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Abstract

This work presents a class of plate finite elements (FEs) formulated with node-dependent kinematics,
which can be used to construct global-local models with high numerical efficiency. Taking advantage
of Carrera Unified Formulation (CUF), plate theory kinematics can be individually defined on each FE
node, realizing a variation of refinement levels within the in-plane domain of one element. When used
in the bridging zone between a global model and a locally refined one, an efficient global-local model
can be constructed. Elements with variable ESL/LW kinematics from node to node are developed and
applied in the global-local analysis of laminated structures. This work includes numerical examples in
which LW models with refined kinematics are employed in local regions while ESL models are adopted
in the less critical area, and modeling domains are connected by transition zone composed of elements
with node-dependent kinematics. The obtained results are compared with solutions from literature and
3D FE modeling. For laminated plates with local effects to be considered, the proposed plate models
can reduce the computational costs significantly while guaranteeing numerical accuracy without using
special global-local coupling methods.

1 Introduction

Application of composite laminated structures to improve the structural efficiency is drawing increasing
attention in many engineering fields especially in aerospace. Sophisticated local effects that cause stress
concentration in laminated structures raise the demands for efficient numerical solution approaches.

The simplest 2D model is the well-known Classical Plate Theory (CPT) [1] based on Kirchoff-
Love’s hypothesis. To take the transverse strains into consideration, First-order Shear Deformation
Theory (FSDT) [2] was proposed, which can also been referred to as Reissner-Mindlin model. In the
last two decades, a variety of Higher-order Theories (HOT) have also been suggested for the analysis
of thin-walled structures. Carrera [3] proposed Unified Formulation (CUF) as a new framework to
build refined 2D models. CUF introduces thickness functions Fτ (z) (employing either series expansion
or interpolation polynomials) to formulate the kinematics through the thickness, with which both
Equivalent Single Layer (ESL) and Layer-wise (LW) models can be described in a unified manner.
Numerical accuracy can be improved by increasing the theory approximation order inherently without
the cumbersome derivation of governing equations thanks to the employment of fundamental nuclei

(FNs), see [4, 5]. Such an advantage leads to a variety of models with variable kinematics, such as
those presented by Cinefra et al. [6] and Cinefra and Valvano [7].

In FE analysis, traditionally, to increase the numerical accuracy and capture local stress concentra-
tion, the h-version approach [8] is used to increase the mesh refinement while the p-version refinement
[9] uses higher order polynomials as shape functions. In contrast, the h-p-version method combines
these two approaches [10]. Since in this type of FE models only one set of mesh employing a globally
defined kinematic theory exists, and the focus is on the refinement of mesh or element order rather
than kinematic theories, they can be distinguished as mono-model approaches.

In multi-model methods, kinematically inconsistent models (e.g., 2D/3D FEs [11, 12], or classical
2D/HOTs, etc.) are combined in a global-local scenario. In a sequential multi-model approach, a
subsequent locally refined model is subjected to boundary conditions determined by a global model
with less-refined kinematics in a previous step. Due to their intrinsic characteristics, sequential multi-
model methods are difficult to be extended to nonlinear cases. This drawback can be overcome by
iterative sequential methods, in which the global and local models are solved simultaneously, and an
equilibrium needs to be established on their boundaries. Whitcomb and Woo [13, 13] extended this
method to geometrically nonlinear problems.

A variety of simultaneous multi-model approaches have been proposed for global-local analysis,
in which different FE models are employed separately in different regions, then the compatibility is
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enforced at region interfaces or in the overlapping zone. Fish et al. [14] developed an accelerated
multi-grid method with an iterative process of information sharing between coarse and fine meshes.
Fish [15] presented s-version method to improve the accuracy in the local domain by superimposing
additional elements with higher-order kinematics on the global model, in which homogeneous boundary
conditions on the superimposed field were used to guarantee the continuity of displacement. Park et
al. [16] proposed a similar method which refined the local mesh. The s-version FE method can also be
used in combination with h-version and p-version approaches in a simultaneous way, as summarized by
Reddy and Robbins [17] and Reddy [18].

Three-field formulations introduce displacements at domain interfaces, then enforce the displace-
ment compatibility with Lagrange multipliers. Prager [19] proposed an interface potential utilizing
Lagrange multipliers. Aminpour et al. [20], and Ransom [21] adopted a spline method to couple
two domains with different meshes. Adoption of similar approaches was also reported by Brezzi and
Marini [22]. Blanco et al. [23, 24] presented an eXtended Variational Formulation (XVF) to couple
non-matching kinematic models through two newly introduced Lagrange multiplier fields, which was
lately employed by Wenzel et al. [25] in building global-local models. Carrera and Pagani [26, 27, 28]
also utilized Lagrange multipliers in refined beam models for global-local analysis.

