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Abstract

The thesis deals with theoretical and applicative aspects of some innovative numerical tech-
niques for the simulation of the flow in Discrete Fracture Networks (DFN). In particular,
the recently developed Virtual Element Method (VEM) is considered. A VEM-SUPG sta-
bilized formulation for advection-diffusion problems is defined and studied theoretically and
numerically, as well as a residual a posteriori error estimate which does not include any term
depending on the VEM stabilization form. Regarding DFN flow simulations, an approach
based on Virtual Elements and standard domain decomposition techniques such as Mortar
methods is introduced and studied, also in combination with the use of orthogonal polyno-
mials to avoid numerical instabilities that arise when computing polynomial projections on
very badly shaped elements.

Finally, we consider a constrained optimization formulation of the problem of computing
the flow in DFNs and we develop a residual based a posteriori error estimate that contains
non standard terms related to the geometrical non-conformity of the mesh on each fracture
to the intersections between them.
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Chapter 1

Introduction

The scientific interest in the study of fractured media has grown recently, driven by appli-
cations in strategical sectors, including radioactive nuclear storage, hot dry rock plants, gas
shales, carbon dioxide deep geological storage, oil/gas reservoirs and groundwater manage-
ment. From the computational point of view, many difficulties have to be tackled, originating
both from the nature of the equations to solve and the geometrical complexity of the domain.
This thesis focuses on a particular class of models for fractured media, called Discrete Frac-
ture Networks, which describe a medium as a set of planar polyogns mutually intersecting in
space. These models are valid under the hypothesis that the permeability of the surrounding
rock matrix is negligible. Un such domains, the first interest in applications is the compu-
tation of the stationary distribution of the hydraulic head, which can be modeled locally on
each fracture by the Darcy law, yielding a system of local diffusion equations coupled by the
continuity of the solution and the balance of fluxes at intersections. Standard approaches
of domain decomposition are not applicable in realistic Discrete Fracture Networks because
the meshing process is computationally too heavy. To relax the mesh conformity require-
ments needed by standard methods, many strategies have been devised. Here, the main
focus is on some particular aspects of the recently developed methodologies based on the
Virtual Element Method and its flexibility in handling a very large class of polygons [1–4].
In the appendix, instead, we deal with another kind of method, based on a PDE-constrained
optimization formulation of the problem, that allows complete non-conformity of the local
meshes to intersection [5–8].

Chapter 3 introduces a SUPG-like formulation for advection-diffusion problems for Virtual
Element Methods (VEM) on general domains, which avoids the numerical instabilities due
to high mesh Péclet numbers. This stabilized formulation of the problem is suitable for the
simulation of non-stationary transport of a passive scalar, such as the density of a pollutant
in the underground. Chapter 4 deals with the issue of a posteriori error estimation, with the
particular aim of avoiding to estimate the VEM stabilization terms. This estimate can be
used as a base for adaptive meshing strategies in the DFN context. In Chapter 5 a general
framework for DFN simulations using VEM is developed, establishing a link between the
two approaches developed so far in this context. In Chapter 6 we give details about one of
the two cited methods, namely the coupling between the Virtual Element Method and the
Mortar method, which is applied here to Discrete Fracture Networks, but can be of general
use for domain decomposition. In Chapter 7 we make some considerations about the use
of orthogonal polynomials as basis to compute polynomial projections in the VEM context,
in order to prevent the numerical instabilities that can arise on badly shaped polygons such
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as the one that are generated by the meshing process described in the previous chapters.
In Chapter 8, we summarize the results obtained about VEM and point out some possible
developments and future works. Finally, in Appendix A we turn our attention to another
approach to DFN flow simulations, namely a PDE constrained optimization formulation of
the problem that allows completely non-conforming meshes on each of the fractures. In this
context we develop an a posteriori error estimate that takes into account both the error due
to the discretization of the model and the error due to the non conformity of the mesh.

1.1 General notation

Throughout the paper, Ω indicates the domain of interest, a bounded open set. This may
be, depending on the context, either a subset of R2 or a Discrete Fracture Network (defined
in Chapter 5). The notation throughout the thesis is as follows: (·, ·)ω and �·�ω denote the
L2 (ω) scalar products and norms, for any ω ⊆ Ω; �·�α,ω and |·|α,ω denote the Hα (ω) norm
and semi-norm; whereas �·�Wq

p(ω) and |·|Wq
p(ω) denote the W

q
p (ω) norm and semi-norm, where

p is the Lebesgue regularity and q is the order of the Sobolev space; finally, we denote by
�·, ·�±α,ω the duality product H−α(ω) �·, ·�Hα(ω). In general, we omit ω if it coincides with the

whole domain (for example, �·� is the L2 (Ω) norm).
Regarding inequalities, we make use of the symbols � and � to intend inequalities up to a

multiplicative constant which does not depend either on the mesh parameter or the problem
data (but may depend on the mesh regularity), while the symbols � and � when constants
depend also on the physical data (but still not on the mesh parameter). Finally, ∼ will
denote an equivalence up to multiplicative constants not dependent on the mesh parameter
or the problem data.
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Chapter 2

The Virtual Element Method for elliptic
problems

In this chapter we briefly recall the Virtual Element Method (VEM) applied to an elliptic
model problem. The general framework of the method is described, highlighting the hy-
potheses needed to obtained the well posedness of the problem and optimal convergence
rates. The VEM notation defined here will be used also in the following chapters. The text
of this chapter is partially borrowed from [13].

2.1 Introduction

In the recent years a large interest on polythopal methods for PDEs has rapidly grown. In
many fields of computational engineering and scientific computing the geometrical complexity
is often as relevant as the model complexity. In all these situations the introduction of
polyhedral or polygonal methods can introduce a large and useful flexibility that can play a
relevant role in simulations.

The Virtual Element Method (VEM) is a recently developed Galerkin-type approach to
the discretization of partial differential equations, that generalizes Mimetic Finite Differences
[8, 16, 21]. The main target is to overcome traditional simplicial discretizations in 2D and in
3D and allow the use of an arbitrary polytopal mesh, allowing, for examples, also polygons
with different number of edges in 2D. VEM discretizations require only some basic regular-
ity assumptions on the mesh elements, at the price of enlarging the standard polynomial
spaces to include some additional basis functions, whose expression is never to be explicitly
evaluated. Stability, consistency and polynomial approximation properties are provided by
a suitable choice of the degrees of freedom and by suitable stabilization terms of the discrete
bilinear form. First established in [1, 3, 5, 6] for general second order elliptic problems, the
VEM is currently under continuous development, in order to deal with a larger and larger
number of models, including primal [2, 4, 9–11, 13, 18–20, 22] and mixed [7, 17] formulations.
Furthermore, the flexibility of the VEM in handling star-shaped polygons with any number
of edges and hanging nodes has been exploited in the context of Discrete Fracture Network
flow simulations to circumvent mesh generation problems [12, 14, 15].

This chapter is organized as follows: in Section 2.2 we state the model problem that is used
here to present the method, in Sections 2.3 and 2.4 we describe the VEM mesh and functional
spaces, in Section 2.5 we show the virtual element formulation of our model problem, and
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The Virtual Element Method for elliptic problems

finally in Section 2.6 we propose a review of the results about a priori error estimation in
the VEM context that can be found in the literature. The proofs of these results are not
reported here, but can be obtained from the ones in the following chapter and in the cited
papers.

2.2 The elliptic model problem

Let Ω ⊂ R2 be a bounded open set and let us consider the following convection-diffusion-
reaction problem: �

−∇ · (K∇u) + β ·∇u+ γu = f in Ω ,

u = 0 on ∂Ω .
(2.1)

We assume that K ∈ L∞ (Ω) is a positive function satisfying K(x) ≥ K0 ∀x ∈ Ω for a given

K0 > 0, β ∈ [L∞ (Ω)]
2
, ∇ ·β ∈ L2 (Ω) and γ ∈ L∞ (Ω). For simplicity, we additionally assume

∇ · β = 0. More general boundary conditions can be assumed as well, and K can be taken
as a symmetric positive definite tensor, with minor changes in the definitions of the norms,
which, in any case, are always computed componentwise.

For future reference, we recall the classical weak formulation of the problem. Defining
B: H1

0 (Ω)×H1
0 (Ω) → R and F : H1

0 (Ω) → R such that

B(w, v) := (K∇w,∇v) + (β ·∇w, v) + (γu, v) ∀w, v ∈ H1
0 (Ω) , (2.2)

and
F(v) := (f, v) ∀v ∈ H1

0 (Ω) , (2.3)

the variational form of (2.1) is

B(u, v) = F(v) ∀v ∈ H1
0 (Ω) . (2.4)

2.3 Mesh

Let δ be a mesh parameter, and let Tδ be a discretization of Ω with open star-shaped polygons
with any number of sides (even different from one polygon to another). We even allow angles
of 180° at vertices, i.e. an edge in the geometric sense may be subdivided in adiacent segments
that we consider as separate edges. Let Eδ be the set of this generalised edges, Vδ the set of
the extrema of such edges, which will be the vertices of our mesh. As a regularity assumption,
we ask that there exists a constant γ > 0 such that, for all E ∈ Tδ, E is star-shaped with
respect to a ball of radius greater or equal than γhE , being hE the diameter of E. We set
h := maxE∈Tδ

hE .

2.4 Functional space

To define the Virtual Element space of order k > 0, for some k ∈ N, we denote by Pk (Tδ)
the space of possibly discontinuous functions which are polynomials of degree less than or
equal to k on each polygon and we introduce the piecewise polynomial oblique projection
Π∇

k : H1 (Ω) → Pk (Tδ) such that, ∀E ∈ Tδ,




�
∇
�
Π∇

k v
�
,∇p
�
E
= (∇v,∇p) ∀p ∈ Pk (E) ,�

Π∇
k v, 1

�
∂E

= (v, 1)∂E if k = 1 ,�
Π∇

k v, 1
�
E
= (v, 1)E if k ≥ 1 ,
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2.5. Discrete formulation of the problem

The local virtual space of order k is defined as follows: ∀E ∈ Tδ,

V E
δ :=

�
vh ∈ H1 (E) : Δvh ∈ Pk (E) , vh ∈ Pk (e) ∀e ⊂ ∂E, γ∂E(vh) ∈ C0 (∂E) ,

(vh, p)E =
�
Π∇

k vh, p
�
E

∀p ∈ Pk (E) /Pk−2 (E)
�
, (2.5)

where Pk (E) /Pk−2 (E) denotes the subspace of Pk (E) containing polynomials that are
L2 (E)-orthogonal to Pk−2 (E) (see [6]; other options are possible, see, for example, [1]).
The global VEM space Vδ ⊂ H1

0 (Ω) is obtained asking for global continuity:

Vδ :=
�
vh ∈ C0 (Ω) : vh ∈ V E

δ ∀E ∈ Tδ
�
. (2.6)

A function belonging to such space is uniquely identified by its polynomial expression on
each edge of the discretization and by its moments against polynomials of degree ≤ k − 2
(see [3]).

Definition 2.1. We choose the following set of degrees of freedom:

1. the values at the vertices of each polygon;

2. if k ≥ 2, for each edge e ⊂ ∂E, the values at k − 1 internal points of e. For practical
purposes, we may choose these points to be the internal Gauss-Lobatto quadrature
nodes;

3. if k ≥ 2, for each vh ∈ Vδ the scaled moments 1
|E| (vh,mα)E , for each E ∈ Tδ and all

the monomials mα ∈ Mk−2 (E), defined as

mα(x, y) :=
(x− xE)

α1(y − yE)
α2

hα1+α2

E

∀(x, y) ∈ E ,

with α = (α1,α2), |α| = α1 + α2 ≤ k − 2, and being (xE , yE) the center of the ball
with respect to which E is star-shaped.

The above degrees of freedom are enough to compute, for any vh ∈ Vδ, the projection
Π∇

k vh, and, once it is known, to compute the L2-projection of vh on Pk (Tδ), which will
be indicated by Π0

kvh in the following, as well as the L2-projection of ∇vh on Pk−1 (Tδ) ×
Pk−1 (Tδ), which will be indicated by Π0

k−1∇vh. This can be done by means of the Green
formula (see [5]).

2.5 Discrete formulation of the problem

The VEM discretization of problem (2.1) is done without ever building an explicit basis for
the space Vδ. Instead, we identify a discrete bilinear form that is computable using only the
polynomial projections of the basis functions of Vδ, whose analytical expression is not known.

For any E ∈ Tδ, and ∀vδ, wδ ∈ Vδ, let

aEδ (wh, vh) :=
�
Π0

k−1∇wδ,Π
0
k−1∇vδ

�
E
+ SE

�
wδ −Π∇

k wδ, vδ −Π∇
k vδ
�
, (2.7)

bEδ (wh, vh) :=
�
β ·Π0

k−1∇wδ,Π
0
k−1vδ

�
E

,

cEδ (wh, vh) :=
�
γΠ0

k−1wδ,Π
0
k−1vδ

�
E

,

where SE: Vδ × Vδ → R in (2.7) must satisfy the following property:

SE(vδ, vδ) ∼ �∇vδ�2E ∀vδ ∈ kerΠ∇
k . (2.8)
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Remark 2.1. A possible choice for SE is

SE(wδ, vδ) =

NE�

i=1

χi(vδ)χi(wδ), (2.9)

where NE is the number of degrees of freedom on the element E and χi is the operator that
selects the i-th degree of freedom.

We define the discrete bilinear form Bδ: Vδ × Vδ → R such that

Bδ(wδ, vδ) :=
�

E∈Tδ

aEδ (wδ, vδ) + bEδ (wδ, vδ) + cEδ (wδ, vδ) ∀wδ, vδ ∈ Vδ , (2.10)

and the discrete forcing term

Fδ(vδ) =
�
f,Π0

k−1vδ
�

∀vδ ∈ Vδ . (2.11)

The discrete VEM problem is to find uδ ∈ Vδ such that

Bδ(uδ, vδ) = Fδ(vδ) ∀vδ ∈ Vδ . (2.12)

2.6 A priori error analysis

The well posedness of problem (2.12) follows from the approximation properties of the pro-
jection operators Π0

k−1 and Π∇
k and (2.8) and it can be proved that the approximation error

decays with optimal rates of convergence. In this section we show the most fundamental a
priori error analysis results for future reference. Their proofs can be found in [6] or can be
obtained easily from the proofs in Chapter 3.

First of all, we have the following approximation results.

Proposition 2.1. Let E ∈ Tδ, ϕ ∈ Hs (E), for some 0 ≤ s ≤ k + 1. Then,

��ϕ−Π0
kϕ
��
m,E

� hs−m
E |ϕ|s,E ∀m : m ≤ s , (2.13)

and, if s ≥ 1,

��∇ϕ−Π0
k−1∇ϕ

��
m,E

� hs−m
E |ϕ|s,E ∀m : m ≤ s− 1 , (2.14)

��ϕ−Π∇
k ϕ
��
m,E

� hs−m
E |ϕ|s,E ∀m : m ≤ s− 1 . (2.15)

Moreover, there exists an operator Iδ : H
s (Ω) → Vδ such that

�ϕ− Iδϕ�m,E � hs−m
E |ϕ|s,E if s ≥ 1 . (2.16)

Remark 2.2. While for s > 1 Iδ can be built easily using pointwise interpolation, a proof of
(2.16) for s = 1 can be found [18] under the additional hypothesis that for any edge e ⊂ ∂E,
he ≥ γhE .

Using (2.14) and (2.15) we obtain approximation rates between the continuous and dis-
crete bilinear forms (see the analogous Lemmas 3.1 to 3.3), by which we prove the following
stability estimate, from which the well-posedness of problem (2.12) follows.
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Theorem 2.1. Let vδ ∈ Vδ and suppose K ∈ L∞ (Ω) and β ∈
�
W1

∞ (Ω)
�2
. Then, for h

sufficiently small there holds

sup
wδ∈Vδ

Bδ(vδ, wδ)

|wδ|1,Ω
� |vδ|1,Ω . (2.17)

Concerning a priori error analysis, we have the following optimality result in the energy
norm.

Theorem 2.2. Suppose u ∈ Hs+1 (Ω), f ∈ Hs (Ω), K ∈ Ws
∞ (Ω), β ∈

�
Ws+1

∞ (Ω)
�2
, γ ∈

Ws
∞ (Ω) for some s ∈ {1, . . . , k}. Then, for h sufficiently small,

�u− uδ�1 � hs
�
�u�s+1 + �f�s

�
.

Finally, thanks to standard duality arguments, we can also prove optimal rates of conver-
gence in the L2 (Ω) norm.

Theorem 2.3. Suppose u ∈ Hs+1 (Ω), f ∈ Hs (Ω), K ∈ Ws
∞ (Ω), β ∈

�
Ws+1

∞ (Ω)
�2
, γ ∈

Ws
∞ (Ω) for some s ∈ {1, . . . , k}. Then, for h sufficiently small,

�u− uδ� � hs+1
�
�u�s+1 + �f�s

�
.

We remark again that the proofs for all the stated results can be easily obtained from the
ones in the next chapter.
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Chapter 3

SUPG stabilization for the Virtual
Element formulation of

advection-diffusion problems

This chapter is devoted to the introduction of a Streamwise Upwind Petrov-Galerkin stabi-
lization (SUPG) formulation for Virtual Element Methods, with a priori estimations of the
error and numerical tests validating the method. These results were published in [4].

3.1 Introduction

Recently, the VEM has been used in the treatment of fluid dynamics models involving un-
derground flow simulations [3, 5, 6]: in that context, the application of the VEM was driven
by the need of circumventing mesh generation problems. In these applications, the primal
problem is solved to compute the Darcy velocity field, that can be used afterwards to sim-
ulate the transport of a dispersed, passive pollutant in a geological basin. The flow regimes
in underground transport phenomena are usually transport-dominated, due to the very low
diffusivity of the pollutant into the bulk fluid, thus calling for a stabilization of the VEM.

Many strategies have been devised to obtain a stable solution for standard Finite Element
discretizations, involving, for example, local projections [19] or suitably built bubble functions
[11, 18]. The Streamline Upwind Petrov-Galerkin (SUPG) stabilization method [12–14, 17,
20, 22, 23] has also been widely studied in very general settings. A first approach to the
VEM-SUPG stabilization is discussed in [16], in a non-consistent formulation. Another issue
related to advection-diffusion problems is the derivation of robust a posteriori error estimates.
In such context, the term robustness refers to the property of obtaining a relation between
the error and the error estimator with constants which are independent of the Péclet number
[7–10, 25, 26]. An a posteriori analysis for the reaction-convection-diffusion problem with the
VEM is provided in [15], not addressing robustness aspects and the SUPG-like stabilization
issues.

The aim of this chapter is to devise a consistent SUPG formulation compatible with the
VEM. A key aspect of the VEM is that the basis functions of the discrete functional space
are not known explicitly, but only through their degrees of freedom. As a consequence,
computability of discrete operators requires special care and, in particular, the consistent
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SUPG stabilization for Virtual Element Methods

VEM-SUPG formulation devised in the present work requires the introduction of a second-
order term in the weak formulation of the problem, computed by resorting to polynomial
projections of the virtual element basis functions. An a priori error estimate for the stabilized
VEM discrete solution is also proven, showing that the order of convergence is not affected
by the stabilizing perturbation added to the problem. The numerical tests proposed confirm
the theoretical results on triangular and polygonal meshes in both the convection-dominated
regime and the diffusion-dominated regime.

The chapter is organised as follows. In Section 3.2 we state the model problem, define
some useful notations and make some standard hypothesis on the model parameters. In
Section 3.3 we recall the standard SUPG formulation and adapt it to the VEM context.
In particular, the VEM-SUPG formulation of the problem is presented in (3.12)–(3.17). In
Section 3.4 the a priori error estimate for the stabilized VEM discrete solution is derived, the
main result being stated in Theorem 3.2. Finally, in Section 3.5 we propose some numerical
tests aimed at confirming the theoretical results.

3.2 The model problem

Let Ω ⊂ R2 be a bounded open set and let us consider this reduced form of problem (2.1):

�
−∇ · (K∇u) + β ·∇u = f in Ω ,

u = 0 on ∂Ω .
(3.1)

As for (2.1), we assume that K ∈ L∞ (Ω) is a positive function satisfying K(x) ≥ K0 ∀x ∈ Ω

for a given K0 > 0, and β ∈ [L∞ (Ω)]
2
, with ∇ · β = 0. The variational form (2.4) is still

valid: if we define B and F as in (2.2) (with γ = 0) and (2.3), we have

B(u, v) = F(v) ∀v ∈ H1
0 (Ω) .

