
Chapter 6

A hybrid Mortar Virtual Element method
for Discrete Fracture Networks

simulations

This chapter deals with the theoretical details of the hybrid Mortar Virtual approach intro-
duced in Section 5.4.4 and displays numerical results that show optimal convergence rate for
the error and good behaviour on DFN test cases. These results were published in [5].

6.1 Introduction

In [6, 7] the newly developed Virtual Element Method [1] (VEM) was applied in the DFN
framework: the methods proposed therein exploit the flexibility of VEM, that allows the
treatment of elements with an arbitrary number of edges, even with flat angles. Thanks to
this property, a conforming mesh is easily obtained at a moderate computational cost.

In [5], the use of VEM in the DFN framework proposed in [6] is coupled with the well
established Mortar Method [8]. A major advantage of this new coupling with respect to
previous works that also work with a primal formulation of the problem is that the flux
entering/exiting each fracture from its intersections is directly obtained as part of the solution
of the discrete problem and not through a post-processing of the results. This approach was
already described in Section 5.4.4. In this chapter we give the proofs of well-posedness of
the method and show optimal a priori error estimates and numerical tests confirming the
theoretical results.

The chapter is organized as follows: in Section 6.2 we state the problem setting, we
briefly recall the main features of the VEM needed for the description of our method, and
describe the hybrid method obtained from coupling the VEM with the mortar method;
Section 6.3 addresses some implementation issues related to the generation of the locally
conforming mesh; finally, Section 6.4 reports some numerical results assessing the behaviour
of the method.
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6.2 The VEM-Mortar method for DFNs

First, let us recall some of the notation established in Section 5.2. A DFN, Ω, is a set of
N open planar polygons Fi, i = 1, . . . , N , representing the fractures in the medium. In
the sequel, we will identify the fractures with the polygons. Fractures intersect each other
along segments called traces, that we assume to be given by the intersection of exactly two
fractures: whenever two traces intersect each other, we split both traces into two sub-traces.
The generic trace is indicated by Γm, with m ∈ M = {1, . . . ,M}. For each m ∈ M, it is
convenient to identify the set IS = {i, j} of the indices of the two fractures intersecting at
Γm. For any function or set defined on the whole DFN, its restriction to fracture Fi will be
denoted using the subscript i.

As detailed in Section 5.3, we consider the Darcy’s law locally on each fracture as a model
for the equilibrium of the hydraulic head h. We introduce on each fracture the transmissivity
Ki, which is assumed, for the sake of simplicity, to be a scalar function of the local tangential
coordinates system on Fi. Let ΓD be a non-empty portion of ∂Ω on which the Dirichlet
boundary condition hD is imposed, and let us set ΓD

i = ΓD ∩Fi. Note that ΓD
i is allowed to

be empty for some i. Let us assume that hD
i ∈ H

1
2

�
ΓD
i

�
for all i ∈ {1, . . . , N}. Furthermore,

let ΓN
i = ∂Fi \ΓD

i be the local Neumann boundary and let hN
i ∈ H− 1

2

�
ΓN
i

�
be the Neumann

boundary condition imposed therein. We define the following functional spaces:

Vi =
�
v ∈ H1 (Fi) : γΓD

i
(v) = 0

�
∀i = 1, . . . , N ,

V D
i =

�
v ∈ H1 (Fi) : γΓD

i
(v) = hD

i

�
∀i = 1, . . . , N ,

V D =

N�

i=1

V D
i , V =

N�

i=1

Vi ,

where γΓD
i

: H1 (Fi) �→ H
1
2

�
ΓD
i

�
is the trace operator on ΓD

i . The problem of interest is to

find h ∈ V D such that h = h0 +R
�
hD

�
where R

�
hD

�
is a lifting of hD on V D and h0 ∈ V

satisfies, for any given v ∈ V and any i = 1, . . . , N ,

(Ki∇h0i,∇vi)Fi
−

��
∂hi

∂n̂Mi

�

Mi

, vi

�

Mi

= (fi, vi)Fi
+

�
HN

i , vi
�
± 1

2 ,Γ
N
i

−
�
Ki∇Ri

�
hD
i

�
,∇vi

�
Fi

, (6.1)

where we refer the reader to Section 5.2 for the details of the notation. The equations on
each fracture are coupled by the balance of fluxes on traces:

∀m ∈ M, if Im = {i, j},
�
Ki

∂hi

∂n̂i
m

�

Γm

+

�
Kj

∂hj

∂n̂j
m

�

Γm

= 0 , (6.2)

and by the continuity of the solution across traces, that can be written as:

∀m ∈ M, ∀ψ ∈ H− 1
2 (Γm) , ��h�M ,ψ�M = 0 . (6.3)

As described in Section 5.4.2, problem (6.1)–(6.3) can be written as a minimization prob-
lem for the energy functional in (5.9), whose solution is the couple (h,λ) ∈ V D × M =�

m∈M H− 1
2 (Γm) such that, h = h0 +R

�
hD

�
, h0 ∈ V and

�
a
�
h0, v

�
+ bM(v,Λ) = (f, v) +

�
hN , v

�
± 1

2 ,Γ
N − a

�
R
�
hD

�
, v
�

∀v ∈ V,

bM
�
h0,ψ

�
= −bM

�
R
�
hD

�
,ψ

�
∀ψ ∈ M ,

(6.4)
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being, ∀w, v ∈ V , ψ ∈ M ,

a(w, vδ) =
�

i∈I
(Ki∇w,∇v)Fi

,

bM(v,ψ) =
�

m∈M

�
ψm, �v�Γm

�
Γm

,

Let us endow V D and V with the norm

�v�V =

�
N�

i=1

�vi�2Fi
+ ai(vi, vi)

� 1
2

. (6.5)

Well-posedness of problem (6.4) follows observing that, introducing the Hilbert space

W =
�
v ∈ V : ∀m ∈ M, ∀ψ ∈ H− 1

2 (Γm) ,
�
�v�Γm

,ψ
�
± 1

2 ,Γm
= 0

�
= ker

�
bM

�
,

problem (6.4) is equivalent to: find h0 ∈ W such that

a
�
h0, v

�
= (f, v) +

�
hN , v

�
± 1

2 ,Γ
N − a

�
R
�
hD

�
, v
�

∀v ∈ W .

The latter problem is well posed because the bilinear form in the left-hand side of (6.1) is
coercive on said space. According to [9, Corollary 1.1], problem (6.4) is well posed since a is
coercive on the space

W = ker(bM) =
�
v ∈ V : bM(v,ψ) = 0 ∀ψ ∈ M

�
, (6.6)

equipped with the norm

|||v||| = a(v, v)
1
2 , (6.7)

and thanks to the inf-sup condition

∃β > 0: inf
ψ∈M

sup
v∈V

bM(v,ψ)

�v�V �ψ�M
≥ β (6.8)

which is satisfied by M and V .

Remark 6.1. The proof that |||·||| is a norm on W follows from the definition of W , see e.g.
Proposition 6.1 for a proof in a wider space. The existence of the inf-sup constant β follows
from [4, 10], which guarantees the existence of a constant βm > 0, ∀m ∈ M, such that

inf
ψ∈H− 1

2 (Γm)

sup
v∈V

�
�v�Γm

,ψ
�
± 1

2 ,Γm

�v�V �ψ�− 1
2 ,Γm

≥ βm .

Thus, (6.8) holds with β = minm∈M βm, that is strictly positive because there is a finite
number of traces.