Two solutions domains can also be connected by an overlapping zone. Dhia [29] and Dhia and
Rateau [30] suggested the Arlequin method to enforce compatibility within the overlapping domain with
Lagrange multipliers. The Arlequin method has also been implemented in in the framework of CUF by
Biscani et al. [31] for beam models and plate models [32, 33]. He et al.[34] adopted Arlequin method
to bridge low- and high-order models constructed with CUF, and Constrained Variational Principle
(CVP) was used to derive beam elements for multi-layered structures with individual kinematics in
each layer.

For multi-layered structures, a simple approach to reduce the computational consumption is group-
ing the plies into sub-laminates [35, 36] each can be further characterized by independent kinematic
theory [37]. Robbins and Reddy [38] proposed variable kinematic finite elements (VKFE) by super-
posing different types of assumed displacement fields (LW and ESL) within the same element domain,
in which homogeneous essential boundary conditions are imposed on the optional and incremental LW
variables to the basic ESL ones to maintain the displacement continuity between different types of
elements.

CUF provides the convenience to implement node-dependent kinematics by writing theory approxi-
mation order as a function of the approximation domain and by making extensive use of index notation,
which allows the governing equations in the form of FE arrays to be written in a compact form, see
[39]. CUF-based FE models increase the number of degrees of freedom at each node to better approx-
imate the structural responses. For refined plate models, different nodal thickness functions F i

τ can
be integrated with the nodal Lagrangian shape functions Ni to construct advanced elements. Such a
methodology permits the connection of domains with different kinematic models by commonly used
Lagrangian shape functions, keeping the continuity of displacement field without any ad hoc coupling
method, and reduces the complexity of the numerical methods greatly. A natural and important
application of node-dependent kinematics is building global-local FE models. Carrera and Zappino
[40] firstly proposed such an approach, then extended it to the analysis of composite structures with
advanced beam models [41]. Plate elements adopting node-dependent kinematics with variable ESL
models for multi-layered structures were also proposed by Carrera et al. [42].

In the present article, node-dependent kinematics are applied to construct plate FE models for the
global-local analysis of multi-layered structures, and particular attention is paid to the application of
elements with variable ESL/LE capabilities used to bridge a locally refined model to a global less-
refined one. The FE governing equations for plate models with node-dependent kinematics are derived
by applying the Principle of Virtual Displacement (PVD). The assembly of FE stiffness matrix and
load vector is elaborated. The proposed approach is assessed with three numerical cases including
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both laminated composite plates and sandwich structure. The obtained results are compared against
solutions provided by literature or 3D FE modeling.

2 Preliminaries
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Figure 1: Geometry and reference system of a laminated plate model.

The reference system and the geometry of the multi-layered plate are given in Fig. 1. For displacement-
based plate theories, the strain and stress components can be arranged as follows:

ǫTp = {ǫxx, ǫyy, ǫxy}, ǫTn = {ǫxz, ǫyz, ǫzz}. (1)

σT
p = {σxx, σyy, σxy}, σT

n = {σxz, σyz, σzz}. (2)

where the subscript p and n indicate the in-plane and out-of-plane components, respectively. The
strain vector ǫp and ǫn can be obtained via the geometrical equations:

ǫp = Dpu, ǫn = (Dnp + Dnz)u. (3)

the explicit expressions of the differential operator matrices are as follows:

Dp =





∂x 0 0
0 ∂y 0
∂y ∂x 0



 , Dnp =





0 0 ∂x
0 0 ∂y
0 0 0



 , Dnz =





∂z 0 0
0 ∂z 0
0 0 ∂z



 (4)

The stress components can be attained through the constitutive equations as follows:

σp = C̃ppǫp + C̃pnǫn, σn = C̃npǫp + C̃nnǫn. (5)

where C̃pp, C̃pn, C̃np, and C̃nn are the matrices of material coefficients defined in the general
physical system (x, y, z), whose original forms defined in the material coordinate system (1,2,3) before
rotation are as follows:

Cpp =





C11 C12 C16

C12 C22 C26

C16 C26 C66



 Cpn =





0 0 C13

0 0 C23

0 0 C36





Cnp =





0 0 0
0 0 0

C13 C23 C36



 Cnn =





C55 C45 0
C45 C44 0
0 0 C33





(6)

in which the material coefficients are determined by the Young’s moduli E1, E2, E3, the shear
moduli G12, G13, G23 and Poisson ratios ν12, ν13, ν23, ν21, ν31, ν32.
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3 Carrera Unified Formulation

