitative explanation.

5.3 Simulation Technique

A realistic choice of material parameters is always of crucial importance in numer-
ical simulation of electronic devices. In Chapter 2 we studied the physical/electrical
properties of the Hg1−xCdxTe material system and, besides this, we also analyzed
the most used models describing both optical and transport mechanisms within bulk
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MCT. Here we apply all these knowledge and, in particular: Eg has been modeled
as a function of temperature and mole fraction according to Eqs. (2.17)–(2.18) and
Refs. [32, 33], the electron affinity χ follows the formulation of Ref. [43, p. 1331],
for what concerns electron effective masses and mobilities we respectively followed
Eq. (2.13), as in Ref. [27], and Eq. (2.20), as in Ref. [7], while for holes m∗h = 0.55 m0

(as widely accepted) and µh(x, T ) is given by Eq. (2.19), as in Ref. [30]. Regard-
ing recombination processes, we used radiative and Auger lifetime expressions as in
Ref. [50] (see, respectively, Eqs. (2.51)–(2.52) for τrad and Eqs. (2.56)–(2.64) for τA),
where, as reported in Refs. [226], the Bloch-wavefunction overlap is |F1,2| = 0.2 and
γ = τi,A7/τi,A1 = 6. For a detailed description of models and parameters implemen-
tation into the numerical solver the reader can also refer to Appendix A.

A particular case is represented by the Shockley-Read-Hall (SRH) generation/re-
combination. Since we used this mechanism for the preliminary tuning procedure of
our simulation setup, the value of SRH parameters have been empirically estimated
among those which better allowed to reproduce experimental data with simula-
tions. The results coming from this tuning, which interested the low-bias range
(Vbias ≤ 0.5 V) in both device characteristics, have been reported in Figure 5.4 and
the related parameters are listed in Table 5.1.

TABLE 5.1. Preliminary tuning of simulation parameters

REGION σNtrap (cm−1) Etrap (meV)

device A:

p-HgCdTe 0.01 30

n-HgCdTe 0.80 70

device B:

p-HgCdTe 0.0010 30

n-HgCdTe 0.0018 120

List of SRH-related parameters set through a fine tuning of our simulations on the experimental
J(V, T ) dark current characteristics, whatever the temperature: Etrap is the energy of the defect
level, measured from the conduction band edge EC and σNtrap is the product of the trap cross-
section σ and its density Ntrap within the device.

The product σNtrap is essential for the definition of a proper SRH lifetime since,
as already mentioned in this work (see, for instance, Eq. (4.75)),

τn,p =
1

σn,pNtrap vthn,p

, (5.1)

where

vthn,p =

√
3kBT

m∗e,h

, (5.2)
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as usual for fermions (and as already stated in Eq. (1.34)), and where σn = σp is
kept constant [227] and only the product σNtrap is changed.
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Figure 5.4. Experimental (symbols) and calculated (solid lines) dark J(V, T ) characteristics for
(a) device A and (b) device B at different temperatures. (c) Detail of single GR contributions at
T = 166 K calculated for device A and, in the same way, (d) for device B. Simulations have been
performed including parameters listed in the text and in Table 5.1.
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5.3 Simulation Technique

By using a commercial TCAD tool [192] which solves the DD model through
an adaptive Delaunay-Voronöı discretization procedure (generating more dense grid
where carrier and current density gradients are higher), we exploit the common SRH
net rate expression

USRH =
np− n2

i

τp

(
n+ ni e

Etrap−EFi
kBT

)
+ τn

(
p+ ni e

EFi
−Etrap

kBT

) , (5.3)

where Etrap here is measured from conduction band EC. The other GR mecha-
nisms have been implemented as already explained at the beginning of this section.
Moreover, all the contacts have been assumed as ideally ohmic and the eventual
electrical/optical crosstalk effects have been considered negligible, due to the mea-
surement system already described.

As we reported in Ref. [173], and according to Ref. [60], Etrap lies very close to
the intrinsic Fermi level EFi both in n-type and p-type HgCdTe doped with As,
Cu or Au, while it is expected to be approximately 30 meV below EC in vacancy-
doped MCT when 0.2 < x < 0.5. Considering that the depletion region of both
devices mainly extends in the n-layer, the SRH parameter in the p-layer can be
reasonably considered irrelevant for dark currents. Taking this into account, we set
Etrap − EV = 30 meV for p-type HgCdTe in both devices, as reported in Table 5.1.
All the values written there are intended to be valid whatever the device temperature
T .

So, for each device only three SRH-related parameters remain free. By setting
σnNtrap, σpNtrap and Etrapn as reported in the same table all the calculated charac-
teristics in Figure 5.4 have been obtained. Panels (a) and (b) show, respectively, the
measured and simulated dark characteristics of device A and B at different temper-
atures, where simulations are performed including in the GR term of the continuity
equation SRH, radiative and Auger processes. In panels (c) and (d), instead, only
the cases corresponding to the higher temperature (T = 166 K) are considered.
Here each simulated curve (apart that one labeled as “total”) is calculated account-
ing only for one GR mechanism at time, as if it were the unique contribution to
the dark current density. Due to nonlinearity of DD equations, the sum given by
considering each single GR term not necessarily coincides with the curve (solid line)
obtained when

Rtotal = RSRH +Rrad +RA , (5.4)

and for this reason we speak in terms of simple contributions, rather than true
algebraic components. Anyway, dashed curve refers to the SRH contribution (i.e.
Rtotal = RSRH), dotted curve to radiative (Rtotal = Rrad) and dot-dashed one to the
Auger contribution (Rtotal = RA).

Once we specified such important modellistic considerations, and remembering
first of all that these simulations represent only the preliminary step of our inves-
tigation (since they have been used just to define a realistic setup for parameters,
focusing only on the low-bias regime below 0.5 V), some considerations arise:
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5.4 Results: Tunneling Models at Work

1. According to our simulations (see, in particular, panels (c) and (d) of Fig-
ure 5.4) device A seems to be SRH-limited since the nonradiative trap-assisted
contribution appears as the dominant with respect to radiative and Auger
ones. At the same time, device B should not experience this behavior since it
is impossible to identify a major contribution. Moreover, SRH contribution in
device B is approximately three orders of magnitude lower than in A.

2. The difference just pointed out might be attributable to a less vacancy density
of device B with respect to device A resulting, probably, in a lower defect
density. As a matter of fact, the tuning procedure gave a smaller product
σpNtrap in the second device: since we assumed that the trap cross-section is
constant and always the same, it should be that Ntrap is lower in device B than
in device A. This difference is about three orders of magnitude, as for SRH
contributions.

3. Auger reduction in device B by one order of magnitude can be ascribed to a
lower acceptor density. This effect is in accordance with theoretical discussions
of Ref. [60] and has also been experimentally observed in Ref. [222].

4. Finally, we should not overlook that the three GR mechanisms invoked in these
preliminary simulations can not reproduce the experimental dark characteris-
tics at high/medium voltages. Some other processes should be introduced and,
since the behavior of measurements seems governed by field-dependent pro-
cesses with a threshold-like onset, we will try to implement impact ionization
(II) and tunneling (TAT, BTBT) models.

5.4 Results: Tunneling Models at Work

We tested the presence of direct tunneling (BTBT) by using the novel expression
due to Mandurrino [45] explained in detail in Section 4.2. It is worth remembering
that such formalism has been conceived for narrow-gap p-i -n diodes in reverse bias.
We are dealing with a p-n−-n+ structure (with N−D = 4 · 1014 cm−3) that can be
safely considered a suitable case-study for such model since, as demonstrated by
the plot in Figure 5.5, the (longitudinal component of the) electric field assumes an
almost constant profile across the junction, as should occur in true p-i -n detectors.
This property satisfies the only theoretical requirement for the application of the
generation rate GMandurrino.

By setting D = 1, Eq. (4.100) becomes

GMandurrino = A · E · exp

(
− B

δ
√
E

)
(5.5)

where the unique parameter resulted, from the fitting, to be δ = 210 V1/2cm−1/2.
Since the TCAD simulation suite does not include such ad hoc model among its
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Figure 5.5. Vertical component of the electrical field along the two main photodiode junctions
simulated in device A at −3 V.

built-in tools, it has been implemented via an external interface allowing to en-
ter customary codes. The C++ routine used to implement he generation rate in
Eq. (5.5) into DD equations is reported in Appendix C.

For what concerns TAT, instead, the standard Hurkx formalism has been acti-
vated, where the same trap-related properties referred to SRH process and reported
in Table 5.1 have been used. Finally, II is included in our simulations through a
post-processing procedure which exploits the bias-dependent gain M(V, T ) as

JII(V, T ) = M(V, T ) J(V, T ) , (5.6)

(see a very similar trend for APD detectors in Eq. (2.45)) where J(V, T ) is the
simulated dark current density and the gain M(V, T ) makes use of the model [228]

M(V, T ) = exp

[
a(T )V exp

(
−Vth

V

)]
, (5.7)

being a(T ) and Vth = Eth wdep, an opportune threshold potential, the only parame-
ters of this model. We adopted this approximated strategy in place of implementing
built-in II models (as the Okuto-Crowell one [229]) since usually they are time-
consuming.

Since wdep ≈ 1 µm and being Eth ≈ 30 kV/cm a typical value in HgCdTe [230],
we obtained that Vth ≈ 3 V, while a(T ) remains a free fitting parameter.
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Figure 5.6. (a) Measured and calculated dark current densities for device A where simu-
lations consider SRH, radiative, Auger, BTBT (dot-dashed) and also II processes (solid), as
published in Ref. [173]. (b) Author’s personal reinterpretation of the same data obtained with
δ = 290 V1/2cm−1/2 and introducing the II Beck’s model with a parameter Vth(T ) = 6.8Eg(T )/q
slightly variant by reason of T (according to Refs. [225,231]) in place of arbitrarily tuning a(T ).
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5.4 Results: Tunneling Models at Work

5.4.1 My novel inter-BTBT formulation

Through the simulation procedure described above we obtained the curves re-
produced in Figure 5.6 (device A) and 5.7 (device B). Let us focus now on device
A. Simulations represented in panel (a) with dot-dashed lines have been obtained
solving the DD equations which include as source terms the SRH, radiative, Auger
and BTBT (with the novel formulation presented in this work) mechanisms. The
SRH parameters are still the same reported in Table 5.1 while, concerning BTBT,
the value δ = 210 V1/2cm−1/2 (constant with T ) is the one allowing best agreement
with measurements. Solid line curves, instead, are calculated by adding a further
term in continuity equations, namely impact ionization (II). In this case Eqs. (5.6)
and (5.7) have been used in post-processing, where the values of a(T ) coming from
the fitting procedure are reported in Table 5.2.

TABLE 5.2. Impact ionization (II) parameters for device A

panel (a) of Figure 5.6 panel (b) of Figure 5.6

TEMPERATURE, T (K) a(T ) (V−1) Vth(T ) (V)

112 0.98 1.6517

128 1.52 1.6722

142 0.91 1.6987

166 0.99 1.7327

List of impact ionization (II) parameters: a(T ) refers to the model written in Eq. (5.7) whereas
Vth(T ) is the main physical quantity entering the Beck’s model, calculated through Eq. (5.9).

Although the results reported in panel (a) of Figure 5.6 are quite satisfactory,
by the physical standpoint this way of modeling the thermal trend of II is not
fully realistic: indeed, a(T ) is only a parametric handle one can tune and choose
according to the best interpolation curve. A less arbitrary but more rigorous way
to proceed, in the author’s opinion, consists in introducing a model which captures
the correct quantity actually depending on T : this quantity is the threshold voltage
Vth (that previously was a priori fixed as Vth ≈ 3 V). It strictly depends on the
threshold electric field, which determines the II onset of the diode characteristics,
and is T -dependent since the field along the depletion region varies with T by reason
of the energy gap Eg(T ). So, it has been decided to test an alternative approach
(see panel (b) of Figure 5.6) by introducing the so-called Beck’s model [230,231]:

MBeck(V, T ) = 1 + 2
2(V−Vth(T ))

Vth(T ) , (5.8)

where a trend considered typical for HgCdTe is [225]

Vth(T ) = 6.8
Eg(T )

q
. (5.9)
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5.4 Results: Tunneling Models at Work

Using Eq. (5.9), which intrinsically introduces the role of T , we no longer need
to emulate the thermal behavior of II by means of external parameters or arbitrary
fitting procedures. So, only thanks to parameters related to physical properties of the
materials, the simulations of panel (b) have been obtained. It is also worth noting
that, as expected from theory and as one may observe in the trend of measured
characteristics, Vth increases with the increase of T . On the contrary, a(T ) does not
vary monotonically with temperature.