As detailed in Section 5.4, problem (6.4) can be discretized by coupling a VEM discretiza-
tion on each fracture via the Mortar method, thus imposing weak continuity and obtaining a
piecewise polynomial approximation of the flux on each trace. Indicating such approximation
with λδ, we have the following discrete formulation of the problem: find hδ = h0

δ +Rδ

�
hD

�
,

with h0
δ ∈ Vδ and λδ ∈ Mδ such that,

�
aδ
�
h0
δ , vδ

�
+ bM(vδ,λδ) = (f, vδ)δ +

�
hN , vδ

�
ΓN − aδ

�
Rδ

�
hD

�
, vδ

�
∀vδ ∈ Vδ ,

bM
�
h0
δ ,ψδ

�
= −bM

�
Rδ

�
hD

�
,ψδ

�
∀ψδ ∈ Mδ ,

(6.9)

95



A hybrid Mortar Virtual Element method for DFN simulations

where Vδ is the global VEM space defined by (5.4), (5.5) and (5.6), Mδ = Πm∈MMδm,
being Mδm ⊂ L2 (Γm) a finite dimensional space (tipically a piecewise polynomial space, see
Section 6.3.3) and, ∀vδ, wδ ∈ Vδ,

aδ(wδ, vδ) =
�

i∈I
E∈Tδ,i

�
KiΠ

0
k−1∇wδ,Π

0
k−1∇vδ

�
E
+ SE

�
wδ −Π∇

k wδ, vδ −Π∇
k vδ

�
,

(f, vδ)δ =
�

i∈I

�
fi,Π

0
k−1vδ

�
Fi

.

Finally we notice that, if ψδ, vδ ∈ L2 (Γm),

bM(vδ,ψδ) =
�

m∈M

�
ψδm, �vδ�Γm

�
± 1

2 ,Γm
=

�

m∈M

�
ψδm, �vδ�Γm

�
Γm

,

6.2.1 Well-posedness of the discrete problem. Following [9, Corollary 2.1], the
well-posedness of problem (6.9) is guaranteed if aδ is coercive on

Wδ = {vδ ∈ Vδ : b(vδ,ψδ) = 0 ∀ψδ ∈ Mδ} , (6.10)

and an inf-sup condition holds:

∃β > 0: inf
ψδ∈Mδ

sup
vδ∈Vδ

bM(vδ,ψδ)

�vδ�V �ψδ�M
≥ β . (6.11)

The existence of a constant β independent of δ satisfying (6.11) was proved in [4] making
use of [10, Lemma 10] in the case of a polynomial Finite Element approximation on a regular
triangulation. The same proof applies here under the following assumption.

Assumption 6.1. There exists a constant σ > 0 independent of δ such that, for each
E ∈ τδ,i, for i = 1, . . . , N , the distance between any two vertices of E is larger then or equal
to σhE , where hE is the diameter of E.

Under this assumption, consider a trace Γm and a segment e belonging to the discretiza-
tion of Γm. Let E be one of the two polygons sharing e. By Assumption 6.1, we can construct
in the interior of E a triangle Te,E having e as one of its edges and having a shape regularity
which depends uniquely on σ (for example, for convex elements, by connecting the extrema
of e with the barycenter of E). The area of such a triangle scales as the area of E divided
by the number of edges of E. We are thus led to make the following assumption.

Assumption 6.2. The number of edges of the elements of τδ is limited independently of δ.

With this last assumption, the area of Te,E scales like the area of E and thus, the norm
of any function belonging to the finite dimensional space on Te,E is equivalent to the one on
E. From [10, Lemma 10], we obtain the existence of an inf-sup constant independent of δ for
Te,E and thus prove the existence of such a constant for E by the equivalence of the norms.

To prove the coercivity of aδ on Wδ, we first prove the coercivity of a on such space and
then use the equivalence (5.8). The key result needed is the following.

Proposition 6.1. Assume that Mδ contains the functions which are constant on each trace.
Then, the functional vδ �→ |||vδ||| is a norm over Wδ.
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Proof. It is enough to verify that |||vδ||| = 0 only if vδ = 0. Let vδ ∈ Wδ be such that
|||vδ||| = 0. Then it must be constant on each fracture, since its gradient on each fracture is
null. Furthermore, vδ clearly vanishes on all fractures such that ΓD

i �= ∅. It is now easy to
prove that vδ vanishes on all fractures. Indeed, let Γm be a trace shared by fractures Fi and
Fj , with γΓm

(vδi) = 0; thanks to the mortar condition one has

�
�vδ�Γm

, 1
�
Γm

= |Γm| �vδ�Γm
= 0 ⇒ γΓm

(vδj) = γΓm
(vδi) = 0

and since vδi and vδj are constant, it follows that vδj = 0. Thanks to the network connectivity,
this ensures that vδ vanishes on all the fractures.

From now on, Mδ is required to satisfy the assumption of Proposition 6.1. It follows
that a is coercive with coercivity constant 1 on Wδ. By (5.8), aδ is coercive with coercivity
constant α∗.

6.2.2 A priori error estimates. We are now able to derive an a priori error estimate.
To this aim, we introduce the operators F ,Fδ ∈ V � defined such that

�F , v�±1 = (f, v) , �Fδ, v�±1 = (f, v)δ .

Furthermore, define

WD
δ =

�
v ∈ V D

δ : bM(v,ψ) = 0, ∀ψ ∈ Mδ

�
, (6.12)

PD
k (Ω) =

�
p ∈ V D

δ : p ∈ Pk(E), ∀E ∈ τδ
�
. (6.13)

The main result concerning the a priori error estimate is stated in the following Theorem.

Theorem 6.1. The solution (hδ,λδ) to problem (6.9) and the solution (h,λ) to problem
(6.4) satisfy

|||h− hδ||| ≤
�
1 +

α∗

α∗

�
inf

vδ∈WD
δ

|||h− vδ||| +
1 + α∗

α∗
inf

pk∈PD
k (Ω)

|||h− pk|||

+
1

α∗

�
inf

ψδ∈Mδ

sup
vδ∈Wδ

bM(vδ,λ− ψδ)

|||vδ|||

�
+

1 + CΩ

α∗
�F − Fδ�V � . (6.14)

Moreover, assume (6.11) is satisfied. Then,

�λ− λσ�M ≤
�
1 +

1

β

�
inf

ψδ∈Mδ

�λ− ψδ�M +

√
α∗

β
|||h− hδ|||

+
1 +

√
α∗

β
inf

pk∈PD
k (Ω)

|||h− pk||| +
1

β
�F − Fδ�V � . (6.15)

The proof follows the lines of proofs of [10, Theorem 3] and [1, Theorem 3.1]. We first
prove the following preliminary result, which extends Poincaré’s inequality to a DFN.

Lemma 6.1. Let W̃ =
�
v ∈ V :

�
S

�v� = 0 ∀S ∈ S
�
. Then

∃CΩ > 0: ∀w ∈ W̃

�
N�

i=1

�w�2Fi

� 1
2

≤ CΩ |||w||| (6.16)
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Proof. First, notice that |||·||| is a norm on W̃ (see Proposition 6.1), thus the right hand side
of (6.16) does not vanish, unless w is identically zero. By contradiction, suppose

∀C > 0, ∃wC ∈ W̃ : �wC� =

�
N�

i=1

�wC�2Fi

� 1
2

> C |||wC ||| ,

then it is possible to build a sequence wk ∈ W̃ , k ∈ N, of functions such that �wk� > k |||wk|||
and, without loss of generality, suppose that �wk� = 1 for all k. Then, since �wk�1,Fi

is
limited for all i = 1, . . . , N , wk converges weakly in V to a function w� up to sub-sequences.
Clearly, ∇wk converges to ∇w� weakly. Then, since

0 ≤ �∇wk −∇w��Fi
= �∇wk�2Fi

− 2 (∇wk,∇w�)Fi
+ �∇w��2Fi

,

and �∇wk�Fi
< 1

k , taking the limit for k → ∞, it follows that �∇w��Fi
= 0. Then, w� is

constant on each fracture. By the same arguments used in the proof of Proposition 6.1, it
follows that w� must be the null function. Moreover, since H1 (Fi) is compactly embedded in

L2 (Fi), wk converges strongly to w� in L2 (Fi), for all i = 1, . . . , N . Since �wk�Fi

k→∞−→ �w��Fi

for all i = 1, . . . , N , we obtain �w�� = 1, which is a contradiction.