According to CUF, the displacement field u = {u, v, w}T can be expressed by means of approximation
functions Fτ (z) as follows:











u(x, y, z) = F0(z)u0(x, y) +F1(z)u1(x, y) + · · · + FN (z)uN (x, y)

v(x, y, z) = F0(z)v0(x, y) +F1(z)v1(x, y) + · · · + FN (z)vN (x, y)

w(x, y, z) = F0(z)w0(x, y) +F1(z)w1(x, y) + · · · + FN (z)wN (x, y)

(7)

In a more compact form, CUF can be written as shown in Eq. (8) for ESL models and Eq. (9) for
LW models, respectively:

u(x, y, z) = Fτ (z)uτ (x, y) τ = 0, 1, ..., N (8)

uk(x, y, ζk) = F k
τ (ζk)uτ (x, y); τ = 0, 1, ..., N (9)

where k is the layer index in laminated plates. F
(k)
τ are also named as thickness functions in the

context of 2D models since they are defined in the thickness domain z ∈ [−h
2 ,

h
2 ] for ESL models or

ζk ∈ [−1, 1] for LW models. N is the number of series expansion (except the constant term) adopted in

the thickness direction for ESL or the number of interpolation points in layer k for LW models. u
(k)
τ (x, y)

represent the unknown primary variables which are the coefficients corresponding to expansion terms

F
(k)
τ . τ is Einstein’s summation subscript. Unlike ESL models, in LW models primary variables are

allocated to each layer.
CUF provides a convenient approach in implementing different series expansions and interpolation

polynomials in a unified manner to construct refined 2D kinematics for multi-layered structures.

3.1 ESL models adopting Taylor expansions (TE)

CUF can be used to describe many traditional deformation theories. When Fτ (z) are defined in the
whole through-the-thickness domain using ESL model, by substituting Fτ = zτ (τ = 0, 1, · · · , N) as
shown in Eq. (10), one obtains Higher-order Deformation Theories. As an example, FSDT [2] can be
obtained as a degenerated case of the complete linear model with N = 1. Since in this class of models
Taylor series expansion is used to in the formulation, they can be denoted as TE.

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN (10)

Because of the intrinsic anisotropy of multi-layered structures, the first order derivative of the
displacement variables through the thickness might be discontinuous. Fortunately, with ESL models,
it is possible to capture the zig-zag effects by employing the Murakami theory [43]. A zig-zag term can
be introduced into Equation (8), leading to so-called zig-zag models shown as follows:

u = F0 u0 + . . . + FN uN + (−1)kζkuZ . (11)

in which the subscript Z indicates the introduced zig-zag term. Refined theories can be obtained
by adding the zig-zag term to the Taylor polynomials expansion, leading to models denoted as TEnZ.

3.2 LW models based on Lagrange expansions (LE)

Alternatively, if F k
τ represents Lagrange interpolation polynomials defined in the isoparametric thickness

domain of layer k (ζk ∈ [−1, 1]), as shown in Eq. (12), CUF will lead to a LW model based on Lagrange
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polynomials. ζkτ are located at the prescribed interpolation nodes. ζk0 = −1 and ζkN = 1 correspond
to the bottom and top surfaces of the kth layer in the natural reference system, respectively.

F k
τ (ζk) =

N
∏

i=0,i 6=s

ζk − ζki
ζkτ − ζki

(12)

In LW models employing Lagrange expansions, the displacements on each interpolation points are
used as unknown primary variables, and displacements at layer interfaces obey the following compati-
bility conditions:

ukt = uk+1
b , k = 1, Nl − 1. (13)

where Nl represents the total number of layers in the laminated plate. The continuity of transverse
stresses at layer interfaces can be satisfied when LW models with a sufficient number of expansion terms
are adopted, which has been demonstrated in the authors’ previous work [4].

4 Plate elements with node-dependent kinematics

Figure 2: A global-local FE model with node-dependent kinematics.