The second main feature distinguishing simulations of panel (a) and those of
panel (b) concerns the implementation of Mandurrino’s BTBT formalism. In the
first case δ = 210 V1/2cm−1/2 has been chosen, again, by means of tuning procedures.
In the latter case, instead, a proper value corresponding to δ = 290 V1/2cm−1/2 has
been calculated from physical/geometrical parameters of device A and then used in
all the simulations. At any rate, these two modeling strategies plotted in Figure 5.6
return quantitatively comparable and also quite satisfactory results.

5.4.2 Hurkx TAT model

In case of device B the direct tunneling contribution has found to be negligible.
For this reason its simulations account only for SRH, radiative and Auger GR pro-
cesses (dot-dashed curves in panel (a) of Figure 5.7). Besides these mechanisms also
II (solid) or Hurkx TAT (dotted) have been tested. As one may notice in the same
plot, the best accordance between simulations and experimental data has been found
through the inclusion of impact ionization, whose parameters are listed in Table 5.3.

TABLE 5.3. Impact ionization (II) parameters for device B

panel (a) of Figure 5.7 panel (b) of Figure 5.7

TEMPERATURE, T (K) a(T ) (V−1) Vth(T ) (V)

112 0.79 1.6517

128 0.54 1.6722

142 0.62 1.6987

166 0.52 1.7327

As in previous table, list of impact ionization (II) parameters: a(T ) refers again to the model
written in Eq. (5.7) whereas Vth(T ) enters into the Beck’s model and has been calculated through
Eq. (5.9). Note that parameters in the last column coincide with the ones of device A.

Since II simulations follow the same procedure discussed above, also in case of
device B an alternative modeling approach involving again Beck’s model has been
attempted. This author’s personal reinterpretation can be found in panel (b) of
Figure 5.7 and its related parameters are reported in the last column of Table 5.3
(but they coincide with the same parameters of device A written in Table 5.2). As
one may see, the two approaches give almost the same results, both quantitative and
qualitative. Anyway, a slight difference can be observed at the highest temperature,
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5.5 Final Remarks

where Beck’s model underestimates the experimental current density in the low-bias
regime.

5.5 Final Remarks

We analyzed two back-illuminated HgCdTe-based MWIR photodetectors consti-
tuted by nominally identical single-pixel structures differing only for the implanted
p-type doping dose. Moreover, device A is characterized by standard Hg-vacancy
doping (with NAA

= 2 · 1016 cm−3) while device B is doped via Au implantation
(NAB

= 5 · 1015 cm−3).
Through the solution of drift-diffusion (DD) equations, obtained via a commer-

cial TCAD tool, simulations of both device A and B have been performed. As
previously discussed concerning preliminary simulations, device A has been found
to be SRH-limited while no dominant processes can be observed in device B. This
behavior probably stems from the higher defect density of the first device with re-
spect to the second one. This fact seems to support the hypothesis according to
which reducing the vacancies density is a prerequisite for HOT detection. Probably
also the lower acceptor density in the absorber region contributes to this result.

Implementing the author’s formalism (see Section 4.2 and Ref. [45]) to describe
band-to-band tunneling (BTBT) and also including impact ionization (II) as post-
processing correction via Eqs. (5.6) and (5.7), we obtained very satisfactory repro-
duction of measured reverse dark characteristics J(V, T ) for both devices in the
range between 112 K and 166 K. This is the first time in the literature that tun-
neling rate GMandurrino, theoretically derived in Ref. [45], is (proficiently) applied to
model BTBT in real devices.

Through simulations we can infer that II is important in device A as well in
device B, while TAT seems to be irrelevant in both structures. Instead BTBT has
shown to be probably correlated with the doping concentration of the p-type region
since it is present only in device A where NA is four times higher than in device
B. This could be explained through a different band bending which, in turn, affects
the tunneling path. An alternative explanation could be that, in the bias range
we considered, the onset of direct transitions has not yet occurred: a lower defect
density could actually decrease the electric field in the junction such that BTBT
arises at higher (reverse) voltages.

Finally, the reader can also find some unpublished results provided by the author
which include a more realistic parametrization of II and BTBT through the rigorous
description of thermal trends – in the first model – and of the δ parameter in
Mandurrino’s formalism – for what concerns the second model.
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Chapter 6

Tunneling in InGaN/GaN LEDs

This chapter is intended to present the author’s research in the field of theoret-
ical investigation and physics-based numerical modeling of interband trap-assisted
tunneling (TAT) in III-nitride blue light-emitting diodes (LEDs). The core of this
production is constituted by essentially two journal papers and three conference pa-
pers. The first object has been submitted to the Special Issue of Physica Status Solidi
on “Nitride Semiconductors” on September 30th, 2015 and published on January
28th, 2015 [87]. A second paper on these topics, as already mentioned in the present
dissertation, has been published under invitation of his Editor in Chief J. Piprek in
the Journal of Computational Electronics on January 21st, 2015 in the Special Is-
sue entitled “Simulation of GaN-based Light-Emitting Diodes” [145]. Finally, the
last three important papers consist in the work presented on September 1st, 2014
at NUSOD 2014 in Palma de Mallorca (Spain) [232] and the other ones presented
on May 8th, 2015 at the Fotonica AEIT Conference on Photonics Technologies, in
Turin (Italy) [233] and on September 8th, 2015 at the XIV SPIE International Con-
ference on “Solid State Lighting and LED-based Illumination Systems” that was
held in San Diego, California [234]. Besides such most representative papers, other
works have been presented in minor or national conferences: see the complete list
of publications reported at the beginning of the present thesis.

A second area of interest has been represented by some investigations on intra-
band-to-band tunneling (intra-BTBT) involvinq quasi-confined states in the LED
active region. Some preliminary results about this topic have been already presented
at international conferences, as occurred for the invited talk given on February 15th,
2016 at the XXIV SPIE International Conference on “Physics and Simulation of
Optoelectronic Devices” in San Francisco, California [235].

All the scientific production was possible thanks to the collaboration with the
group of Padua University leaded by M. Meneghini, G. Meneghesso and E. Zanoni.
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6.1 Background and Motivations

They provided experimental characterizations, as well as precious feedback on tech-
nology and material-related issues. Also the contribution of OSRAM Opto Semi-
conductors GmbH was fundamental since no research would be viable without their
testing single quantum-well (SQW) structures. A special mention also goes to Prof.
G. Verzellesi from Modena and Reggio Emilia University for motivating and foster-
ing TAT investigations on LEDs and for his expert and valuable oversight on some
theoretical and modeling aspects. Last but not least, the author aknowledges and
thanks the Electronics and Telecommunications Department (DET) of Politecnico
di Torino for all the logistic support, especially for what concerned TCAD licensing,
and also the Italian University Consortium CINECA, for its computational facilities.

6.1 Background and Motivations

The barrier encompassing the active region of GaN-based light-emitting diodes
(LEDs) usually provides a very small probability to allow direct (interband) tun-
neling transitions (i.e., BTBT) due to typically long tunneling paths. However,
electrons and holes may experience a shorter distance if they encounter structural
defects along their path that generate inter-gap states. Such defects are represented
by point defects or by (extended) dislocations. So, besides behaving as SRH-centers
of recombination, crystal defects may also play an essential role in the carrier trans-
port framework as tunneling enhancers, a feature not always included in modeling
studies.

The importance of defects over the electrical behavior of GaN-based LEDs has
been observed and pointed out in the literature by many researchers [18,86,236–243].
However, quite rarely these works account at the same time for both data analy-
sis and device simulations. The purpose of the author’s Ph.D. involvement in this
research area was to fill this gap by integrating a rigorous physical interpretation
of electrical/optical measurements with self-consistent physics-based simulations of
trap-assisted tunneling (TAT), where model parameters are inspired by such con-
siderations on experimental data.

With this aim we intended to verify the hypothesis according to which GaN-
based blue LEDs in forward bias conditions are affected by trap-assisted tunneling
of electrons coming from conduction band (CB) in the n-type region of the diode
and travelling “under” the quantum well (QW) towards defects located on the p-
side and, at the same time, affected by TAT of holes originating from valence band
(VB) in the p-type region and travelling “under” the QW towards defects in the
diode n-side (see main picture of Figure 6.1). Strictly speaking in more physical
terms, the microscopic interaction we suppose to occur is the same as depicted, for
electrons, in panel (a): after a pure tunneling transition, the carrier scatters with
an opportune occupation statistics of the oscillating trap by means of multiphonon
emission (MPE) process, which preserves the energy conservation principle. After
that, the electron may (non-radiatively) recombine, at the trap site, with an hole in
VB. A symmetrical process may occur for holes, obviously.

Besides this relevant effect, an additional lower-order physical mechanism may
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Figure 6.1. Schematic picture of different tunneling phenomena occurring in GaN-based single
quantum well (SQW) blue light-emitting diodes (LEDs): (a) electron trap-assisted tunneling (TAT)
and (b) electron intra-band-to-band tunneling (intra-BTBT) from conduction band towards the
quantum well (energies not to scale).

take place: the quantization due to carrier confinement in the active region creates
quasi-bound states (QBS) within the well. According to the classical picture, un-
der zero or low injection regime typically only the ground state is occupied while
levels characterized by higher energies are empty. However, even at equilibrium,
the probability of having intra-band wavefunction leakages between QW and the
surrounding barriers (on the n-side in case of electrons and on the p-side for holes)
is not negligible. Thus, direct BTBT from band edges filling these unoccupied QBS
may occur (see panel (b) of Figure 6.1), with important consequences on their occu-
pation dynamics, on the radiative/non-radiative balance of currents and, probably,
also on the LED efficiency droop. In order to investigate on this quantum effect –
as far as we know, totally neglected in the today literature – part of my third-year
Ph.D. efforts have been spent in studying and modeling intra-BTBT towards the
active region of single-QW (SQW) GaN-based blue LEDs.

Figure 6.1 summarizes at a glance all the processes we shall see in the present
chapter. In panel (a): TAT of electrons from conduction band in the n-side towards
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6.2 Devices Characterization and Data Analysis

a defect in the p-side at an energy given by the joint probability PMPE(E) ·Ptunn(E),
then capture into the trap with energy Etrap via multiphonon emission according to
the occupation probability Ptrap(E) of the vibrational quasi-levels. A symmetrical
process is supposed to occur for holes. In panel (b): electron intra-band-to-band-
tunneling from CB in the n-side towards quasi-bound states in the quantum well.
Again, a similar processes may occur in valence band for holes.

6.2 Devices Characterization and Data Analysis

As in the case of IR photodetectors, we analyzed two different blue light-emitters,
both manufactured by OSRAM Opto Semiconductors. They are almost identical
except for the indium content, 15% in device A and 18% in device B, the QW thick-
ness, respectively of 3 nm and 1.5 nm, and finally the substrate, which is represented
by highly conductive SiC in device A and Si in device B. In the following all the
other (common) features: with area 250×250 µm2, devices are grown starting from
a n+-GaN buffer layer (with N+

D = 5 · 1018 cm−3), then they include a 10 nm-thick
n−-GaN barrier doped by N−D = 1016 cm−3, an n−-InGaN quantum well followed by
a 2 nm-thick n−-GaN second barrier, both doped with the same doping concentra-
tion N−D . Finally, a 40 nm-thick p+-Al0.15Ga0.85N electron-blocking layer (EBL) and
a p+-GaN contact region, both with N+

A = 2 · 1019 cm−3, complete the structure.

Both devices were electrically and optically characterized by our colleagues from
Padua University. Some experimental data can be found in Figure 6.2. As widely
accepted, it is possible to find some TAT signatures from the analysis of the ex-
perimental I(V ) characteristics [86, 88, 236, 237, 239–243]. Not only, also important
parameters concerning traps can be deduced: for instance, X. A. Cao and cowork-
ers [244, 245] found a correlation between growth quality and TAT by showing the
implications of different growing techniques for fabricating InGaN/GaN structures
on GaN and sapphire substrates. In these two works also the importance of trap den-
sity Ntrap as the main feature determining the excess current under low-forward-bias
conditions was pointed out. In effect, as one may notice from our experimental I(V )
characteristics, this operating regime is connoted by high ideality factors η (curves
grow less rapidly). This behavior was already observed in 1996 by H. C. Casey et
al. [246], who proposed the TAT via defects located in the active region as the
mechanism which mostly contributes to generate such effect. Moreover, as they
highlighted, the I(V ) slope at low-bias and in semilogarithmic scale is almost the
same whatever T when TAT dominates. This implies a slight decreasing trend of
η as a function of T . In fact, referring to the Shockley equation (see Eq. (3.59)), if
the slope

d[ln (I)]

dV
=

q

ηkBT
(6.1)

is constant then η must decrease by reason of the increase of T .

In a paper appeared in the following issue of Applied Physics Letters, P. Perlin
et al. [247] described essentially the same effect. In addition, they also highlighted
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Figure 6.2. Subset of measured I(V, T ) forward characteristics of our single quantum well (SQW)
InGaN/GaN blue light-emitting diodes (LEDs) manufactured by OSRAM Opto Semiconductors:
(a) device A and (b) device B (see text for more details about the structures).

the presence of different bias-dependent transport regimes within each of the char-
acteristics they measured, associated to as many ideality factors.