We can now prove the a priori error estimate.

Proof of Theorem 6.1. Let hl ∈ WD
δ be the a-orthogonal projection of h ∈ V D over WD

δ ,
such that

∀vδ ∈ WD
δ , a(h− hl, vδ) = 0 .

Exploiting the properties of the projection, we have

|||h− hδ||| 2 = |||h− hl||| 2 + |||hl − hδ||| 2 =

�
inf

vδ∈WD
δ

|||h− vδ|||
�2

+ |||hl − hδ||| 2 .

As far as the second term is concerned, recalling (5.8) we have

α∗ |||hl − h||| 2 = α∗a(hl − h, hl − h) ≤ aδ(hl − h, hl − h) .

By using the problem definitions (6.4) and (6.9), and introducing an arbitrary p ∈ PD
k , for

which the polynomial consistency property a(vδ, p) = aδ(vδ, p) holds for any given vδ ∈ Vδ,
we have

aδ(hl − hδ, hl − hδ) = aδ(hl − p, hl − hδ)+aδ(p, hl − hδ)−aδ(hδ, hl − hδ) = aδ(hl − p, hl − hδ)

+ a(p, hl − hδ) − (f, hl − hδ)δ + bM(hl − hδ,λ) −
�
hN , hl − hδ

�
ΓN = aδ(hl − p, hl − hδ)

+ a(p− h, hl − hδ) + a(h, hl − hδ)− (f, hl − hδ)δ + bM(hl − hδ,λδ) −
�
hN , hl − hδ

�
ΓN

= aδ(hl − p, hl − hδ) + a(p− h, hl − hδ)− (f, hl − hδ)δ + (f, hl − hδ) − bM(hl − hδ,λ) ,

where we have used that bM(hl − hδ,λδ) = 0 because hl −hδ ∈ Wδ. Introducing F , Fδ and
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a generical ψδ ∈ Mδ, since bM(hl − hδ,ψδ) = 0 we have

aδ(hl − hδ, hl − hδ) = aδ(hl − p, hl − hδ) + a(p− h, hl − hδ)− bM(hl − hδ,λ)

+ V � �F − Fδ, hl − hδ�V ≤
�
α∗ |||hl − p||| + |||h− p||| + bM(hl − hδ,λ− ψδ)

|||hl − hδ|||

�
|||hl − hδ|||

+ �F − Fδ�V � �hl − hδ�V ≤
�
α∗ |||hl − p||| + |||h− p||| + bM(hl − hδ,λ− ψδ)

|||hl − hδ|||

+(1 + CΩ) �F − Fδ�V �

�
|||hl − hδ||| ,

where in the last step inequality (6.16) has been used (see (6.5) for the definition of the
V -norm). The proof of (6.14) is thus completed using the triangle inequality and suitably
taking the supremums and infimums.

In order to prove (6.15), let us consider an arbitrary ψδ ∈ Mδ. By applying (6.11), (6.4)
and (6.9) we get:

β �ψδ − λδ�M ≤ sup
vδ∈Vδ

bM(vδ,ψδ − λδ)

�vδ�V
= sup

vδ∈Vδ

bM(vδ,λ− λδ) + bM(vδ,ψδ − λ)

�vδ�V

= sup
vδ∈Vδ

aδ(hδ, vδ) − (f, vδ)δ − a(h, vδ) + (f, vδ) + bM(vδ,ψδ − λ)

�vδ�V
.

Next, introducing an arbitrary p ∈ PD
k (Ω), by polynomial consistency we get

β �ψδ − λδ�M ≤ sup
vδ∈Vδ

�vδ�−1
V [aδ(hδ − p, vδ) + a(p− h, vδ) + V � �F − Fδ, vδ�V

+bM(vδ,ψδ − λ)
�
≤ sup

vδ∈Vδ

�vδ�−1
V

��
aδ(hδ − p, hδ − p)

�
aδ(vδ, vδ)

�
+ |||h− p|||

+ �F − Fδ�V � + �λ− ψδ�M ≤
√
α∗ |||hδ − p||| + |||h− p||| + �F − Fδ�V �

+ �λ− ψδ�M ≤
√
α∗ |||h− hδ||| + (1 +

√
α∗) |||h− p||| + �F − Fδ�V � + �λ− ψδ�M .

The proof is concluded by the triangle inequality and taking the infimum over PD
k (Ω).

6.3 Implementation

We describe in this section some details concerning the practical implementation of the
method.

6.3.1 Mesh generation and trace management. Following closely the ideas in
[6], we start by independently introducing a good quality triangular mesh on each fracture,
disregarding trace positions. Such triangulation will be called base mesh. On each fracture,
the base mesh is then modified in such a way that a new polygonal mesh is obtained, that
is locally conforming to the traces of the fractures. This means that traces will be covered
by edges of the new polygonal elements, though we remark that elements on meshes from
different fractures induce a different discretization of the same trace. This new mesh will be
suitable for the application of the method described in the previous sections and it will be
called VEM mesh. The procedure for obtaining the VEM mesh is the following. Whenever a
trace intersects an edge of the triangulation, a new node is created at the intersection. Each
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Figure 6.1: Mesh examples. Left: base mesh; right: VEM mesh.

trace tip defines a new node and the trace segment is prolonged up to the nearest edge of
the triangulation, thereby creating a new edge and a new node. When two traces intersect
each other, they are split into two sub-traces and in their intersection a new node is created.
Whenever an element of the mesh is cut by a (possibly prolonged) trace segment, it is split
into two parts which become new elements of the polygonal mesh in their own right. Finally,
traces without internal nodes receive the addition of a new node in its midpoint, which is
necessary to define the discrete Mortar space for the trace. The overall procedure thus results
in a polygonal mesh whose elements are convex polygons made of an arbitrary number of
edges.

Figure 6.1 is illustrative for such procedure. Focusing on a single fracture, we depict on
the left the base mesh introduced, and the local traces present on the fracture, denoted by
LT and with a fracture-local numbering from 1 to 15. On the right, the VEM mesh obtained
is represented. Note that new traces are introduced by splitting the original traces into sub-
traces. Note, as well, the generation of new nodes and elements obtained via trace segment
prolongation and the addition of one internal node (see, e.g., the original local trace 3 on
the top of the fracture). To better highlight the number of edges in the elements, a different
coloring is used for elements with a different number of edges.

Remark 6.2. In order to verify Assumption 6.1, a mesh smoothing process can be designed,
in order to improve the quality of the VEM mesh, reduce the number of DOFs and prevent
irregular elements in the discretization. Let us introduce for each vertex a quantity rm
called moving radius, defined as a fixed rate of the smallest edge connected to that vertex.
Correspondingly, we define a moving ball as a ball with center the vertex and radius rm.
Then:

1. if a trace tip lies within a moving ball of a vertex, the vertex is moved on the tip (see
Figure 6.2a);

2. if the intersection between two traces is within the moving ball of a vertex not previously
moved to a tip, the latter is moved on the intersection (see Figure 6.2b);

3. if a vertex not previously moved is closer to a trace than the moving radius, it is moved
orthogonally onto the trace (see Figure 6.2c).
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Figure 6.2: Mesh smoothing process. Top: before mesh smoothing; bottom: after mesh
smoothing. Cases: (a) trace tip close to a vertex; (b) traces intersecting close to a vertex;
(c) trace very close to a vertex.