As discussed in the previous section, CUF introduces thickness functions F
(k)
τ to build refined plate

models. At the same time, commonly used plate finite elements employ Lagrangian shape functions to
approximate the in-plane displacements. For a plate element with M nodes, the 3D displacement field
can be discretized as follows:

u(k)(x, y, z) = Ni(x, y)F (k)
τ (z)uiτ τ = 1, · · · , N ; i = 1, · · · ,M. (14)

in which i is the node index, and M represents the number of nodes in a plate element. uiτ is
the vector of nodal primary unknowns. In such an approach, the nodal displacements are firstly ap-

proximated by the thickness functions F
(k)
τ through the thickness, then interpolated by the Lagrangian

shape functions Ni over the in-plane domain of the plate element. If F
(k)
τ is further related to node i,

6



then F
i(k)
τ describes thickness kinematics attached to node i; thus CUF-type 2D models can be written

as follows:

u(x, y, z) = Ni(x, y)F i(k)
τ (z)uiτ τ = 1, · · · , N ; i = 1, · · · ,M. (15)

Eq. (15) implies that the nodal kinematics F
i(k)
τ are further integrated by the nodal Lagrangian

shape functions Ni to construct a finite element. The thickness functions attached to each node can be
assumed according to any applicable theory, either ESL or LW.

Fig. 2 illustrates a Q4 element as an example, in which on each of the four nodes distinct thickness
kinematics are adopted (namely TE1, TE3, LE2, and LE3/LE5/LE4). Such an element can realize a
“kinematic variation”, bridging a less-refined model to a locally refined one, leading to a global-local
FE model. Distinguished from the coupling methods discussed in the introduction section, in this
approach a transition zone is introduced. Within the transition zone, the elements employ variable
node-dependent kinematics from node to node, which means that the kinematic description of each
node is individually defined and a natural kinematic transition can be realized over the domain of an
element. Higher-order theories can be used on the side connected to the local model, while lower-order
models on the other side close to the peripheral region.

For this type of global-local FE models with node-dependent kinematics, a kinematic variation can
be achieved with the commonly used Lagrangian shape functions, which avoids any ad hoc assumption
and leads to advanced models with compact FE formulations. Such a bridging method can naturally
result in continuous displacement field. This approach can be used in combination with h-version,
p-version or h− p-version mesh refinement to increase numerical accuracy.

4.1 FE governing equations

The governing equations for plate elements with node-dependent kinematics are derived by applying
the Principle of Virtual Displacements (PVD). For a static problem, one has:

δLint = δLext (16)

where Lint represents the strain energy due to the external load, and Lext stands for the work done
by the external load on the virtual displacements. δ indicates the virtual variation. The internal work
can be expressed as:

δLint =

∫

V

δǫTσdV =

∫

Ω

∫

Ak

δǫTσdAkdΩ (17)

in which Ω represents the in-plane domain of an element el, and Ak indicates the through-the-
thickness domain corresponding to layer k. Eq. (17) elucidates that the unit integration domain is
restrict within a domain determined by layer k and element el. Utilizing CUF, the displacement field
in the domain confined within element el and layer k can be expressed as shown in Eq. (18) for ESL
models, in which z ∈ [zbottom, ztop]:

u(x, y, z) = Ni(x, y)F i
τ (z)uiτ τ = 1, · · · , N ; i = 1, · · · ,M.

δu(x, y, z) = Nj(x, y)F j
s (z)δujs s = 1, · · · , N ; j = 1, · · · ,M.

(18)

Or alternatively in Eq. (19) for LW models, where ζk ∈ [−1, 1]:

uk(x, y, ζk) = Ni(x, y)F ik
τ (ζk)uk

iτ τ = 1, · · · , N ; i = 1, · · · ,M.

δuk(x, y, ζk) = Nj(x, y)F jk
s (ζk)δuk

js s = 1, · · · , N ; j = 1, · · · ,M.
(19)
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In a compact form, the strain vectors can be obtained as follows in Eq. (20), which is adaptable to
both ESL and LW models:

ǫkp = F i(k)
τ Dp(NiI)u

(k)
iτ

ǫkn = F i(k)
τ Dnp(NiI)u

(k)
iτ + F i(k)

τ,z NiIu
(k)
iτ

(20)

where I is a 3×3 identity matrix. Considering the strain expression Eq. (3), the constitutive
equations Eq. (5), as well as CUF-type FE displacement expression Eq. (18) or Eq. (19), by applying
the principle of virtual displacement, one can obtain the expression of internal work as:

δLint =

∫

Ω

∫

Ak

(δǫkn
T
σk
n + δǫkp

T
σk
p)dAkdΩ = δu

(k)
js

T
Kk

ijτsu
(k)
iτ (21)

in which the 3×3 matrix Kk
ijτs is the so-called fundamental nucleus (FN) of stiffness in the context

of CUF, which is the core unit of the element stiffness matrix. By adopting the Einstein summation
convention, the stiffness matrix of the spatial domain identified by Ω and Ak can be obtained.