An important step towards a better comprehension of TAT implication on LEDs
electrical behavior was put by L. Hirsh and A. S. Barrière [248] who noticed that,
due to the marginal role of temperature on defect-related transport, the plot of
log (I/V 2) versus V −1 is a straight line with T -independent slope. Few years later
other researchers [245,249,250] came to the same conclusion, demonstrating that the
rigorous explanation of this phenomenon involves the energy parameter E0 defined
as

E0 = ηkBT , (6.2)

a quantity strictly related to the tunneling barrier encountered by carriers during
the first part of the process. Since the temperature has a negligible effect on the
energy gap of GaN-based materials (see, e.g., Figure 3.7) and, in turn, on the shape
of this barrier, then E0 should be T -insensitive: when T increases, η decreases in
such a way that E0 remains almost constant.

A possible explanations about the the presence of different I(V ) slopes has been
provided by resorting to the often used formula [237,247,249–251]

E0 =
4qh

π

√
NSCR

εm∗tunn

, (6.3)

where ε is the dielectric constant, NSCR the reduced doping concentration at the
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Figure 6.3. Trend of I/V 2 as a function of 1/V in device A (a) and device B (b): symbols repre-
sent calculated values while straight lines are the interpolating functions. Temperature-dependent
energy parameters E0 (c) and ideality factors (d) extracted from experimental forward I(V, T )
characteristics plotted in Figure 6.2. Bias-dependent data have been differentiated for device B.

edges of the space-charge region (SCR) and m∗tunn the tunneling effective mass.
Eq. (6.3) allows to justify the occurrence of different ideality factors and, in turn,
of different E0 by thinking each slope domain as a conduction regime generated by
the tunneling of a specific particle with a proper effective mass m∗tunn. As we shall
see, this fact will be taken into consideration when we will introduce heavy hole
tunneling.

More recently, in 2010, R. Nana and coworkers proposed an alternative mech-
anism at the basis of the observed difference in the slope of forward LED char-
acteristics, which involves the energy of traps Etrap rather their concentration: by
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stimulating the optically active defect levels of blue and UV emitters via electro-
luminescence (EL), the authors of Ref. [252] ascribed each bias-dependent slope
domain of I(V ) to defect-assisted transitions occurring via traps with only specific
energy. By changing the bias, the energy of allowed transitions changes accordingly,
by selecting particular trap levels to assist the process. This selection phenomenon
determines, at the end, different current channels with different transport properties
and, finally, different I(V ) slopes.

We have seen that the decreasing trend of η with respect to T is a clear signature
of TAT. Not only the behavior of the ideality factor as a function of temperature is
crucial but also its value can give some information about the process from which
it is generated. Ideality factors in the range from 1 to 2 are widely considered
as coming from recombination transitions in the depletion region or diffusion-type
transport in neutral regions [86,246,249–254], whereas tunneling usually determines
η� 2 [250,255].

Figure 6.2 shows the forward electrical characteristics for both LEDs fabricated
by OSRAM Opto Semiconductors (curves refer to a selected subset of all measure-
ments, which have been performed in the range between 100 K and 420 K). Notice
that, below the turn-on, device B is connoted by lower currents with respect to
device A. By plotting the experimental I/V 2 at fixed T as a function of 1/V we
obtained the data points reported in panels (a) and (b) of Figure 6.3. Straight lines
are the fitting curves obtained through the simplified Shockley equation

I(V ) ' I0 exp

(
qV

E0

)
= I0 exp

(
qV

ηkBT

)
, (6.4)

where I0 is a prefactor related to the diode saturation current. As one may observe,
fit curves (which become straight lines in semilogarithmic scale) are parallel for
both LEDs. Due to its more complex electrical behavior, we differentiate the trend
of I/V 2 versus 1/V for device B into four sub-domains, denoted by different symbols:
filled dots refer to the low bias regime (1.5 V - 2.3 V) whatever the temperature,
squares to the medium bias range (2.45 V - 2.65 V) at low temperature (< 220 K),
empty circles to high bias (2.65 V - 2.85 V) again at low-T and triangles to the
medium-high bias regime (2.3 V - 2.8 V) at high-T (≥ 220 K).

By using Eq. (6.4) it is possible to extract from each fitting line the variations of
E0 and η with respect to the temperature. The values obtained from this procedure
are plotted, respectively, in panels (c) and (d) of Figure 6.3. The almost constant
trend of E0 (except for the case at low-bias, that we shall discuss), the decreasing
behavior of η versus T and its values, always greater or highly greater than 2, suggest
the presence of trap-assisted tunneling. It is worth noting that, as pointed out in
Ref. [249], η(T ) has a decreasing exponential behavior. In fact, solid line fitting
curves in panel (d) of Figure 6.3 have been obtained through functions of the form

η(T ) = a · exp (−b T ) + c · exp (−d T ) . (6.5)

We might observe that T = 220 K is a crucial temperature for device B since it
separates the medium- and high-bias regime into two main regions of interest, both
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for what concerns the energy parameter and the ideality factor. For T above this
value the thermal trend of these quantities seems univocal, while below it at least two
behaviors have been observed. The other interesting feature about device B is that
the values assumed by the energy E0 are willing in very different ways depending
on the bias range. At high applied forward voltages the energy parameter is nearly
constant and always lower than 90 meV. For bias V = 1.5 V to 2.3 V, instead,
E0 starts from very high values (' 150 meV) at 100 K then it decreases rather
rapidly with temperature and reaches values comparable with those of the higher
bias regime. Since 90 meV has proven to be a distinctive threshold between electron
and hole trap-assisted tunneling [237, 247, 249–251] this effect, as well as the role
played by the temperature T = 220 K, deserves more attention. So, in the next
subsection we will analtze in more detail the experimental data searching for further
evidences of multiple particle tunneling mechanisms.

6.2.1 Supplementary analysis on LED-B about hole TAT

We present here some unpublished results from a deep analysis on device B look-
ing at the possibility to have some specific fingerprints of hole tunneling. Following
a well known procedure (see, e.g., Ref. [248]), a study of trap-assisted activation
energies as a function of the temperature has been performed. The conceptual tool
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we exploited is the well known Arrhenius law. Thus, from the relation

Eact ∝ −kBT log (I) (6.6)

the function

I ' exp

(
−Eact

kBT

)
(6.7)

can be obtained, where Eact represents the TAT activation energy and also the slope
of Eq. (6.7) plotted in semilogarithmic scale. Figure 6.4 presents, in panel (a), the
result of performing a least-square fit with Eq. (6.6) on experimental I(1/T ) at fixed
bias. As already observed, the critical temperature T = 220 K plays a distinctive
role, dividing the data into two sub-domains: below it high activation energies are
expected while above lower values should manifest. Extracting Eact from the slope
of each line a plot like the one reported in panel (b) can be obtained. From this
graph one can see that activation energies in the low-T regime (< 220 K) are of the
order of 350 meV, while for T ≥ 220 K values between 50 and 100 meV are observed.
The former trend is typical of electron TAT while the latter of hole TAT [248].

Considering the Arrhenius plot, along with the fact that – as already discussed
for panel (c) of Figure 6.3 – energy parameters lower than 90 meV under medium-
and high-bias regimes are typical of hole trap-assisted tunneling, we can infer that:

1. at low temperature and low bias electron trap-assisted tunneling governs the
transport;

2. at low temperature and medium bias regime hole TAT dominates;

3. at high temperature and medium- to high-bias regime hole TAT, again, dom-
inates;

where the high- and low-T regime is determined by T = 220 K while the critical
value for high bias is approximately Vcrit = 2.65 V. The low-bias trend denoted by
filled dots in Figure 6.3 is, in the author’s opinion, a thermal transition occurring
from pure electron TAT at around 100 K to a pure hole TAT for T = 420 K,
when E0 assumes values more typical of holes. A further confirmation about these
conclusions comes from a simple test performed on particle effective masses. Since
E0 is a function of m∗ (see Eq. (6.3)), the ratio E0,e/E0,h corresponds to

M =

√
m∗h
m∗e

. (6.8)

Introducing typical values of electrons and heavy holes effective masses in III-nitrides,
then Eq. (6.8) gives MGaN = 2.74, MAlGaN = 2.34 and MInGaN = 2.98, where both
Al and In mole fractions are equal to 0.15. If we compute at T = 100 K the ratio
between E0 extracted from the characteristics in the low- and medium-bias regime
(see first filled dot and square data points in panel (c) of Figure 6.3) one obtains
M = 2.798, which is perfectly in accordance to what theoretically just calculated
above for GaN, Al0.15Ga0.85N and In0.15Ga0.85N.
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6.3 Semiclassical Approach for interband TAT

Now we proceed in describing the simulation procedure adopted in order to in-
vestigate the presence of electron/hole TAT in devices A and B. As for IR photode-
tectors, the semiclassical approach passes through the use of a commercial TCAD
simulator [192] which implements a build-in drift-diffusion (DD) solver. The mul-
tiphonon emission (MPE) and elastic capture rates written in Eqs. (4.128) and
(4.129) are used within the SRH-like TAT recombination rate to calculate electron
and hole currents due to the tunneling source term. Again, thanks to a Delaunay-
Voronöı discretization scheme we divided our LEDs into spatial sub-domains where
the quantities related to the carrier transport are computed at run-time. Material
parameters, moreover, are those described in Chapter 3 (for a complete description
about models and material libraries implementation see also Appendix B).

By using a 2D representation of our LEDs and implementing in the DD sys-
tem only SRH, radiative and Auger GR source terms we obtained the curves repro-
duced in plots of Figure 6.5, where measured and calculated electrical characteristics
and experimental optical characteristics are represented for both devices at room-
temperature. It is well evident that standard generation/recombination models can
not explain the excess currents below the optical turn-on, i.e. in the low optical
power regime, observed in LED grown either on SiC and on Si. According to previ-
ous discussions made about the presence of different tunneling particles we inferred

180



6.3 Semiclassical Approach for interband TAT

a) b)

c©MMandurrinoPhDThesis2017

c)

z, µm
0.15 0.20 0.25

en
er

g
y,

eV
0

−2

2

4

en
er

g
y,

eV

0

−2

2

4

n+-GaN
buffer

n−-GaN barrier #1

n−-InGaN QW
n−-GaN barrier #2

p+-AlGaN EBL

p+-GaN cap layer

device A
(GaN-on-SiC)

device B
(GaN-on-Si)

SiC / Si
substrate

p-contact

n-contact

z, µm
0.15 0.20 0.25

z

0
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neling (TAT) mechanisms we studied in device A (b) and device B (c).

that the observed excess current, namely the discrepancy between model and exper-
iment, can be in part explained with tunneling. Thus we supposed the occurrence
of the following TAT mechanisms in the LED active region (see Figure 6.6): in de-
vice A, electron tunneling from the n−-GaN barrier on the n-side towards defects in
the second n−-GaN barrier and in the following p+-AlGaN electron-blocking layer
(EBL); in device B, electron tunneling from the n+-GaN buffer layer into the con-
tiguous n−-GaN barrier and, moreover, hole tunneling from the active region into
the same barrier.

These are the TAT mechanisms we will implement in the TCAD simulator in
order to verify the initial hypothesis about their occurrence. Due to the high number
of physical parameters at play, we shall start the description of numerical results
with a multi-parametric preparatory study, which allows to put in evidence the MPE
model sensitivity on the variation of its relevant parameters.

6.3.1 Parameters calibration

The first interesting parameter we want to discuss does not involve tunneling at
all, so for this reason it is preferable to analyze it before introducing more deeply
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the results of our major interest. The parameter – and, thus, the effects we are
talking about – concerns the spontaneous polarization (see the related theory in
Subsection 3.2.3) occurring at heterointerfaces of our devices, i.e. between the EBL
and the surrounding cap layer, by one side, and the (second) GaN barrier and,
even more interesting for us and for lighting applications, at the heterostructure
present in correspondence of the InGaN quantum well and the surrounding n−-GaN
barriers. As we shall see in a moment, the effects of sheet polarization charges at
these interfaces heavily reflect on the electrical behavior of both diodes. Not only, a
thermal trend of the polarization charge density seem to occur from the comparison
between measured and calculated characteristics (without tunneling).