3.3 VEM-SUPG formulation

It is well known that discretizing the variational formulation (2.4) leads to instabilities when
the convective term (β ·∇w, v) is dominant with respect to the diffusive term (K∇w,∇v).
In such situations a stabilized form of the problem is required in order to prevent spurious
oscillations that can completely alter the numerical solution. In the following we recast the
classical Streamline Upwind Petrov Galerkin (SUPG) approach [17] in the framework of the
VEM, showing that the optimal order of convergence can be preserved. For this purpose, in
the following we assume K ∈ W1

∞ (Ω).
We define the space V =

�
v ∈ H1

0 (Ω) : v ∈ H2 (E) , ∀E ∈ Tδ
�
and the bilinear form

Bsupg: V → R such that Bsupg(w, v) := a(w, v) + b(w, v) + d(w, v) , (3.2)

being

a(w, v) := (K∇w,∇v) +
�

E∈Tδ

τE (β ·∇w,β ·∇v) , (3.3)

b(w, v) := (β ·∇w, v) , (3.4)

d(w, v) := −
�

E∈Tδ

τE (∇ · (K∇w),β ·∇v)E . (3.5)
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3.3. VEM-SUPG formulation

The stability parameter τE is defined as usual [17], ∀E ∈ Tδ, by

τE :=
hE

2βE
min {PeE , 1} , (3.6)

where PeE is the mesh Péclet number of E, given by

PeE := mE
k

βEhE

2KE
, (3.7)

and

mE
k :=

�
1
3 if ∇ · (K∇vδ) = 0 ∀vδ ∈ V E

δ ,

2C̃E
k otherwise,

having set C̃E
k to be the largest constant satisfying the following inverse inequality:

C̃E
k h2

E �∇ · (K∇vδ)�2E ≤ �K∇vδ�2E ∀vδ ∈ V E
δ . (3.8)

A proof of an inverse inequality in the VEM space is provided in [15, Lemma 10] in the case of
constant K under the current mesh-regularity assumptions. Using standard manipulations,
result (3.8) can then be obtained, with a constant C̃E

k depending on the variations of K on
the element.

Remark 3.1. We point out that if u ∈ H2 (Ω) ∩H1
0 (Ω), we have that, ∀Tδ,

Bsupg(u, v) = Fsupg(v) := (f, v) +
�

E∈Tδ

τE (f,β ·∇v) ∀v ∈ H1
0 (Ω) . (3.9)

Remark 3.2. From the definition of τE we have the following two estimates, that will be used
in the following:

τE ≤ C̃E
k h2

E

2KE
if ∇ · (K∇vδ) �= 0 for some vδ ∈ V E

δ , (3.10)

τE ≤ hE

2βE
. (3.11)

The Finite Element discretization of the bilinear form (3.2) has been widely studied, for
example in [12, 17], in which optimal orders of convergence were proved. In order to write
a computable VEM discretization of problem (3.9), we consider the framework defined in
Chapter 2 and define the discrete bilinear form Bsupg,δ: Vδ×Vδ → R, being Vδ the functional
space defined by (2.5) and (2.6), such that

Bsupg,δ(wδ, vδ) := aδ(wδ, vδ) + bδ(wδ, vδ) + dδ(wδ, vδ) ∀wδ, vδ ∈ Vδ , (3.12)

where

aδ(wδ, vδ) :=
�
KΠ0

k−1∇wδ,Π
0
k−1∇vδ

�
+
�

E∈Tδ

τE
�
β ·Π0

k−1∇wδ,β ·Π0
k−1∇vδ

�
E

+
�
KE + τEβ

2
E

�
SE
��
I −Π∇

k

�
wδ,
�
I −Π∇

k

�
vδ
�
,

(3.13)

bδ(wδ, vδ) :=
�
β ·Π0

k−1∇wδ,Π
0
k−1v

�
, (3.14)

dδ(wδ, vδ) := −
�

E∈Tδ

τE
�
∇ ·
�
KΠ0

k−1∇wδ

�
,β ·Π0

k−1∇vδ
�
, (3.15)
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where Π0
r is the element-wise orthogonal L2 projection on the space of polynomials of degree

less than or equal to r, as used in [2]. The computation of Π0
k−1 is performed as in [1], using

only the VEM degrees of freedom. As in Chapter 2, the stabilization form SE: Vδ × Vδ → R
in (3.13) must satisfy the following property:

SE(vδ, vδ) ∼ �∇vδ�2E ∀vδ ∈ kerΠ∇
k .

Using the above definitions we can state a SUPG-stabilized discrete formulation of (2.4)
as: find uδ ∈ Vδ such that

Bsupg,δ(uδ, vδ) = Fsupg,δ(vδ) ∀vδ ∈ Vδ , (3.16)

having defined the discrete right-hand side as

Fsupg,δ(vδ) =
�
f,Π0

k−1vδ
�
+
�

E∈Tδ

τE
�
f,β ·Π0

k−1∇vδ
�
E

. (3.17)

Finally, in order to provide an estimation of the constant C̃E
k for each polygon, we can

make use of classical theoretical results on triangles [21] thanks to the following proposition.

Proposition 3.1. Given a regular polygon E ∈ Tδ, let Tδ,E be a triangulation of E composed
by triangular elements with an edge on the boundary of E and one vertex in the centre of the
ball with respect to which E is star-shaped. Let C̃E

k be the constant of inequality (3.8). Then,

C̃E
k ≥ mint∈Tδ,E

C̃t
kh

2
t

h2
E

,

where C̃t
k is such that, ∀vδ ∈ V E

δ ,

C̃t
kh

2
t �∇ · (K∇vδ)�2t ≤ �K∇vδ�2t ∀t ∈ Tδ,E .

Proof. Summing up the inequalities on internal triangles we have

�

t∈Tδ,E

C̃t
kh

2
t �∇ · (K∇vδ)�2t ≤

�

t∈Tδ,E

�K∇vδ�2t ,

from which it follows
min

t∈Tδ,E

C̃t
kh

2
t �∇ · (K∇vδ)�2E ≤ �K∇vδ�2E ,

and therefore
mint∈Tδ,E

C̃t
kh

2
t

h2
E

h2
E �∇ · (K∇vδ)�2E ≤ �K∇vδ�2E ,

which proves the thesis.

3.4 Error Analysis

Let h := maxE∈Tδ
hE and define the following norm:

|||v||| :=
����
�
K∇v

���
2

+
�

E∈Tδ

τE �β ·∇v�2E

� 1
2

∀v ∈ H1
0 (Ω) .
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3.4. Error Analysis

3.4.1 Discretization errors. The following Lemmas are devoted to estimate the error
of approximation of the bilinear forms defined by (3.3), (3.4) and (3.5) with the discrete ones
defined by (3.13), (3.14) and (3.15), respectively. The results are based on the approximation
results for polynomial projections in Proposition 2.1.

Lemma 3.1. For any w ∈ H1 (Ω) and ∀vδ ∈ Vδ,

bδ(w, vδ) � max
E∈Tδ

βE�
K∨
E

���
�
K∇w

��� �vδ� . (3.18)

Moreover, if w ∈ Hs+1 (Ω) and β ∈ [Ws
∞ (Ω)]

2
for some s ∈ {0, . . . , k}, then

|b(w, vδ) − bδ(w, vδ)| � max
E∈Tδ

�β�Ws
∞(E) h

s+1 �w�s+1 �vδ�1 . (3.19)

Proof. Regarding (3.18), by the Cauchy-Schwarz inequality and the continuity of Π0
k−1 and

Π0
k we have, ∀E ∈ Tδ,

�
β ·Π0

k−1∇w,Π0
k−1vδ

�
E
≤ βE

��Π0
k−1∇w

��
E

��Π0
k−1vδ

��
E
� βE�

K∨
E

���
�
K∇w

���
E
�vδ�E ,

from which (3.18) readily follows.

Concerning (3.19), let E ∈ Tδ be fixed. By adding and subtracting
�
β ·Π0

k−1∇w, vδ
�
E
in

the left-hand side and using the triangle inequality,

��(β ·∇w, vδ)E −
�
β ·Π0

k−1∇w,Π0
k−1vδ

�
E

�� =
=
���β ·

�
∇w −Π0

k−1∇w
�
, vδ
�
E
+
�
β ·Π0

k−1∇w, vδ −Π0
k−1vδ

�
E

�� ≤
≤
���β ·

�
∇w −Π0

k−1∇w
�
, vδ
�
E

��+
���β ·Π0

k−1∇w, vδ −Π0
k−1vδ

�
E

�� .

We consider the two terms in the sum separately. The first one can be written as

�
β ·
�
∇w −Π0

k−1∇w
�
, vδ
�
E
=

2�

i=1

�
∂w

∂xi
−Π0

k−1

∂w

∂xi
,βivδ

�

E

.

Estimating each term in the right-hand side we have, ∀i ∈ {1, 2},
�
∂w

∂xi
−Π0

k−1

∂w

∂xi
,βivδ

�

E

=

�
∂w

∂xi
−Π0

k−1

∂w

∂xi
,βivδ −Π0

k−1(βivδ)

�

E

≤

≤
����
∂w

∂xi
−Π0

k−1

∂w

∂xi

����
E

��βivδ −Π0
k−1(βivδ)

��
E
� hs

E |w|s+1,E · hE |βivδ|1,E ≤

≤ hs+1
E �βi�W1

∞(E) |w|s+1,E �vδ�1,E .

Concerning the second term, we have that

�
β ·Π0

k−1∇w, vδ −Π0
k−1vδ

�
E
=

2�

i=1

�
βiΠ

0
k−1

∂w

∂xi
, vδ −Π0

k−1vδ

�

E

.

Thus, using the properties of projectors to add polynomials of degree less or equal than k−1,

23



SUPG stabilization for Virtual Element Methods

we have
�
βiΠ

0
k−1

∂w

∂xi
, vδ −Π0

k−1vδ

�

E

=

�
βiΠ

0
k−1

∂w

∂xi
−Π0

k−1

�
βiΠ

0
k−1

∂w

∂xi

�
, vδ −Π0

k−1vδ

�

E

≤

≤
����βiΠ

0
k−1

∂w

∂xi
−Π0

k−1

�
βiΠ

0
k−1

∂w

∂xi

�����
E

��vδ −Π0
k−1vδ

��
E
≤

≤ hE

����βiΠ
0
k−1

∂w

∂xi
−Π0

k−1

�
βiΠ

0
k−1

∂w

∂xi

�����
E

�∇vδ�E ,

and the proof ends using the best approximation property of the projection, the triangle
inequality, (2.13) and (2.14):
����βiΠ

0
k−1

∂w

∂xi
−Π0

k−1

�
βiΠ

0
k−1

∂w

∂xi

�����
E

≤
����βiΠ

0
k−1

∂w

∂xi
−Π0

k−1

�
βi

∂w

∂xi

�����
E

≤

≤
����βiΠ

0
k−1

∂w

∂xi
− βi

∂w

∂xi

����
E

+

����βi
∂w

∂xi
−Π0

k−1

�
βi

∂w

∂xi

�����
E

≤ hs
EβE |w|s+1,E+hs

E

����βi
∂w

∂xi

����
s,E

≤

≤ hs
E

�
βE |w|s+1,E + �βi�Ws

∞(E) �w�s+1,E

�
.

Lemma 3.2. For any w ∈ H1 (Ω) and ∀vδ ∈ Vδ,

dδ(w, vδ) � max
E∈Tδ

KE

K∨
E

���
�
K∇w

���
���
�
K∇vδ

��� . (3.20)

Moreover, if w ∈ Hs+1 (Ω), K ∈ Ws
∞ (Ω) and β ∈

�
Ws+1

∞ (Ω)
�2

for some s ∈ {0, . . . , k}, then

|d(w, vδ) − dδ(w, vδ)| � max
E∈Tδ

�β�Ws+1
∞ (E) �K�Ws

∞(E) (KE + βE)

KEβE

�
K∨
E

×

× hs+1 �w�s+1

���
�
K∇vδ

��� . (3.21)

Proof. To prove (3.20), we assume ∇ · (K∇w) �= 0, since otherwise the inequality is obviously
true. We use (3.11), the Cauchy-Schwarz inequality, the continuity of Π0

k−1 and (3.8): ∀E ∈
Tδ,

τE
�
∇ ·
�
KΠ0

k−1∇w
�
,β ·Π0

k−1∇vδ
�
E
≤ βE

hE

2βE

��∇ ·
�
KΠ0

k−1∇w
���

E

��Π0
k−1∇vδ

��
E
�

� 1

2
�
C̃E

��KΠ0
k−1∇w

��
E
�∇vδ�E � KE

2
�
C̃E

��Π0
k−1∇w

��
E
�∇vδ�E �

� KE

2K∨
E

�
C̃E

���
�
K∇w

���
E

���
�
K∇vδ

���
E

.

Regarding (3.21), by applying the triangle inequality we have:
�����
�

E∈Tδ

τE (∇ · (K∇w),β ·∇vδ)E − τE
�
∇ ·
�
KΠ0

k−1∇w
�
,β ·Π0

k−1∇vδ
�
E

����� ≤

≤
�

E∈Tδ

τE
���∇ · (K∇w − KΠ0

k−1∇w),β ·∇vδ
�
E

��

+ τE
���∇ ·

�
KΠ0

k−1∇w
�
,β ·
�
∇vδ −Π0

k−1∇vδ
��

E

�� . (3.22)
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To estimate the first term of the right-hand-side of (3.22), we suppose

∇ · (K∇w − KΠ0
k−1∇w) �= 0 ,

and we use the Cauchy-Schwarz inequality, (3.10), (3.8) and (2.14):

τE
���∇ · (K∇w − KΠ0

k−1∇w),β ·∇vδ
�
E

�� ≤ C̃Eh
2
EβE

2KE

��∇ ·
�
K∇w − KΠ0

k−1∇w
���

E
×

× �∇vδ�E ≤
�
C̃EhEβE

2KE

��K∇w − KΠ0
k−1∇w

��
E
�∇vδ�E ≤

≤
�
C̃EβE

2
�
K∨
E

hE

��∇w −Π0
k−1∇w

��
E

���
�
K∇vδ

���
E
�
�
C̃EβE

2
�
K∨
E

hs+1
E |w|s+1,E

���
�
K∇vδ

���
E

.

Concerning the second term of (3.22), we have

τE
�
∇ ·
�
KΠ0

k−1∇w
�
,β ·
�
∇vδ −Π0

k−1∇vδ
��

E
=

= τE

2�

i=1

�
βi∇ ·

�
KΠ0

k−1∇w
�
,
∂vδ
∂xi

−Π0
k−1

�
∂vδ
∂xi

��

E

,

and we can bound each term of the sum by using the properties of the projection, the
Cauchy-Schwarz inequality and the triangle inequality:

τE

�
βi∇ ·

�
KΠ0

k−1∇w
�
,
∂vδ
∂xi

−Π0
k−1

∂vδ
∂xi

�

E

=

τE

�
∇ ·
�
βiKΠ

0
k−1∇w

�
,
∂vδ
∂xi

−Π0
k−1

∂vδ
∂xi

�

E

+ τE

�
−∇βi ·

�
KΠ0

k−1∇w
�
,
∂vδ
∂xi

−Π0
k−1

∂vδ
∂xi

�

E

=

= τE

�
∇ ·
�
βiKΠ

0
k−1∇w

�
−∇ ·

�
Π0

k−1

�
βiKΠ

0
k−1∇w

��
,
∂vδ
∂xi

−Π0
k−1

∂vδ
∂xi

�

E

+ τE

�
Π0

k−1

�
∇βi ·

�
KΠ0

k−1∇w
��

−∇βi ·
�
KΠ0

k−1∇w
�
,
∂vδ
∂xi

−Π0
k−1

∂vδ
∂xi

�

E

�

� τE�
K∨
E

���∇ ·
�
βiKΠ

0
k−1(∇w)−Π0

k−1

�
βiKΠ

0
k−1∇w

����
E

+
��Π0

k−1

�
∇βi ·

�
KΠ0

k−1∇w
��

−∇βi ·
�
KΠ0

k−1∇w
���

E

� ���
�
K∇vδ

���
E

.

We consider the two terms inside the parentheses separately. To estimate the first one, we
first use the fact that Π0

k−1 is the best L2 (E) approximation in Pk−1 (E), then inequalities
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(3.10) and (3.8), and finally (2.13) and (2.14):

τE
��∇ ·

�
βiKΠ

0
k−1∇w −Π0

k−1

�
βiKΠ

0
k−1∇w

����
E
≤

≤ C̃Eh
2
E

2KE

��∇ ·
�
βiKΠ

0
k−1∇w −Π0

k−1

�
βiKΠ

0
k−1∇w

����
E
≤

≤
�
C̃EhE

2KE

��βiKΠ
0
k−1∇w −Π0

k−1

�
βiKΠ

0
k−1∇w

���
E
≤

≤
�
C̃EhE

2KE

��βiKΠ
0
k−1∇w −Π0

k−1(βiK∇w)
��
E
≤
�
C̃EhE

2KE

���βiK
�
Π0

k−1∇w −∇w
���

E

+
��βiK∇w −Π0

k−1(βiK∇w)
��
E

�
�
�
C̃EhE

2KE

�
hs
EβEKE |w|s+1,E + hs

E |βiK∇w|s,E
�
�

�
�
C̃Eh

s+1
E

2KE

�
βEKE |w|s+1,E + �β�Ws

∞(E) �K�Ws
∞(E) �w�s+1,E

�
.

To estimate the second term we use the fact that Π0
k−1 is the best approximation in Pk−1 (E),

the triangle inequality, inequality (3.11) and the estimates (2.13) and (2.14):

τE
��Π0

k−1

�
∇βi ·

�
KΠ0

k−1∇w
��

−∇βi ·
�
KΠ0

k−1∇w
���

E
≤

≤ τE
��Π0

k−1(∇βi · K∇w)−∇βi · KΠ0
k−1∇w

��
E
≤

≤ hE

2βE

���Π0
k−1(∇βi · K∇w)−∇βi · K∇w

��
E
+
��∇βi · K

�
∇w −Π0

k−1∇w
���

E

�
�

� hE

2βE

�
hs
E |∇βi · K∇w|s,E + hs

EKE �β�W1
∞(E) |w|s+1,E

�
�

� hs+1
E

2βE

�
�K�Ws

∞(E) �β�Ws+1
∞ (E) �w�s+1,E + KE �β�W1

∞(E) |w|s+1,E

�
.

Lemma 3.3. For any w ∈ H1 (Ω) and ∀vδ ∈ Vδ,

aδ(w, vδ) � max
E∈Tδ

KE + τEβ
2
E

K∨
E

���
�
K∇w

���
���
�
K∇vδ

��� . (3.23)

Moreover, if w ∈ Hs+1 (Ω), K ∈ Ws
∞ (Ω) and β ∈ [Ws

∞ (Ω)] for some s ∈ {0, . . . , k}, then

|a(w, vδ) − aδ(w, vδ)| �


max

E∈Tδ

�K�Ws
∞(E) +

�β�2
Ws∞(E)

βE�
K∨
E


hs �w�s+1

���
�
K∇vδ

��� . (3.24)

Proof. Let vδ ∈ Vδ, w ∈ H1 (Ω). We first prove (3.23) considering E ∈ Tδ. Regarding the
terms involving the VEM stabilization, we first point out that, as a consequence of (2.8), we
have

SE
��
I −Π∇

k

�
w,
�
I −Π∇

k

�
vδ
�
�
��∇
�
w −Π∇

k w
���

E

��∇
�
vδ −Π∇

k vδ
���

E
. (3.25)
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Applying the Cauchy-Schwarz inequality, (3.25) and the continuity of projectors,

aEδ (w, vδ) =
�
KΠ0

k−1∇w,Π0
k−1∇vδ

�
E
+ τE

�
β ·Π0

k−1∇w,β ·Π0
k−1∇vδ

�
E

�
KE + τEβ

2
E

�
×

× SE
��
I −Π∇

k

�
w,
�
I −Π∇

k

�
vδ
�
�
�
KE + τEβ

2
E

� ���Π0
k−1∇w

��
E

��Π0
k−1∇vδ

��
E

+
���I −Π∇

k

�
w
��
E

���I −Π∇
k

�
vδ
��
E

�
� KE + τEβ

2
E

K∨
E

���
�
K∇w

���
E

���
�
K∇vδ

���
E

.

Concerning (3.24), by adding and subtracting

�
K∇w,Π0

k−1∇vδ
�
E
=
�
Π0

k−1(K∇w) ,∇vδ
�
E

and

�
ββ�∇w,Π0

k−1∇vδ
�
E
=
�
Π0

k−1(ββ
�∇w) ,∇vδ

�
E

and exploiting the triangle inequality we have, ∀E ∈ Tδ,
��aE(w, vδ) − aEδ (w, vδ)

�� ≤
���K∇w − KΠ0

k−1∇w,Π0
k−1∇vδ

�
E

��

+
���K∇w −Π0

k−1(K∇w) ,∇vδ
�
E

��+
�
KE + τEβ

2
E

� ��SE
��
I −Π∇

k

�
w,
�
I −Π∇

k

�
vδ
���

+ τE
���ββ�∇w − ββ�Π0

k−1∇w,Π0
k−1∇vδ

�
E

��+ τE
���ββ�∇w −Π0

k−1(ββ
�∇w) ,∇vδ

�
E

�� .