A generic surface load acting on a horizontal surface of the plate can be denoted as pα(x, y), where
the subscript α indicates the loading direction, which can equal x, y or z. The virtual variation of the
external work caused by pα can be written as Eq. (22):

δLpα
ext =

∫

Ω
δu(k)α pαdΩ =

∫

Ω
δu(k)αjs

NjF
j(k)
s (zp)pαdΩ (22)

in which zp represents the coordinate of the loading surface. If the external surface load is written
into a vector as pα(x, y) ({px, 0, 0}

T , {0, py, 0}
T , or {0, 0, pz}

T ), Eq. (22) can be further expressed in a

vector form as in Eq. (23), where P
(k)
js is the FN of external load, in which only the components on α

direction are non-zero.

δLpα
ext = δu

(k)
js

T
P

(k)
js (23)

Thus the governing equation can be expressed as follows:

δu
(k)
js

T
: Kk

ijτsu
(k)
iτ = P

(k)
js (24)

The explicit expressions of the FNs have been given in [42]. For more details about the derivation,
the reader is referred to [7] and [39].

4.2 Assembly of the stiffness matrix and load vector

As already declared, a fundamental nucleus is a core unit of the stiffness matrix. By looping on the
subscripts of expansions and node indexes, the stiffness matrix on node level can be attained, then be
further assembled on the element and structure scale. Such an assembly routine for CUF-based FE
models has been elaborated in [39].

When various node-dependent kinematic models are used on different nodes of an element, usually
a general sub-matrix Kij would be rectangular rather than square. As an example, Fig. 3 presents the
stiffness and load vector assembly of a node-dependent kinematic Q4 plate element el with variable
ESL/LW capabilities, in which on node a and b LW models are employed, while on node c and d ESL
models are adopted. The following cases of the sub-matrices are considered:

� Case 1: Kaa and Kbb: diagonal matrices for LW models with different number of expansions from
layer to layer, which are achieved by assembling the stiffness matrices corresponding to each layer
and overlapping the components at layer interfaces.
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� Case 2: Kcc and Kdd: diagonal matrices for ESL models, in which the stiffness components from
different layers are lumped together.

� Case 3: Kab and Kba: coupling matrices between LW models; since in PVD the integration to
obtain the stiffness matrix is operated on a brick domain defined by element el and layer k, Kk

ab

and Kk
ba (where k is the layer index) will become rectangular, and after overlapping components

at layer interfaces, the location of their components become as shown in Fig. 3, see K1
ab, K

2
ab,

and K3
ab.

� Case 4: Kbd and Kdb: coupling matrices between ESL models with different number of expansions
through the thickness.

� Case 5: Kac, Kca, Kbc, Kcb, Kad, Kda, Kbd, and Kdb: coupling matrices between LW and ESL
models; since the stiffness components for ESL models are smeared on each node without distin-
guishing different layers, the coupling matrices between LW and ESL show banded distribution
as illustrated in Fig. 3.

Meanwhile, the shape of the load vector should be assembled in a similar manner, and become
compatible with the stiffness matrix, as has been demonstrated in the right-hand-side of Fig. 3. Such
an assembly routine is a further development of classical assembly technique for CUF-based FE models.
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Figure 3: Assembly of the stiffness matrix and load vector on element level.

5 Numerical results

In this section, results on laminated structures obtained with node-dependent kinematic plate models
are presented. Corresponding global-local models with variable ESL/LW kinematics are denoted by
TEnZ-LEm, in which TEnZ refers to the less-refined kinematic models based on Taylor series used in
the region of less interest, and LEm stands for the refined models with Lagrange polynomials employed
in the local zone. The transition zone is as wide as the size of one element. Since FSDT give a linear
through-the-thickness variation for transverse shear stresses on plates, it is not employed in this article.
A MITC9 plate element formulated by Cinefra et al. [44, 6] is adopted in the numerical analysis.
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5.1 Eight-layered cantilever composite beam

An eight-layered laminated cantilever beam is considered as the first numerical example. Its geometry
feature and stacking sequence are shown in Fig. 4. The beam is loaded to a concentrated load P =
0.2N at the central point on the free end and clamped on the other end. The material properties
are listed Table 1, in which the subscripts L and T indicate the fiber longitudinal and transverse
direction, respectively. Numerical solutions for such a structure has been reported by various authors
[45, 46, 47, 48, 41]. In this article the displacement w is reported on point A(0, b, 0), stress σyy on
point B(0, b

2 ,
h
2 ), and σyz on C(0, b

2 , 0). The construction of the global-local FE model is as illustrated
in Fig. 4, in which refined kinematics is used on the nodes lie in the central zone along the longitudinal
axis of the structure within where the stress σyy and σyz are evaluated. The transition zone is as wide
as the size of one element, connecting the inner region with LW model to the outer parts with ESL
kinematics. Based on the numerical study, mesh grid 2 × 10 and LW model LE5 can guarantee the
convergence, and the corresponding results are in good agreement with solutions from literature.