In order to obtain a satisfactory reproduction of measured I(V ) characteristics
of device A above the optical turn-on, it has been noticed that the percentage of po-
larization charge density (polarization screening) obtained via Fiorentini-Bernardini
model should be tuned in the range ∼35% to ∼55% when the device temperature
grows from 200 K to 400 K. This behavior can be probably ascribed to a model
underestimation, in our devices, of the lattice constants a0 and c0 variation with T .
As reported by Figure 6.7 in panel (a), as the parameter FB% increases all the sim-
ulated characteristics shift towards higher bias and the threshold voltage increases
as well. Panel (b), instead, synthesizes at a glance the empirical increase of FB%
versus T as resulting from the tuning performed in order to fit experimental I(V )
characteristics without TAT models.
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. (b) Symmetrically, keeping constant the trap energy Etrap at the intrinsic Fermi
level, Ntrap is changed from 1 to 8 · 1016 cm−3.

In the following we will perform some tests, with electron TAT models acti-
vated, only on structure A since the differences between the two LEDs are such
that the same qualitative trend of parameters can be applied to both devices. The
first set of tests concerns trap-related parameters. Where not otherwise specified,
the other TAT parameters are Ωtrap = 2.24 · 10−8 µm2, m∗tunnn = 0.2 m0 [105],
m∗tunnp = 1.5 m0 [105] (for hole TAT in device B), S = 10 and ~ω0 = 91.2 meV [95].
Moreover, TAT is implemented by means of a further spatial grid which assists
traveling carriers. Such non-local mesh was built up and customized by the au-
thor dividing the tunneling window – in the case of device A, from the SCR edge
in the n+-GaN to the entire EBL while, for device B, from the SCR edge to the
barrier/QW interface – into suitable sub-domains which computationally allow the
integration of multiple tunneling paths.

In Figure 6.8 we can appreciate the role of trap energy Etrap and density Ntrap

at room-temperature. Panel (a) shows the implications of changing Etrap on the
calculated electrical characteristics when single-trap levels are implemented with the
same arbitrary density Ntrap = 8 · 1016 cm−3 both in the barrier and in the EBL.
Symmetrically, panel (b) refers to the variations of Ntrap in both layers affected by
the presence of traps when their energies are arbitrarily fixed at the intrinsic Fermi
level Etrap = EFi .

It is important to note that, as expected, if the trap density increases the tun-
neling current increases as well. This was pretty expectable. What is less obvious is
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that, unlike the SRH recombination which is enhanced for traps lying on the midgap,
here the electron multiphonon-elastic TAT current is maximized when traps are close
to the conduction band (CB) edge, i.e. when the tunneling path (for electrons) is
minimized. The opposite occurs for holes (here not included). We can conclude that
this kind of TAT applied to such LED structures is limited by pure tunneling and
not by the ensuing recombination.

The test presented so far are referred to single-level traps, whose energy distri-
bution corresponds to a Dirac-delta function centered at the value Etrap. It is worth
noting what happens if we implement a certain distribution function for trap DOS
as in the case of a Gaussian distribution

Ntrap(E) = N0 exp

[
−(E − Etrap)2

2E2
σ

]
, (6.9)

where N0 is the peak concentration and Eσ is the standard deviation of the dis-
tribution Ntrap(E) (see panel (a) of Figure 6.9). Introducing a trap DOS like in
Eq. (6.9) and keeping the total trap spatial density Ntot = N0Eσ

√
2π fixed at the

arbitrary value Ntot = 8 · 1016 cm−3, different simulations have been performed by
tuning only the parameter Eσ. The results are reported in panel (b) of Figure 6.9.
The case with single-level traps, where Ntrap = Ntot in order to have homogeneous
results, is compared with simulations in which the gaussian broadening assumes the
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values 50 meV, 100 meV and 200 meV. As expected, if Eσ decreases the simulation
tends to the case of single-level traps, since for Eσ → 0 the gaussian distribution
becomes a Dirac-delta function with N(Etrap) = Ntrap.

The last batch of testing simulations was conducted on the most important MPE
parameter: the lattice relaxation energy εr = S~ω0. We treated this energy both as
collective parameter and also as composed by the product of other two parameters,
i.e. the Huang-Rhys factor S and the phonon energy Eph = ~ω0. The simulations
resulting from the tuning of these quantities are reported in Figure 6.10 for device
A at room-temperature. In panel (a) we kept constant the phonon energy at its
typical value for III-nitride materials (Eph = 91.2 meV) and we simulated the effects
of using different Huang-Rhys factors. In panel (b) we did the inverse so, by keeping
S constant (S = 10) we explored the implications of varying the energy Eph. Both
subfigures include a third (identical) test in which either S and Eph change in such a
way that their product remains always equal to εr = 912 meV: dot-dashed light-gray
line indicates the case with S = 8 and Eph = 114 meV while dotted curve represents
the case with S = 12 and Eph = 76 meV.

The first observation which arises from both plots is that the phonon energy
Eph variation has a stronger impact on the TAT contribution to the forward I(V )
characteristics of our devices than the Huang-Rhys factor. Since the trend seems to
follow the rule according to which, by fixing one parameter – S or Eph, it doesn’t
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matter – and increasing the other one the TAT contribution increases too, then one
would be say that TAT currents increase with the increase of εr. However, a second
interesting feature is that, as represented by light-gray curves, the TAT current can
increase even if εr is constant, provided that Eph sufficiently increases at the expense
of S.

All these considerations make the multiphonon-elastic model a rather complicate
workbench for TAT simulations, since the high number of parameters and their
related degree of freedom. Anyway, both the calibration tests and the analysis
conducted on experimental results, as we discussed, can clarify the path towards
data interpretation allowing the understanding of electrical measurements which
can be as reasonable as possible.

6.3.2 TAT simulation results

Finally we implemented the tunneling mechanisms reported in panels (b) and
(c) of Figure 6.6 by using the material libraries discussed in Chapter 3 and Ap-
pendix B and with the TAT parameters specified in Tables 6.1 and 6.2. Polarization
screening, moreover, varies as reported in panel (b) of Figure 6.7 while, as in part
already declared, Ωtrapn = 2.24 · 10−8 µm2, Ωtrapp = 10−9 µm2, m∗tunnn = 0.2 m0,
m∗tunnp = 1.5 m0, S = 10 and ~ω0 = 91.2 meV.

TABLE 6.1. Electron TAT parameters in device A

BARRIER EBL

TEMPERATURE, T (K) Etrap (eV) Ntrap (cm−3) Etrap (eV) Ntrap (cm−3)

200 1.3098 2 · 1017 0.8639 9.9 · 1015

240 1.3178 2 · 1017 0.9027 9.9 · 1015

300 1.3182 2 · 1017 0.9844 9.9 · 1015

400 1.4423 2 · 1017 1.1005 9.9 · 1015

TABLE 6.2. Electron/hole TAT parameters in device B

ELECTRON TAT HOLE TAT

TEMPERATURE, T (K) Etrap (eV) Ntot (cm−3) Etrap (eV) Ntot (cm−3) Eσ (eV)

200 1.7015 3 · 1017 1.472 5 · 1016 0.05

240 1.7081 3 · 1017 1.498 5 · 1016 0.30

300 1.7173 3 · 1017 1.506 5 · 1016 0.50

400 1.7253 3 · 1017 1.521 5 · 1016 0.60

List of single-level/gaussian trap-assisted tunneling (TAT) parameters, where the trap energy is
calculated from band edges: below CB for electrons and above VB for holes.
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Figure 6.11. Room-temperature comparison between calculated and measured I(V ) character-
istics of (a) device A and (b) device B, including the separated current contributions coming from
each TAT process, implemented with the single-level/gaussian parameters of Tables 6.1 and 6.2.
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Figure 6.12. Measured and calculated I(V ) characteristics of device A at different temperatures.
Simulations include all the TAT mechanisms discussed in the text, where single-level traps with
parameters reported in Table 6.1 have been implemented.
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Figure 6.13. Measured and calculated I(V ) characteristics of device B at different temperatures.
Simulations include all the TAT mechanisms discussed in the text, where gaussian traps with
parameters reported in Table 6.2 have been implemented.
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In Figure 6.11 one can appreciate the comparison between measured and calcu-
lated electrical characteristics for both devices. In panel (a) the single contributions
due to electron TAT towards (deep) defects in the EBL (light-blue solid line) and
in the GaN barrier (green solid) of device A are also included. It is interesting to
note that the trap capture/occupation dynamics is pretty evident: at low bias the
current coming from each TAT channel increases then, at a certain electric field,
it experiences a maximum (here the occupation probability is the highest) and, fi-
nally, a partial decrease occurs. In panel (b) we find almost the same behavior.
Here, moreover, we included some unpublished results: first of all we differentiated
the contribution coming from electron TAT towards the GaN barrier (blue solid)
and the hole TAT towards acceptor defects in the same layer (red solid) of device
B (as in the previous structure, we hypothesized the presence of deep traps). Then
in the zoomed inset the intersection between these two contributions is magnified
in order to appreciate the fact that they cross each other exactly at the bias 2.65 V
which is, as deduced from data analysis (see Subsection 6.2.1), the threshold deter-
mining the onset of hole tunneling dominance over electron TAT, in accordance with
Refs. [249, 250]. All the simulations described above include in the drift-diffusion
system the SRH, radiative and Auger GR processes. In particular, those concerning
single tunneling contributions, have been performed – as in the case of IR photode-
tectors – considering each time the process under study as the only source term
within the continuity equation. For this reason we speak again in terms of con-
tributions rather than components, since the sum of each single contribution not
necessarily coincides with the simulation performed activating all the processes.

With the same procedure, and applying the TAT parameters for deep traps
listed in Tables 6.1 and 6.2, the characteristics in the range between 100 K and
400 K have been obtained for both devices, as reported in Figures 6.12 and 6.13.
Apart for the operative region corresponding to the very-low-bias regime, either
device A and B experimental data are well reproduced by simulations accounting
for the TAT processes already discussed. A reason that confirms the importance
of simulations is that from the parameters implemented it is possible to infer some
properties about the simulated structures. In our case, Tables 6.1 and 6.2 and the
other set of libraries can allow to extract useful information concerning the traps
which are at the origin of TAT mechanisms. First of all, a small decreasing trend of
trap energies with the increase of temperature can be observed. This behavior, in
agreement with what reported on a theoretical basis by the authors of Ref [183], can
be attributed in part to a rearrangement of energy levels due to the gap narrowing
with the increase of T (see Subsection 3.2.3). Second, the presence of (deep) defects
below and above the active region, up to the p+-AlGaN EBL, in the LED grown
on SiC and only below the QW in the grown-on-Si device could indicate a deeper
propagation of defects originating from SiC with respect to Si substrates. At the
same time trap densities, as they result from modeling parameters, are higher in
device B than in device A.

At any rate this work demonstrated, for the first time in the literature, the effi-
cacy of the multiphonon-elastic TAT picture in modeling GaN-based light-emitters,
correctly describing the experimental characteristics of two different SQW LED test
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structures below the optical turn-on, and above 2 V, in a current range wide at least
five orders of magnitude.

6.4 Quantum Approach for intra-BTBT

The last process we have to analyze is the intra-band-to-band tunneling (intra-
BTBT) occurring between the n-barrier close to the quantum well and the QW
itself (panel (b) of Figure 6.1). Due to the quantization of energy levels this kind
of tunneling requires to be described by a modeling method which self-consistently
solves both the Schrödinger problem and also the (quantum) transport equations
within the whole device. Even if several approaches have been proposed, as in the
case of Density Gradient (DG) formalism, a density-matrix-derived method often
implemented in commercial TCAD suites [192] as quantum corrections to the DD
(or hydrodynamic) model (see, e.g., Refs. [256–267]), semiclassical modeling can be
inadequate to this purpose. Anyway, the full-quantum NEGF approach appears as
the most indicate tool to describe such kind of microscopic phenomena.

In order to investigate such process in a realistic case, a new LED structure
has been conceived for our simulations. Since NEGF formalism needs to be defined
along all the device, by construction, we created a short diode whose structure has
been inspired by the one simulated in Ref. [147]. So, starting from the n-side, we
have: a 6.5 nm-thick n+-GaN layer (with N+

D = 1019 cm−3) then a 3 nm-thick
n−-GaN barrier, the active region made of a 2 nm-thick n−-In0.2Ga0.8N quantum
well and, again, a second 3 nm-thick n−-GaN barrier, all with doping concentration
N−D = 1016 cm−3. A 4 nm-thick p+-Al0.13Ga0.87N EBL and a 6.5 nm-thick p+-GaN
cap layer, both doped withN+

A = 1019 cm−3, conclude the structure (see Figure 6.14).