The first term is bounded as follows, exploiting the definition of projection, its continuity
and (2.14):

�
K
�
∇w −Π0

k−1∇w
�
,Π0

k−1∇vδ
�
E
�
�
KE

��∇w −Π0
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E
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�
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���
E
�

�
�
KEh

s
E |w|s+1,E

���
�

K∇vδ

���
E

. (3.26)

The second term is bounded by the Cauchy-Schwarz inequality and (2.13):

�
K∇w −Π0

k−1(K∇w) ,∇vδ
�
E
≤
��K∇w −Π0

k−1(K∇w)
��
E
�∇vδ�E �

� hs
E |K∇w|s,E �∇vδ�E ≤ hs

E

�K�Ws
∞(E)�
K∨
E

�w�s+1,E

���
�
K∇vδ

��� . (3.27)

The third term is estimated using (3.11), the Cauchy-Schwarz inequality, the continuity of
Π0

k−1 and (2.14):

τE
�
ββ� �∇w −Π0

k−1∇w
�
,Π0

k−1∇vδ
�
E
� βE

2
hE

��∇w −Π0
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��
E
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� βE

2
�
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E
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�
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E
�
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∞(E)

βE

�
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E

hs+1
E |w|s+1,E

���
�
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���
E

.

The fourth term can be estimated similarly:

τE
�
ββ�∇w −Π0

k−1(ββ
�∇w) ,∇vδ

�
E
� τE

��ββ�∇w −Π0
k−1(ββ

�∇w)
��
E
�∇vδ� �

� τE
hs
E�
K∨
E

|ββ�∇w|s,E
���
�
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���
E
�
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βE

�
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E
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���
�
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��� .
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Finally, we consider the terms involving the VEM stabilization and, applying again (3.25),
we are left to estimate projection errors. Proceeding as above, exploiting the continuity of
Π∇

k , (2.15) and the estimate on τE in (3.11) we obtain

KE

��∇
�
w −Π∇

k w
���

E

��∇
�
vδ −Π∇

k vδ
���

E
≤ KE�

K∨
E

hs
E |w|s+1,E

���
�
K∇vδ

���
E

, (3.28)

τEβ
2
E

��∇
�
w −Π∇

k w
���

E

��∇
�
vδ −Π∇

k vδ
���

E
≤ βE

2
�
K∨
E

hs+1
E |w|s+1,E

���
�
K∇vδ

���
E

.

3.4.2 Well-posedness of the discrete problem. In this subsection we prove, in
Theorem 3.1, an inf-sup condition for the discrete bilinear form defined by (3.12), which
ensures the well-posedness of problem (3.16).

Lemma 3.4. There exist a constant α > 0 such that

aδ(vδ, vδ) ≥ α |||vδ|||2 ∀vδ ∈ Vδ . (3.29)

Proof. Let vδ ∈ Vδ and fix E ∈ Tδ. From the definition of aδ in (3.13) we have

aEδ (vδ, vδ) :=
���
�
KΠ0

k−1∇vδ

���
2

E
+ τE

��β ·Π0
k−1∇vδ

��2
E

+
�
KE + τEβ

2
E

�
SE
��
I −Π∇

k

�
vδ,
�
I −Π∇

k

�
vδ
�
.

From (2.8) and the properties of the orthogonal projection, we have that there exists c∗ > 0
such that, ∀E ∈ Tδ,

SE
��
I −Π∇

k

�
vδ,
�
I −Π∇

k

�
vδ
�
≥ c∗

��∇
�
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k vδ
���2

E
≥ c∗

��∇vδ −Π0
k−1∇vδ

��2
E

,

and then

�
KE + τEβ

2
E

�
SE
��
I −Π∇

k

�
vδ,
�
I −Π∇

k

�
vδ
�
≥ c∗

�
KE + τEβ

2
E

� ��∇vδ −Π0
k−1∇vδ

��2
E
≥

≥ c∗
����
�
K
�
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k−1∇vδ
����

2

E
+ τE

��β ·
�
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k−1∇vδ
���2

E

�
.

The thesis is thus proven choosing α = min {c∗, 1}:

aEδ (vδ, vδ) ≥
���
�
KΠ0

k−1∇vδ

���
2

E
+
�

E∈Tδ

τE
��β ·Π0

k−1∇vδ
��2
E
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����
�
K
�
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����

2

E

+τE
��β ·
�
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���2

E

�
≥ min {c∗, 1}

����
�
KΠ0

k−1∇vδ

���
2

+
���
�
K
�
∇vδ −Π0

k−1∇vδ
����

2

+ τE
��β ·Π0

k−1∇vδ
��2
E
+ τE

��β ·
�
∇vδ −Π0
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.
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Lemma 3.5. Let q ∈ H1
0 (Ω). Then there exists q∗ ∈ Vδ such that

aδ(q
∗, vδ) = a(q, vδ) ∀vδ ∈ Vδ .

Moreover,

|||q∗||| ≤ 1

α
|||q||| , (3.30)

�q − q∗� � h |||q||| , (3.31)

being α the coercivity constant in (3.29).

Proof. The proof is formally the same as the one in [2, Lemma 5.6]. The well-posedness of
Lemma 3.5 follows from the coercivity of aδ on Vδ (see Lemma 3.4). By (3.29) and Lax-
Milgram Lemma, we also have the estimate (3.30):

|||q∗δ |||2 ≤ 1

α
aδ(q

∗
δ , q

∗
δ ) =

1

α
a(q∗, qδ) ≤

1

α
|||q∗||| |||q∗δ ||| .

To prove (3.31), we define ψ ∈ H2 (Ω) ∩H1
0 (Ω) as the solution of

−Δψ = q∗ − q∗δ in L2 (Ω) . (3.32)

As solution of the above problem, ψ statisfies the following estimate:

�Δψ� ≤ �q∗ − q∗δ� . (3.33)

Let ψI ∈ Vδ be the VEM interpolant of ψ. We know from a simple application of [2, Lemma
5.1] and since the interpolation is a continuous operator that

�∇ (ψ − ψI)� � h |ψ|2 , (3.34)

|ψI |2 � |ψ|2 . (3.35)

From Lemma 3.5, (3.32), (3.24), (3.35), (3.33) and (3.34) we have, since q∗ − q∗δ ∈ H1
0 (Ω),

�q∗ − q∗δ�2 = (q∗ − q∗δ , q
∗ − q∗δ ) = a(ψ, q∗ − q∗δ ) = a(ψ − ψI , q

∗ − q∗δ ) + a(ψI , q
∗ − q∗δ ) =

= a(ψ − ψI , q
∗ − q∗δ )+aδ(ψI , q

∗
δ )−a(ψI , q

∗
δ ) ≤ a(ψ − ψI , q

∗ − q∗δ )+|aδ(ψI , q
∗
δ ) − a(ψI , q

∗
δ )| �

� |||ψ − ψI ||| |||q∗ − q∗δ ||| + h �ψI�2
���
�
K∇q∗δ

��� � h �ψ�2 |||q∗||| ≤ h �ψ�2 |||q∗||| ,

and the proof is concluded because

�ψ�2 � �Δψ� ≤ �q∗ − q∗δ� .

Lemma 3.6. For any vδ ∈ Vδ,

Bsupg(vδ, vδ) ≥
1

2
|||vδ|||2 . (3.36)

Proof. Let vδ ∈ Vδ. Since we have homogeneous Dirichlet boundary conditions and ∇ ·β = 0,
it holds

(β ·∇vδ, vδ) = −1

2

�
∇ · β, v2δ

�
= 0 .
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We have, using the definition of Bsupg , and the Cauchy-Schwarz and Young inequalities and
the estimate (3.8),

Bsupg(vδ, vδ) =
���
�
K∇vδ

���
2

+
�

E∈Tδ

τE �β ·∇vδ�2E − τE
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�
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�
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≥
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2

E
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�
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1

2
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2
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�
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1
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τE �β ·∇vδ�2E ≥ 3
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�
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���
2

+
�

E∈Tδ

1

2
τE �β ·∇vδ�2E ≥ 1

2
|||vδ|||2 .

Theorem 3.1. Suppose K ∈ L∞ (Ω) and β ∈
�
W1

∞ (Ω)
�2
. Then, ∀vδ ∈ Vδ and for h

sufficiently small,

sup
wδ∈Vδ

Bsupg,δ(vδ, wδ)

|||wδ|||
� |||vδ||| . (3.37)

Proof. Let vδ ∈ Vδ be fixed and let v∗δ ∈ Vδ be the function, whose existence is guaranteed
by Lemma 3.5, such that aδ(v

∗
δ , wδ) = a(vδ, wδ), ∀wδ ∈ Vδ. By definitions (3.2) and (3.12),

since aδ is symmetric, we have, by (3.36),

Bsupg,δ(vδ, v
∗
δ ) = aδ(vδ, v

∗
δ ) + bδ(vδ, v

∗
δ ) + dδ(vδ, v

∗
δ ) = a(vδ, vδ) + bδ(vδ, v

∗
δ ) + dδ(vδ, v

∗
δ ) =

= Bsupg(vδ, vδ) + r (vδ, v
∗
δ ) ≥

1

2
|||vδ|||2 + r (vδ, v

∗
δ ) ,

where

r (vδ, v
∗
δ ) = bδ(vδ, v

∗
δ ) − b(vδ, v

∗
δ ) + b(vδ, v

∗
δ − vδ) + dδ(vδ, v

∗
δ ) − d(vδ, v

∗
δ ) + d(vδ, v

∗
δ − vδ) .

By Lemmas 3.1 and 3.2, the continuity of b and d, that can be proven as for (3.18) and (3.20),
and by (3.30) and (3.31), there exists a constant Cr > 0 depending on �K�L∞(K), �β�W1

∞(Ω)

and on the approximation constants in (2.13), (2.14) and (2.15), such that

|r (vδ, v∗δ )| ≤ Crh
���
�
K∇vδ

���
���
�
K∇v∗δ

��� ≤ Crh |||vδ||| |||v∗δ ||| ≤ Crh |||vδ|||2 . (3.38)

Then, by (3.30) and (3.38) the following lower bound holds:

Bsupg,δ(vδ, vδ) ≥
1

2
|||vδ|||2 + r (vδ, v

∗
δ ) ≥

�α
2
− Crh

�
|||vδ||| |||v∗δ ||| ,

which yields the thesis for

h <
α

2Cr
.
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3.4.3 A priori error estimate. To derive an a priori estimate that shows optimality
of the rate of convergence of this SUPG approach, we use the estimate (2.16) on the VEM
interpolator with s ≥ 2.

We are now ready to prove the following result.

Theorem 3.2. Suppose u ∈ Hs+1 (Ω), f ∈ Hs (Ω), K ∈ Ws
∞ (Ω), β ∈

�
Ws+1

∞ (Ω)
�2

for some
s ∈ {1, . . . , k}. Then, for h sufficiently small,

|||u− uδ||| � hs
�
�u�s+1 + �f�s

�
. (3.39)

Proof. First, by the triangle inequality we have

|||u− uδ|||2 ≤ |||u− uI |||2 + |||uδ − uI |||2 ,

and, by (2.16),

|||u− uI |||2 =
�

E∈Tδ

���
�
K∇ (u− uI)

���
2

E
+ �β ·∇ (u− uI)�2E ≤

≤
�

E∈Tδ

�
KE + β2

E

�
�∇ (u− uI)�2E �

�

E∈Tδ

�
KE + β2

E

�
h2s
E |u|2s+1,E .

We are left to estimate the norm of eδ := uδ − uI . Since eδ ∈ Vδ, by (3.37) there exists
wδ ∈ Vδ such that

Bsupg,δ(eδ, wδ) � |||eδ||| |||wδ||| .

Using the exact and discrete problems (3.9) and (3.16),

|||eδ||| |||wδ||| � Bsupg,δ(uδ − uI , wδ) = Fsupg,δ(wδ)− Bsupg,δ(uI , wδ) =

= Fsupg,δ(wδ)− Fsupg(wδ) + Bsupg(u,wδ) − Bsupg,δ(uI , wδ) = Fsupg,δ(wδ)

− Fsupg(wδ) + Bsupg,δ(u− uI , wδ) + Bsupg(u,wδ) − Bsupg,δ(u,wδ) . (3.40)

Note that for our choice of the degrees of freedom and stabilization (defined in (2.9)), it
makes sense to compute Bsupg,δ(u,wδ) as in (3.12)–(3.15), because u ∈ H2 (Ω) ⊂ C0 (Ω) for

Ω ⊂ R2. If the solution u does not have the regularity for pointwise evaluation, definition
(2.9) for the VEM-stabilization function has to be properly modified.

The first difference in (3.40) can be written as:

Fsupg,δ(wδ)− Fsupg(wδ) =
�

E∈Tδ

�
f,
�
Π0

k−1 − I
�
wδ + β ·

�
Π0

k−1 − I
�
∇wδ

�
E

. (3.41)

The first term of the sum in (3.41) is bounded as follows:

�
f,
�
Π0

k−1 − I
�
wδ

�
=
��
I −Π0

k−1

�
f,
�
Π0

k−1 − I
�
wδ

�
≤
��f −Π0

k−1f
��
E
×

×
��wδ −Π0

k−1wδ

��
E
� hs−1

E |f |s−1,E hE �∇wδ� ≤ hs
E�
K∨
E

|f |s−1,E

���
�
K∇wδ

���
E
≤

≤ hs
E�
K∨
E

|f |s−1,E |||wδ|||E . (3.42)
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The second term of the sum in (3.41) can be treated as follows:

�
f,β ·

�
Π0

k−1 − I
�
∇wδ

�
E
=

2�

i=1

��
Π0

k−1 − I
�
(βif) ,

∂wδ

∂xi

�

E

≤

≤
2�

i=1

���I −Π0
k−1

�
(βif)

��
E

����
∂wδ

∂xi

����
E

� hs

�
K∨
E

2�

i=1

|βif |s,E
���
�
K∇wδ

���
E
≤

≤
�β�Ws

∞(E)�
K∨
E

hs
E �f�s,E |||wδ|||E . (3.43)

Going back to (3.40), we estimate the continuity of Bsupg,δ, given by (3.18), (3.20) and (3.23),
and the estimate on the VEM interpolator in (2.16):

Bsupg(u− uI , wδ) = (K∇ (u− uI) ,∇wδ) + (β ·∇ (u− uI) , wδ) +
�

E∈Tδ

τE×

× (β ·∇ (u− uI)−∇ · (K∇ (u− uI)) ,β ·∇wδ)E = (K∇ (u− uI) ,∇wδ)

− (u− uI ,β ·∇wδ) +
�

E∈Tδ

τE (β ·∇ (u− uI)−∇ · (K∇ (u− uI)) ,β ·∇wδ)E ≤

≤
���
�
K∇ (u− uI)

���
���
�
K∇wδ

��� + �u− uI� �β ·∇wδ� +
�

E∈Tδ

(τE �β ·∇ (u− uI)�E

+τE �∇ · (K∇ (u− uI))�E) �β ·∇wδ�E ≤
����
�
K∇ (u− uI)

���
2

+
�

E∈Tδ

τ−1
E �u− uI�2E

+ τE �β ·∇ (u− uI)�2E + τE �∇ · (K∇ (u− uI))�2E

� 1
2

|||wδ||| �

�
��

E∈Tδ

h2s
E

�
�K�2W1

∞(E)

K2
E

βEhEH (PeE − 1) + �K�W1
∞(E) H (1− PeE)

�� 1
2

�u�s+1 |||wδ||| .

The estimate of the last difference in (3.40) is obtained by applying (3.19), (3.21) and (3.24):

��Bsupg(u,wδ) − Bsupg,δ(u,wδ)
�� ≤ |a(u,wδ) − aδ(u,wδ)|

+ |b(u,wδ) − bδ(u,wδ)|+ |d(u,wδ) − dδ(u,wδ)| � hs �u�s+1 �wδ�1 .

From all of the above results we obtain

|||uδ − uI ||| � hs
�
�u�s+1 + �f�s

�
. (3.44)

Finally, we end this section with an L2 (Ω) a priori error estimate, resorting to classical
duality arguments.

Theorem 3.3. Suppose u ∈ Hs+1 (Ω), f ∈ Hs (Ω), K ∈ Ws
∞ (Ω), β ∈

�
Ws+1

∞ (Ω)
�2

for some
s ∈ {1, . . . , k}. Then, for h sufficiently small,

�u− uδ� � hs+1
�
�u�s+1 + �f�s

�
. (3.45)
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Proof. Let B∗: H1
0 (Ω) × H1

0 (Ω) → R be the adjoint operator of B, such that B∗(w, v) =
(K∇w,∇v) − (β ·∇w, v). Let ψ ∈ H2 (Ω) ∩H1

0 (Ω) be the solution of

B∗(ψ, v) = (u− uδ, v) ∀v ∈ H1
0 (Ω) ,

and let ψI be the VEM interpolant of ψ. From (2.16) and the definition of ψ we get

|||ψ − ψI ||| � h |ψ|2 � h �u− uδ� , (3.46)

�∇ψ� � �u− uδ� . (3.47)

Then, setting ∀E ∈ Tδ

Esupg (u− uδ,ψI) :=
�

E∈Tδ

τE (β ·∇ (u− uδ) +∇ · (K∇(u− uδ)) ,β ·∇ψI)E ,

we have

�u− uδ�2 = B∗(ψ, u− uδ) = B(u− uδ,ψ) = B(u− uδ,ψ − ψI) + B(u− uδ,ψI) =

= B(u− uδ,ψ − ψI) + Bsupg(u− uδ,ψI) − Esupg (u− uδ,ψI) =

= B(u− uδ,ψ − ψI) + Fsupg(ψI)− Fsupg,δ(ψI)

+ Bsupg,δ(uδ,ψI) − Bsupg(uδ,ψI) − Esupg (u− uδ,ψI) .

We now focus on the terms of the right-hand side separately. First, making use of the
Cauchy-Schwarz inequality, of the a priori estimate (3.39) and of (3.46), we get

B(u− uδ,ψ − ψI) ≤ �u− uδ�1 �ψ − ψI�1 � hs
�
�u�s+1 + �f�s

�
�ψ − ψI�1 �

� hs+1
�
�u�s+1 + �f�s

�
|ψ|2 � hs+1

�
�u�s+1 + �f�s

�
�u− uδ� .

Concerning the term Fsupg(ψI) − Fsupg,δ(ψI), considering that ψI is the interpolant of a
H2 (Ω) function, we may follow again the lines of the proof of Theorem 3.2 (see (3.41) and
the following equations): the increased regularity allows us to improve relations (3.42) and
(3.43), obtaining

|Fsupg(ψI)− Fsupg,δ(ψI)| � hs+1 �f�s |ψ|2 � hs+1 �f�s �u− uδ� .

Next, the estimate
��Bsupg,δ(uδ,ψI) − Bsupg(uδ,ψI)

�� � hs+1 �u�s+1 (�∇ψ� + |ψ|2) � hs+1 �u�s+1 �u− uδ�

can be obtained using (3.19), (3.21), and an improved version of (3.24) in which the increased
regularity of ψ allows for an extra power of h in (3.26), (3.27) and (3.28). In particular,
regarding (3.26),

�
K
�
∇uδ −Π0

k−1∇uδ

�
,Π0

k−1∇ψI

�
E
=

=
�
∇uδ −Π0

k−1∇uδ,KΠ
0
k−1∇ψI −Π0

k−1

�
KΠ0

k−1∇ψI

��
E
≤
��∇uδ −Π0

k−1∇uδ

��
E
×

×
��KΠ0

k−1∇ψI −Π0
k−1

�
KΠ0

k−1∇ψI

���
E
�
�
�∇ (u− uδ)�E +

��∇u−Π0
k−1∇u

��
E
+

��Π0
k−1(∇ (u− uδ))

��
E

� ��KΠ0
k−1∇ψI −Π0

k−1(K∇ψI)
��
E
�

� hs
E �u�s+1,E

���KΠ0
k−1ψI − K∇ψI

��
E
+
��K∇ψI −Π0

k−1(K∇ψI)
��
E

�
�

� hs+1
E �u�s+1,E

�
�∇ψI�E + |ψI |2,E

�
� hs+1

E �u�s+1,E

�
�∇ψ�E + |ψ|2,E

�
,
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while regarding (3.27),

�
K∇uδ −Π0

k−1(K∇uδ) ,∇ψI

�
E
=
�
K∇uδ −Π0

k−1(K∇uδ) ,∇ψI −Π0
k−1∇ψI

�
E
≤

≤
��K∇uδ −Π0

k−1(K∇uδ)
��
E

��∇ψI −Π0
k−1∇ψI

��
E
≤ (�K∇uδ − K∇u�E +

��K∇u−Π0
k−1(K∇u)

��
E
+
��Π0

k−1(K∇u− K∇uδ)
��
E

� ��∇ψI −Π0
k−1∇ψI

��
E
�

� hs+1
E �u�s+1,E |ψI |2,E � hs+1

E �uδ�s+1,E |ψ|2,E .