By observing the results summarized in Table 2, it can be found that compared with LW models,
ESL models adopting Taylor series also give reasonable approximations in this case. Compared with
the globally defined LE5 model, ESL model TE3Z gives less accurate through-the-thickness variation
for σyy and σyz on the mid-span cross-section as shown in Fig. 5. While global-local model TE3Z-LE5
leads to results in high agreement with the complete LE5 model at a reduction of 64.6% in degrees of
freedom. This example also shows that with node-dependent kinematics, it is convenient to construct
a global-local FE model by simply changing the kinematic theories on the desired nodes without any
additional operation on the mesh grids.

Table 1: Material properties for the eight-layered cantilever beam.

Material EL[GPa] ET [GPa] νLT GLT [GPa]

1 30 1 0.25 0.5
2 5 1 0.25 0.5

1

2

1

2

1

2

1

2

b=0.09m a=
0.
00
1m

h
=
0
.0
1
m

P=0.2N

Figure 4: Geometry and FE discretization of the eight-layered cantilever beam.
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Table 2: Displacement and stress evaluation obtained with various models for the eight-layered can-
tilever beam.

Mesh Kinematics
w§ σ†

yy σ‡
yz DOFs

DOF
Reduction[10−2mm] [KPa] [KPa]

1×5 LE4 -3.034 732.1 -27.87 2475 –
2×10 LE4 -3.033 729.3 -27.77 7875 –
2×10 LE5 -3.033 727.8 -27.41 10395 Reference

2×10 TE1Z -2.981 729.4 -20.00 945 –
2×10 TE3Z -3.027 730.0 -28.21 1575 –
2×10 TE5Z -3.029 730.1 -27.51 2205 –
2×10 TE7Z -3.029 729.9 -28.62 2835 –

2×10 TE1Z-LE5 -2.991 735.9 -25.72 3195 69.3%
2×10 TE3Z-LE5 -3.028 732.5 -27.94 3675 64.6%
2×10 TE5Z-LE5 -3.029 732.2 -27.79 4155 60.0%

Surana & Nguyen [45] -3.03 720 – – –
Lin & Zhang [46] -3.03 750 – – –
Davalos et al. [47] -3.06 700 – – –
Carrera et al. [41] -3.05 730 -27.9 4743 –

Variables are evaluated at: §A(0, b, 0); †B(0, b

2
, h

2
); ‡C(0, b

2
, 0).

-800

-600

-400

-200

0

200

400

600

800

-0.5 -0.25 0 0.25 0.5

σ
y
y
[K
P
a
]

z
_

LE5
TE3Z

TE3Z-LE5

(a) σyy, (0,
b

2
, z̄)

-30

-25

-20

-15

-10

-5

0

5

-0.5 -0.25 0 0.25 0.5

σ
y
z
[K
P
a
]

z
_

LE5
TE3Z

TE3Z-LE5

(b) σyz, (0,
b

2
, z̄)

Figure 5: Through-the-thickness variation of stresses on the eight-layered cantilever beam.

5.2 Sandwich plate under simple supports on two parallel edges

The sandwich plate considered is composed of a soft core and two composite faces, with length a =
10mm, width b = 1mm, and height h = 1mm. The sandwich structure is simply supported on two
parallel edges (x = 0, a), and loaded to constant pressure p0 = 1MPa on 10% of the length located at
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the central top surface, as shown in Fig. 6(a). The thicknesses of the layers are 0.1h/0.8h/0.1h. The
material properties used are listed in Table 3. Numerical results for this case have also been reported
by Wenzel et al. [25] but on different output points.

The global-local FE model with node-dependent kinematics is as shown in Fig. 6(b). Taking advan-
tage of the symmetry feature, 1/4 of the structure is modeled with finite elements, and LW kinematics
is used in the region within and near the loading area, connected to the part adopting ESL models
by a narrow transition zone composed of elements with variable ESL/LW kinematics from node to
node. The results summarized in Table 4 show that CUF-based FE model with mesh grid 40 × 8 and
LW kinematics LE5 can ensure the numerical convergence, and achieve results agree well with those
obtained with an ABAQUS 3D model (employing brick element C3D20R).