Input data for the NEGF module has been obtained through the same TCAD
tool used in previous simulations. So, first the device is implemented into the DD
solver, then conduction and valence band profiles, as well as quasi-Fermi levels, are
extracted by using our material libraries (see Appendix B) and by imposing SRH,
radiative and Auger GR processes and 100% of polarization screening at heteroint-
erfaces computed via Fiorentini-Bernardini model. Energy profiles and all material
parameters are managed by means of HDF5 libraries, working as input files for
the NEGF routine. The Green’s functions method, finally, is implemented under
the scattering regime (see Subsection 4.4.2) i.e. considering besides the boundary
self-energies, which define the ballistic picture, also proper carrier-phonon scattering
self-energies Σ≶

scat such that

[G≶] = [G]
(
[Σ≶] + [Σ≶

scat]
)
[G]† (6.10)

and the the broadening function matrices become

[Γs] = i
(
[Σ>

scat]− [Σ<
scat]
)
, (6.11)

where Σ≶ are the standard lesser/greater boundary self-energies.
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Figure 6.14. (a) Simplified structure (all thicknesses are to scale) of our case-study single quan-
tum well (SQW) light-emitting diode (LED) and its room-temperature band diagram calculated
at equilibrium including the electron intra-band-to-band tunneling (intra-BTBT) mechanism we
studied with NEGF formalism (in grey the symmetrical process involving holes – not discussed
here – is also depicted). The whole structure represents the core of NEGF implementation scheme,
except for contacts at coordinates z = 0 nm and z = 25 nm which are, in our formalisms, the
leads/boundary regions.

Polar-optical phonon self energies have been introduced as

Σ≶
scat(k, E) =

q2~ω
4π2

(
1

ε∞
− 1

ε0

)∫ qtmax

0

qt F (qt,∆z,k,`D) dqt

×
(
fBE G≶(qt, E ± ~ω) + (fBE + 1) G≶(qt, E ∓ ~ω)

)
(6.12)

with the hypothesis of having only local scattering events and under the first-order
Born approximation, and where qt and qz are the phonon transversal/longitudinal
wavevectors, fBE the Bose-Einstein occupation function, ∆z = zi − zj (with zi and
zj two lattice sites), `D the inverse Debye screening length,

F (qt,∆z,qt, `D) =

∫ π/a

0

cos(qz ∆z)

 1√
(q2

z + q2
t + `2

D + k2)
2 − 4k2q2

t

− q2
z + q2

t + `2
D + k2(

(q2
z + q2

t + `2
D + k2)

2 − 4k2q2
t

)3/2

 (6.13)

and a the lattice constant in transport direction.
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Analogously to the Boltzmann transport picture, Eq. (6.12) can be represented
as a comoposition of a scatter-in and a scatter-out component, respectively

Σ<
scat(k, E) = Σ<

em(k, E) + Σ<
ab(k, E)

= Del-ph (fBE + 1) G<(E + ~ω) +Del-ph fBE G<(E − ~ω) (6.14)

and

Σ>
scat(k, E) = Σ>

em(k, E) + Σ>
ab(k, E)

= Del-ph (fBE + 1) G>(E − ~ω) +Del-ph fBE G>(E + ~ω) , (6.15)

which both include an absorption and emission term Σab and Σem, and where Del-ph

represents the electron-phonon interaction strength.
The whole structure we described constitutes the core of NEGF formalism while

the ideal contacts located at its extremities represent the left and right “leads”,
which are folded in the points at z = 0 nm and z = 25 nm, respectively.

6.4.1 NEGF for direct tunneling towards QBS

Figure 6.14 shows, in panel (a), the schematic structure of our case-study SQW
test LED while, in panel (b), the room-temperature band diagram at equilibrium,
as it was extracted from DD calculations, is also reported. It includes a schematic
representation of the electron (and hole, not implemented) intra-BTBT we want to
simulate.

Extracting the electron local density of states (LDOS) for the considered case-
study LED structure one obtains the plot represented in panel (a) of Figure 6.15.
The first observation concerns the presence of, essentially, two distinct regions within
the device where concentration of electronic states are higher (dark patterns): the
second GaN barrier well on the left of the well and the well itself. We know that
these features typically correspond to opportune quasi-bound states (QBS) levels
occurring in the structure. Notice also that, by virtue of NEGF formalism, they are
distributed along the energy axis with a certain spreading width, somehow related
to the broadening function g. Strictly speaking, we say that LDOS – and also
all the other output quantities – are “energy-resolved”. The pattern according to
which the LDOS distributes in the space/energy range here considered is typical of
quantum interference due to the presence of heterointerfaces at the well boundaries,
which reflects the coherent superposition of (scattering) states. A second important
consideration arising from the same graph deals with the features appearing below
the fundamental level in the quantum well: they are due to phonon sub-bands and
strictly come from the NEGF scattering picture. The same property can be noticed
also in panel (b) where we represented the calculated (energy-resolved) electron
density.

Figure 6.16, finally, shows a comparison between QBS energies calculated either
with the author’s FEM-based 1D Schrödinger solver and via the NEGF code de-
veloped by our group. The number and position of states is slightly different but
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Figure 6.15. NEGF (a) electron local density of states (LDOS) and (b) electron density calculated
within the scattering picture in our SQW test structure. Both subplots show the presence of
quasi-bound states (QBS) in the well, as one may deduce from dark patterns within the active
region. The other features in panel (a) can be ascribed to quantum interference at heterointerfaces.

the most important fact, by the tunneling standpoint, is that the highest level is
the same in both cases. Moreover, panel (a) also presents the calculated wavefunc-
tions of each QBS while panel (b) includes the NEGF electron current density. It
is worth noting that the last eigenvalue detected by both approaches generates a
remarkable current channel occurring between the first GaN barrier and the well
(the dark area in panel (b)). This fact, along with the non-vanishing trend of wave-
function at the same eigenenergy – as highlighted in panel (a) – is a clear fingerprint
of intra-band-to-band tunneling towards QBS we were interested in.

6.5 Final Remarks

In this chapter we have seen the application of different tunneling processes to In-
GaN/GaN single quantum well blue LEDs simulation. The theory about III-nitrides,
and the related material properties exposed in Chapter 3 through TCAD-suitable
libraries developed in my first-year of Ph.D., here have found their worth usage.
First we chosen two real structures, fabricated by OSRAM Opto Semiconductor (and
characterized at Padua University) with slightly different features. Then we inferred
from electrical/optical characteristics about the presence of trap-assisted tunneling
(TAT) due to electrons and holes travelling from their respective majority-carrier re-
gions into the active layer via material defects and, then, recombining there. Because
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Figure 6.16. (a) Eigenenergies and wavefunctions of quasi-bound states (QBS) calculated with
the FEM-based 1D Schrödinger solver presented in this work. (b) NEGF QBS eigenenergies
and electron current density. Notice the non-vanishing wavefunction at the highest eigenenergy
connecting the right-barrier and the well, in panel (a), and the corresponding current channel at
the same energy occurring between these layers, in panel (b).

of the band diagram shape, also the occurrence of intra-band-to-band (intra-BTBT)
established between the barrier region and quasi-bound states (QBS) in the quantum
well has been supposed.

By using the semiclassical framework describing TAT via multiphonon emission
(MPE) and elastic carrier/trap scattering event – whose theoretical foundations have
been presented in detail in Chapter 4 – we simulated the above mentioned TAT pro-
cesses. The numerical results demonstrated that the inclusion of such models con-
tributes to accurately reproduce the experimental I(V, T ) characteristics in a wide
range of currents (at least five orders of magnitude) and temperatures (from 200 K
to 400 K) with very good agreement that, otherwise, simple classical DD framework
without any tunneling model would not recover. Furthermore, Subsections 6.2.1 and
6.3.2 presented some unpublished results, for instance in what concerns important
data analysis intended to discriminate between electron and hole TAT as well as
about the implementation of gaussian trap DOS, a feature almost neglected in the
literature.

The last section of the present chapter dealt with the second type of tunneling
here claimed to occur: intra-BTBT. Since this mechanism involves genuine quantum
properties, its physics can be hardly captured by semiclassical formulations. Prob-
ably this is why intra-BTBT is rarely investigated in device-level LED modeling
studies. As a matter of fact, we made use of the full-quantum NEGF formalism
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discussed in Section 6.4 to study these effects in a SQW testing structure. The
role of QBS, however, is also well reproduced by the simple author’s FEM-based
1D Schrödinger solver. Indeed, comparing results from this approach and from our
NEGF code one can come to the same conclusion: a wavefunction/current leakage
between the GaN barrier and QBS in the QW occurs. This effect could be impor-
tant because it may have relevant implications on transport and, thus, also affect
the electrical/optical LED behavior.
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Chapter 7

Summary and Conclusions

This dissertation, and all the work behind it, pursued the scope of studying dif-
ferent tunneling mechanisms in different optoelectronic devices, by means of different
physical formalisms. We started in Part I with a theoretical introduction about basic
solid-state physics (Chapter 1) then we moved towards the description of narrow-
gap HgCdTe alloy system and HgCdTe-based infrared photodetectors (Chapter 2)
and finally we analyzed the family of wide-gap GaN-based materials and their uti-
lize for solid-state lighting, describing also LED properties under the transport and
quantum confinement perspective (Chapter 3). This propaedeutical section included
some important parts of the author’s Ph.D. work, as setting up a self-consistent li-
brary of nitride properties suitable for LED numerical simulations, as an example.
Moreover, such introduction was actually necessary in order to gradually define the
framework and the particular point of view through which tunneling has been con-
sidered in the present dissertation.

Part II collected several scientific results about what represented the main core
of my research production in the last three years. This chapter is intended to go over
the last part again to bring out and highlight the most relevant aspects introduced by
the present dissertation. Since I’ve been involved in a program with a very strong
theoretical component, the entire Chapter 4 was fully dedicated to introduce the
basic formalism to analyze tunneling under the semiclassical perspective, then the
main tunneling mechanisms occurring in semiconductor devices have been explained
(Section 4.1) and then, by gradually increasing the degree of complexity, some other
theoretical features have been added to the dissertation in order to introduce two
main methodological results/improvements:

1. a novel formalism which I developed and that has been applied for the first
time to describe direct tunneling in real HgCdTe-based IR photodetectors
(Section 4.2);
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2. define the physical background concerning the trapping processes in order to
model trap-assisted tunneling in GaN-based LEDs (Section 4.3).

The first aspect has been presented in my Master’s thesis and here, after being
fully developed, it found its first (satisfactory) application in describing the dark
current of standard technology (Hg-vacancy p-type doping) HgCdTe IR photode-
tectors. The second one, instead, can be found as theoretical introduction to the
2015 special issue paper I published in the Journal of Computational Electronics
by invitation of its then Editor in Chief J. Piprek. The chapter also presented
some advanced methods for full-quantum tunneling modeling represented by the
density-matrix-based Wigner function method and the Schrödinger-equation-based
Non-Equilibrium Green’s Function (NEGF) method (Section 4.4), giving also some
noticeable examples coming from the literature or showing preliminary results per-
formed by simulating with a NEGF code developed by our Computational Electron-
ics group in Politecnico di Torino.

In Chapter 5 two case-studies of HgCdTe-based IR photodetectors manufactured
by AIM Infrarot Module have been presented. They were differing only by the
p-type doping dose and technology since device A was doped with the standard Hg-
vacancy procedure whereas device B included Au-acceptors implantation. Since the
previous literature, and due to narrow-gap materials in in these devices (which in
turns produces a short transition path between valence and conduction band), the
author inferred the presence of direct band-to-band tunneling (BTBT) affecting the
dark electrical behavior under reverse bias of such structures. In order to verify the
occurrence of BTBT the above mentioned novel formalism, theoretically presented
in my Master’s thesis, here has been revised and adapted to our devices. The model
was initially conceived for p-i -n diodes being its unique prerequisite a constant
profile of the longitudinal component of the electric field along the junction.

Our structures were made by growing a p-type HgCdTe layer followed by a
n−-type region and then by a thin n+-type HgCdTe layer. Being not too much
different from the ideal case, we supposed a constant field also in our devices. This
fact was confirmed by SIMS profiles (see panel (b) Figure 5.2) thus we felt justified
to apply the new model. Actually this re-formulation of the BTBT generation rate,
which is a modification of the standard Kane’s theory including an empirical param-
eter D proposed in Refs. [174–176] for Si-based devices and a geometrical/physical
device-related parameter δ (in V1/2cm−1/2) introduced in my Master’s thesis [45],
demonstrated to contribute to a very accurate matching between measurements
and simulations. In particular, a set of published results concerning simulated dark
characteristics which included SRH, radiative, Auger recombination, this new BTBT
model and also impact ionization described by Eqs. (5.6) and (5.7) provided very
satisfactory comparisons between experimental and calculated dark J(V, T ) in de-
vice A in the range between 112 K and 166 K (see panel (a) of Figure 5.6), where
we fixed D = 1 and δ was determined via best-fitting procedure.