Finally, regarding the term Esupg (u− uδ,ψI), using inequalities (3.10) and (3.11) for τE ,
the estimate (2.16) for the VEM interpolant, the a priori estimate (3.39), (3.47) and the
Hölder inequality, we get

�����
�

E∈Tδ

τE (β ·∇ (uδ − u) +∇ · (K∇(uδ − u)) ,β ·∇ψI)E

����� ≤

≤
�
max
E∈Tδ

τE

� �����
�

E∈Tδ

(β ·∇ (uδ − u) +∇ · (K∇(uδ − u)) ,β ·∇ψI)E

����� �

�
�
max
E∈Tδ

τE

�
�u− uδ�1 �∇ψI� +

��

E∈Tδ

�∇ · (K∇(u− uδ))�2E

� 1
2

�∇ψI�


 �

�


hs+1 �u�s+1 + h2

��

E∈Tδ

�u− uI�22,E + �∇ · (K∇(uI − uδ))�2E

� 1
2


 �∇ψ� �

� hs+1
E �u�s+1 �u− uδ� ,

where the error
�

E∈Tδ
�∇ · (K∇(uI − uδ))�2E is estimated using (3.8) and (3.44):

�

E∈Tδ

�∇ · (K∇(uI − uδ))�2E �
�

E∈Tδ

h−2
E �uI − uδ�21,E � h2(s−1) �u�2s+1 .

3.5 Numerical Results

In this section we will consider three benchmark problems in the domain Ω = (0, 1)× (0, 1)
in order to numerically evaluate the rates of convergence of the discussed VEM-SUPG stabi-
lization both in the convection-dominated regime and the diffusion-dominated regime. VEM
orders from one to three are used.

3.5.1 Test 1. As a first test we consider problem (3.1) with constant K and β. In
particular the transport velocity field is

β(x, y) =
�
1
2 ,− 1

3

�
,

and we perform two sets of simulations corresponding to two different values of K: in a first
set of simulations we use K = 10−3, whereas K = 10−9 is used for a second set of simulations.
The meshsize range is chosen in such a way that for all values of the VEM order k, the mesh
Péclet number is both greater and lower than one for K = 10−3, while it is much greater
than one for K = 10−9.
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The exact solution for this problem is given by

u(x, y) =
65536

729
x3(1− x)y3(1− y) .

In Figures 3.1a to 3.1f we show the convergence curves obtained with K = 10−3 (left) and
K = 10−9 (right). The errors reported are based on the difference between the exact solution
and the projection of the discrete solution on the space of polynomials of degree k, accordingly
to the VEM order k varying from 1 to 3, and they are computed as follows:

errL2 =

��

E∈Tδ

�u−Π0
kuδ�2E ,

errH1
0
=

��

E∈Tδ

�∇ (u−Π0
kuδ)�2E .

The errors are plotted versus the number of degrees of freedom (Ndof). For each mesh we
also report the values of the minimum and maximum mesh Péclet numbers. Note that the
left y-axes scales refer to the mesh Péclet numbers, whereas the right ones refer to the error
measure. The very good agreement between the numerical behaviour and the expected rates
of convergence in (3.39) is evident.

3.5.2 Test 2. For the second test, non-constant coefficients are used and the flow regime
is transport dominated in all the simulations performed. We have set:

K(x, y) = 10−7

�
1 + x2 xy
xy 1 + y2

�
,

β(x, y) =
�
1
3 + 10y(x+ y2)4,− 1

2 − 5(x+ y2)4
�
,

and the exact solution in this case is:

u(x, y) = 600xy(1− x)(1− y)

�
x− 1

5

��
y − 2

5

��
y − 3

5

�
.

We compare the solution obtained with the VEM-SUPG method described in the present
work on a family of polygonal Voronoi meshes generated by PolyMesher [24], made up of
polygons with four to eight edges (see Figure 3.2a), with the solution obtained on standard
triangular meshes. Figures 3.2c and 3.2d show a comparison between the unstabilized solution
and the one obtained using the SUPG stabilization for second order VEM, showing a very
good agreement with the exact solution (Figure 3.2b) for a given polygonal mesh.

Convergence curves were obtained for VEM formulations of order from 1 to 3 and are
reported in Figure 3.3. The error was obtained by comparing the exact solution to the
polynomial projections of the discrete solutions. On each plot we also report the maximum
and minimum mesh Péclet number for each considered meshsize. Also in this case, the left y-
axes refer to the mesh Péclet numbers, whereas the right ones refer to the error measure. Note
that for all orders and meshes, this problem is always convection-dominant (minE∈Tδ

PeE � 1
for all meshes). Once again, the plots show a very good agreement between the experimental
orders of convergence and the ones provided by Theorem 3.2, independently of the used mesh.

3.5.3 Test 3. As a final test, we revisit a classic problem studied in [17] in the context of
standard Finite Elements. The geometry of the problem is depicted in Figure 3.4. Dirichlet
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Figure 3.1: Test 1 Convergence curves
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Figure 3.2: Test 2 Sample mesh, exact, unstabilized and stabilized solutions

boundary conditions are prescribed on the whole boundary (see again Figure 3.4), introducing
a discontinuity in the inflow boundary that originates an internal boundary as well as an
outflow boundary layer due to the null boundary condition at the outflow boundary. Data
for the problem is: K = 10−6, and β(x, y) =

�
cos(θ), sin(θ)

�
, where 0 ≤ θ ≤ π/2 represents

the flow direction. We consider the cases θ = arctan(1) and θ = arctan(2). The problem
therefore presents very large Péclet numbers (106).

We considered three different mesh types: a regular quadrilateral mesh, a mildly deformed
hexagonal mesh (Figure 3.5a), and a randomly generated polygonal mesh (see Figure 3.5b),
whose parameters are summarized in Table 3.1. As in the case of standard Finite Elements,
the unstabilized solution (not reported here) presents huge oscillations. Results obtained
with VEM, with order ranging from 1 to 3 and the different mesh types, are presented in
Figures 3.6 and 3.7. For all the orders and the mesh types considered, the results are quite
similar to those presented in [17], and are coherent with the expected behavior of the method.
Furthermore, higher order elements yield a smoother solution even with coarser meshes. The
quadrilateral mesh shows smoother results than the hexagonal mesh, and more so in the case
of the highly irregular polygonal mesh.
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[1] L. Beirão Da Veiga, F. Brezzi, L. D. Marini, and A. Russo. “The hitchhiker’s guide
to the Virtual Element method”. In: Math. Models Methods Appl. Sci 24.8 (2014),
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(c) Order 2, triangular mesh
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(d) Order 2, polygonal mesh
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(e) Order 3, triangular mesh
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Figure 3.3: Test 2 Convergence curves
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Figure 3.5: Test 3 Examples of mesh used
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(a) Order 1, quad. mesh (b) Order 2, quad. mesh (c) Order 3, quad. mesh

(d) Order 1, hexagonal mesh (e) Order 2, hexagonal mesh (f) Order 3, hexagonal mesh

(g) Order 1, polygonal mesh (h) Order 2, polygonal mesh (i) Order 3, polygonal mesh

Figure 3.6: Test 3 Solutions obtained for θ = arctan(1)
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(a) Order 1, quad. mesh (b) Order 2, quad. mesh (c) Order 3, quad. mesh

(d) Order 1, hexagonal mesh (e) Order 2, hexagonal mesh (f) Order 3, hexagonal mesh

(g) Order 1, polygonal mesh (h) Order 2, polygonal mesh (i) Order 3, polygonal mesh

Figure 3.7: Test 3 Solutions obtained for θ = arctan(2)

Quadrilateral mesh Hexagonal mesh Polygonal mesh
Order # Polygons h # Polygons h # Polygons h

1 1024 0.0312 780 0.044 1000 0.125
2 256 0.0625 360 0.065 500 0.155
3 100 0.1 80 0.139 200 0.192

Table 3.1: Test 3 Mesh parameters
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Chapter 4

A residual a posteriori error estimate for
the Virtual Element Method

In this chapter we develop a residual a posteriori error estimate for Virtual Element Methods,
with the focus on avoiding the presence of any terms depending on the VEM stabilization
bilinear form. This work is currently submitted for publication.

4.1 Introduction

Since the first investigations on a posteriori error analysis [4], many interesting results have
been obtained [2, 5, 30, 38] on simple linear models as well as on more complex non-linear
equations [16, 21, 24]. In recent years a posteriori error analysis and optimality investigations
of steady-state adaptive discretizations have been widely tackled for several discretization
approaches and model equations, obtaining several interesting results [15, 25, 27, 34]. A
large effort has been recently spent on unsteady problems [3, 23, 28, 36], as well as on other
interesting issues like, for example, the analysis of stopping criteria during adaptive iterations
[31]. Discretization approaches based on traditional simplicial elements are subject to many
constraints when mesh refinement and coarsening are applied. These constraints can make
reliable and efficient simulations very difficult and computationally demanding. Moreover, in
many applications the geometrical complexity of the domain is a relevant issue when partial
differential equations have to be solved on a good quality mesh (see, for example, the problem
of underground flow simulation in fractured media[17–19]).

In the VEM context, due to the unknown value of the non-polynomial part of the dis-
cretization space on each element, the computed discrete solution is immediately known only
through the values of its degrees of freedom and cannot be easily evaluated inside the ele-
ments. The full discrete solution can, however, be used to compute a piecewise polynomial
approximation of the discrete solution that can be easily evaluated at any point of each
element.

In this work we address the issue of deriving computable, reliable and efficient residual-
based a posteriori error estimators for a polynomial projection of the Virtual Element solution
to the Poisson problem. This very simple model is, anyway, interesting in several applications
like, for example, geological flow simulations [10–12, 17] where the geometrical complexities
can be extremely challenging. The a posteriori analysis for the same problem was tackled in
[9] with a different VEM discretization and with additional terms in the estimates depending
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on the VEM stabilization. Moreover, in [26] a more general reaction-advection-diffusion
problem is considered for an a posteriori error estimate, involving terms depending on the
VEM stabilization. Here we show that, using a particular polynomial approximation of
the VEM solution, we are able to compute reliable and efficient residual error estimators,
overcoming the problem related to the evaluation of the residual of the strong form of the
equation and of the values of the co-normal derivatives of the non-polynomial component of
the numerical solution. Moreover, we aim at avoiding the inclusion in the error estimators of
any VEM stabilization terms. In this approach we establish an equivalence relation between
the error with respect to a “post-processing” of the VEM solution and a residual based error
estimator. Resorting to post-processed solutions is a quite common practice in proving super-
convergence results [40, 42], very common, for example, for the Stokes problem [41]. The
equivalence relation we prove involves only the defined error measure and the error estimator,
up to classical higher order data oscillation terms. Note that, in the case the estimates were
not independent of the VEM stabilization, as are with other approaches, one would have these
terms, that are not negligible with respect to the error and the estimator, on the right-hand
side of both the upper and lower bound of the error.

The chapter is organized as follows: in Section 4.2 we describe the model problem and we
briefly introduce the VEM conforming discretization. In Section 4.3 the a posteriori upper
bound for the error between the solution of the problem and a suitable projection of the
numerical solution is provided, and in Section 4.4, we prove a posteriori lower bounds for the
chosen error measure. In Section 4.5 we present some numerical results confirming the good
agreement of the a posteriori error estimates. In particular, we show that the estimates can
be effectively applied to a model representing the pressure distribution of a Darcy flow within
a fractured medium, modeled by a Discrete Fracture Network approach [10, 12, 14, 17–19].
Finally, in Section 4.7 we discuss a stability issue concerning a fundamental assumption
needed in order to have estimates independent of the VEM stabilization terms. For the sake
of clarity, we consider the 2D case only, but we remark that all the results concerning the a
posteriori error estimates presented in Sections 4.3 and 4.4 can be extended to the 3D case
as well.

4.2 The model problem and its VEM discretization

In this section we introduce the problem which will be considered herein, followed by its
discretization by the Virtual Element Method, that follows the line developed in Chapter 2
and [7].

We consider the simple Poisson problem, that is problem (2.1) with β = (0, 0) and γ = 0.
Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary ∂Ω; then, for a forcing term f
we look for a function u such that,

�
−∇ · (K∇u) = f in Ω ,

u = 0 on ∂Ω ,
(4.1)

where K is a positive function representing the diffusivity coefficient. We consider the classic
weak formulation of the problem. Define a: H1

0 (Ω)×H1
0 (Ω) → R such that

a(w, v) := (K∇w,∇v) ∀w, v ∈ H1
0 (Ω) ,

where K ∈ L∞ (Ω) and f ∈ L2 (Ω). The variational form of (4.1) is: find u ∈ H1
0 (Ω) such

that
a(u, v) = (f, v) ∀v ∈ H1

0 (Ω) . (4.2)
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We discretize (4.2) by the VEM approach defined in Chapter 2. Let Tδ be a polygonal
mesh built as described in Section 2.3, with the further assumption that follows.

Assumption 4.1. Let E ∈ Tδ. For any two vertices x1,x2 ∈ E, �x1 − x2�R2 ≥ γhE .

Thanks to Assumption 4.1, it is possible to construct, on each element E ∈ Tδ, a uniformly
shape regular nested triangulation Tδ,E whose triangles t are such that

∀E ∈ Tδ, ∀t ∈ Tδ,E , hE ≥ ht ≥ γhE , (4.3)

and each of these triangles have one edge lying on ∂E. This can be accomplished, for
example, by connecting all vertices of E to the center of the ball BE , whose coordinates are
xE = (xE , yE). Now, consider an edge e ∈ Eδ and let R,L ∈ Tδ be the two polygons sharing
e. Let r ∈ Tδ,R and l ∈ Tδ,L be the two triangles contained in L and R respectively and
sharing e, we set Ωe := {R,L} and ωe := {r, l}.

Let Vδ be defined as in Section 2.4 and let aδ be defined as in (2.7):

aδ(wδ, vδ) =
�

E∈Tδ

�
Π0

k−1∇wδ,Π
0
k−1∇vδ

�
E
+ SE

��
I −Π∇

k

�
wδ,
�
I −Π∇

k

�
vδ
�
,

with SE satisfying (2.8). Then, we formulate our Virtual Element method as the solution to
the following discrete problem: find uδ ∈ Vδ such that

aδ(uδ, vδ) = (fδ, vδ) ∀vδ ∈ Vδ , (4.4)

where fδ := Π0
k−1f , that is the best approximation of f that allows the computability of the

scalar product with a VEM function, since
�
Π0

k−1f, vδ
�
=
�
f,Π0

k−1vδ
�
and we can compute

Π0
k−1vδ using the degrees of freedom. The well-posedness of this problem is justified in

Section 2.6.

Remark 4.1. As said in Remark 2.1, a possible choice for SE (see also [6]) is the scalar product
between the two vectors containing the degrees of freedom of the two functions involved, i.e.,
if we indicate by χr the operator which associates each function in Vδ to its r-th degree of
freedom,

SE(uδ, vδ) :=

NE�

r=1

χr (uδ)χr (vδ) ∀E ∈ Tδ, ∀uδ, vδ ∈ Vδ , (4.5)

where NE indicates the number of degrees of freedom on element E.

4.3 A residual a posteriori estimate

In the following we derive a posteriori error estimates for a post-processing of the VEM so-
lution to problem (4.4). A common issue when dealing with a VEM solution uδ is related to
the difficulties in getting pointwise values internal to the elements, for example to compute
integrals or gradients of the solution for the computation of some physically relevant quan-
tity (maximum or minimum value of the solution, fluxes, stresses). This problem is quite
commonly tackled by means of pointwise evaluation of suitable projected solutions [8]. For
this reason we have chosen to evaluate the error between the exact solution to the problem
u and a polynomial projection of the computed VEM solution in order to have a control
on the quality of the solution we are using for the given applicative targets. Indeed, in the
following we show that, if a suitable polynomial approximation of uδ, solution to (4.4), is con-
sidered, classical error estimation techniques can be applied to obtain computable, reliable
and efficient upper and lower bounds.
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Assumption 4.2. From now on we assume that K is piecewise constant on Tδ and set
KE := K|E , for any given element E ∈ Tδ. Furthermore, for a given set of elements ω, we
set Kmax

ω := maxω K and K∨
ω := minω K.

4.3.1 Post-processing of the discrete solution and error definition. For any
vδ ∈ Vδ, we define the piecewise discontinuous polynomial function vπδ , that, on each E ∈ Tδ,
is the solution to the local problem

(K∇vπδ ,∇p)E =
�
KΠ0

k−1∇vδ,∇p
�
E

∀p ∈ Pk (E) and (vπδ , 1)∂E = (vδ, 1)∂E . (4.6)

Remark 4.2. Since here we are considering a piecewise constant diffusivity, we can remove
K and Π0

k−1 from (4.6) substantially getting vπδ = Π∇
k vδ. In the case of non elementwise

constant K, (4.6) has to be used and additional terms will appear in the estimate, as described
in Remark 4.10.

We will estimate the error between the exact solution to problem (4.1) and this post-
processing of the discrete solution:

eπδ := u− uπ
δ .

Since uπ
δ is not continuous, we need to define a broken semi-norm:

|||v||| := sup
w∈H1

0(Ω)

�
E∈Tδ

aE(v, w)��√K∇w
�� . (4.7)

Remark 4.3. We point out that the semi-norm |||·||| is a norm for the error eπδ ∈�E∈Tδ
H1 (E)

even though uπ
δ does not vanish on the boundary ∂Ω as u does, because |||eπδ ||| = 0 implies

eπδ = 0 in Ω. In fact, suppose |||u− uπ
δ ||| = 0, then, it must hold (∇u−∇uπ

δ )|E = 0, ∀E ∈ Tδ,
implying

∀E ∈ Tδ, (u− uπ
δ )|E = CE ∈ R ⇒ u|E = uπ

δ |E + CE ∈ Pk (E) .

Then, it follows that u|E ∈ Pk (E), ∀E ∈ Tδ, and u ∈ Vδ. Then, it must be that u = uδ = uπ
δ ,

which means that CE = 0 ∀E ∈ Tδ. We conclude that |||u− uπ
δ ||| = 0 ⇐⇒ u− uπ

δ = 0.

We have the following a priori estimate of the error eπδ .

Theorem 4.1. Suppose K is piecewise constant on Tδ, u ∈ Hs+1 (Ω) for some s > 0, where
k is the order of the VEM approximation. Then, if r = min{k, s},

∃C > 0: |||u− uπ
δ |||2 �

�

E∈Tδ

KEh
2r
E |u|2Hr+1(E)

Proof. By the triangle inequality, the continuity of Π∇
k and VEM convergence estimates, we

have
|||u− uπ

δ |||2 ≤
������u−Π∇

k u
������2 +

������Π∇
k (u− uδ)

������2 �
�

E∈Tδ

KEh
2r
E |u|2Hr+1(E) .

The above result shows that the error eπδ has the same order of convergence as the error
u−uδ. Thus, an efficient a posteriori estimate for eπδ will have the same order of convergence
as u− uδ.

4.3.2 A posteriori upper bound. Before proceeding to the major result, we need
to build a locally continuous linear operator that will play the same role as the Clément
pseudo-interpolator in the standard FEM context (see [38]).
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An oblique projection operator. In the following we focus on the VEM stabilization
(4.5) (see [6]).

Let uδ ∈ Vδ be the solution to (4.4) and let

Wδ :=
�
vδ ∈ Vδ : S

��
I −Π∇

k

�
uδ,
�
I −Π∇

k

�
vδ
�
= 0
�
,

Definition 4.1. Let Tδ,ω be a partition of Ω such that each element ω ∈ Tδ,ω is:

1. the union of elements E ∈ Tδ, and each element E is contained in one and only one of
such ω;

2. the number of elements E ∈ ω is uniformly bounded;

3. a Lipschitz set whose diameter scales as the diameter of its elements;

4. either (I − Π∇
k )uδ = 0 ∀E ∈ ω, or there is at least one degree of freedom of the space

Vδ whose corresponding basis function ϕr satisfy suppϕr ⊆ ω and

�

E∈ω

SE
��
I −Π∇

k

�
uδ,
�
I −Π∇

k

�
ϕr

�
�= 0 . (4.8)

Let us denote by V ω
δ the space of the restrictions to ω of VEM functions in Vδ. Given

Tδ,ω, we can build an oblique projection as follows.