This procedure does not cover the case in which two traces intersect each other with a
very small angle or very small traces, but from the numerical results (see, in particular,
Section 6.4.2) we can say that the method is sufficiently robust to deal with this kind of
issues.

Remark 6.3. Assumption 6.2 is satisfied by the VEM mesh. Indeed, the triangles of the base
mesh are only split when a trace cuts them. Thus, the number of edges of the new polygonal
elements is limited by the number of traces cutting the element (that is bounded by the
number of traces on the fracture), plus 3.

6.3.2 Matrix Formulation of the problem. On the discretization of Γm induced
by the triangulation on the non-mortar fracture, we introduce a finite dimensional subspace
of dimension NΓm

, containing the constant functions (this is required for well-posedness, see
Proposition 6.1). Let Nh and Nλ be the total number of degrees of freedom for hδ and
λδ, respectively, and set Ndof = Nh + Nλ; let us denote by φk, k = 1, . . . , Nh, and ψl,
l = 1, . . . , Nλ, the basis functions for hδ and λδ, respectively. Finally, let N

D be the number
of basis functions φD

j used to define the lifting Rδ

�
hD

�
of the Dirichlet boundary condition.

Then, problem (6.9) can be written as





Nh�

j=1

aδ(φj ,φk) hj +

Nλ�

l=1

bM(φk,ψl) λl = (f,φk)δ +
�
HN ,φk

�
ΓN

−
ND�

j=1

aδ
�
φD
j ,φk

�
hD
j

�Nh

j=1 b
M(φj ,ψm) hj = −�ND

j=1 b
M�

φD
j ,ψm

�
hD
j
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Figure 6.3: Lagrange multiplier basis

∀k = 1, . . . , Nh and ∀m = 1, . . . , Nλ, where hD
j is the value of Π0

k,ΓD (H
D) at the boundary

node corresponding to φD
j . Summarizing, we have to solve the system

�
A ∈ RNh,Nh B ∈ RNh,Nλ

B� ∈ RNλ,Nh O ∈ RNλ,Nλ

��
h
λ

�
=

�
F
Ψ

�
, (6.17)

where

Akj = aδ(φk,φj) , Bjl = bM(φj ,ψl)

Fk = (f,φk)δ +
�
HN ,φk

�
ΓN −

ND�

j=1

aδ
�
φD
j ,φk

�
hD
j , Ψm = −

ND�

j=1

bM
�
φD
j ,ψm

�
hD
j .

For the practical construction of the VEM stiffness matrix and right hand side vector,
we refer the reader to [2]. We remark that the construction of the matrix B can be done by
standard quadrature formulas, since the analytical expression of the basis functions on the
edges of each element is known.

6.3.3 Bases for the discrete Lagrange multipliers. In this subsection we give
details about the choice adopted for the space Mδ,S , for each S ∈ S. For a thorough descrip-
tion of the possible choices of Mortar bases, we refer the reader to [11].

In this work we have used three bases: the basis M0, composed by piecewise constant
functions; the basisM1, given by continuous piecewise linear functions, except for the first and
last intervals on which the functions are taken constant; the basis M2, given by discontinuous
piecewise quadratic functions, except for the first and last interval where the functions are
linear. These bases are depicted in Figure 6.3.
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Figure 6.4: Benchmark problem Geometry of the network

6.4 Numerical results

We present in this section some numerical results aimed at assessing the practical behavior
of the method. The results are obtained on two classes of problems: firstly, we present a
benchmark problem for which the exact solution is known, with some convergence results;
secondly, we analyse the performance of the method on larger DFNs that introduce several
geometrical complexities. All the numerical results here reported are obtained without any
kind of mesh smoothing (see Remark 6.2), in order to test the robustness of the method.

6.4.1 Benchmark problem. The benchmark DFN consists of 3 fractures as shown
in Figure 6.4. Despite being a simple network, it presents two geometrical features (a trace
intersection and a trace tip) which make it worthwhile to analyse the behavior of the method
at tackling them. The computational domain Ω = F1 ∪ F2 ∪ F3 is defined by

F1 =
�
(x, y, z) ∈ R3 : −1 ≤ x ≤ 1/2, −1 ≤ y ≤ 1, z = 0

�
,

F2 =
�
(x, y, z) ∈ R3 : −1 ≤ x ≤ 0, y = 0, −1 ≤ z ≤ 1

�
,

F3 =
�
(x, y, z) ∈ R3 : x = −1/2, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1

�
,

with traces

Γ1 = F1 ∩ F2 =
�
(x, y, z) ∈ R3 : −1 ≤ x ≤ 1/2, y = 0, z = 0

�
,

Γ2 = F1 ∩ F3 =
�
(x, y, z) ∈ R3 : x = −1/2, −1 ≤ y ≤ 1, z = 0

�
,

Γ3 = F2 ∩ F3 =
�
(x, y, z) ∈ R3 : x = −1/2, y = 0, −1 ≤ z ≤ 1

�
.

The problem is defined setting non-homogeneous Dirichlet boundary conditions on the
whole boundary ∂Ω, and a load term on each fracture in such a way that the exact solution
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is given by:

h1(x, y) =
1

10

�
−x− 1

2

��
8xy

�
x2 + y2

�
arctan2(y, x) + x3

�
,

h2(x, z) =
1

10

�
−x− 1

2

�
x3 − 4

5
π

�
−x− 1

2

�
x3 |z| ,

h3(y, z) = (y − 1)y(y + 1)(z − 1)z,

where arctan2(y, x) is the four quadrant inverse tangent function with 2 arguments, that
returns the appropriate quadrant of the computed angle y/x. Note that since H1, H2 /∈ C1,
a net flux is expected between F1 and F2.
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Figure 6.5: Benchmark problem Computed hydraulic head on fractures F1 (left) and F2

(right).

The computed solutions obtained for the hydraulic head on such fractures are shown in
Figure 6.5. Fluxes exchanged between F1 and F2, computed with all three considered choices
for the mortar bases are shown in Figure 6.6, where they are compared with the exact one.

In order to present convergence results, we remark that since the values of the discrete
solution are not explicitly known inside the elements but only on the set of DOFs, the errors
are computed by projecting the discrete solution on the space of polynomials of degree k, as
is the usual procedure with the VEM [3]:

�
ErrHL2

�2

=
�

E∈Tδ

��h−Π∇
k hδ

��2
E

,

�
ErrHH1

�2

=
�

E∈Tδ

��h−Π∇
k hδ

��2
1,E

,

Regarding the errors of approximation of λ, we measure them on each trace both in L2 (Γm)

and H− 1
2 (Γm) norm; for practical computational issues, we approximate this latter norm

with a weighted L2 (Γm) norm:

�
ErrΛL2

�2

=
�

m∈M
�λ− λδ�2e ,

�
ErrΛ

H− 1
2

�2

=
�

S∈S

�

e⊂S

|e| �λ− λδ�2e .
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Figure 6.6: Benchmark problem Computed and exact fluxes

hδ λδ on Γ1

VEM order Mortar basis L2 Norm H1 Norm L2 Norm H− 1
2 Norm

1 M0 1.00 (1) 0.50 (0.5) 1.19 1.79
1 M1 1.00 (1) 0.50 (0.5) 1.26 1.87
2 M0 1.38 (1.5) 0.91 (1) 0.98 1.54
2 M1 1.50 (1.5) 1.01 (1) 1.54 2.05
2 M2 1.51 (1.5) 1.01 (1) 2.45 3.02

Table 6.1: Benchmark problem Convergence rates for several VEM orders and Mortar

bases. The numbers in parentheses indicate the expected rates.