In sandwich structures, the difference in stiffness usually leads to insignificant stresses in the soft core
compared with those in the rigid faces. At the same time, to obtain a linear variation of σzz through the
thickness with a LW model, at least three interpolation points should be used (LE3). To further reduce
the computational costs, in the present numerical case, a layer-wisely defined model LE5/LE3/LE5
as shown in Fig. 7 is employed, which can be denoted as LE5/LE3 for brevity. Compared with the
complete LE5 model, LE5/LE3 can reduce the degrees of freedom by 15.4% without losing solution
accuracy, as listed in Table 4. It can also be found that the global-local models TE3Z-LE5/LE3 and
TE5Z-LE5/LE3 give good evaluations on displacement w and the stresses with much fewer computation
costs in comparison with the LE5 model.

Fig. 8 compares the through-the-thickness variation of displacement w and stresses attained with
different FE models. It can be observed that complete ESL model TE3Z fails to give a reasonable
approximation. A complete LE3 model can capture the variation well except on σxz. Meanwhile,
LE5/LE3 and TE3Z-LE5/LE3 lead to results in high agreement with the complete LE5 model. Fig. 9
and Fig. 10 show the comparison on contour plot of σxz and σzz between complete LE5 model and
global-local model TE3Z-LE5/LE3, respectively. In the local region near the loading area, the stress
distribution agrees well with each other; across the transition zone stress oscillation can be observed,
yet in the less-critical zone ESL model TE3Z leads to erroneous distribution. The numerical results
show that the global-local model TE3Z-LE5/LE3 can give accurate results compared with the complete
LE5 model with a reduction of 54.7% in degrees of freedom.

Table 3: Material properties used on the sandwich plate.

E11[GPa] E22[GPa] E33[GPa] ν12 ν13 ν23 G12[GPa] G13[GPa] G23[GPa]

Face 131.1 6.9 6.9 0.32 0.32 0.49 3.588 3.088 2.3322
Core 0.2208×10−3 0.2001×10−3 2.76 0.99 0.00003 0.00003 16.56×10−3 0.5451 0.4554
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Figure 6: Global-local FE model with node-dependent kinematics for the sandwich plate.
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Figure 7: LE5/LE3: through-the-thickness variation of kinematics in the FE model for the sandwich
structure.
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Table 4: Displacement and stress evaluation obtained with various models for the sandwich plate.

Mesh Kinematics
-w§ -σ†

xx -σ‡
xz -σ†

zz DOFs
DOF

Reduction[10−3mm] [MPa] [MPa] [MPa]

10×2 LE4 2.470 19.22 1.081 0.9036 3150 –
20×4 LE4 2.471 18.26 1.157 1.026 11070 –
40×8 LE4 2.471 18.15 1.177 1.050 41310 –
40×8 LE5 2.471 18.11 1.180 0.9989 53703 Reference

40×8 TE1Z 2.459 13.99 1.626 1.214 12393 –
40×8 TE3Z 2.455 17.82 1.384 2.213 20655 –
40×8 TE5Z 2.468 17.77 1.286 1.587 28917 –

40×8 LE3 2.469 17.60 0.8921 1.023 28917 –
40×8 LE5/LE3(Fig. 7) 2.470 18.09 1.167 0.9989 45441 15.4%
40×8 TE1Z-LE5/LE3 2.472 17.50 1.315 1.000 17289 67.8%
40×8 TE3Z-LE5/LE3 2.463 18.22 1.158 0.9992 24327 54.7%
40×8 TE5Z-LE5/LE3 2.469 18.17 1.156 0.9989 31365 41.6%

ABAQUS-3D 2.471 18.15 1.107 1.001 620787 –

Variables are evaluated at: §( a
2
, b

2
,−h

2
); †( a

2
, b

2
, h

2
); ‡( 9a

20
, 0, 9h

20
).
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Figure 8: Through-the-thickness variation of displacement and stresses on the sandwich plate.
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5.3 Three-layered composite plate under local pressure load

A there-layered composite plate with stacking sequence [0°/90°/0°] under simply-supported boundary
conditions is studied in this section. The length a and width b of the plate are a = b = 0.1m. The length
to thickness ratio is a/h = 10, and the three layers are of equal thickness (h/3). The plate undergoes a
local uniform transverse pressure load p0 = 1MPa on its top surface within a rectangular region centered
at (a/2, b/2, h/2) with side length of a/5 and b/5. The properties of the material are listed in Table 5,
in which L indicates the fiber longitudinal and T the transverse direction. The FE model adopted is as
demonstrated in Fig. 11, in which a transition zone consist of elements with node-dependent kinematic
variable ESL/LW theories connects a local model employing LW model to a less-refined global model
with ESL kinematics. 1/4 of the plate in modeled in combination with symmetry boundary conditions.
The reference solutions are provided by Biscani et al. [32].