Definition 4.2. Let Sω
δ : V ω

δ → Wω
δ be a linear continuous operator, defined locally, such

that, for any given v ∈ V ω
δ and any ω ∈ Tδ,ω,

1. for all the VEM dofs s (Definition 2.1) of the elements E in the patch ω, except for
s = r only if (I −Π∇

k )uδ

��
ω
�= 0,

χs (Sω
δ v) = χs (v) ;

2. it holds �

E∈ω

SE
��
I −Π∇

k

�
uδ,
�
I −Π∇

k

�
Sω
δ v
�
= 0 , (4.9)

i.e. the r-th degree of freedom χr (Sω
δ v) is chosen to satisfy (4.9) if (I −Π∇

k )uδ

��
ω
�= 0.

Remark 4.4. Whenever v ∈ Vδ is constant on ω ∈ Tδ,ω, condition (4.9) is automatically
satisfied and Sω

δ is the identity on ω. We conclude that the operator Sω
δ preserves local

constant functions on ω.

Definition 4.3. (see [26]) Let Iδ : H
1 (Ω) → Vδ be a VEM interpolation operator such that,

∀E ∈ Tδ,

�v − Iδv�E � hE �∇v�Ẽ , (4.10)

�∇Iδv�E � �∇v�Ẽ , (4.11)

where Ẽ is the set of polygons with non empty intersection with E.

The existence of such operator is guaranteed by Theorem 11 in [26], see also Remark 2.2.

Definition 4.4. Let Sω
δ be the operator defined by Definition 4.2, and Iδ be the operator

defined by Definition 4.3. We define Pω
δ : H1 (Ω) → Wω

δ such that Pω
δ := Sω

δ ◦Rω
δ ◦ Iδ, where

Rω
δ is the restriction operator from Vδ to V ω

δ . Pδ : H
1 (Ω) → Wδ such that Pδv|ω := Pω

δ v,
∀v ∈ H1 (Ω) , ∀ω ∈ Tδ,ω.
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Let E int
δ be the set of the edges of the VEM mesh not on the boundary of Ω.

Definition 4.5. For each E ∈ Tδ, we indicate by ωE the patch of elements to which it
uniquely belongs, and by ω̃E the patch of elements sharing at least one vertex with ωE .
Moreover, for each e ∈ E int

δ , we set ω̃e := ∪E∈Ωe
ω̃E , where Ωe is the set of elements sharing

e, as defined in Section 4.2.

Definition 4.6. For each internal edge e ∈ Eδ let

Ke :=
�

E∈Ωe

KE

be the diffusivity associated to this edge.

The operator Pδ satisfies the following important bounds.

Lemma 4.1. Let Pδ be defined by Definition 4.4. Then, ∀v ∈ H1
0 (Ω),

�v − Pδv�E � hE �∇v�ω̃E
∀E ∈ Tδ , (4.12)

�∇(v − Pδv)�E � �∇v�ω̃E
∀E ∈ Tδ , (4.13)

�v − Pδv�e � h
1
2
e �∇v�ω̃e

∀e ∈ E int
δ , (4.14)

�v − Pδv�E � CK,E
hE√
KE

���
�
K∇v

���
ω̃E

∀E ∈ Tδ , (4.15)

�v − Pδv�e � CK,e
h

1
2
e√
Ke

���
�
K∇v

���
ω̃e

∀e ∈ E int
δ , (4.16)

CK,E and CK,e being constants depending only on the jumps of K.

Proof. Let v ∈ H1 (Ω) and vI := Iδv. First, we observe that, thanks to (4.10), we have

�v − Pδv�E � �v − vI�E +
��vI − SωE

δ vI |ωE

��
E
� hE �∇v�Ẽ +

��vI − SωE

δ vI |ωE

��
ωE

.

We are left to estimate the second norm. Let Ê be a polygon with hÊ � 1 such that the

element E is obtained by a isotropic rescaling E = FE(Ê), and let ω̂E be the Lipschitz set
such that ωE = FE(ω̂E). Let us prove there exists a constant CÊ such that, for any v ∈ Vδ

and any Ê, ���v̂ − Sω̂E

δ v̂
���
ω̂E

≤ CÊ �∇v̂�ω̂E
, (4.17)

where from now on with v̂ we mean (v ◦ FE)|ω̂E
. In order to do that, by contradiction we

suppose that for any C > 0 there exists a v ∈ Vδ such that

���v̂ − Sω̂E

δ v̂
���
ω̂E

> C �∇v̂�ω̂E
,

in which case we can build a sequence ŵk of functions in Vδ such that

���ŵk − S ω̂E

δ ŵk

���
L2(ω̂E)

≥ k �∇ŵk�L2(ω̂E) ,
���ŵk − S ω̂E

δ ŵk

���
L2(ω̂E)

= 1,

which means that

�∇ŵk�L2(ω̂E) ≤
1

k
⇒ �∇ŵk�L2(ω̂E) → 0 .
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Then, if we define ûk = ŵk − Sω̂E

δ ŵk, we have, by the continuity of Sω̂E

δ for any given patch

and uh, and the fact that it preserves constants, that, if ŵk tends to a constant, also Sω̂E

δ ŵk

tends to the same constant. Then,

�∇ûk�L2(ω̂E) → 0 . (4.18)

The sequence ûk ◦F−1
E ∈ V ωE

δ ∩H1
0 (ωE) and �ûk�L2(ω̂E) = 1, thus it converges to a function

û� up to sub-sequences. By (4.18), ∇û� = 0, thus û� is constant and it must be û� = 0
being û�|∂ω̂E

= 0. This is a contraddiction since �û��ω̂E
= 1. We conclude that (4.17) must

hold and, by scaling arguments exploiting the fact that we can build uniformly shape regular
triangulations on the polygons and (4.11), we get

��vI − SωE

δ vI |ωE

��
ωE

� hE �∇vI�ω̃E
� hE �∇v�ω̃E

.

By similar arguments we get also (4.13). Considering

�∇v�ω̃E
� 1�

K∨
ω̃E

���
�
K∇v

���
ωE

�
√
KE�
K∨
ω̃E

1√
KE

���
�
K∇v

���
ω̃E

≤

≤
�
Kmax
ω�
K∨
ω̃E

1√
KE

���
�

K∇v
���
ω̃E

,

we get (4.15).
Regarding (4.14) and (4.16), we apply a trace inequality, (4.12) and (4.13). Let e ∈ E int

δ

and E ∈ Ωe:

�v − Pδv�2e � h−1
e �v − Pδv�2E + he �∇ (v − Pδv)�2E � h−1

e h2
E �∇v�2ω̃E

+ he �∇v�2ω̃E
� he �∇v�2ω̃E

� Kmax
ω

K∨
ω̃E

he

KE

���
�
K∇v

���
2

ω̃E

,

because hE � he by mesh regularity assumptions. To complete the proof of (4.16), we denote
Ωe = {R,L} and use the above estimate, bearing in mind that K is constant on both R and
L:

KR �v − Pδv�2e � Kmax
ω

K∨
ω̃R

he

���
�
K∇v

���
2

ω̃R

, KL �v − Pδv�2e � Kmax
ω

K∨
ω̃L

he

���
�

K∇v
���
2

ω̃L

⇒ (KR + KL) �v − Pδv�2e � max

�
Kmax
ω

K∨
ω̃R

,
Kmax
ω

K∨
ω̃L

�
he

���
�
K∇v

���
2

ω̃e

⇒ �v − Pδv�2e � max

�
Kmax
ω

K∨
ω̃R

,
Kmax
ω

K∨
ω̃L

�
he

Ke

���
�
K∇v

���
2

ω̃e

.

Remark 4.5. ∀e ∈ E int
δ , if CK,E = 1, for all E ∈ ω̃e, then CK,e = 1.

Remark 4.6. We remark that Definition 4.4 is one of the possible definitions of a local operator
with the property of preserving a.e. constant functions for which Lemma 4.1 holds true. In
the following analysis we just use the existence of such operator and the computation of the
error estimator does not require any evaluation of such operator.
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Remark 4.7. In the proof of Lemma 4.1 we have used the continuity of the local operator
Sω
δ , its stability constant does not appear explicitly in the proof of (4.12). Nevertheless, the

constants appearing in Lemma 4.1 can depend on this stability constant that can be relevant
for example in an adaptive algorithm based on the derived a posteriori error estimates. For
this reason we discuss the stability of the operator and its relation with the choice of the
patches in Appendix.

Remark 4.8. Whenever the solution uδ on each element is not a polynomial, being the local
stability matrix (I − Π∇)�(I − Π∇) symmetric positive definite, we have that there is at
least a basis function ϕr on that element that satisfies condition 4 of Definition 4.1. In fact
(I−Π∇

k )uδ cannot be orthogonal to (I−Π∇
k )ϕi for all the VEM basis functions of the element.

Remark 4.9. In the definition of Iδ in [26], under a quasi-monotonicity condition for the
distribution of coefficients K, we can resort to a modified Clément quasi interpolator as in
[13, 29, 32] in case of discontinous diffusivity coefficient in order to bound the constants CK,E

and CK,e.

A posteriori upper bound. The following result states the Galerkin orthogonality for
those function which are the image of a H1

0 (Ω) function through the operator Pδ defined by
Definition 4.4.

Lemma 4.2. Let uδ be the solution to (4.4), uπ
δ be defined by (4.6), f ∈ L2 (Ω) be the forcing

term in (4.1), fδ = Π0
k−1f , K the diffusivity coefficient, piecewise constant on the elements

of Tδ, and Pδ the operator defined by Definition 4.4, then we have

�

E∈Tδ

aE(uπ
δ , Pδw) = (fδ, Pδw) ∀w ∈ H1

0 (Ω) . (4.19)

Proof. Since K is constant on each element and ∇uπ
δ ∈
�
Pk−1 (Tδ)

�2
, we have that

(K∇uπ
δ ,∇ (Pδw))E =

�
K∇uπ

δ ,Π
0
k−1∇ (Pδw)

�
E

∀E ∈ Tδ .

Then, using the VEM discrete variational formulation (4.4), the definition of uπ
δ in (4.6) and

the definition of Pδ we obtain

�

E∈Tδ

aE(uπ
δ , Pδw) =

�

E∈Tδ

(K∇uπ
δ ,∇ (Pδw))E =

�

E∈Tδ

�
K∇uπ

δ ,Π
0
k−1∇ (Pδw)

�
E
=

=
�

E∈Tδ

�
KΠ0

k−1∇uδ,Π
0
k−1∇ (Pδw)

�
E
=
�

E∈Tδ

�
KΠ0

k−1∇uδ,Π
0
k−1∇ (Pδw)

�
E
+

+ SE
��
I −Π∇

k

�
uδ,
�
I −Π∇

k

�
Pδw
�
= aδ(uδ, Pδw) = (fδ, Pδw) .

Remark 4.10. If we admit a non-constant diffusivity on each polygon, we have that, on any
given E ∈ Tδ,

(K∇uπ
δ ,∇ (Pδw))E =

�
K∇uπ

δ ,Π
0
k−1∇ (Pδw)

�
E
+
�
K∇uπ

δ ,∇ (Pδw)−Π0
k−1∇ (Pδw)

�
E

,
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and it follows that

�

E∈Tδ

aE(uπ
δ , Pδw) = (fδ, Pδw) +

�
K∇uπ

δ ,∇ (Pδw)−Π0
k−1∇ (Pδw)

�
E
≤ (fδ, Pδw)

+
�

E∈Tδ

�K∇uπ
δ �E
��∇ (Pδw)−Π0

k−1∇ (Pδw)
��
E
≤ (fδ, Pδw)

+
�

E∈Tδ

hE �K∇uπ
δ �E �∇ (Pδw)�E ≤ (fδ, Pδw) +

�

E∈Tδ

hE �K∇uπ
δ �E �∇w�E .

If we do not assume K to be piecewise constant on the polygons of Tδ other terms appear in
the estimates.

In the proof of the following major result, we will use the following estimate (see[7] and
(4.15)):

∀E ∈ Tδ, ∀w ∈ H1 (E) ,
��w −Π0

kw
��
E
� hE√

KE

���
�
K∇w

���
E

. (4.20)

Definition 4.7. For any internal edge e ∈ E int
δ let us define a unit normal vector ne as the

outward unit normal vector for the element on the right of e (ne = nR) and the jump of the
co-normal derivative of uπ

δ

�
∂uπ

δ

∂n̂K
e

�

e

= KR∇uπ
δ |R · nR + KL∇uπ

δ |L · nL = KR∇uπ
δ |R · ne − KL∇uπ

δ |L · ne.

Theorem 4.2. Let u be the solution to (4.1), uπ
δ be defined by (4.6), and fδ = Π0

k−1f . Then,

|||u− uπ
δ ||| �



C2

K


�

E∈Tδ

h2
E

KE
�fδ +∇ · (K∇uπ

δ )�2E +
�

e∈Eint
δ

he

Ke

����
�
∂uπ

δ

∂n̂K
e

�

e

����
2

e


+

�

E∈Tδ

h2
E

KE
�f − fδ�2E

� 1
2

,

being CK a constant dependent on the constants in Lemma 4.1.

Proof. Let Pδ be the operator defined by Definition 4.4. Let w ∈ H1
0 (Ω). Using (4.19), the

problem (4.1), the fact that
�
fδ,Π

0
kw
�
=
�
Π0

kf,Π
0
kw
�
=
�
f,Π0

kw
�
and by Green’s formula,

we have

�

E∈Tδ

aE(u− uπ
δ , w) = (f, w)E −

�

E∈Tδ

(K∇uπ
δ ,∇w)E = (fδ, w)E

−
�

E∈Tδ

(K∇uπ
δ ,∇w)E + (f − fδ, w)E = (fδ, w − Pδw)E

−
�

E∈Tδ

(K∇uπ
δ ,∇ (w − Pδw))E +

�
f − fδ, w −Π0

kw
�
E

,

then, by Green’s formula,the Cauchy-Schwarz inequality and by estimates (4.15), (4.16) and
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(4.20),

�

E∈Tδ

aE(u− uπ
δ , w) =

�

E∈Tδ

(fδ +∇ · (K∇uπ
δ ) , w − Pδw)E −

�

e∈Eint
δ

��
∂uπ

δ

∂n̂K
e

�

e

, w − Pδw

�

e

+
�
f − fδ, w −Π0

kw
�
≤
�

E∈Tδ

�f +∇ · (K∇uπ
δ )�E �w − Pδw�E +

�

e∈Eint
δ

����
�
∂uπ

δ

∂n̂K
e

�

e

����
e

×

× �w − Pδw�e +
�

E∈Tδ

�f − fδ�E
��w −Π0

kw
��
E
�
�

E∈Tδ

CK,E
hE√
KE

�f +∇ · (K∇uπ
δ )�E ×

×
���
�
K∇w

���
ω̃E

+
�

e∈Eint
δ

CK,e
h

1
2
e√
Ke

����
�
∂uπ

δ

∂n̂K
e

�

e

����
e

���
�
K∇w

���
ω̃e

+
�

E∈Tδ

hE√
KE

�f − fδ�E
���
�
K∇w

���
E
.

Finally, we obtain

�

E∈Tδ

aE(u− uπ
δ , w) �



C2

K


�

E∈Tδ

h2
E

KE
�f +∇ · (K∇uπ

δ )�2E +
�

e∈Eint
δ

he

Ke

����
�
∂uπ

δ

∂n̂K
e

�

e

����
2

e




+
�

E∈Tδ

h2
E

KE
�f − fδ�2

� 1
2 ���
�
K∇w

��� ,

where CK depends on max{maxE∈Tδ
CK,E ,maxe∈Eint

δ
CK,e} and the maximum number of

elements in each patch. The thesis is obtained by the definition of the |||·|||-norm in (4.7).

4.4 Efficiency of the a posteriori estimate

This section is devoted to obtain lower bounds for the error measured in terms of the following
error estimator:

ηR :=

��

E∈Tδ

η2R,E

� 1
2

, (4.21)

where, for all E ∈ Tδ, we define

η2R,E :=
h2
E

KE
�fδ +∇ · (K∇uπ

δ )�2E +
1

2

�

e∈Eint
δ ∩∂E

he

Ke

����
�
∂uπ

δ

∂n̂K
e

�

e

����
2

e

. (4.22)

4.4.1 Auxiliary results. The aim of this subsection is to extend the techniques based
on triangle-bubble functions used in [38] to general polygons.

Consider a polygon E ∈ Tδ and a triangle t ∈ Tδ,E . Let λt,i, i = 1, 2, 3, be the barycentric
coordinates of t. Define the triangle-bubble function of t, bt ∈ H1

0 (t), as the function with
support on t whose expression on t is bt|t := 27λt,1λt,2λt,3. Using the above definition we can
define the polygon-bubble function bE ∈ H1

0 (E) as the function with support on E such that
bE |t := bt ∀t ∈ Tδ,E . Note that bE |∂t = 0 ∀t ∈ Tδ,E . Next, consider an edge e ∈ E int

δ and
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define the edge bubble-function of e, be ∈ H1
0 (ωe), as the function with support on ωe and

such that be|r := 4λr,1λr,2 ∀r ∈ ωe if we enumerate the vertices of r such that the vertices of
e are numbered first. The following useful properties of the polygon-bubble functions follow
from the classic estimates in [37, Lemma 4.1] combined with (4.3).

Lemma 4.3. Let E ∈ Tδ and bE be the polygon-bubble function of E. Let P(E) be a
polynomial space defined on E. Then, for any v ∈ P(E),

�v�2E � (v, vbE)E , �bEv�E ≤ �v�E , (4.23)

�∇ (bEv)�E � h−1
E �v�E . (4.24)

Proof. (4.23) follows immediately from the fact that

�v�2t � (v, vbt)t , �btv�t ≤ �v�E ∀t ∈ Tδ,E

where the inequality constants are independent on any scale parameter of t (see [38]). Re-
garding (4.24), classical results give us the inequality on each t ∈ Tδ,E , i.e. ∀E ∈ Tδ,
∀t ∈ Tδ,E , �∇ (bEv)�t = �∇ (btv)�t � Ch−1

t �v�t. Using (4.3), that implies ht ∼ hE and
�∇ (bEv)�E � h−1

E �v�E , with an equivalence constant depending on γ.

In order to state some useful properties of the edge-bubble functions, we first recall the
concept of continuation of a function[38] from an edge to a triangle.

Definition 4.8 (Continuation operator). Let t be a triangle, σ one of its sides and v ∈
C∞ (σ). Let t̂ be the unitary triangle and let F be the mapping from t̂ to t such that
F ([0, 1]× {0}) = σ. Let Ct̂ : C∞ ([0, 1]× {0}) → C∞ �t̂

�
be the reference continuation oper-

ator, such that

∀v̂ ∈ C∞ ([0, 1]× {0}) , Ct̂(v̂) (x̂, ŷ) = v̂(x̂, 0) ∀(x̂, ŷ) ∈ t̂ .

Then the continuation of v to t is Ct := Ct̂ ◦ F−1

Using classic estimates[38] and (4.3) we have the following properties for edge-bubble
functions.

Lemma 4.4. Let e ∈ E int
δ and be be the edge-bubble function of e. Let P(e) be a polynomial

space defined on e. Then, for any v ∈ P(e),

�v�2e � (v, vbe)e ,

�bev�e ≤ �v�e ,

�Ct(v) be�t � h
3
2
t �v�e ∀t ∈ ωe , (4.25)

�∇ (Ct(v) be)�t � h
− 1

2
t �v�e ∀t ∈ ωe .

Proof. The proof is analogous to the one of Lemma 4.3: classical results [38] give us the
desired inequalities on sub-triangles, while (4.3) allows to extend them to the whole polygon
with constants independent of the meshsize, but depending on the quality of the element.

In particular, regarding (4.25), we recall from [38] that, given the regularity assumptions
and since be is a positive function and max be = 1,

∀t ∈ ωe, �be�2t = (be, be)t ≤ (be, 1)t =
1

3
|t| ∼ h2

e ⇒ �be�ωe
� he . (4.26)
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Let V := Ct(v). First of all, using (4.26), we see that

�V be�ωe
≤ �be�ωe

�V �ωe
� he �V �ωe

≤ he

�

t∈ωe

�V �t . (4.27)

Let t ∈ ωe. Indicating by t̂ the unitary triangle, by F the map from t̂ to t and setting
V̂ := V ◦ F ,

�V �2t =

�

t

V 2 = 2 |t|
�

t̂

V̂ 2 = 2 |t|
� 1

0

� 1−x

0

v̂(x̂)2dŷdx̂ = 2 |t|
� 1

0

(1− x̂)v̂(x̂)2 ≤

≤ 2 |t|
� 1

0

v̂(x̂)2 = 2 |t|h−1
e �v�2e � he �v�2e ,

where v̂ := v ◦F = (V ◦ F )|ŷ=0. It follows that �V �t � h
1
2
e �v�e and, using (4.27), we obtain

(4.25).