In Figure 6.7, focusing on fracture F1, we present the convergence curves for different
combinations of the order k for the VEM space and of the type of Mortar basis. Namely, in
the left column we report the behavior of the errors ErrHL2 and ErrHH1 (labeled by L2 and H1,

respectively); the errors are plot versus the total number of h-DOFs on the fracture. In the

right column we report the errors ErrΛL2 and ErrΛ
H− 1

2
(labeled by L2 and H− 1

2 , respectively);

here, the errors are plot versus the number of λ-DOFs on the traces of F1.
Finally, Table 6.1 reports, for all the analysed cases, the computed convergence rates with

respect to the number of DOFs. Namely, we report the computed rates of convergence for
h with respect to the h-DOFs (the expected values being reported in parentheses); note the
very good agreement between the computed and the expected rates, except for the case k = 2
and M0, in which the low order of the mortar basis slows down the rate of convergence for
the hydraulic head. Focusing on trace Γ1, we also report the computed rates of convergence
for λδ with respect to the number of λ-DOFs. The rates of convergence for the λ-errors with
respect to the number of h-DOFs, not listed here, are approximately one half of the reported
values; this is in agreement with the fact that the number of λ-DOFs scales as the square
root of the number of h-DOFs.

6.4.2 Complex networks. In this section we present results obtained on more complex
networks. The first one, DFN36, consists of 36 fractures. The geometry of the DFN is
depicted in Figure 6.8, from which the geometrical complexity of the domain can be seen. A
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Figure 6.7: Benchmark problem Convergence curves measured on fracture F1
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6.4. Numerical results

Figure 6.8: DFN36 Geometry of the network and computed hydraulic head (as a scale of
colours)

non-homogeneous constant Neumann boundary condition (hN = 100) has been set on one
fracture (called source fracture), and a homogeneous Dirichlet boundary condition has been
set on another fracture (sink fracture). Homogeneous Neumann boundary conditions on the
remaining part of the boundary isolate all the other fractures from the surrounding medium.

The plots in Figure 6.9 report the computed total net fluxes exchanged by the source and
sink fracture versus the number of DOFs on traces (logaritmic x-scale), for VEM of order
k = 1, 2 and 3, and mortar bases M0, M1 and M2. The value Δ reported is the difference
between the two curves and is an indication of the global conservation state of the method
in the whole DFN. Results show the tendency to approximate the expected values and we
note that, interestingly, almost no difference in flux values is appreciated for different choices
of mortar bases. As a further quality indicator for the obtained solution, we introduce a
measure of the error of the jump of the hydraulic head on traces. Namely, we set

Eh =
�

m∈M

���h�Γm

��2
Γm

.

The computed values are shown in Figure 6.10 for VEM of order k = 1, 2 and 3, using the
basis M1. For all orders, a decrease in this parameter was observed with increasing number
of DOFs as expected, but interestingly, with a similar rate. Since the defined quantity does
not constitute a norm, no further conclusions about convergence can be drawn.

As a second example, a 134 fracture network is proposed (DFN134, Figure 6.11). As far
as geometrical complexities are concerned, this DFN is far more challenging than DFN36, as
it exhibits several critical features: very small angles at trace intersections (thus challenging
the shape regularity of the elements stated by Assumption 6.1 and discussed in Remark 6.2),
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(a) k = 1

(b) k = 2

(c) k = 3

Figure 6.9: DFN36 Flux results
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6.5. Conclusions
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Figure 6.10: DFN36 Error in the jump of the hydraulic head on traces

almost parallel traces, large variation of trace lengths and fracture sizes. Three fractures were
chosen as source fractures by imposing non-homogeneous Neumann boundary conditions. A
fourth fracture was set as sink fracture, and on one of its edges a homogeneous Dirichlet
boundary conditions was set. Homogeneous Neumann conditions were imposed on all the
remaining components of the boundary.

In Figure 6.12 we report some data for a particularly intricate fracture, where the problem
has been solved using VEM of order k = 2 and the M1 basis. The VEM mesh is presented
(top left figure), as well as the affine interpolation of the computed hydraulic head solution
(bottom left) and the corresponding velocity field obtained from the gradients of the com-
puted hydraulic head (top right figure). From the detail reported in the bottom right figure,
it can be seen how elements of order 2 allow for a better representation of the change in slope
between close traces thanks to the added DOFs in the midpoints of each of the edges.

6.5 Conclusions

We have introduced a new approach for flow simulations in Discrete Fracture Networks. The
key feature is given by its capability to work with arbitrary (good quality) meshes generated
on the fractures. Taking advantage of the versatility of the Virtual Element Method in
handling polygonal meshes, each arbitrary mesh is easily modified in such a way that local
conformity of the meshes is obtained for almost any trace disposition. Using the hybrid
formulation of the Mortar method, only “weak” continuity is required for the hydraulic head
along the intersections between fractures.

The main advantage of the approach presented here, with respect to the method proposed
in [7], is that, besides the computation of the hydraulic head, the present approach allows for
a direct approximation of the flux on each trace, whereas in [7] the flux exchange is derived
from the values of the hydraulic head.

The validity of the approach proposed is supported by numerical experiments, showing

109



Figure 6.11: DFN134 Geometry of the network and computed hydraulic head (as a scale
of colours)

optimal convergence for the primal variable; furthermore, the behaviour of the method is
quite satisfactory also when it is applied to DFNs with complex geometry.

Future developments include the extension to more complex flow models and in particular
to the case of non-constant transmissivity values. Furthermore, we aim at investigating a
possible parallel implementation, which is recommended for tackling large scale DFNs for
realistic underground flow simulations.
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Chapter 7

Orthogonal polynomials in badly shaped
polygonal elements for the Virtual

Element Method

This chapter addresses the issue of containing the numerical oscillations arising on badly
shaped polygons when using a Virtual Element formulation, with particular focus on the
applications to DFN simulations described in Chapter 5. This work is published in [12].

7.1 Introduction

The flexibility of the recently developed Virtual Element Method (VEM) has been applied
in the field of geological poro-fractured media [7–11]. Geosciences very often produce appli-
cations with huge domains and terrific geometrical complexities. Within this context, the
Discrete Fracture Network (DFN) model was developed for modeling the flow in the geolog-
ical fractured media [1, 20, 22, 27] and is object of a very large numerical bibliography [21,
23–26, 28–33]. Due to the huge uncertainty in the definition of the underground fracture
distribution, this model instantiates a fracture distribution by a stochastic procedure start-
ing from probabilistic distributions of geometrical parameters: direction, dimension, aspect
ratio; and from probabilistic distributions of thickness and other hydro-geological properties.
The stochastic procedure that instantiates the fracture distribution can create geometrical
complexities arbitrarily demanding for a numerical method; typically these complexities are
related, for example, to very small angles between couple of fractures, to a huge variabil-
ity in the length of fracture-intersections, and to disjoint fractures very close to each other
[19]. The VEM applied to this problem has proved a good reliability in dealing with these
complexities, but, sometimes, some fracture configurations have lead to unfeasible numerical
solutions [11]. A possible solution, sometimes viable, is to relax the mesh conformity require-
ment, resorting to the Mortar fracture matching method described in Chapters 5 and 6 [8]
or applying a preliminary mesh smoothing process [10]. Nonetheless, some very badly shaped
configurations cannot be avoided, mainly on coarse meshes.

Starting from these observations, in this paper we propose a different basis for assembling
the local linear systems within the VEM, that, at a very small additional cost with respect
to a classical implementation based on monomials, can largely improve the reliability of the
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method by limiting the condition numbers of local matrices in badly shaped elements. We
remark that the proposed method aims at improving the reliability of the computations
performed in the set up of the consistent part of the VEM formulation of the problem and
is completely independent of the VEM stabilization that is added to the consistent part in
order to get a well posed problem [6]. Moreover, our description is organized in such a way
that it can be easily plugged in a standard VEM code based on scaled monomials.