Besides these results also an unpublished personal author’s reinterpretation of
such simulations have been presented: by using the Beck’s model to describe the
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impact ionization (which introduces a more realistic T -dependence) and by using a
δ fully adherent to our devices parameters this thesis demonstrates the possibility to
obtain an alternative and equally satisfactory version of simulated dark characteris-
tics well reproducing the experimental data which are more rigorous by the physical
modeling standpoint (see panel (b) of Figure 5.6). A similar procedure has been
followed for device B. Unlikely the previous device here we noticed, probably due
to the lower vacancy concentration, that introducing BTBT is useless to recover
measured dark currents in the temperature range here considered – again, from
112 K to 166 K – (see panel (a) of Figure 5.7). This is likely the effect of a different
field at the junction, by reason of less vacancies in the device, generating a differ-
ent band bending and, thus, making negligible the presence of direct band-to-band
transitions.

Also for device B this thesis proposes a never published alternative – and per-
sonal – reinterpretation of numerical simulations which passes through the use of the
T -dependent Beck’s model. Again, this procedure provided satisfactory agreement
between calculated and measured dark currents (see panel (b) of Figure 5.7). In
conclusion, it can be claimed that the novel BTBT formulation I developed allowed
us to obtain an excellent reproduction of the experimental electrical behavior of our
structures in dark conditions. We hope that in the future such model can find a place
in commercial simulators among the other built-in functions since we believe it could
be of crucial importance in narrow-gap-based IR detectors semiclassical simulations.

Chapter 6 dealt with the analysis of two InGaN/GaN single quantum well (SQW)
blue light-emitting diodes (LEDs) manufactured by OSRAM Opto Semiconductors.
The first LED, device A hereinafter, differs from the second structure, device B,
by the QW composition (respectively with In content equal to 15% and 18%) and
thickness (3 nm versus 1.5 nm, respectively) and also by their substrate (SiC and Si
for device A and B). We first analyzed the experimental data and, in particular, a
subset of electrical and optical characteristics within the range 200 K to 400 K. As
reported in literature, by fitting the forward I(V ) characteristics of the diodes with
a simplified Shockley equation (see Eq. (6.4)) and extracting its parameters, if the
values of the ideality factor η are higher than 2 and decreasing with T and, at the
same time, the energy parameter E0 is quite T -independent, then we can infer the
occurrence of TAT. This was exactly our case. So, through a complex data analysis
entirely reported in Section 6.2 we were able to suppose the presence of electrons
tunneling “under the well” of device A from the n-side towards defects in the left
barrier and in the p-AlGaN electron-blocking layer (EBL), where they recombine
with holes in valence band at the trap site (see panel (b) of Figure 6.6). Moreover
this thesis supposed that such process can be modeled via the MPE formalism
theoretically derived in Chapter 4.

The results coming from the same analysis performed on device B, however,
demonstrated a more complex behavior: in particular the fingerprint of a bi-polar
TAT was found. Indeed, two main E0 and η trends have been observed depending
on the bias and temperature regime, since at low-bias and low-T electron TAT seems
to dominate while at higher applied voltages hole TAT should govern the electrical
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transport. A more deep and never published analysis on this second structure shown
that for Vbias greater than Vcrit = 2.65 V (especially at T > 220 K) the effective mass
of carriers most responsible for defect-assisted transitions corresponds to the heavy
hole mass in III-nitride materials. Thus we supposed the existence of electron TAT
from the n-side towards defects in the barrier and, viceversa, hole TAT from the
active region towards the same layer (see panel (c) of Figure 6.6).

In Section 6.3 we proceeded by simulating the electrical behavior of our devices
including, for the first time in the literature for such kind of devices, the MPE
model into the tunneling source term of drift-diffusion (DD) equations. Simulations
shown that below the optical turn-on of both devices the transport is dominated
by defect-assisted phenomena. Moreover device A confirmed to be governed only
by electron TAT, as inferred, and trap-related parameters revealed the presence of
deep-level (acceptor-like) defects extending from the substrate up to the entire EBL
(see panel (a) of Figure 6.11). Device B, instead, confirmed to be affected by both
electron and hole tunneling but, unlikely the previous structure, here deep-levels
seem to reach only the barrier lying below the active region. Anyway, simulations
demonstrated that at Vbias = 2.65 V and room-temperature (so, T > 220 K) hole
contribution starts to dominate over the electron one, in perfect accordance to what
theoretically predicted (see panel (b) of Figure 6.11). In short, the most important
results can be summarized as follows:

1. the first evidence about the effectiveness of the MPE theory applied to TAT
simulations in GaN-based blue LEDs was carried out, both for electron and
bi-polar tunneling;

2. the TAT model was demonstrated to be fully reliable for what concerns elec-
trical simulations performed below the optical turn-on of the structures under
study in the range between 200 K and 400 K;

3. through our modeling procedure we were able to infer useful information about
the energy, the concentration and also the location of acceptor/donor traps
generating the observed TAT mechanisms;

4. thanks to our simulations, it was possible to observe and discriminate the
contribution coming from each TAT channel for both devices (see Figure 6.11);

5. last but not least, the present study constitutes a quite rare example of com-
bined theoretical, analytical and numerical investigation on GaN-based light-
emitters.

We finally hope that such study could boost the research over the transport
implications of defects in III-nitride materials in order to improve the industrial
processes and reduce the impact of quantum effects in solid-state lighting applica-
tions.

Not only TAT mechanisms were supposed to occur in InGaN/GaN LEDs. The
typical band structure of such devices suggests also the presence of an interesting
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quantum process involving quasi-bound states (QBS) within the QW. Since the tri-
angular barrier surrounding the well on the n-side can assist the intra-band direct
tunneling of electrons into the QW (similarly, holes can tunnel from the second
barrier on the p-side towards QBS in the well), in Section 6.4 we supposed also the
occurrence of such intra-BTBT mechanism (see Figure 6.14). Since in the author’s
opinion only a genuine quantum formalism could capture such kind of phenomenon
it has been decided to employ the NEGF routine to verify whether intra-BTBT has
an impact on SQW LED structures. Being the NEGF method highly expensive by
the computational standpoint, a new (realistic) structure has been implemented,
whose total length is of only 25 nm (see Figure 6.14). The results of NEGF simu-
lations revealed a strong carrier leakage in correspondence of the above mentioned
barriers (see Figure 6.15), confirming the initial hypothesis about the relevance of
intra-BTBT mechanisms in GaN-based SQW light-emitters. To the same conclusion
one should come after performing simulations through the 1D Schrödinger solver de-
veloped by the author, which reveals a clear QBS wavefunction leakage in the same
region of the device.

To conclude, we presented the most advanced methods and results concerning
tunneling modeling and simulations in modern optoelectronic devices, both for light
emission and detection. Several physical/mathematical methodologies have been
adopted and the processes described range from direct transitions (both in emitters
and in photodetectors) to trap-assisted ones, always providing opportune theoretical
foundations of data analysis, models derivation and numerical approaches choice.
Moreover the results of our calculations shown to be well supported by experimental
data and literature information, providing in some cases the first evidence of both
models efficacy and phenomena occurrence. Lastly, we tried to give at least a pale
feeling of how crucial is the art of physics-based numerical modeling within today
electronics and its broad application areas.
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Appendix A

HgCdTe Parameters Implementation

The MCT material library here summarized accounts for the physical parameters
discussed in Chapter 2. Since most of them are x-dependent quantities, the library
for HgCdTe material system is built by means of multiple-declaration statements
divided into a certain number of subdomains spanning the range x = 0 to x = 1
according to the scheme

*

* parameter(x) = ...

* equation of the x-dependent parameter to be computed

*

*-----------------------------------

* 0 <= x <= x1

*-----------------------------------

Xmax(0) = 0

parameter(0) = < >

Xmax(1) = x1

parameter(1) = < >

*-----------------------------------

* x1 < x <= x2

*-----------------------------------

Xmax(2) = x2

parameter(2) = < >

*-----------------------------------

* x2 < x <= x3

*-----------------------------------

Xmax(3) = x3

parameter(3) = < >

*-----------------------------------

*

* and so on up to x = 1 ...

*
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A.1 Energy Gap and Electron Affinity

remembering that, in our devices, the cadmium mole fraction change at mesh nodes
in accordance with the fitting law plotted in panel (b) of Figure 5.2.

In order to manage the T -dependence, instead, a single .par library file is used for
each simulation temperature. Such files are automatically generated by a MATLAB
source code (thanks to the work done by D. D’Orsogna and M. Moresco from Boston
University).

In the following we shall analyze the models related to some of the most im-
portant quantities needed to HgCdTe MWIR photodetectors simulation with the
commercial suite Sentaurus Device by Synopsysr [192] by showing the code imple-
mented for the fixed temperature T = 85 K.

A.1 Energy Gap and Electron Affinity

The Hansen-Seiler [32,33] formula (see Eqs. (2.17) and (2.18)) for the computa-
tion of MCT Eg(x, T ), as well as the electron affinity model [43]

χ(x, T ) = 4.23− 0.813 (Eg(x, T )− 0.083) , (A.1)

are implemented through the third-order fitting formula

y(x) = F + Ax+B x2 + C x3 . (A.2)

So, the .par file accounts for such bandgap-related code

*

* Eg(x) = F + A x + B x^2 + C x^3

* Chi(x) = F + A x + B x^2 + C x^3

* 0 <= x <= 1

*

*-----------------------------------

Bandgap {

* Eg = Eg0 + alpha * Tpar^2 / (beta + Tpar) - alpha * T^2 / (beta + T)

Xmax(0) = 0

Chi0(0) = 4.5074

Eg0(0) = -0.25821

alpha(0) = 0

beta(0) = 0

Xmax(1) = 1

Chi0(1) = 2.9916

Eg0(1) = 1.6062

alpha(1) = 0

beta(1) = 0

B(Chi0(1)) = 0.65853

C(Chi0(1)) = -0.67642

B(Eg0(1)) = -0.81

C(Eg0(1)) = 0.832

}

where only one unique mole fraction interval has been considered and in which all
alpha and beta statement are set equal to zero in order to neglect the T -dependence
of the Sentaurus built-in formula written at the line 8 of the previous code.
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A.2 Permittivity

A.2 Permittivity

The (high-frequency) T -independent MCT permittivity ε(x) (see Eq. (2.33)) is
implemented, according to Refs. [7, 43], through the model of Eq. (A.2) via the
code

*

* eps(x) = F + A x + B x^2 + C x^3

* 0 <= x <= 1

*

*-----------------------------------

Epsilon {

Xmax(0) = 0

epsilon(0) = 20.5

Xmax(1) = 1

epsilon(1) = 10.7

B(epsilon(1)) = 5.7

C(epsilon(1)) = 1.0162e-13

}

where, again, the interval is uniquely one.

A.3 Effective Mass

In the case of electron effective masses (see Eq. (2.13)) the x domain has been
divided into 10 segments while, again, the third-order fitting formula is used. Since
Sentaurus uses equation

m∗e(T ) = mm +
3

√
ml

(
6a
Eg(0)

Eg(T )

)2

, (A.3)

in order to exploit Eq. (A.2) we have to set as zero all the a and ml declarations:

*

* Formula1: me/m0 = [ (6 * a[Eg(0)/Eg(T)])^2 * ml ]^(1/3) + mm

* me(x) = F + A x + B x^2 + C x^3

*

*-----------------------------------

eDOSMass {

Formula = 1

a = 0

ml = 0

*-----------------------------------

* 0 <= x <= 0.1

*-----------------------------------

Xmax(0) = 0

mm(0) = -0.024312

Xmax(1) = 0.1

mm(1) = -0.0066767

B(mm(1)) = -0.54671
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A.4 Mobility

C(mm(1)) = 1.3154

*-----------------------------------

* 0.1 < x <= 0.2

*-----------------------------------

Xmax(2) = 0.2

mm(2) = 0.0064493

B(mm(2)) = -0.30057

C(mm(2)) = 0.37231

*-----------------------------------

*

* ...

*

}

The hole effective masses, instead, are set as m∗h = 0.55 m0, whatever the tem-
perature and the mole fraction:

hDOSMass {

* Formula1: mh = m0*{[(a+bT+cT^2+dT^3+eT^4)/(1+fT+gT^2+hT^3+iT^4)]^(2/3) + mm}

Formula = 1

a = 0

b = 0

c = 0

d = 0

e = 0

f = 0

g = 0

h = 0

i = 0

mm = 0.55 # [m0]

}

where all the built-in parameters are imposed to be zero in order to suppress all the
unwanted dependencies of the pre-implemented model

m∗h(T ) = mm +

(
a+ bT + cT 2 + dT 3 + eT 4

1 + fT + gT 2 + hT 3 + iT 4

)2/3

. (A.4)

In this way only mm (i.e. mm) survives.