4.4.2 Lower bounds. By standard techniques[38] and suitable global bubble functions
[20, 22] we are able to prove the following lower bound.

Theorem 4.3. Let u be the solution to (4.1), uπ
δ be defined by (4.6), f be the right-hand

side of (4.1), fδ = Π0
k−1f . Then, ∀E ∈ Tδ

ηR �
�
|||u− uπ

δ |||2 +
�

E∈Tδ

h2
E

KE
�f − fδ�2E

� 1
2

, (4.28)

where h is the maximum diameter of the discretization.

Proof. Let E ∈ Tδ and let bE be the bubble function of E. Let

wE :=
hE√
KE

(fδ +∇ · (K∇uπ
δ )) bE ∈ H1

0 (E) ,

w :=
�

E∈Tδ

wE ∈ H1
0 (Ω) .

Then, using Lemma 4.3, we prove that

����
�

E∈Tδ

h2
E

KE
�fδ +∇ · (K∇uπ

δ )�
2
E
�

����|||u− uπ
δ |||

2
+
�

E∈Tδ

h2
E

KE
�f − fδ�2E ,
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indeed,

�

E∈Tδ

h2
E

KE
�fδ +∇ · (K∇uπ

δ )�2E �
�

E∈Tδ

�
fδ +∇ · (K∇uπ

δ ) ,
hE√
KE

wE

�

E

=

=
�

E∈Tδ

�
f,

hE√
KE

wE

�

E

−
�
K∇uπ

δ ,
hE√
KE

∇wE

�

E

+

�
fδ − f,

hE√
KE

wE

�

E

=

=
�

E∈Tδ

aE
�
u− uπ

δ ,
hE√
KE

wE

�
+
�

E∈Tδ

�
fδ − f,

hE√
KE

wE

�

E

�

� |||u− uπ
δ |||
����
�

E∈Tδ

h2
E

KE

���
�
K∇w

���
2

E
+
�

E∈Tδ

hE√
KE

�fδ − f�E �wE�E �

�
��

E∈Tδ

�w�2E
�
|||u− uπ

δ |||2E +
h2
E

KE
�f − fδ�2E

� 1
2

.

Now, consider an edge e ∈ E int
δ and let be be the edge-bubble function of e. Define we ∈

H1
0 (ωe) such that

we|t := Ct
�√

he√
Ke

�
∂uπ

δ

∂n̂K
e

�

e

�
be ∀t ⊂ ωe ,

w :=
�

e∈Eint
δ

we ∈ H1
0 (Ω) .

From the properties in Lemma 4.4 and regularity assumptions on the elements E ∈ Tδ it
follows that

����
�

e∈Eint
δ

he

Ke

����
�
∂uπ

δ

∂n̂K
e

�

e

����
2

e

�

����(1 + h2) |||u− uπ
δ |||

2
+
�

E∈Tδ

h4
E

KE
�f − fδ�2E ,
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indeed,

�

e∈Eint
δ

he

Ke

����
�
∂uπ

δ

∂n̂K
e

�

e

����
2

e

�
�

e∈Eint
δ

��
∂uπ

δ

∂n̂K
e

�

e

,

�
he

Ke
we

�

e

=
�

e∈Eint
δ

�

t∈ωe

�
K∇uπ

δ ,

�
he

Ke
∇we

�

t

+

�
∇ · (K∇uπ

δ ) ,

�
he

Ke
we

�

t

=
�

E∈Tδ

aE


uπ

δ − u,
�

e∈Eint
δ

�
he

Ke
we




+
�

e∈Eint
δ

�

t∈ωe

�
f +∇ · (K∇uπ

δ ) ,

�
he

Ke
we

�

t

� |||u− uπ
δ |||
����
�

e∈Eint
δ

he

Ke

���
�
K∇we

���
2

ωe

+
�

e∈Eint
δ

�

t∈ωe

�
he

Ke
�(f +∇ · (K∇uπ

δ ))�t �we�t �
�
|||u− uπ

δ |||2 +
�

E∈Tδ

�
h4
E
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The proof is concluded by the definition of ηR, given by (4.21), and neglecting higher order
terms.

4.5 Numerical results

In the following we present some numerical tests performed in order to numerically evaluate
the effectivity index, defined as

� :=
err

ηR
where err :=

��

E∈Tδ

���
�
K∇(u− uπ

δ )
���
2

E

� 1
2

. (4.29)

A constant behaviour of the effectivity index shows that the constants of equivalence between
exact and estimated error are independent of the meshsize, element distortion and diffusivity
jumps. Several VEM orders are considered.

In order to test the behaviour of the effectivity index we first perform several tests on
the simple domain Ω = [0, 1] × [0, 1], as shown in Figure 4.1, possibly split in subregions
(Figures 4.1a to 4.1c: 1 subdomain, Figure 4.1d: 2 subdomains, Figure 4.1e: 4 subdomains)
with different diffusivity coefficients on each subdomain. Several meshes are considered to
test the behaviour of the estimators on a quasi uniform mesh (Figures 4.1a and 4.1b), as well
as on a highly distorted Voronoi mesh (Figure 4.1c).

4.5.1 Test 1: Robustness with respect to mesh distortion. We consider a
constant diffusivity K(x, y) = 1 and we set the loading term f in such a way that the solution
of the problem is u(x, y) = sin(2πx) sin(2πy). We are interested in testing the independence
of the effectivity index of the meshsize and observe its variation on different mesh shapes.
First, we consider two families of good quality meshes made up of mildly distorted squares
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Figure 4.1: Examples of the meshes used.
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k = 1 k = 2 k = 3 k = 4
Mesh err ηR err ηR err ηR err ηR

Figure 4.1a 1.0228 1.0275 2.0581 2.0578 3.0790 3.0777 4.1177 4.1149
Figure 4.1b 0.9876 0.9983 1.9707 1.9688 2.9784 2.9848 3.9772 3.9658
Figure 4.1c 1.0667 1.1105 2.0860 1.9827 3.2413 3.2719 - -

Table 4.1: Test 1 Convergence rates.

and Voronoi polygons [35] (Figures 4.1a and 4.1b). In Figures 4.2 and 4.3 we compare the
exact error err defined by (4.29) and the error estimator ηR defined by (4.21). We see that
the two quantities have the same rate of convergence (see also Table 4.1). This agreement
is confirmed by Tables 4.2 and 4.3, where we see that the effectivity indices are essentially
independent of the meshsize. Moreover, comparing the two tables we see that the effectivity
indices corresponding to the same VEM order are quite comparable, thus showing that the
efficiency of the estimate is not affected by the type of polygons we choose to discretize the
domain.
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Figure 4.2: Test 1, distorted square mesh Error measure and error estimator vs. maximum

diameter of the discretization.

k = 1 k = 2 k = 3 k = 4
h � h � h � h �

0.1784 0.1821 0.1784 0.1106 0.1784 0.0752 0.1784 0.0567
0.0933 0.1843 0.0933 0.1104 0.0933 0.0752 0.0933 0.0566
0.0475 0.1841 0.0475 0.1106 0.0475 0.0749 0.0475 0.0565
0.0321 0.1844 0.0321 0.1106 0.0321 0.0751 0.0321 0.0563
0.0243 0.1843 0.0243 0.1106 0.0243 0.0750 0.0243 0.0563
0.0194 0.1846 0.0194 0.1105 0.0194 0.0750 0.0194 0.0563
0.0161 0.1847 0.0161 0.1105 0.0161 0.0750 0.0161 0.0563

Table 4.2: Test 1, distorted square mesh Effectivity indices.

To test the robustness of the estimate in presence of bad quality polygons, we solve
the same problem on the mesh in Figure 4.1c, using VEM of order 1 to 3. We do not
use larger values for the VEM order as the resulting linear systems turn to out to be too
ill conditioned. From Figure 4.4 we see the good agreement between the exact error and
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Figure 4.3: Test 1, distorted Voronoi mesh Error measure and error estimator vs. maxi-

mum diameter of the discretization.

k = 1 k = 2 k = 3 k = 4
h � h � h � h �

0.2190 0.1786 0.2190 0.1005 0.2190 0.0687 0.2190 0.0539
0.1033 0.1814 0.1033 0.1026 0.1033 0.0712 0.1033 0.0544
0.0711 0.1820 0.0711 0.1012 0.0711 0.0703 0.0711 0.0535
0.0542 0.1822 0.0542 0.1004 0.0542 0.0698 0.0542 0.0530
0.0423 0.1827 0.0423 0.1013 0.0423 0.0706 0.0423 0.0534
0.0357 0.1827 0.0357 0.1008 0.0357 0.0702 0.0357 0.0530
0.0308 0.1827 0.0308 0.1004 0.0308 0.0700 0.0308 0.0528
0.0266 0.1830 0.0266 0.1010 0.0266 0.0704 0.0266 0.0531

Table 4.3: Test 1, distorted Voronoi mesh Effectivity indices.
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the a posteriori estimate (see also Table 4.1 for the computed convergence rates). These
results are confirmed by Table 4.4, from which we can observe that the effectivity index
is not significantly affected by the presence of oddly shaped polygons. In particular, the
effectivity indices do not depend significantly on the meshsize, mesh distortion, and they
are comparable to the ones corresponding to the same order k computed on the previous
two meshes (Tables 4.2 and 4.3). The dependence on the mesh regularity parameter is
more evident from the effectivity indices shown in Table 4.5, which are computed only on the
elements belonging to ωvd = (0.475, 0.525)×(0, 1)∪(0, 1)×(0.475, 0.525), where very distorted
elements concentrate. We see that the effectivity index is still asymptotically constant, but
its values are influenced by the distortion of the elements.
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Figure 4.4: Test 1, highly distorted Voronoi mesh Error measure and error estimator vs.

maximum diameter of the discretization.

k = 1 k = 2 k = 3
h � h � h �

0.3720 0.1668 0.3720 0.1115 0.3720 0.0688
0.2111 0.1718 0.2111 0.1058 0.2111 0.0695
0.1547 0.1748 0.1547 0.0996 0.1547 0.0702
0.1217 0.1765 0.1217 0.0967 0.1217 0.0708
0.0962 0.1785 0.0962 0.0958 0.0962 0.0717
0.0822 0.1790 0.0822 0.0946 0.0822 0.0719
0.0718 0.1795 0.0718 0.0937 0.0718 0.0721
0.0621 0.1803 0.0621 0.0936 0.0621 0.0724

Table 4.4: Test 1, highly distorted Voronoi mesh Effectivity indices.

4.5.2 Test 2: Robustness with respect to diffusivity jumps. We consider here
two further tests featuring discontinuous piecewise constant diffusivities K1(x, y) and K2(x, y)
satisfying a quasi-monotonicity condition (see Remark 4.9) defined on Ω = [0, 1] × [0, 1] as
follows:

K1(x, y) :=

�
10 in Ω1 = [0, 0.5]× [0, 1],

1 in Ω2 = (0.5, 1]× [0, 1].

K2(x, y) :=

�
10−3 in Ω1 = [0, 0.5]× [0, 1],

1 in Ω2 = (0.5, 1]× [0, 1].
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4.5. Numerical results

k = 1 k = 2 k = 3
h � h � h �

0.3720 0.6171 0.3720 0.3150 0.3720 0.1602
0.2111 0.3445 0.2111 0.3280 0.2111 0.1859
0.1547 0.3009 0.1547 0.2984 0.1547 0.2049
0.1217 0.2825 0.1217 0.2787 0.1217 0.2156
0.0962 0.2847 0.0962 0.2781 0.0962 0.2295
0.0822 0.2774 0.0822 0.2697 0.0822 0.2363
0.0718 0.2714 0.0718 0.2643 0.0718 0.2371
0.0621 0.2727 0.0621 0.2664 0.0621 0.2412

Table 4.5: Test 1, highly distorted Voronoi mesh Effectivity indices computed on highly

distorted polygons only.
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(a) K1

10−3 1

(b) K2

1 10−3

1010−2

(c) K3

1 10−7

10510−2

(d) K4

Figure 4.5: Test 2 : subfigures a and b, Test 3 : subfigures c and d; distributions of
diffusivity coefficients considered in Sections 4.5.2 and 4.5.3, respectively.

See Figures 4.5a and 4.5b for a representation of these coefficients. In both cases, the
loading term is chosen in such a way that the solution corresponding to Ki(x, y) is ui(x, y) =
ξi(x)Y (y), where

ξi(x) :=





− 1

Ki|Ω1

�
x2

2
+ cix

�
if x ∈

�
0, 1

2

�
,

− 1

Ki|Ω2

�
x2

2
+ cix− ci −

1

2

�
if x ∈

�
1
2 , 1
�
,

(4.30)

Y (y) := y (1− y)

�
y − 1

2

�2

, (4.31)

and ci := − 3Ki|Ω1
+Ki|Ω2

4(Ki|Ω1
+Ki|Ω2

)
is chosen in such a way that −Ki

d2ξi
dx2 = 1. In Figure 4.6a we

show the solution u1. We used Virtual Elements of order 1 to 4 with meshes made up of
deformed squares conforming to the discontinuity (central vertical line), as in Figure 4.1d. To
compare the error estimate and the exact error, we show in Table 4.6 the rates of convergence
computed from the tests performed, which are optimal. Tables 4.7 and 4.8 contain the
computed effectivity indices. These are stable with respect to the meshsize and we observe
that their values are comparable to the ones obtained for the other cases with the same VEM
order. Moreover, we notice a very weak dependence of the effectivity indices on the jump of
the diffusivity coefficient denoting a good robustness with respect to this property.

Remark 4.11. In the definition of the projection operator Pδ provided in Section 4.3.2 we
do not consider any particular strategy to contain the jumps of the diffusivity coefficients
within the patches ωE , and consequently the constants CK,E . In this example, the diffusivity
distribution satisfies the quasi-monotonicity condition and consequently the definition of the
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Figure 4.6: Two solutions with diffusivity jumps

k = 1 k = 2 k = 3 k = 4
Diffusivity err ηR err ηR err ηR err ηR

K1 1.0567 1.0076 2.0792 2.0700 3.0811 3.0666 4.1207 4.1128
K2 1.0433 1.0112 2.0463 2.0378 3.0579 3.0466 4.1165 4.1077

Table 4.6: Test 2 Convergence rates.

Clément quasi-interpolator used in the definition of the operator Iδ (Definition 4.3 and [26])
can be replaced by the modified versions in [13, 29, 32] leading to robust estimates (4.15)
and (4.16).

k = 1 k = 2 k = 3 k = 4
h � h � h � h �

0.1784 0.1821 0.1784 0.1291 0.1784 0.1113 0.1784 0.0873
0.1449 0.2281 0.1449 0.1403 0.1449 0.1173 0.1449 0.0891
0.0741 0.2272 0.0741 0.1401 0.0741 0.1152 0.0741 0.0881
0.0379 0.2263 0.0379 0.1412 0.0379 0.1156 0.0379 0.0885
0.0194 0.1805 0.0194 0.1312 0.0194 0.1097 0.0194 0.0860
0.0097 0.1801 0.0097 0.1312 0.0097 0.1099
0.0049 0.1798

Table 4.7: Test 2, diffusivity K1 Effectivity indices.

4.5.3 Test 3: Checkerboard discontinuous diffusivity. A further test is per-
formed in order to investigate problems with not quasi-monotone diffusivity coefficients [32]

64



4.5. Numerical results

k = 1 k = 2 k = 3 k = 4
h � h � h � h �

0.1784 0.1825 0.1784 0.1630 0.1784 0.1290 0.1784 0.0925
0.1449 0.2135 0.1449 0.1729 0.1449 0.1285 0.1449 0.0931
0.0741 0.2121 0.0741 0.1712 0.0741 0.1257 0.0741 0.0918
0.0379 0.2119 0.0379 0.1733 0.0379 0.1254 0.0379 0.0921
0.0194 0.1823 0.0194 0.1639 0.0194 0.1250 0.0194 0.0908
0.0097 0.1820 0.0097 0.1638 0.0097 0.1248
0.0049 0.1818

Table 4.8: Test 2, diffusivity K2 Effectivity indices.

k = 1 k = 2 k = 3 k = 4
err ηR err ηR err ηR err ηR

K3 1.0032 1.0075 2.0211 2.0353 3.0351 3.0316 4.0757 4.0634
K4 1.0022 1.0075 2.0194 2.0345 3.0328 3.0292 4.0731 4.0594

Table 4.9: Test 3 Convergence rates.

(see Figures 4.5c and 4.5d):

K3(x, y) :=





1 in Ω11 = [0, 0.5)2,

10−3 in Ω12 = [0.5, 1]× [0, 0.5),

10−2 in Ω21 = [0, 0.5)× [0.5, 1],

10 in Ω22 = [0.5, 1]2.

K4 :=





1 in Ω11,

10−7 in Ω12,

10−2 in Ω21,

105 in Ω22.

This kind of distributions of the diffusivity coefficient are usually a limitation in deriving
efficient a posteriori error estimators based on Clément type quasi interpolation operators
[32], nonetheless the numerical results which follow show that the estimates here derived are
robust with respect to diffusivity jumps and distribution. The forcing terms are defined in
such a way that the exact solutions are

ui(x, y) :=

�
ξi(x)Y (y) in Ω11 ∪ Ω21,

ξi(1− x)Y (y) in Ω12 ∪ Ω22,

where ci :=





− 3Ki|Ω11
+Ki|Ω12

4(Ki|Ω11
+Ki|Ω12

)
in Ω11 ∪ Ω12,

− 3Ki|Ω21
+Ki|Ω22

4(Ki|Ω21
+Ki|Ω22

)
in Ω21 ∪ Ω22,

i ∈ {3, 4} .

In Figure 4.6b we show the solution u3. As done for the test in Section 4.5.2, we show
in Table 4.9 the computed convergence rates for the exact error err and the a posteriori
estimate ηR, proving to be optimal. In addition, Tables 4.10 and 4.11 report the computed
effectivity indices, which prove that the estimate is robust even though the diffusivity lacks
quasi-monotonicity condition. Again, the values of the effectivity indices are comparable to
those obtained for the other tests for the same VEM order. Finally, we can see that the
effectivity indices are not significantly affected by the jumps of K, although the effectivity
indices could be affected by these jumps by Lemma 4.1.
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k = 1 k = 2 k = 3 k = 4
h � h � h � h �

0.1799 0.1761 0.1799 0.1538 0.1799 0.1240 0.1799 0.0938
0.0892 0.1840 0.0892 0.1671 0.0892 0.1292 0.0892 0.0917
0.0466 0.1827 0.0466 0.1639 0.0466 0.1261 0.0466 0.0914
0.0238 0.1817 0.0238 0.1646 0.0238 0.1249 0.0238 0.0911
0.0190 0.1815 0.0190 0.1641 0.0190 0.1252 0.0190 0.0909
0.0097 0.1816 0.0097 0.1637 0.0097 0.1246
0.0049 0.1819

Table 4.10: Test 3, diffusivity K3 Effectivity indices.

k = 1 k = 2 k = 3 k = 4
h � h � h � h �

0.1799 0.1753 0.1799 0.1545 0.1799 0.1242 0.1799 0.0942
0.0892 0.1841 0.0892 0.1687 0.0892 0.1297 0.0892 0.0917
0.0466 0.1828 0.0466 0.1652 0.0466 0.1265 0.0466 0.0915
0.0238 0.1817 0.0238 0.1660 0.0238 0.1251 0.0238 0.0911
0.0190 0.1815 0.0190 0.1654 0.0190 0.1256 0.0190 0.0909
0.0097 0.1817 0.0097 0.1650 0.0097 0.1249
0.0049 0.1820

Table 4.11: Test 3, diffusivity K4 Effectivity indices.

4.5.4 Test 4: irregular solution. Here we test the behaviour of the a posteriori
estimate on a problem whose exact solution displays a bounded smoothness [33, 39]. Let

K5(x, y) :=





100 in Ω11 = [0, 0.5)2,

1 in Ω12 = [0.5, 1]× [0, 0.5),

1 in Ω21 = [0, 0.5)× [0.5, 1],

100 in Ω22 = [0.5, 1]2.

Let Λ : Ω → R be the function whose expression in polar coordinates with center in (12 ,
1
2 )

and with axes parallel to the standard axes is

u5(ρ, θ) := ρα (aij sin(αθ) + bij cos(αθ)) .

This function satisfies −∇ · (K5∇u5) = 0 non-trivially for certain choices of the coefficients,
in which case it belongs to H1+α (Ω). We present here tests with the choices in Tables 4.12
and 4.13, done with VEM of order 1 to 3 on a triangular mesh conforming to the discontinuites
of the diffusivity function. In Tables 4.14 and 4.15 we see how the effectivity indices are
subject to bounded oscillations as we refine the mesh. Finally, in Table 4.16 we report the
computed rates of convergence for both the choices of coefficients, we can notice a very good
agreement with the expected theoretical values min{k,α}.