In Section 7.2 we recall the VEM formulation for a advection-diffusion-reaction problems,
as described in Chapter 2. In Section 7.3 we introduce the computation of a quasi-orthogonal
polynomial basis for assembling the VEM linear system that is fully compatible with the
traditional monomial basis. The two bases can be mixed on elements in the same mesh using
the quasi-orthogonal basis on badly shaped elements and the traditional monomial basis on
all the other elements. In Section 7.4 we provide a brief validation of the modified VEM
construction on a general reaction-convection-diffusion problem with variable coefficients.
In Section 7.6 we compare the results provided by the classical monomial basis with the
presented quasi-orthogonal basis on two critical Discrete Fracture Networks. In this last
section we further discuss some simple criteria useful to determine in which elements it is
beneficial to resort to the new basis and in which elements it is safe to use the monomial
basis, as well as some limitations of the proposed approach.

7.2 Model problem: VEM for advection-diffusion-reaction
equations

Following [5] and Chapter 2, we consider the general second order problem
�
−∇ · (K∇u) + β ·∇u+ γu = f in Ω,

u = 0 on ∂Ω,

whose variational formulation reads

(K∇u,∇v) + (β ·∇u, v) + (γu, v) = (f, v) .

The VEM discretization of the problem consists in partitioning the domain using a mesh Tδ
made up of open star-shaped polygons having an arbitrary number of sides (even different
from one polygon to another, but uniformly bounded independently of the mesh size). We
make the following regularity assumption: ∃γ > 0 such that ∀E ∈ Tδ, with diameter hE , E
is star-shaped with respect to a ball of radius larger than γhE . Let us define the functional
spaces

V E
δ =

�
vδ ∈ H1 (E) : Δvδ ∈ Pk (E) , vδ ∈ Pk (e) ∀e ⊂ ∂E, γ∂E(vδ) ∈ C0 (∂E) ,

(vδ, p)E =
�
Π∇

k vδ, p
�
E

∀p ∈ Pk (E) /Pk−2 (E)
�
,

Vδ =
�
vh ∈ C0 (Ω) : vh ∈ V E

δ ∀E ∈ Tδ
�
,

and the following discrete counterpart of the bilinear form, which is computable from the
VEM degrees of freedom (see Definition 2.1). Let

aδ(uδ, vδ) =
�
KΠ0

k−1∇uδ,Π
0
k−1∇vδ

�
+ S

��
I −Π∇

k

�
uδ,

�
I −Π∇

k

�
vδ
�
,

bδ(uδ, vδ) =
�
β ·Π0

k−1∇uδ,Π
0
k−1vδ

�
,

cδ(uδ, vδ) =
�
Π0

k−1uδ,Π
0
k−1vδ

�
,

Bδ(uδ, vδ) = aδ(uδ, vδ) + bδ(uδ, vδ) + cδ(uδ, vδ) ,
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where S is the VEM stabilization [3, 6] such that

∃c∗, c∗ > 0: ∀vδ ∈ ker
�
Π∇

k

�
, c∗ �∇vδ�2 ≤ S(vδ, vδ) ≤ c∗ �∇vδ�2 ,

and all the other terms of the operator Bδ provide the consistent part of the operator. Within
these terms, the operator Π0

k−1 is the elementwise L2 (E) projection on Pk−1 (E), for any
E ∈ Tδ. For the ease of notation, we will use the same symbol also for the application of the
projection operator to vectors, such as gradients, meaning a component-wise application.

Using the above definitions, we define the discrete VEM solution as the function uδ ∈ Vδ

satisfying
Bδ(uδ, vδ) =

�
f,Π0

k−1vδ
�

∀vδ ∈ Vδ .

This problem is well-posed and satisfies optimal a priori error estimates (see Chapters 2
and 3). In the following we focus on the construction of the local projection matrices and
the local matrices and vectors required for the set up of the global discrete problem.

In the presentation given here we have considered the minimal requirement in the projec-
tions in order to preserve the expected polynomial rate of convergence (k in the energy norm)
of the numerical solution. In the first VEM papers the projection used for the right-hand-side
computation was mΠ0

k .

7.3 Orthogonal polynomials on the generic element

All the computations performed in order to set up the VEM linear system providing the
solution are based on operations between polynomial functions representing the projection
of functions appearing in the consistent part of the operator and in the right-hand-side. A
key issue in performing all the computations is a suitable basis for the polynomial spaces on
general polygonal elements. Among the several possible options the classical and more simple
choice is the scaled monomial basis [3, 5]. In the following we describe the construction of a
suitable different almost orthogonal basis. A key issue to be considered in this construction
process is that we need a basis for the space of polynomials of order k−1 for the construction
of the Π0

k−1 projector, largely used in the consistent part of the discretization of the problem.
This is the first step of our construction. Moreover, we also need a basis for the full space
of polynomials of order k for the computations involved by the Π∇

k construction required in
the VEM stabilization considered in [3, 5]. For this reason we need a basis for the space
Pk (E) obtained by the chosen basis functions for Pk−1 (E) and by a set of additional linearly
independent basis functions. We remark that the proposed construction of a polynomial
basis aims at improving the reliability of the projector operator and is not dependent on the
VEM stabilization chosen [6].

7.3.1 Basis construction. In the following we introduce a number of vector of basis
functions, mass matrices and projectors; for all of them we adopt the following common
notation: we use a right superscript to denote the polynomial order, and we indicate the
polynomial basis used for the construction of the mass matrices and the projectors as the
left superscript. For the mass matrices we also introduce the right superscript k/k − 1 to
indicate that monomilas of order exactly k are used in the construction.

Let mk be the column vector of the nk scaled monomial basis functions of the space of
polynomials up to degree k usually used in the VEM definition, pk and pk are the column
vectors of two suitable sets of linearly independent polynomials of degree k, whose construc-
tion will be discussed in the following. The construction of the target basis pk of Pk (E) is
split in two steps: first we construct the orthonormal basis pk−1 of Pk−1 (E) used for the
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construction of the projectors pΠ0
k−1 and then we complete the basis for Pk (E) adding suit-

able basis functions, this basis is required for the construction of the projection Π∇
k needed

for the computation of the VEM stabilization. In each of the two steps intermediate bases
pk−1 and pk are introduced to explain the construction.

Let Rk be the matrix whose i-th row represent the coefficients of the i-th polynomial pki
of the orthogonal basis in terms of the monomial basis mk:

pki =
�

j=1,..nk

ri,jm
k
j = Rk

i,:m
k .

In a compact form we can write
pk = Rkmk.

Let us introduce the mass matrix mHk ∈ Rnk×nk defined as

mHk =

�

E

mk
�
mk

��
dΩ ,

and let us consider the principal sub-matrix of order nk−1, that is the mass matrix of the
monomials up to the order k − 1:

mHk−1 =

�

E

mk−1
�
mk−1

��
dΩ .

Moreover, let us denote by mHk,k−1 the block of the mass matrix mHk with the last
nk − nk−1 rows and the first nk−1 columns, and by mHk/k−1 the block matrix with the last
nk − nk−1 rows and columns.

Orthonormal basis for Pk−1 (E). Let us define the matrix Rk−1 such that the mass

matrix pHk−1 with respect to the basis pk−1 is diagonal:

pHk−1 =

�

E

pk−1
�
pk−1

��
dΩ =

�

E

Rk−1mk−1
�
mk−1

�� �
Rk−1

��
dΩ =

= Rk−1 mHk−1
�
Rk−1

��
= Λk−1 .