A.4 Mobility

Here the mole fraction range is divided into 51 subdomains while, again, Eq. (A.2)
has been used. In order to recover this fitting equation with the models in Eqs. (2.19)
and (2.20), the built-in function

µe,h(T ) = µMaxe,h

(
T

300 K

)−αe,h

, (A.5)

must be treated by imposing the exponent α as equal to zero. Thus:
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A.5 Doping

*

* mu_const = mumax (T/T0)^(-Exponent)

* mu(x) = F + A x + B x^2 + C x^3

*

*-----------------------------------------

ConstantMobility {

*-----------------------------------------

* 0 <= x <= 0.02

*-----------------------------------------

Xmax(0) = 0, 0

mumax(0) = 92940.4968, 929.405

Exponent(0) = 0, 0

Xmax(1) = 0.02, 0.02

mumax(1) = 116158.7834, 1161.5878

Exponent(1) = 0, 0

B(mumax(1)) = 5589587.0996, 55895.871

C(mumax(1)) = 5495919.7093, 54959.1971

*-----------------------------------------

*

* ...

*

}

where each parameter is declared as a couple of values, respectively, for electrons
and holes.

A.5 Doping

The T -independent behavior of dopants (ionization energies and incomplete ion-
ization) follows the carrier statistics

nD = ND
1

1 + gD e

(
n
n1

+1
) = ND

1

1 + gD e

(
EF−ED
kBT

)

pA = NA
1

1 + gA e

(
p
p1

+1
) = NA

1

1 + gA e

(
EA−EF
kBT

) , (A.6)

where gD = 2 and gA = 4 are the so-called degeneracy factors. Sentaurus uses these
formulas only when nD and pA are greater than NdCrit and NaCrit, respectively. So
we considered them as null in order to have Eq. (A.6) activated whatever the doping
concentrations. Also the doping-dependence of nD and pA has been neglected by
means of alpha = 0 statement, where alpha different from zero would be part of
the model via n1 = NC e

−EC−ED−αD
3
√
NA+ND

kBT

p1 = NV e
−EA−αA

3
√
NA+ND−EV
kBT

. (A.7)

So we set
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A.6 GR Mechanisms

Ionization {

* Parameters for incomplete ionization (replace ’*’ with doping species)

* E_*_0 ionization energy of donor/acceptor

* g_* degeneracy factor

* alpha_* doping dependent shift parameter

*-- Donor --

E_D_0 = -1.89e-3 # [eV]

g_D = 2

alpha_D = 0 # [eV cm]

NdCrit = 0 # [cm-3]

*-- Acceptor --

E_A_0 = 2.01e-2 # [eV]

g_A = 4

alpha_A = 0 # [eV cm]

NaCrit = 0 # [cm-3]

}

A.6 GR Mechanisms

In the case of SRH processes the definition of lifetimes passes through the
so-called Scharfetter model

τSRH = τmin +
τMax − τmin

1 +
(
NA+ND

Nref

)γ , (A.8)

which assumes an univocal value if we state

τSRH = τmin = τMax , (A.9)

where τSRH is the desired value for electron/hole lifetimes. Our x- and T -independent
parameters, thus, become

Scharfetter {

* relation and trap level for SRH recombination:

* tau = taumin + ( taumax - taumin ) / (1 + ( N/Nref )^gamma)

taumin = 1.5e-6, 1.5e-6 # [s]

taumax = 1.5e-6, 1.5e-6 # [s]

Etrap = 0 # [eV]

}

where the values γ and Nref are negligible since we adopted the hypothesis of
Eq. (A.9).

For what concerns, instead, radiative and Auger mechanisms we have again x-
and T -dependent parameters (see Section 2.3.2) where, for a fixed temperature,
again the third-order interpolation holds. Supposing T = 85 K, we have, respec-
tively
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A.6 GR Mechanisms

*

* R_Radiative = C (n p - ni_eff^2)

* Brad(x) = F + A x + B x^2 + C x^3

* 0 <= x <= 1

*

*-----------------------------------

RadiativeRecombination {

Xmax(0) = 0

C(0) = 3.2280e-11

Xmax(1) = 0.18

C(1) = 3.2280e-11

Xmax(2) = 1

C(2) = 6.7069e-10

B(C(2)) = -5.4721e-10

C(C(2)) = 4.2358e-10

}

with one x-interval, and

*

* R_Auger = ( C_n n + C_p p ) (n p - ni_eff^2)

* with C_n,p = (A + B (T/T0) + C (T/T0)^2)

* Caug(x) = F + A x + B x^2 + C x^3

*

*--------------------------------------------------

Auger {

*--------------------------------------------------

* 0 <= x <= 0.18

*--------------------------------------------------

Xmax(0) = 0, 0

A(0) = 1.0375e-24, 2.119e-25 # [cm^6/s]

B(0) = 0, 0

C(0) = 0, 0

Xmax(1) = 0.18 #, 0.18

A(1) = 1.0375e-24, 2.119e-25 # [cm^6/s]

B(1) = 0, 0

C(1) = 0, 0

*--------------------------------------------------

*

* ...

*

}

which is divided into 52 x-intervals.
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Appendix B

GaN/InGaN/AlGaN Parameters Implementation

Here we describe the procedure used to implement some of the most important
physical parameters of III-nitride materials listed in Chapter 3 into the commer-
cial TCAD simulator, Sentaurus Device by Synopsysr [192]. Since some built-in
functions does not coincide with the equations used in our material library, in the
following we present input parameters, models and implementation codes that have
been used to introduce our formalisms into the simulator, and in particular within
the “parameter file” .par.

B.1 Energy Gap

The room temperature GaN bandgap is computed by placing T = 300 K in the
following Varshni equation:

Eg,GaN(T ) = Eg,GaN(0 K)− 9.09 · 10−4 · T 2

830 + T
, (B.1)

while, for AlxGa1−xN holds

Eg,AlGaN(x, T ) = (1− x)Eg,GaN(T ) + xEg,AlN(T )− x(1− x) , (B.2)

where

Eg,AlN(T ) = Eg,AlN(0 K)− 17.99 · 10−4 · T 2

1462 + T
, (B.3)

in which, again, T = 300 K. Finally, for InxGa1−xN:

Eg,InGaN(x, T ) = (1− x)Eg,GaN(T ) + xEg,InN(T )− 3x(1− x) , (B.4)

where

Eg,InN(T ) = Eg,InN(0 K)− 2.45 · 10−4 · T 2

624 + T
. (B.5)
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B.2 Electron Affinity

For the values of mentioned parameters see Table B.1. It is worth stressing that
we do not include any kind of band gap tailoring, so the previous expressions refer
to values Eg which are fixed with respect to variables different from mole fraction
and temperature. In order to ensure this fact, it is recommended to use the option
EffectiveIntrinsicDensity(NoBandGapNarrowing) in the “Physics” section of
the SDevice command file.

TABLE B.1. III-nitrides bandgap input parameters

PARAMETER VALUE

GaN energy gap at 0 K, Eg,GaN(0 K) 3.507 eV

GaN energy gap at 300 K (calculated), Eg,GaN(300 K) 3.435 eV

AlN energy gap at 0 K, Eg,AlN(0 K) 6.230 eV

InN energy gap at 0 K, Eg,InN(0 K) 0.735 eV

GaN electron affinity, χGaN 4.070 eV

InGaN and AlGaN conduction band offset, ∆off 0.670 eV

Bandgap-related parameters of GaN, InN and AlN.

As an example, supposing to have mole fractions x = 0.15 for both Al and In,
the room-temperature energy gaps for ternary alloys are Eg,AlGaN(300 K) = 3.88 eV
and Eg,InGaN(300 K) = 4.6 eV.

B.2 Electron Affinity

GaN affinity is assumed to be temperature-independent since its parameters are
defined as for InxGa1−xN with x = 0, which actually suppresses the T -dependence.
In fact in

χInGaN(x, T ) = χGaN − (Eg,InGaN(x, T )− Eg,GaN(x, T )) ∆off (B.6)

the term within the parentheses is null as long as x = 0, whatever the temperature
(see also Eqs. (B.1) and (B.4)). This means that, in the Sentaurus parameter file,
the GaN Bandgap-Affinity section must be defined as follows:

Bandgap {

* Eg = Eg0 + alpha * Tpar^2 / (beta + Tpar) - alpha * T^2 / (beta + T)

!(

set Eg0GaN [expr 3.507 - 9.09e-4 * $T * $T / (830 + $T)]

)!

Chi0 = 4.07

Eg0 = !(puts -nonewline "$Eg0GaN")!

alpha = 0.0

beta = 0.0
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B.2 Electron Affinity

Tpar = 0.0

}

Firstly we suppress the standard formula (written in the second line of the code
above) by plugging alpha and beta equal to zero; in this way Chi0 no longer depends
on temperature T. Then, in the fourth line Eq. (B.1) is implemented. Finally, since
all the bandgap-related values we inserted refer to T = 0 K, we have also to set
Tpar as null to be sure to neglect the second addend in the computation of Eg.
Concerning the alloys AlGaN and InGaN the implementation of Eq. (B.6) and

χAlGaN(x, T ) = χGaN − (Eg,AlGaN(x, T )− Eg,AlGaN(300 K))

− (Eg,InGaN(x, 300 K)− Eg,GaN(300 K)) ∆off , (B.7)

passes, respectively, through the codes

Bandgap {

* Eg = Eg0 + alpha * Tpar^2 / (beta + Tpar) - alpha * T^2 / (beta + T)

!(

set Eg0GaN [expr 3.507 - 9.09e-4 * $T * $T / (830 + $T)]

set Eg0InN [expr 0.735 - 2.45e-4 * $T * $T / (624 + $T)]

set Egx [expr (1 - $x) * $Eg0GaN + $Eg0InN * $x - 3 * $x * (1 - $x)]

set ChiGaN [expr 4.07 - ($Egx - $Eg0GaN) * 0.67]

)!

Chi0 = !(puts -nonewline "$ChiGaN")!

Eg0 = !(puts -nonewline "$Egx")!

alpha = 0.0

beta = 0.0

Tpar = 0.0

}

and

Bandgap {

* Eg = Eg0 + alpha * Tpar^2 / (beta + Tpar) - alpha * T^2 / (beta + T)

!(

set Eg0GaN [expr 3.507 - 9.09e-4 * $T * $T / ( 830 + $T)]

set Eg0GaN300 [expr 3.507 - 9.09e-4 * 300 * 300 / ( 830 + 300)]

set Eg0AlN [expr 6.23 - 17.99e-4 * $T * $T / (1462 + $T)]

set Eg0AlN300 [expr 6.23 - 17.99e-4 * 300 * 300 / (1462 + 300)]

set Egx [expr (1 - $x) * $Eg0GaN + $Eg0AlN * $x - $x * (1 - $x)]

set Egx300 [expr (1 - $x) * $Eg0GaN300 + $Eg0AlN300 * $x - $x * (1 - $x)]

set ChiGaN [expr 4.07 - ($Egx300 - $Eg0GaN300) * 0.67 - ($Egx - $Egx300)]

)!

Chi0 = !(puts -nonewline "$ChiGaN")!

Eg0 = !(puts -nonewline "$Egx")!

alpha = 0.0

beta = 0.0

Tpar = 0.0

}
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B.3 Permittivity

About the meaning of Chi0 we have to spend few words. According to the
Sentaurus Device User Guide [192] the T -dependent electron affinity is computed
through

χ(T ) = χ0 +
(α1 + α2)T 2

2 (β1 + β2 + T )
+ k Ebgn (B.8)

where, by default, α2 = β2 = 0, the bandgap-narrowing energy shift Ebgn depends on
the correction model activated (if any) and its adjustable coefficient k (the so-called
Bgn2Chi) assumes the standard value 0.5. Clearly, without any bandgap-narrowing
model (Ebgn = 0) and by imposing also that α1 = β1 = 0 (as in our case), Eq. (B.8)
for GaN reduces to χ(T ) ≡ χ0. For InGaN and AlGaN, moreover, Eqs. (B.6) and
(B.7) are still valid.

B.3 Permittivity

The T -independent InGaN and AlGaN permittivities follow the interpolation
rules

εInGaN = εGaN + x (εInN − εGaN) (B.9)

and
εAlGaN = εGaN + x (εAlN − εGaN) , (B.10)

where the needed parameters are reported in Table B.2.

TABLE B.2. III-nitrides permittivity input parameters

PARAMETER VALUE

GaN permittivity, εGaN 9.5 ε0

InN permittivity, εInN 15.0 ε0

AlN permittivity, εAlN 8.5 ε0

Permittivities in GaN, InN and AlN.

The codes used in the parameter file are

Epsilon {

epsilon = 9.5

}

for GaN,

Epsilon {

!(

set perm_GaN 9.5

set perm_InN 15

set diff_val [expr $perm_InN - $perm_GaN]

set perm_InGaN [expr $diff_val * $x + $perm_GaN]

)!
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B.4 Effective Mass

epsilon = !(puts -nonewline "$perm_InGaN")!

}

for InGaN and

Epsilon {

!(

set perm_GaN 9.5

set perm_AlN 8.5

set diff_val [expr $perm_AlN - $perm_GaN]

set perm_AlGaN [expr $diff_val * $x + $perm_GaN]

)!

epsilon = !(puts -nonewline "$perm_AlGaN")!