4.5.5 Test DFN: A test on a Discrete Fracture Network. As a final, more
general test, we consider a Discrete Fracture Network (DFN, Figure 4.7), that is a possible
way to model an impervious fractured medium, consisting in a set of planar rectangles inter-
secting in space (see [1]). In [12], the flexibility of the Virtual Element Method in handling
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α = 1.873097930277786
Ωij aij bij
Ω11 0.480354867169885 -0.882756592490932
Ω12 -7.701564882495475 -6.456461752439308
Ω21 9.603960396039620 2.960396039603962
Ω22 -0.100000000000000 1.000000000000000

Table 4.12: Test 4 First choice for the coefficients

α = 0.126902069722214
Ωij aij bij
Ω11 -0.480354867169885 -0.882756592490932
Ω12 7.701564882495503 -6.456461752439336
Ω21 -9.603960396039598 2.960396039603959
Ω22 0.100000000000000 1.000000000000000

Table 4.13: Test 4 Second choice for the coefficients

k = 1 k = 2 k = 3
h � h � h �

0.1976 0.4014 0.1976 0.1951 0.1976 0.1040
0.0699 0.3897 0.0699 0.1833 0.0699 0.0963
0.0217 0.3877 0.0217 0.1854 0.0217 0.0969
0.0071 0.3904 0.0071 0.1869 0.0159 0.0973

Table 4.14: Test 4, First choice Effectivity indices

k = 1 k = 2 k = 3
h � h � h �

0.1976 0.7870 0.1976 0.4221 0.1976 0.2208
0.0699 0.8493 0.0699 0.4380 0.0699 0.2270
0.0217 0.8604 0.0217 0.4341 0.0217 0.2244
0.0159 0.9176 0.0159 0.4654 0.0159 0.2368
0.0050 0.8832 0.0050 0.4391

Table 4.15: Test 4, Second choice Effectivity indices

k = 1 k = 2 k = 3
coefficients err ηR err ηR err ηR
Table 4.12 0.9991 0.9998 1.7641 1.7727 1.7443 1.7509
Table 4.13 0.1435 0.1475 0.1312 0.1233 0.1598 0.1778

Table 4.16: Test 4 Convergence rates.
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k = 1 k = 2
err ηR err ηR

1.0302 1.0341 2.0810 2.0813

Table 4.17: Test DFN Convergence rates.

hanging nodes as vertices of a polygon that correspond to a flat angle is used to obtain a
mesh which is globally conforming to the intersections, allowing the application of domain
decomposition techniques. On such domain, the hydraulic head distribution satisfies equa-
tion (4.1) on each of the rectangles, with coupling conditions given by the continuity of the
solution and balance of incoming and outgoing fluxes at each intersection. The numerical
tools developed in the present work can be easily applied to this framework, giving a slightly
modified a posteriori error estimator:

η̃2R,E :=
h2
E

KE
�fδ +∇ · (K∇uπ

δ )�2E +
1

2

�

e∈Eint
δ ∩∂E

he

Ke

����
�
∂uπ

δ
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e

�

e

����
2

e

+
1

4

�
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he

Ke

����
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hie
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e

�
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+
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∂uπ

hje

∂n̂K
e

�

e

����
2

e

,

where Etr
δ is the set of edges which lie on some of the rectangle intersections, E int

δ the other
internal edges of the fracture, and uπ

hie
and uπ

hje
are the restrictions of the projection of the

discrete solution to the two fractures intersecting at e.
The geometry of the DFN we consider for the numerical tests is shown in Figure 4.7,

the diffusivity coefficient is K(x, y) = 1, more details on this test problem can be found in
[10], Subsection 6.1. In Table 4.18 we show the effectivity indices computed on progressively
refined grids for linear and quadratic VEM, whereas in Figure 4.8 the a posteriori estimate is
compared to the error measure. The convergence rates of err and ηR are shown in Table 4.17
for k = 1, 2.

Figure 4.7: Test DFN The Discrete Fracture Network considered.

4.6 Conclusions

We have considered the issue of deriving an a posteriori error estimate for the Virtual Element
Method formulation of a simple Poisson problem with discontinuous viscosity coefficient com-
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4.7. Appendix: stability of the operator Sω
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Figure 4.8: Test DFN Error measure and error estimator vs. maximum diameter of the
discretization.

k = 1 k = 2
h � h �

0.6305 0.5699 0.6305 0.3438
0.2144 0.5725 0.2144 0.3702
0.0712 0.5764 0.0712 0.3449
0.0231 0.5770 0.0485 0.3522

Table 4.18: Test DFN Effectivity indices.

pletely independent of the particular choice of the VEM stabilization. The numerical solution
obtained with a VEM discretization is usually provided through some degrees of freedom that
do not allow an easy and direct evaluation of the solution on all the domain. We have in-
troduced a suitable projection of the solution onto a piecewise polynomial space on each
element, which can be used for solution evaluation and to define an error measure between
such projection and the exact solution. An equivalence relation between the error and the
analyzed error estimator can be provided avoiding terms related to the VEM stabilization in
the error estimator.

Numerical results clearly show a very good agreement between the error estimator and the
exact error, with an almost constant effectivity index confirming that the constants involved
in the equivalence relation are independent of the meshsize and the diffusivity jump distri-
bution. In the numerical results we also naturally address a DFN flow problem introducing
in the estimates the effect of the flux balance at the fracture intersections; again, an almost
constant effectivity index is found.

The proposed approach to the a posteriori error analysis of the error of a polynomial ap-
proximation can be extended to more complex problems and is currently under investigation.

4.7 Appendix: stability of the operator Sω
h

In this section we provide a short discussion of the stability properties of the operator Sω
h .

Lemma 4.5. Let vh ∈ Vh, ω be a patch such that the degree of freedom r satisfies condition

(4) in Definition 4.2. Let w = uh
�(I−Π∇)�(I−Π∇)

�uh
�(I−Π∇)�(I−Π∇)�∞

, where Π∇ ∈ RNω×Nω is the matrix

representing the operator Π∇
k on the degrees of freedom of ω, Nω is the total number of degrees
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of freedom in ω and uh is the vector of the degrees of freedom of ω, ordered in such a way
that the last one is r. Then,

�Sω
h vh� � max

�
1,

1

|wNω
|

�
�vh� , (4.32)

Proof. Let sv, vh be the vectors of degrees of freedom of Sω
h vh and vh, respectively, ordered

in such a way that the last one is r. Then, condition (4.9) is equivalent to w
wNω

· sv = 0.

Then, sv is obtained from vh by

sv = M−1

�
ṽh

0

�
, (4.33)

where ṽh ∈ RNω−1 is the vector of all the degrees of freedom of vh except the last one
(corresponding to the index r in the original numbering), and

M =

�
Ĩ 0
w̃

wNω
1

�
,

where Ĩ ∈ RNω−1×Nω−1 is the identity matrix of order Nω − 1. From (4.33), we have

�sv�RNω ≤
��M−1

��
RNω×Nω

�ṽh�RNω−1 ≤
��M−1

��
RNω×Nω

�vh�RNω , (4.34)

We choose as matrix norm the ∞-norm. The matrix M−1 can be written

M−1 =

�
Ĩ 0

− w̃
wNω

1

�
=

�
Ĩ 0
0 1

wNω

��
Ĩ 0

−w̃ wNω

�
(4.35)

��M−1
��
∞ ≤ max

�
1,

1

|wNω
|

�
max {1, �w�1} .

Equation (4.32) comes from the equivalence between �w�1 and �w�∞ in which appears the
dimension Nω that is bounded by the assumption of a bounded number of element in each
patch ω.

A possible algorithm for the construction of the patches can be set up quite easily for
k ≥ 2, resorting to the presence of basis functions whose support is contained in the polygonal
elements.

In the following we numerically investigate the value of the stability factor in the case
of Test 1 (Section 4.5.1). Namely, we devise a simple possible strategy to build a set of
patches that minimizes the stability constant and apply it to different families of progressively
refined meshes. We then compute the maximum stability constant for each of the resulting
constructed sets and then consider its behaviour with respect to refinement, VEM order and
mesh quality.

For a given patch ω ∈ Tδ,ω let us define the smallest stability constant

CSω
h
= max

�
1,

1

|wr|

�
, (4.36)

corresponding to all the possible choices of the internal dofs as the dof satisfying (4.8) used
to impose (4.9). In order to construct patches we start computing the stability constant for
each basis function considering as patch its support. Then, a first set of possible patches
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Table 4.19: Test 1, order 2 Behaviour of the maximum stability constants of the patches

built as described in Section 4.7, and percentage of patches with only one polygon.

distorted square mesh distorted Voronoi mesh highly distorted Voronoi mesh

h CSω
h

% h CSω
h

% h CSω
h

%

0.0161 1.03 99.9 0.0266 1.81 13.3 0.0621 2.35 11.6
0.0194 1.00 99.9 0.0308 1.64 15.5 0.0718 2.10 13.0
0.0243 1.00 99.7 0.0357 1.39 17.6 0.0822 1.91 14.8
0.0321 1.00 99.6 0.0423 1.19 21.2 0.0962 1.67 16.0
0.0475 1.00 99.0 0.0542 1.00 0.1 0.1217 1.00 0.1
0.0933 1.00 99.1 0.0711 1.00 0.1 0.1547 1.00 0.1

is built applying a greedy approach. We sort the stability constants in an increasing order
and we start to select the patches choosing the support of the basis functions with smallest
stability constant that do not contain in the support element already included in a patch.
Every time we create a patch we mark the elements around it as elements possibly included
in this patch if not included by the process in a different patch. We end the process when all
the elements are included in a patch or marked as candidates to be included in a neighboring
patch. In a second step we consider the created patches with the largest stability constants
for a possible gluing with neighboring patches and elements marked for gluing, considering
if this gluing can reduce the stability constant. In this gluing step we consider all the basis
functions that become internal after the gluing and compute for all of them the stability
constant of the patch and set as stability constant of the new patch the smallest one.

In Tables 4.19 to 4.21 we show the maximum values of constants CSω
h
obtained with this

process on different meshes for the test in Section 4.5.1 and different VEM orders k. In
Table 4.19 we report the value of the computed stability constants and the percentage of the
patches that are constituted by one polygon for k = 2, that means that the function ϕr is
one of the internal basis functions. We can observe that the estimated stability constants
can be considered quite stable with respect to refinement and mesh quality. In Table 4.20 we
report the same data for k = 3, and the previous conclusions are confirmed in an even more
clear way. Results reported for k = 3 are obtained with no gluing step. This confirms the
assumption that the presence of several internal basis functions simplifies the construction of
patches satisfying condition (4) in Definition 4.2. Finally, in Table 4.21 we report the outcome
of the algorithm for k = 1. The stability of the projection operator Sω

h corresponding to the
patches given by the previous algorithm with respect to mesh refinement and patch changes
is less evident. A different strategy that considers from the beginning patches with a number
of internal basis functions larger than one could probably yield better results.
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Chapter 5

The Virtual Element Method for Discrete
Fracture Network simulations

In this chapter we introduce a general framework for the use of Virtual Element Methods
coupled with domain decomposition techniques to perform numerical simulations on general
Discrete Fracture Networks. The content that follows was published in [7].

5.1 Introduction

The simulation of the flow in underground formations is a complex and challenging task, in-
volving multiple physical phenomena on different scales and intricate computational domains.
Among the different models available in the literature, Discrete Fracture Network (DFN) [2,
21] models aim at a simplified representation of the network of fractures in the underground,
but still reflecting the fracture pattern of the peculiar geological site under investigation and
its key hydrological and geometrical characteristics [1, 22–24, 28]. A DFN is a stochastically
generated network of fracture-resembling planar polygons in the 3D space. This model is
valid under the assumption that the surrounding rock matrix is impervious, and thus the
fluid flows along fractures and through fractures intersections. Size, orientation, density and
hydrological properties of the fractures, such as the hydraulic transmissivity, are determined
using probability distributions based on probing data and laboratory tests on soil specimens.
Due to the stochastic nature of input data uncertainty quantification methods are then used
to describe the flow properties [14, 33, 39]. The quantity of interest is the hydraulic head
in the whole system of fractures, given by the sum of pressure head and elevation. This is
ruled by the Darcy law on each fracture with additional constraints of continuity and flux
conservation at fracture intersections, called traces. Uncertainty quantification strategies
for DFN problems require the repeated computation of the hydraulic head on stochastically
generated networks, therefore reliability and efficiency of numerical tools are of paramount
importance in this context. The major source of complexity lies in the intricate nature of
the domain, characterized by intersecting fractures possibly with extremely narrow angles,
almost overlapping parallel traces [19], and, due to the multi-scale nature of the problem, the
simultaneous presence of very small and very large fractures intersecting each other. As a
consequence, the generation of a conforming mesh suitable for the resolution of the problem
with finite element based discretizations might result very hard or even impossible [33, 34],
though it is needed in order to ensure a correct representation of the flux exchange between
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fractures. A variety of strategies is available in the literature in order to overcome these dif-
ficulties, mainly suggesting the use of Mortar methods to relax the conformity constraint at
fracture intersections [25, 32, 44, 45], sometimes coupled with mixed [26, 48], domain decom-
position methods [46] or Boundary Element Methods [27, 38]; these geometrical difficulties
may be even more relevant for more complex flow models such as multiphase flows. In other
papers the conformity requirement is accomplished through modification of the geometry
of the DFN [33, 40]. An approach not involving mesh generation is described in [24, 42,
43]. More complex models on the fractures can be found in [29–31, 35, 36]. In [15–18], an
optimization based method was proposed, capable to remove all conformity constraints and
obtain good quality solutions with optimal rates of convergence; this method was further
investigated in [9, 13, 19].

In the present chapter, we discuss the use of the rather new Virtual Element Method for
performing simulations in fracture networks, building an unified framework for the methods
developed in [8, 10]. In Section 5.2 we introduce some notation regarding Discrete Fracture
Networks, which will also be used in the upcoming chapters; in Section 5.3 we describe the
problem formulation on a DFN; in Section 5.4 we discuss the use of VEM in this framework,
focusing on the two possible cited approaches. Finally, we propose in Section 5.5 some
numerical results aimed at comparing the two approaches.

5.2 Discrete Fracture Networks

Each fracture in the underground is represented as a 2D open polygon. In what follows, we
will identify the geological fracture and its representing polygon, and we will refer also to
the polygons as fractures. Accordingly, a DFN Ω is represented as a (3D) set given by the
union of N fractures Fi, with i ∈ I = {1, . . . , N}. We also introduce the set ∂Ω = ∪i∈I∂Fi.
Fractures intersections are called traces and denoted by Γm, with m ∈ M = {1, . . . ,M} (see
Figure 5.1). Without loss of generality, we assume that the set Ω̄ is connected. For the sake
of simplicity, we also assume that each trace is given by the intersection of precisely two
fractures. For future reference, we introduce the following notation:

• ∀i ∈ I, we introduce the subset Mi ⊂ M of the indices of traces lying on Fi; each
subset Mi is assumed to be ordered, and we will denote by Mi(k) the k-th index of a
trace in Mi;

• ∀m ∈ M, we introduce the couple Im = (i, j) of indices such that Γm = Fi ∩ Fj ; the
couple is assumed to be ordered in such a way that i ≤ j;

• for each i ∈ I and each m ∈ Mi, we fix a unit vector n̂i
m normal to Γm on Fi.

For any function defined on Ω, we use a subscript i to indicate its restriction to fracture Fi.
Let ΓD ⊆ ∂Ω be the portion of boundary on which Dirichlet conditions are imposed, and let
hD be the Dirichlet condition defined on ΓD. We define the functional spaces

Vi :=
�
v ∈ H1 (Fi) : γΓD (v) = 0

�
∀i ∈ I ,

V D
i :=

�
v ∈ H1 (Fi) : γΓD (v) = hD

i

�
∀i ∈ I ,

V := {v : vi ∈ Vi ∀i ∈ I} ,

V D :=
�
v : vi ∈ V D

i ∀i ∈ I
�
.

For any given segment σ ⊂ Fi, i ∈ I, γi
σ : H1

0 (Fi) → H
1
2 (σ) is the trace operator and

�µ,β�σ :=
H− 1

2 (σ)
�µ,β�

H
1
2 (σ)

∀µ ∈ H− 1
2 (σ) , ∀β ∈ H

1
2 (σ)
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5.3. Problem formulation
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Figure 5.1: Example of two fractures (Fi and Fj) intersecting and generating a trace (Γm).

is the duality between H
1
2 (σ) and H− 1

2 (σ). For any given function v ∈ H1
0 (Fi), γMi

(v) ∈�
m∈Mi

H
1
2 (Γm) is the tuple of functions γi

Γm
(v) , m ∈ Mi ordered by increasing trace index

m, and we denote the duality between product spaces on the set of the traces of a fracture
as

∀µ ∈
�

m∈Mi

H− 1
2 (Γm) , ∀β ∈

�

m∈Mi

H
1
2 (Γm) , �µ,β�Mi

:=
�

m∈Mi

�µm,βm�Γm
.

For any function g ∈ V , we define the jump operator across a trace Γm as �g�Γm
:= γi

Γm
(gi)−

γj
Γm

(gj), ∀m ∈ M and (i, j) = Im. Then �g�Mi
is the vector of jumps of g across the traces

in Mi, ordered according to trace index: �g�Mi
:=
�
�g�ΓMi(1)

, . . . , �g�ΓMi(Mi)

�
. Similarly,

given a function gi ∈ Vi,
�

∂gi
∂n̂i

m

�
Γm

is the jump of the co-normal derivative across Γm on Fi,

and we define the tuple

�
∂gi

∂n̂Mi

�

Mi

:=




�
∂gi

∂n̂i
Mi(1)

�

ΓMi(1)

, . . . ,

�
∂gi

∂n̂i
Mi(Mi)

�

ΓMi(Mi)


 .

For any segment σ ⊂ Fi, i ∈ I, we introduce the trace operator γσ : H
1 (Fi) → H

1
2 (σ)

and the notation

�µ,β�σ :=
H− 1

2 (σ)
�µ,β�

H
1
2 (σ)

, ∀µ ∈ H− 1
2 (σ) , β ∈ H

1
2 (σ) ,

to denote the duality product between H− 1
2 (σ) and H

1
2 (σ). Finally, we denote

(µ,β)Mi
:=
�

m∈Mi

(µ,β)Γm
∀µ, β ∈

�

m∈Mi

L2 (Γm) .

5.3 Problem formulation

We are interested in computing the hydraulic head h = π/(ρg) + z ∈ V D, where π is the
fluid pressure, g the gravitational acceleration, ρ the fluid density and z the elevation. The
hydraulic head, on each fracture Fi, is modeled by means of the Darcy law as follows. Let Ki
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denote the transmissivity on Fi, which we assume to be constant, and fi = fi(x) denote the
source term on Fi; notice that both Ki and fi are functions of the local tangential coordinate
system.

The problem on each fracture is: find hi ∈ V D
i such that, ∀vi ∈ Vi,

(Ki∇hi,∇vi)Fi
= (fi, vi)Fi

+
�
hN
i , γi

ΓN
i
(vi)
�
ΓN
i

+

��
∂hi

∂n̂Mi

�

Mi

, γMi
(vi)

�

Mi

(5.1)

where
�

∂hi

∂n̂i
m

�
Γm

is the jump of the co-normal derivative ∂hi

∂n̂i
m

= Ki∇hi · n̂i
m along n̂i

m;

furthermore, ΓN
i ⊆ ∂Fi is the Neumann boundary on Fi and hN

i ∈ H− 1
2

�
ΓN
i

�
is the Neumann

boundary condition. For future reference, we set ΓN = ∪i∈IΓN
i ⊂ ∂Ω and define hN such

that hN
i is the restriction of hN to Fi.

The problems on each fracture are coupled by the imposition of suitable matching condi-
tions which guarantee the continuity of the solution and balance of incoming and outgoing
fluxes at each trace: ∀m ∈ M, with Im = (i, j), we have

�h�Γm
= γΓm

(hi)− γΓm
(hj) = 0, (5.2)

�
∂hi

∂n̂i
m

�

Γm

+

�
∂hj

∂n̂j
m

�

Γm

= 0. (5.3)

5.4 The Virtual Element Method for DFN simulations

We will use the Virtual Element space defined in Section 2.4 on each fracture, exploiting
in particular the fact that the Virtual Element Method allows the use of any kind of non-
degenerate star-shaped polygon to mesh the spatial domain, even including the possibility of
straight angles. In the present framework, we take advantage from this flexibility to easily
build a mesh which, on each fracture, is locally conforming to the traces. In the following of
this section, we review the use of VEM, focusing on the framework of DFN simulations.