Namely, the matrix
�
Rk−1

��
is the matrix of the column-wise right-eigenvectors of mHk−1 ,

and the diagonal matrix Λk−1 is the matrix of the eigenvalues of mHk−1 .
We finally introduce the orthogonal matrix

Qk−1 =

�
(Λk−1)

−1
Rk−1 , (7.1)

and then define the set of L2 (E)-orthonormal polynomials that is a basis of the space
Pk−1 (E):

pk−1 = Qk−1mk−1, (7.2)

with an identity mass matrix:

pHk−1 =

�

E

pk−1
�
pk−1

��
dΩ =

�

E

Qk−1mk−1
�
mk−1

�� �
Qk−1

��
dΩ

= Qk−1 mHk−1
�
Qk−1

��
=

�
(Λk−1)

−1
Λk−1

��
(Λk−1)

−1

��
= Ik−1.
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Improved basis for Pk (E). In order to build a basis for the full space Pk (E) we add
to the basis functions pk−1 a set of suitable linearly independent basis functions denoted
by pk/k−1, and obtained removing from the monomials mk/k−1 of order (exactly) k their
components in the space of polynomials of order up k − 1. Let us apply a Gram-Schmidt
ortogonalization:

pk/k−1 = mk/k−1 −
��

E

mk/k−1
�
pk−1

��
dΩ

�
pk−1 =

= mk/k−1 −
��

E

mk/k−1
�
mk−1

��
dΩ

�
mk−1 =

= mk/k−1 − mHk,k−1 mk−1 =
�
−
�
mHk,k−1

��
Ik/k−1

�
mk.

Let us define the matrix

Rk/k−1
a =

�
−
�
mHk,k−1

��
Ik/k−1

�
∈ R(nk−nk−1)×nk−1 . (7.3)

Note that the set of functions pk/k−1 is obtained starting from the set of monomials of order
k, but they are general polynomials of order k orthogonal to the polynomial basis functions
of order k − 1.

Now, let us extract from these polynomials a set of linearly independent L2 (E) orthogonal
functions pk/k−1. Let us consider the mass matrix relative to the polynomials pk/k−1

pk/k−1

Hk/k−1 =

�

E

pk/k−1
�
pk/k−1

��
dΩ = Rk/k−1

a

��

E

mk
�
mk

��
dΩ

��
Rk/k−1

a

��
,

and let R
k/k−1
b the orthogonal matrix of change of basis that leads to a diagonal mass matrix

starting from pk/k−1

Hk/k−1 :

Λk/k−1 =
�
R

k/k−1
b

��
pk/k−1

Hk/k−1
��

R
k/k−1
b

��
=

=
�
R

k/k−1
b

��
Rk/k−1

a

�
mHk

�
Rk/k−1

a

�� �
R

k/k−1
b

��
.

We, finally, define the basis functions

pk/k−1 =

��
Λk/k−1

�−1
R

k/k−1
b Rk/k−1

a mk = Qk/k−1mk , (7.4)

and the new full “almost L2 (E)-othonormal” basis is

pk = Qkmk , (7.5)

where, defined the zero-matrix Ok−1,k ∈ Rnk−1×nk−nk−1 , the matrix Qk has the following
structure:

Qk =

�
Qk−1 Ok−1,k

Qk/k−1

�
, (7.6)

and, in exact arithmetic, the resulting mass matrix is

pHk =

�

E

pk
�
pk

��
dΩ = Qk mHk

�
Qk

��
=

�
Ik−1 pHk−1,k

pHk,k−1 Ik/k−1

�
. (7.7)

For badly shaped elements, the computation of the eigenvalues-eigenvectors can be affected
by a non negligible numerical error. When this happens, the diagonal blocks of the matrix
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pHk are no longer identity matrices, and, for this reason, in Section 7.6 we consider the
following definitions:

pHk−1 = Qk−1 mHk−1
�
Qk−1

��
, (7.8)

pHk = Qk mHk
�
Qk

��
, (7.9)

with the matrices Qk−1 and Qk given by (7.1) and (7.6), respectively.

7.3.2 Computation of the projector operator matrices for Π0
k−1∇. In this

section we describe how to obtain the L2(E) projection of the gradient components of a VEM
basis function following the description provided in [4, 5].

Let Π0
k−1φi,x be the projection of the derivative with respect to the variable x of the VEM

basis function φi. Let us write this projection with respect to the scaled monomial basis m
and the basis p built in the previous section, respectively:

mΠ0
k−1 φi,x =

�
mk−1

�T mΠ0
x (:, i) ,

pΠ0
k−1 φi,x =

�
pk−1

�T pΠ0
x (:, i) , (7.10)

and similarly for the derivatives with respect to the variable y.
Let us define the matrix mEx of the L2 (E) scalar product of the x derivative of the VEM

basis function φi with respect to the monomial basis mk−1 and the matrix pEx with respect
to the orthonormal basis pk−1, respectively:

mEx (l, i) =

�

E

mlφi,x,
pEx (l, i) =

�

E

plφi,x,

the relation between the two matrices is pEx = Qk−1 mEx . Moreover, the L2 (E) projections
mΠ0

k−1 φi,x and pΠ0
k−1 φi,x are defined by the systems of equations

�

E

mk−1
�
mΠ0

k−1 φi,x

�
dΩ =

�

E

mk−1φi,xdΩ, (7.11)

�

E

pk−1
�
pΠ0

k−1 φi,x

�
dΩ =

�

E

pk−1φi,xdΩ, (7.12)

respectively. Let us write the projections in (7.11), (7.12) by (7.10), we have

�

E

mk−1φi,xdΩ =

��

E

mk−1
�
mk−1

�T
dΩ

�
mΠ0

x (:, i),

�

E

pk−1φi,xdΩ =

��

E

pk−1
�
pk−1

�T
dΩ

�
pΠ0

x (:, i),

that is

mEx (:, i) =
mHk−1 mΠ0

x (:, i),
pEx (:, i) =

pHk−1 pΠ0
x (:, i),

mEx = mHk−1 mΠ0
x ,

pEx = pHk−1 pΠ0
x ,

and

mΠ0
x =

�
mHk−1

�−1 mEx ,
pΠ0

x =
�
pHk−1

�−1 pEx . (7.13)

In exact arithmetic we have

pΠ0
x = pEx = Qk−1 mEx , (7.14)
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and proceeding in a similar way we get pΠ0
y = pEy . For the computation of the matri-

ces mEx and mEy resorting to the VEM-dofs we refer to [3, 5] and remark that, by the
Green formula, all these computations can be written in term of integrals on the elements of
polynomials of order k − 2 that are VEM dofs and integrals on the boundary of VEM basis
functions and polynomials of order k−1. In the computations performed in the following we
use the expressions

pΠ0
x =

�
pHk−1

�−1
Qk−1 mEx = Qk−1 mΠ0

x , (7.15)

pΠ0
y =

�
pHk−1

�−1
Qk−1 mEy = Qk−1 mΠ0

y . (7.16)

The matrix Qk−1 works as a preconditioner for the projection matrices pΠ0
x and pΠ0

y .