}

for AlGaN. As an example, assuming x = 0.15 for both ternary alloys, we have
εInGaN = 10.325 ε0 and εAlGaN = 9.35 ε0.

B.4 Effective Mass

Since the simulator implements the following models for electron and hole effec-
tive masses

m∗e(T ) = mm +
3

√
ml

(
6a
Eg(0)

Eg(T )

)2

(B.11)

and

m∗h(T ) = mm +

(
a+ bT + cT 2 + dT 3 + eT 4

1 + fT + gT 2 + hT 3 + iT 4

)2/3

, (B.12)

our fixed values (reported in Table B.3) can be implemented through the codes

eDOSMass {

* Formula1: me/m0 = [ (6 * mt)^2 * ml ]^(1/3) + mm

* mt = a[Eg(0)/Eg(T)]

Formula = 1

a = 0

ml = 0

mm = < > # [m0]

}

and

hDOSMass {

* Formula1: mh = m0*{[(a+bT+cT^2+dT^3+eT^4)/(1+fT+gT^2+hT^3+iT^4)]^(2/3) + mm}

Formula = 1

a = 0

b = 0

c = 0

d = 0

e = 0

f = 0
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B.5 Mobility

g = 0

h = 0

i = 0

mm = < > # [m0]

}

which disable the original formulas and introduce, via the value of the parameter mm
in brackets, our effective masses written in Table B.3.

TABLE B.3. III-nitrides effective mass input parameters

PARAMETER VALUE

GaN electron effective mass, m∗e,GaN 0.200 m0

GaN hole effective mass, m∗h,GaN 1.500 m0

InGaN electron effective mass, m∗e,InGaN 0.188 m0

InGaN hole effective mass, m∗h,InGaN 1.670 m0

AlGaN electron effective mass, m∗e,AlGaN 0.200 m0

AlGaN hole effective mass, m∗h,AlGaN 1.090 m0

Effective electron and hole mass in GaN, InGaN and AlGaN.

Hole masses are not differentiated into heavy and light holes because we used
the same value for both carriers.

B.5 Mobility

In this case, our model

µe,h(T ) = µMaxe,h

(
T

300 K

)−αe,h

, (B.13)

where µMax = µ(300 K) is the (constant) mobility at room-temperature, perfectly
coincides with the built-in function in Sentaurus. Thus, according to Table B.4 the
following code has been implemented in the .par file:

ConstantMobility {

* mu_const = mumax (T/T0)^(-Exponent)

mumax = 300, 10 # respectively, electron and hole value [cm2/(Vs)]

T0 = 300 # [K]

Exponent = 1.5, 2.0

}
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TABLE B.4. III-nitrides mobility input parameters

PARAMETER VALUE

electron room-T mobility, µMaxe
300.0 cm2V−1s−1

hole room-T mobility, µMaxh
10.0 cm2V−1s−1

electron exponential factor, αe 1.5

hole exponential factor, αh 2.0

Mobility-related parameters in GaN, InGaN and AlGaN.

B.6 Doping I: Ionization Energy

As already mentioned in Chapter 3, dopant ionization energies in GaN-based
material system are chosen as ED,ion = 20 meV either for donors in GaN, InGaN
and AlGaN while acceptors follow the values reported in Table B.5, which are due
to the well-known influence of the Al and In mole fractions.

TABLE B.5. III-nitrides incomplete ionization input parameters

PARAMETER VALUE

donor ionization energy, ED,ion 20 meV

GaN acceptor ionization energy, EA,ionGaN
199 meV

InGaN acceptor ionization energy, EA,ionInGaN
170 meV

AlGaN acceptor ionization energy, EA,ionAlGaN
210 meV

Doping-related parameters in GaN, InGaN and AlGaN.

B.7 Doping II: Incomplete Ionization

We wanted to introduce the dopants statistics
nD = ND

1

1 + gD e

(
EF−ED
kBT

)

pA = NA
1

1 + gA e

(
EA−EF
kBT

) , (B.14)

where gD and gA are opportune degeneracy factors. Since the simulator implements
the same formulas with the exception that for concentrations higher than the crit-
ical values NdCrit and NaCrit, the ionization becomes complete. To suppress this
arbitrary behavior it is sufficient to impose Ncrit = 0 always. The code introducing
both ionization energies parameters and such ionization model is the following
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Ionization {

* Parameters for incomplete ionization (replace ’*’ with doping species)

* E_*_0 ionization energy of donor/acceptor

* g_* degeneracy factor

* alpha_* doping dependent shift parameter

*-- Donor --

E_D_0 = < > # [eV]

g_D = 2

alpha_D = 0 # [eV cm]

NdCrit = 0 # [cm-3]

*-- Acceptor --

E_A_0 = < > # [eV]

g_A = 4

alpha_A = 0 # [eV cm]

NaCrit = 0 # [cm-3]

}

where, as usual, brackets must include our material values and where the parameter
alpha is set to be zero since, otherwise, it would introduce an unwanted doping
dependence into the incomplete ionization process.

B.8 GR Mechanisms

In LEDs the SRH recombination has been modeled via its usual trap-related
lifetimes

τSRH =
1

σ vth Ntrap

. (B.15)

In order to call this formula we have to activate, in the SDevice command file,
the flag Recombination(SRH(DopingDependence)), enabling the doping-dependent
Scharfetter model

τSRH = τmin +
τMax − τmin

1 +
(
NA+ND

Nref

)γ (B.16)

where Nref is an arbitrary reference concentration and γ a dimensionless parameter.
In order to make Eqs. (B.15) and (B.16) comparable we have to set τMax = τmin and
equal to the desired value of SRH lifetime. The following code

Scharfetter {

* relation and trap level for SRH recombination:

* tau = taumin + ( taumax - taumin ) / (1 + ( N/Nref )^gamma)

taumin = < >, < > # [s]

taumax = < >, < > # [s]

Etrap = 0 # [eV]

}

has been used, where brackets should include the electron/hole lifetimes (see Ta-
ble B.6) and Etrap = 0 means that we are considering traps at the intrinsic Fermi
level.
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TABLE B.6. III-nitrides SRH input parameters

PARAMETER VALUE

GaN SRH lifetime, τSRHGaN
5 · 10−8 s

InGaN SRH lifetime, τSRHInGaN
5 · 10−8 s

AlGaN SRH lifetime, τSRHAlGaN
1 · 10−7 s

Doping-dependent (Scharfetter) SRH-related electron/hole lifetimes in GaN, InGaN and AlGaN.

For what concerns radiative and Auger recombination, we acted by setting di-
rectly their coefficients Brad and Cn,p, respectively. So the .par codes read

RadiativeRecombination {

* R_Radiative = C (n p - ni_eff^2)

C = < > # [cm^3/s]

}

for radiative, and

Auger {

* R_Auger = ( C_n n + C_p p ) (n p - ni_eff^2)

* with C_n,p = (A + B (T/T0) + C (T/T0)^2)

A = < >, < > # [cm^6/s]

B = 0, 0 # [cm^6/s]

C = 0, 0 # [cm^6/s]

}

for Auger, where bracketed values follow Table B.7 and where coefficients B and C

have been set equal to zero in order to suppress the second and the third terms in
the model written at the line 3 of the previous code.

TABLE B.7. III-nitrides radiative/Auger recombination input parameters

PARAMETER VALUE

radiative coefficient, Brad 2 · 10−11 cm3s−1

Auger coefficient, Cn,p 2 · 10−30 cm6s−1

Radiative and Auger-related recombination coefficients in GaN, InGaN and AlGaN.
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Novel BTBT Formulation: C++ Routine

#include <iostream>

#include <cmath>

#include <stdlib.h>

#include "PMIModels.h"

class Band2Band_pin_MM : public PMI_Recombination {

protected:

double pi, q, m0, hbar;

public:

Band2Band_pin_MM (const PMI_Environment& env);

~Band2Band_pin_MM();

void Compute_r

(const double t, const double n, const double p,

const double nie, const double f, double& r);

void Compute_drdt

(const double t, const double n, const double p,

const double nie, const double f, double& drdt);

void Compute_drdn

(const double t, const double n, const double p,

const double nie, const double f, double& drdn);

void Compute_drdp

(const double t, const double n, const double p,

const double nie, const double f, double& drdp);

void Compute_drdnie
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(const double t, const double n, const double p,

const double nie, const double f, double& drdnie);

void Compute_drdf

(const double t, const double n, const double p,

const double nie, const double f, double& drdf);

};

Band2Band_pin_MM::

Band2Band_pin_MM (const PMI_Environment& env) :

PMI_Recombination (env)

{;}

Band2Band_pin_MM::

~Band2Band_pin_MM ()

{

}

void Band2Band_pin_MM::

Compute_r (const double t, const double n, const double p,

const double nie, const double f, double& r)

{ double mt, eg, eg300, A, B, D;

double pi, q, m0, hbar;

const PMIBaseParam* gamma = ReadParameter ("gamma");

double g = *gamma; // device-related parameter of Mandurrino BTBT rate

const PMIBaseParam* Temp = ReadParameter ("Temp");

double T = *Temp;

double x = ReadxMoleFraction();

pi = 3.14159265358979;

q = 1.602e-19;

m0 = 9.109e-31;

hbar = 1.054e-34;

eg300 = 0.283668 * q;

D = 1; // dimensionless parameter of Mandurrino BTBT rate

// x- and T-dependent energy gap (eg) and electron tunneling mass (mt)

eg1 = -0.302 + 1.93 * x - (0.81 * x * x) + (0.832 * x * x * x);

eg2 = 5.35e-4 * ((T * T * T -1822) / (T * T - 255.2)) * (1 - 2 * x);

eg_eV = (eg1+eg2);

eg = eg_eV * q;

mt = m0 / (5.73 * (2/eg + 1/(eg+1)));

A = -(1e-2) * sqrt(2*mt) * pow(q,2) / (4*pow(pi,3)*pow(hbar,2)*sqrt(eg));

B = (1e-2) * pi * sqrt(mt*pow(eg300,3)) / (2*sqrt(2)*q*hbar);
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if (f == 0) {

r = 0.0;

}

else {

r = A * pow(g,(D-1)) * pow(f,((D+1)*0.5))

* exp( -B / ( g * sqrt(f) ) );

}

}

void Band2Band_pin_MM::

Compute_drdt (const double t, const double n, const double p,

const double nie, const double f, double& drdt)

{;}

void Band2Band_pin_MM::

Compute_drdn (const double t, const double n, const double p,

const double nie, const double f, double& drdn)

{;}

void Band2Band_pin_MM::

Compute_drdp (const double t, const double n, const double p,

const double nie, const double f, double& drdp)

{;}

void Band2Band_pin_MM::

Compute_drdnie (const double t, const double n, const double p,

const double nie, const double f, double& drdnie)

{;}

void Band2Band_pin_MM::

Compute_drdf (const double t, const double n, const double p,

const double nie, const double f, double& drdf)

{ double r, mt, eg, eg1, eg2, eg_eV, eg300, A, B, D;

double pi, q, m0, hbar;

const PMIBaseParam* gamma = ReadParameter ("gamma");

double g = *gamma; // device-related parameter of Mandurrino BTBT rate

const PMIBaseParam* Temp = ReadParameter ("Temp");

double T = *Temp;

pi = 3.14159265358979;

q = 1.602e-19;

m0 = 9.109e-31;

hbar = 1.054e-34;

eg300 = 0.283668 * q;

D = 1; // dimensionless parameter of Mandurrino BTBT rate

// x- and T-dependent energy gap (eg) and electron tunneling mass (mt)

eg1 = -0.302 + 1.93 * x - (0.81 * x * x) + (0.832 * x * x * x);

eg2 = 5.35e-4 * ((T * T * T -1822) / (T * T - 255.2)) * (1 - 2 * x);

eg_eV = (eg1+eg2);

eg = eg_eV * q;
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mt = m0 / (5.73 * (2/eg + 1/(eg+1)));

A = -(1e-2) * sqrt(2*mt) * pow(q,2) / (4*pow(pi,3)*pow(hbar,2)*sqrt(eg));

B = (1e-2) * pi * sqrt(mt*pow(eg300,3)) / (2*sqrt(2)*q*hbar);

if (f == 0) {

r = 0.0;

}

else {

r = A * pow((1.24172e2),(d-1)) * pow(f,((d+1)*0.5))

* exp( -B / ( 1.24172e2 * sqrt(f) ) );

}

if (r == 0) {

drdf = 0.0;

}

else {

drdf = A * pow(g,D) * exp( -B / (g * sqrt(f)) ) * pow(f,((D*0.5)-1))

* ( (B / (2 * g * g)) + (sqrt(f) * (g * (1 + D))) );

}

}

PMI_Recombination* new_PMI_Recombination (const PMI_Environment& env)

{ return new Band2Band_pin_MM (env);

}
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