5.4.1 The VEM setting in the DFN framework. Let us fix a fracture Fi. To
obtain a locally conforming mesh, we first introduce on Fi a triangular mesh built indepen-
dently of trace positions; the triangles are then cut into polygons by the traces, possibly
prolonging the trace segment up to the nearest mesh edge if it happens to end in the interior
of a triangle. Note that in this latter case the trace tip is kept as a node of the discretization,
a new node is created at the intersection between the prolongation of the trace and the mesh
edge, and therefore two edges are created, with a 180° angle between them. Let Tδ,i be the
resulting local mesh. Referring to the configuration already depicted in Figure 5.1, we report
in Figures 5.2a and 5.2b an example of the VEM meshes Tδ,i and Tδ,j obtained on the two
fractures Fi and Fj , respectively. Furthermore, we notice that all polygons created with the
above procedure are convex, thus satisfying the assumptions in [3], that require the elements
to be star-shaped with respect to a ball. Let Tδ = ∪i∈ITδ,i, being δ a global mesh parameter,
e.g. the maximum element diameter. We will use the symbols Eδ,i and Vδ,i to denote the
sets of edges and vertices on fracture Fi, respectively; similarly, EE

δ,i and VE
δ,i denote sets of

edges and vertices on the element E ∈ Tδ,i, and define Eδ = ∪i∈IEδ,i, Vδ = ∪i∈IVδ,i.
On each fracture Fi, we consider the local VEM spaces defined on Tδ,i:

V E
δi :=

�
vh ∈ H1 (E) : Δvh ∈ Pk (E) , vh ∈ Pk (e) ∀e ⊂ ∂E, γ∂E(vh) ∈ C0 (∂E) ,

(vh, p)E =
�
Π∇

k vh, p
�
E

∀p ∈ Pk (E) /Pk−2 (E)
�

E ∈ Tδ,i , (5.4)
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(a) VEM mesh Tδ,i on Fi
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(b) VEM mesh Tδ,j on Fj

and let the VEM space on Fi be

Vδi :=
�
vδ ∈ C0 (Fi) : v ∈ V E

δi ∀E ∈ Tδ,i
�
. (5.5)

Finally, we introduce the following global discrete subspace of V :

Vδ := {vδ ∈ V : v ∈ Vδi ∀i ∈ I} . (5.6)

As seen in Chapter 2, a possible set of degrees of freedom that uniquely define a function
vδ ∈ Vδ is given by:

• the values of vδ at each vertex V ∈ Vδ;

• if k > 1, the values of vδ at k−1 internal points (e.g. internal Gauss-Lobatto quadrature
nodes) on each edge e ∈ Eδ;

• if k > 1 the moments 1
|E|
�
E
vhmα for |α| ≤ k − 2, where α = (α1,α2) ∈ N2 and

mα(x, y) :=

�
x− xE

hE

�α1
�
y − yE
hE

�α2

,

where (xE , yE) and hE are the centroid and the diameter of the element E, respectively. As
a basis of Vδ, we consider the functions φk, k ∈ {1, . . . , N} which are lagrangian with respect
to the above degrees of freedom.

We now turn our attention to equation (5.1), assuming that the transmissivity coefficient
is constant on each element of the mesh. Following [3, 5], in order to discretize this equation
using functions in Vδ, since the virtual functions are not known in the interior of the elements,
we introduce the operator Π∇

k,E : V E
δi → Pk (E) that associates, for each i ∈ I, E ∈ Tδ,i, and

each φ ∈ V E
δi , the polynomial Π∇

k (φ) such that





�
Ki∇Π∇

k (φ) ,∇p
�
E
= (Ki∇φ,∇p)E ∀p ∈ Pk (E) ,�

V ∈VE
δ,i

Π∇
k (φ) (V ) =

�
V ∈VE

δ,i
φ(V ) if k = 1,

�
E
Π∇

k (φ) =
�
E
φ if k > 1.

We remark that the application of this operator only requires the knowledge of the degrees
of freedom of φ, through the application of Green’s formula (see [4]). In addition to Π∇

k , for
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each E ∈ Tδ,i, let SE: V E
δi × V E

δi → R be a symmetric bilinear form defined in such a way
that there exist two positive constants c∗ and c∗ independent on E and i such that ∀φ ∈ V E

δi ,
if Π∇

k,E(φ) = 0, then

c∗ (Ki∇φ,∇φ)E ≤ SE(φ,φ) ≤ c∗ (Ki∇φ,∇φ)E . (5.7)

With the above ingredients, we define the discrete bilinear form aiδ: Vδ × Vδ → R such that,
∀v, w ∈ Vδ,

aEδ (v, w) :=
�
KiΠ

0
k−1∇v,Π0

k−1∇w
�
E
+ SE

�
v −Π∇

k v, w −Π∇
k w
�
.

Thanks to (5.7), we easily find that aEδ (v, v) scales like (Ki∇v,∇v)E , with scaling constants
independent of E and of the fracture index i. Thus, if we introduce the fracture-wide bilinear
form aδi: Vδi × Vδi → R such that

aδi(v, w) :=
�

E∈Tδ,i

aEδ (v, w) ,

we have the following property:

∃α∗,α
∗ > 0: α∗ (Ki∇v,∇v)Fi

≤ aδi(v, v) ≤ α∗ (Ki∇v,∇v)Fi
. (5.8)

Moreover, since the scalar product (f, vδ) is not computable in general if vδ is a virtual
function, we define the discrete scalar product

(fi, vδi)δ,Fi
:=
�
fi,Π

0
k−1vδi

�
Fi

∀i ∈ I .

Finally, to ease the notation in the following it is convenient to define the global discrete
products

aδ(vδ, wδ) :=
�

i∈I
aδi(vδ, wδ) ∀vδ, wδ ∈ Vδ,

(f, vδ)δ :=
�

i∈I
(fi, vδi)δ,Fi

∀vδ ∈ Vδ.

Remark 5.1. As suggested in [3, 5], a possible choice for the stabilization term SE is given
by the scalar product between the vectors containing the degrees of freedom of the two
arguments on the element. This choice guarantees property (5.7) under some basic regularity
assumptions on the triangulation. This choice has been adopted in [9].

5.4.2 Formulation of the problem towards domain decomposition. For each
m ∈ M, with Im = (i, j), we define the function sΓm : Im → {0, 1} such that

sΓm
(i) = 1, sΓm

(j) = 0,

and the bilinear form bMi : Mi := Vi ×
�

m∈Mi
H− 1

2 (Γm) → R such that

bMi (v,ψ) :=
�

m∈Mi

(−1)
sΓm (i) �

ψm, γΓm
(vi)
�
Γm

,

in such a way that

bM(v,ψ) :=
�

i∈I
bMi (v,ψ) =

�

m∈M

�
ψm, �v�Γm

�
Γm

.
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Figure 5.3: Globally conforming VEM mesh
on Fi
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Figure 5.4: Globally conforming VEM mesh
on Fj

We define the functional F : V ×M :=
�

m∈M H− 1
2 (Γm) such that

F(v,ψ) :=
�

i∈I

1

2
(Ki∇vi,∇vi)Fi

− (fi, vi)Fi
−
�
hN
i , γi

ΓN
i
(vi)
�
ΓN
i

+
�
∇Ri

�
hD
i

�
,∇vi

�
Fi

+ bMi (v,ψ) + bMi
�
Ri

�
hD
�
,ψ
�
, (5.9)

where Ri is the lift operator from H
1
2

�
ΓD
i

�
to H1 (Fi), i ∈ I. It is well known (see [47]) that

solving problem (5.1)–(5.3) is equivalent to solve the problem of finding (h,λ) ∈ V D × M
such that hi = h0

i +Ri

�
hD
�
, h0

i ∈ Vi, i ∈ I and

F
�
h0,λ

�
= min

v∈V
max
ψ∈M

F (v,ψ) , (5.10)

that, by uniqueness of the solution, implies

λm =

�
∂hi

∂n̂i
m

�

Γm

= −
�
∂hj

∂n̂j
m

�

Γm

,

with Im = (i, j). Notice that the functional F is made up of local contributions from each
fracture. We will now present two different approaches for discretizing problem (5.10).

5.4.3 A globally conforming approach. A first approach to tackle problem (5.10),
introduced in [10], is to strongly impose the matching conditions by building a globally con-
forming mesh. This is easily achieved by exploiting the capability of the Virtual Element
Method to handle straight angles. Consider the mesh Tδ constructed as depicted in Sec-
tion 5.4.1 and let us consider an arbitrary trace Γm, with m ∈ M and Im = (i, j). Then,
we add to Tδ,i the nodes generated by Tδ,j on Γm, and vice-versa. Some polygons belonging
to mesh Tδ,i (Tδ,j , respectively) having an edge lying on Γm, will possibly have such edges
split by the new nodes, the new edges forming a straight angle at their intersection. In the
same configuration of Figures 5.1, 5.2a and 5.2b, we show in Figures 5.3 and 5.4 the globally
conforming VEM meshes on Fi and Fj , respectively.

We will call T gc
δ this new set of globally conforming polygons and discretize problem

(5.10) with the Virtual Element Method as previously described. Let V gc
δ ⊂ V be the
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Virtual Element space defined on T gc
δ considering, for each trace node, two different degrees

of freedom, each one associated with one of the two fractures intersecting there. In other
words, we admit that functions in V gc

δ could be discontinuous on each trace, even though on
each trace their degrees of freedom correspond to the same geometrical point. To discretize
the space M we define, for each i ∈ I and on each trace Γm such that m ∈ Mi, the finite
dimensional space

Mgc
δm,i = span {µm

ki, k = 1, . . . , NΓm
} ,

where NΓm is the number of interior nodes on Γm and µm
ki is a continuous linear operator

such that �
µm
ki, γΓm

(vδj)
�
Γm

= δijvδi(x
m
k ) ∀vδ ∈ V gc

δ , (5.11)

being δij the Kroneker delta and xm
k the k-th node on trace Γm. The space that discretizes

M is Mgc
δ =

�
m∈M Mgc

δm, where

Mgc
δm :=

�
µm
k : µm

k = µm
ki − µm

kj if Im = (i, j) , k = 1, . . . , NΓm

�
.

With this definition we have, for any m ∈ M, if Im = (i, j), ∀k ∈ {1, . . . , NΓm
},

�
µm
k , �vδ�Γm

�
Γm

=
�
µm
ki, γΓm

(vδi)
�
Γm

−
�
µm
kj , γΓm

(vδj)
�
Γm

= vδi(x
m
k )− vδj(x

m
k ),

and therefore, enforcing orthogonality of the jumps on traces with respect to Mgc
δ is enough

to obtain continuity on V gc
δ . Indeed,

bM(vδ,ψδ) = 0 ∀ψδ ∈ Mgc
δ ⇐⇒ �vδ�M = 0 .

Let us define, for i ∈ I
hδ = h0

δ +Rδ

�
hD
�
,

where h0
δ ∈ V gc

δ and Rδ

�
hD
�
is the discrete lifting of the boundary conditions. For the

sake of simplicity we neglect the approximation error of the Dirichlet boundary condition.
The globally conforming discrete solution (h0

δ ,λδ) ∈ V gc
δ ×Mgc

δ satisfies the virtual element
discretization of (5.10):

F
�
h0
δ ,λδ

�
= min

vδ∈V gc
δ

max
ψδ∈Mgc

δ

F (vδ,ψδ) ,

which leads us to the following saddle point formulation:





aδ
�
h0
δ , vδ
�
+ bM(vδ,λδ) = (f, vδ)δ +

�
hN , γΓN (vδi)

�
ΓN

+ aδ
�
Rδ

�
hD
�
, vδ
� ∀vδ ∈ V gc

δ ,

bM
�
h0
δ ,ψδ

�
= −bM

�
Rδ

�
hD
�
,ψδ

�
∀ψδ ∈ Mgc

δ .

The above problem has a unique solution because vδ �→�i∈I (Ki∇vδi,∇vδi)Fi
is a norm on

W gc
δ =

�
vδ ∈ V gc

δ : bM(vδ,ψδ) = 0 ∀ψδ ∈ Mgc
δ

�
=
�
vδ ∈ V gc

δ : �vδ�Γm
= 0 ∀m ∈ M

�
,

and therefore aδ is coercive on W gc
δ thanks to (5.8), and that

∀ψδ ∈ Mgc
δ , sup

vδ∈V gc
δ

bM(vδ,ψδ)

�vδ�Vδ

= �ψδ�Mgc
δ

,

since Mδ is a space of linear operators.
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Implementation. Let {φgc
k }dimV gc

δ

k=1 be the Lagrangian basis of V gc
δ and define, for each

i ∈ I, the fracture stiffness matrix Ai, such that

(Ai)kl = aδi(φ
gc
ki,φ

gc
li ) .

We note that, by (5.11), if φgc
l is a basis function associated to an internal node of the mesh

(always placed on the boundary of a VEM element),

bMi (φgc
l , µm

k ) =

�
(−1)sΓm (i) if xl = xm

k ,

0 otherwhise,

where xl is the node associated to φgc
l . If φgc

l is a basis function associated to one of the
polygon internal degrees of freedom, bMi (φl, µ

m
k ) = 0 ∀i ∈ I,m ∈ Mi, k ∈ {1, . . . , NΓm

}.
To collect the terms coming from the bilinear form bM, we define a global numbering of the
degrees of freedom on all the traces and, for each m ∈ M, with Im = (i, j), we identify the
row vector Bm such that (Bm)k = 1 if the k-th trace degree of freedom is on trace m and
fracture i and (Bm)k = −1 if the k-th trace degree of freedom is on trace m and fracture j.
Then the vector h containing the degrees of freedom of hδ is the solution of

�
A BT

B 0

��
h
λ

�
=

�
f
d

�
, (5.12)

where λ is a vector of Lagrange multipliers, f is the vector containing the right-hand-side
terms, d the vector of nodal values of hD on the traces and

A :=




A1

A2

. . .

AN


 , B :=




B1

...
BM


 .

Using classical results (see e.g. [41]) it is easily proven that system (5.12) has a unique
solution. Moreover, this reformulation falls into the framework of domain decomposition
methods [50]; this property is exploited in [10] to devise a preconditioned one-level FETI
method [37] for its solution.

5.4.4 A Hybrid Mortar Virtual Element approach. The second approach we
present here, developed in [8], consists in imposing a weak continuity of the solution, by
applying the mortar element method [6, 11, 12].

We consider the locally conforming mesh Tδ defined in Section 5.4.1 and, for each m ∈ M,
with Im = (i, j), we introduce a finite dimensional space Mδm ⊂ L2 (Γm) defined on the
discretization of the trace induced by Tδ,i. We discretize (5.10) on Vδ ×Mδ =

�
m∈M Mδm,

where Vδ is the Virtual Element space defined by (5.4)-(5.6). The mortar formulation of the
problem is: find hδ = h0

δ +Rδ

�
hD
�
, with h0

δ ∈ Vδ and λδ ∈ Mδ such that,

�
aδ
�
h0
δ , vδ
�
+ bM(vδ,λδ) = (f, vδ)δ +

�
hN , vδ

�
ΓN − aδ

�
Rδ

�
hD
�
, vδ
�

∀vδ ∈ Vδ ,

bM
�
h0
δ ,ψδ

�
= −bM

�
Rδ

�
hD
�
,ψδ

�
∀ψδ ∈ Mδ .

(5.13)

In practical implementations, Mδm will be a piecewise polynomial space (see [11, 49]). The
well-posedness of (5.13) is proved in [8] under the hypothesis that Mδ contains the constant
functions and under the following regularity assumption.
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Assumption 5.1. There exists a constant σ > 0 independent of δ such that, ∀E ∈ Tδ,
the distance between any two vertices of E is larger than or equal to σhE , where hE is the
diameter of E.

Indeed, since vδ �→�i∈I (Ki∇vδi,∇vδi)Fi
is a norm on

Wδ :=
�
vδ ∈ Vδ : b

M(vδ,ψδ) = 0 ∀ψδ ∈ Mδ

�
,

by (5.8), aδ is coercive of Wδ. Moreover, by classical arguments (see [20, 47]), since VEM
functions are piecewise polynomials on traces and Assumption 5.1 allows us to build a regular
triangulation inside each polygon, there exists a constant β > 0 independent of δ such that
the following inf-sup condition holds:

inf
ψδ∈Mδ

sup
vδ∈Vδ

bM(vδ,ψδ)

�vδ�Vδ
�ψδ�Mδ

≥ β .

An advantage of the present method, as opposite to the globally conforming case, is that

λδm is now a piecewise polynomial approximation of
�

∂hi

∂n̂i
m

�
Γm

, whereas in the previous case

the latter is obtained by evaluating the gradient of the numerical solution, and this may yield
less accurate approximations.

Implementation. As previously sketched, the space Mδm, m ∈ M, will contain piecewise
polynomial (not necessarily continuous) functions, defined on the discretization of the trace
Γm induced by Tδ,i, with Im = (i, j). Let Nh and Nλ be the total number of degrees of
freedom of h0

δ and λδ, respectively. The vectors h and λ containing the degrees of freedom
are the solution of the system

�
A BT

B 0

��
h
λ

�
=

�
f
d

�
,

where A ∈ RNh×Nh is defined, as in Section 5.4.3, as the block-diagonal matrix of the local
stiffness matrices and B ∈ RNλ×Nh collects the terms coming from bM:

Blk := bM(φk,ψl) ∀l ∈ {1, . . . , Nλ}, k ∈ {1, . . . , Nh},

being φk the k-th basis function of Vδ and µl the l-th basis function of Mδ. Regarding the
right-hand-side, we have

fk := (f,φk)δ +
�
hN ,φk

�
ΓN − aδ

�
Rδ

�
hD
�
,φl

�
∀k ∈ {1, . . . , Nh},

dl := −bM
�
Rδ

�
hD
�
,ψl

�
∀l ∈ {1, . . . , Nλ}.

5.5 Numerical results

While referring the reader to [8, 10] for numerical results that validate the two proposed
approaches, here we focus on a comparison between the two.

We consider two DFNs. The first example is a more simple DFN (Figure 5.5a) presenting
all possible configurations (tips, three fractures intersection point and traces spanning all
the fracture) for which we have an analytical solution, reported in [8]. The second one
(Figure 5.5b) is a more complex DFN stochastically generated, containing 27 fractures and
all common geometrical complexities. More details can be found in [10].
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5.5. Numerical results

(a) Geometry of the 3 fracture DFN (b) Geometry of the 27 fracture DFN

Figure 5.5

Figure 5.6a displays a possible mesh configuration on the DFN in Figure 5.5b. In Fig-
ure 5.6b a detail of the previous mesh is reported. We highlight that, as said in Section 5.4.1,
a triangular mesh is built independently on each fracture and then triangles are cut in along
the traces, thus obtaining convex polygons. In the case of the globally conforming approach
(Section 5.4.3), all the mesh points on the traces become degrees of freedom of the VEM
spaces defined on each fracture (each physical point corresponds to two different degrees of
freedom, one for each fracture). Instead, the VEM-Mortar approach (Section 5.4.4) requires
that the points on the traces become degrees of freedom of the VEM space defined only on
the fracture which they belong to.

To compare the results obtained by the two methods, we focus on the fluxes computed on
traces. Using the Mortar approach with piecewise linear Lagrange multipliers, we obtain an
approximation of the flux at each trace from the solution λδ of the problem. In the globally

(a) (b)

Figure 5.6: Detail of the non-conformity of the fracture meshes to traces

87



conforming case, we obtain an approximation of the flux by post-processing the discrete
solution, first projecting it on polynomials on each VEM element and then computing the
jump of the co-normal derivative of the projection.

In Figure 5.7 we compare the fluxes obtained by the conforming and the Mortar ap-
proaches to the exact solution for the trace with the tip (the vertical one) of the DFN in
Figure 5.5a. We can see a good agreement between the fluxes.

In Figure 5.8 we show this comparison on three different traces of the DFN in Figure 5.5b,
from which we see that the two proposed approaches give comparable results.

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

globally conforming VEM

exact solution

VEM - Mortar

Figure 5.7: Superposition of the fluxes computed by the two methods and the exact solution
on a trace of the DFN in Figure 5.5a.

In the Mortar approach the plot of the fluxes displays evident oscillations, due to the
fact that convergence to the exact solution is proven in the H− 1

2 (Γm)-norm, ∀m ∈ M.
Nevertheless, the quality of the approximation is usually more accurate and reliable being
the result of a direct computation and not of a post-processing process.
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Virtual Element Method For Discrete Fracture Network Simulations”. In: J. Comput.
Phys. 306 (2016), pp. 148–166. doi: 10.1016/j.jcp.2015.11.034.

[9] M. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò. “The virtual element method
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