The result summary in Table 6 show that mesh grid 15 × 15 employing LE5 can guarantee the
numerical convergence. ESL models TE1 and TE1Z fail to give accurate evaluations on the stresses;
when LW kinematics LE5 are used on the selected nodes lie in the local model (leading to global-local
model TE1-LE5 and TE1Z-LE5, respectively), the numerical accuracy is improved to a great extent.
Global-local model TE3Z-LE5 can give good approximations on both displacement w and stresses, as
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listed in Table 6. Compared with the FE model with globally defined LE5 kinematics, TE3Z-LE5
reduced the degrees of freedom by 55.1% with comparable accuracy.

By observing the displacement and stress variation shown in Fig. 12, it can be found that TE3Z
is not able to capture the accurate distribution of transverse shear stresses, while with the help of the
locally defined LE5 kinematics, TE3Z-LE5 model can lead to satisfactory results. The contour plot
of σyz shown in Fig. 13 and σzz in Fig. 14 compares the complete LE5 model and global-local model
TE3Z-LE5, which show that the difference mainly lies in the region outside of the locally refined zone.
The results demonstrated that the proposed global-local approach based on node-dependent kinematics
is reliable in capturing detailed mechanical responses in local areas of interest.

Table 5: Material properties of the three-layered composite plate.

EL[GPa] ET [GPa] νLT νTT GLT [GPa] GTT [GPa]

132.5 10.8 0.24 0.49 5.7 3.4

Figure 11: Global-local model with node-dependent kinematics for the three-layered composite plate.
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Table 6: Displacement and stress evaluation on the three-layered plate under local pressure, obtained
with various models.

Mesh Kinematics
-w§ σ§

xx σ§
yy -10σ†

xz -10σ‡
yz -σ⋆

zz DOFs
DOF

Reduction[10−5m] [MPa] [MPa] [MPa] [MPa] [MPa]

5×5 LE4 1.596 1.928 -0.03834 4.662 4.935 0.5375 3630 –
10×10 LE4 1.674 12.07 2.060 6.442 6.874 0.9634 13230 –
15×15 LE4 1.675 12.00 2.041 6.464 6.902 1.006 28830 –
15×15 LE5 1.675 11.99 2.033 6.463 6.902 0.9928 37479 Reference

15×15 TE1 1.591 10.53 1.644 3.829 4.653 1.988 5766 –
15×15 TE1Z 1.577 11.41 2.318 4.667 4.995 1.953 8649 –
15×15 TE3Z 1.672 12.00 2.134 5.647 6.914 1.244 14415 –

15×15 TE1-LE5 1.665 12.19 1.362 6.140 6.886 0.9939 9066 75.8%
15×15 TE1Z-LE5 1.734 12.20 1.394 6.626 7.064 0.9939 11649 68.9%
15×15 TE3Z-LE5 1.674 12.00 2.033 6.471 6.873 0.9928 16815 55.1%

3D–Biscani et al.[32] 1.674 11.94 2.019 6.524 – – – –

Variables are evaluated at: §A( a
2
, b

2
,−h

2
); †B( 5a

12
, b

2
, 0); ‡C( a

2
, 5b

12
, 0); ⋆D( a

2
, b

2
, h

2
).
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Figure 12: Through-the-thickness variation of displacement and stresses on the three-layered composite
plate under local pressure.
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6 Conclusions

Based on Carrera Unified Formulation (CUF), node-dependent kinematics is presented as an innovative
approach to constructing advanced elements, which can be applied to build FE models for global-
local analysis. Plate elements with node-dependent variable ESL/LW kinematics are developed and
implemented in the global-local analysis of laminated structures. Through the numerical investigation,
the following conclusions can be drawn:

� Node-dependent kinematics provides a convenient approach to integrating different types of thick-
ness functions into advanced plate elements.

� With such elements, a kinematic variation can be realized in the range of one element, leading to
a transition zone bridging a refined local model to a less-refined peripheral one.

� Elements with variable ESL/LW kinematics from node to node can be conveniently implemented.

� By avoiding using any ad hoc coupling method, the compactness of the FE formulations can be
kept when node-dependent kinematics is applied to build global-local models.

� With node-dependent kinematics, it is convenient to construct a global-local FE model by simply
changing the kinematic theories on the desired nodes without any additional operation on the
mesh grids.
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� Global-local models constructed with node-dependent kinematics integrating ESL/LW capabili-
ties can achieve comparable numerical accuracy with refined LW models at much fewer compu-
tational costs.

� As an innovative and versatile approach, node-dependent kinematics can be employed to build
numerically efficient FE models for the analysis of multi-layered structures.
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