7.3.3 Stiffness matrix computation. Denoting by Φ the column vector of the VEM

basis functions φi, i = 1, .., nk, and by ∇ΦT the matrix with two rows and nk columns with
the gradient ∇φi in the column i. Let us assume that K is a positive scalar function. The
element stiffness matrix is given by

pKK =

�

E

K

�
pΠ0

k−1

∂Φ

∂x

��
pΠ0

k−1

∂Φ

∂x

��
dΩ+

�

E

K

�
pΠ0

k−1

∂Φ

∂y

��
pΠ0

k−1

∂Φ

∂y

��
dΩ =

=

�

E

K
�
pΠ0

x

��
pk−1

�
pk−1

�� pΠ0
x dΩ+

�

E

K
�
pΠ0

y

��
pk−1

�
pk−1

�� pΠ0
y dΩ =

=
�
pΠ0

x

�� pHk−1
K

pΠ0
x +

�
pΠ0

y

�� pHk−1
K

pΠ0
y ,

where we have defined

pHk−1
K =

�

E

pk−1K
�
pk−1

��
dΩ = K Ik−1,

and we can write

pKK =
��

pΠ0
x

�� �
pΠ0

y

���
�
pHk−1

K 0

0 pHk−1
K

� �
pΠ0

x
pΠ0

y

�
. (7.17)

If K is constant in the element E, in exact arithmetic, we have pKK = K Ik−1.
In case K is a simmetric positive definite tensor whose components are denoted by Kxixj

with i, j = 1, 2 and the usual convention x1 = x and x2 = y, we define

mHk−1
Kxixj

=

�

E

Kxixjm
k−1

�
mk−1

��
dΩ,

pHk−1
Kxixj

=

�

E

Kxixj
pk−1

�
pk−1

��
dΩ = Qk−1 mHk−1

Kxixj

�
Qk−1

��
,

and proceeding in a similar way we finally get

pKK =
��

pΠ0
x

�� �
pΠ0

y

���
�

pHk−1
Kx1x1

pHk−1
Kx1x2

pHk−1
Kx2x1

pHk−1
Kx2x2

� �
pΠ0

x
pΠ0

y

�
(7.18)

7.3.4 Computation of the projector operator Π∇
k . First let us recall the defini-

tion of the Π∇
k operator [2–4]:

�
∇Π∇

k vδ,∇qk
�
= (∇vδ,∇qk) , ∀qk ∈ PE (k) . (7.19)
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Equation (7.19) defines the projection Π∇
k vδ of the VEM function vδ up to a constant that

can be fixed prescribing a projector operator P0 : Vk(E) → PE (0) such that

P0Π
∇
k vδ = P0vδ .

Several options for this operator are possible. As in [3, 4] we choose

�
(P0vδ, 1)∂E = (vδ, 1)∂E , for k = 1,

(P0vδ, 1)E = (vδ, 1)E , for k ≥ 2.
(7.20)

Since Π∇
k φi ∈ Pk (E) we can represent it with respect to the bases m and p, with coefficients

mΠ∇
k (:, i) and pΠ∇

k (:, i), respectively

Π∇
k φi =

�
mk

�� mΠ∇
k (:, i) =

�
mk

�� �
Qk

�� pΠ∇
k (:, i).

Let us define the Rnk−1,nk−1 matrix

mG̃ =

�

E

∇Tmk∇mkdΩ,

and
mB̃(:, i) =

�

E

∇Tmk∇ΦdΩ.

Using the monomial basis we get

�

E

∇�mk∇Π∇
k φidΩ =

�

E

∇�mk∇mk�dΩmΠ∇
k (:, i) = mG̃mΠ∇

k (:, i) =

=

�

E

∇�mk∇φidΩ = mB̃(:, i).

Whereas, using the basis of polynomials pk

pG̃ pΠ∇
k (:, i) = Qk mG̃

�
Qk

�� pΠ∇
k (:, i) = pB̃(:, i) = Qk mB̃(:, i). (7.21)

The first row and first column of the matrix mG̃ is trivially vanishing appearing in the
integrals the gradient of constants. We can say that the matrix pG̃ is singular as well. For
this reason we define the matrices mG and pG in the following way. As in [4], let us consider
the matrix mG̃ and replace its first row with the vector P0

�
mk

��
obtaining the matrix mG,

and replace the first row of mB̃ with P0 (Φ)
�
, obtaining mB. The undetermined linear system

mG̃mΠ∇
k = mB̃ is replaced by

mGmΠ∇
k = mB. (7.22)

Instead of computing pG by the transformation pG = Qk mG
�
Qk

��
we could directly

compute the matrix pG by performing a QR-rank-revealing factorization of the matrix pG̃ =
Qk mG̃

�
Qk

��
, and then by replacing the row of the matrix corresponding to the lowest

singular value with the the vector P0

�
pk

��
= P0

�
mk

�� �
Qk

��
and the corresponding element

of the right hand side pB̃ = Qk mB̃ with P0Φ
�, we get

pG pΠ∇
k = pB. (7.23)
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7.3.5 Computation of the projector operator matrices Π0
k−1. In this section

we describe how to obtain the L2(E) projection of a VEM basis function following the
description provided in [2, 5].

Let Π0
k−1φi be the projection of the VEM basis function φi. Let us write this projection

with respect to the scaled monomial basis m and the basis p built in the previous section,
respectively:

mΠ0
k−1 φi =

�
mk−1

�� mΠ0
k−1 (:, i),

pΠ0
k−1 φi =

�
pk−1

�� pΠ0
k−1 (:, i). (7.24)

Let us define the matrix mC of the L2 (E) scalar product of the VEM basis function φi

with respect to the monomial basis mk−1 and the matrix pC with respect to the basis pk−1,
respectively:

mC (l, i) =

�

E

mlφi,
pC (l, i) =

�

E

plφi, l = 1, . . . nk−1

the relation between the two matrices is pC = Qk−1 mC . In the definition of the VEM
space we ask that (q,φi)E = (q,Π∇

k φi)E , ∀q ∈ Pk (E) /Pk−2 (E) and this is the way we can
compute the last row of the matrix mC and consequantly the matrix pC [2, 4]. Moreover,
the L2 (E) projections mΠ0

k−1 φi and
pΠ0

k−1 φi are defined by the systems of equations
�

E

mk−1 mΠ0
k−1 φidΩ =

�

E

mk−1φidΩ, (7.25)

�

E

pk−1 pΠ0
k−1 φidΩ =

�

E

pk−1φidΩ, (7.26)

respectively. Let us write the projections in (7.25), (7.26) by (7.24), we have

mC (:, i) = mHk−1 mΠ0
k−1 (:, i),

pC (:, i) = pHk−1 pΠ0
k−1 (:, i),

mC = mHk−1 mΠ0
k−1 ,

pC = pHk−1 pΠ0
k−1 ,

and

mΠ0
k−1 =

�
mHk−1

�−1 mC ,

pΠ0
k−1 =

�
pHk−1

�−1 pC = pC = Qk−1 mC .

From a numerical point of view, in the following, we prefer to use

pΠ0
k−1 =

�
pHk−1

�−1 pC =
�
pHk−1

�−1
Qk−1 mC . (7.27)

7.3.6 Advection matrix computation. Let us consider the elemental matrix of the
advection term

pKβ =

�

E

βx

�
pΠ0

k−1 Φ
��

pΠ0
k−1

∂Φ

∂x

��
dΩ+

�

E

βy

�
pΠ0

k−1 Φ
��

pΠ0
k−1

∂Φ

∂y

��
dΩ =

=

�

E

βx

�
pΠ0

k−1

��
pk−1

�
pk−1

�� pΠ0
x dΩ+

�

E

βy

�
pΠ0

k−1

��
pk−1

�
pk−1

�� pΠ0
y dΩ =

=
�
pΠ0

k−1

�� pHk−1
βx

pΠ0
x +

�
pΠ0

k−1

�� pHk−1
βy

pΠ0
y

where, with i = 1, 2, we have defined

mHk−1
βxi

=

�

E

βxi
mk−1

�
mk−1

��
dΩ,

pHk−1
βxi

=

�

E

βxip
k−1

�
pk−1

��
dΩ = Qk−1 mHk−1

βxi

�
Qk−1

��
.
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7.3.7 Reaction matrix computation. Let us consider the elemental matrix of the
reaction term

pKγ =

�

E

γ
�
pΠ0

k−1 Φ
� �

pΠ0
k−1 Φ

��
dΩ =

=

�

E

γ
�
pΠ0

k−1

��
pk−1

�
pk−1

�� pΠ0
k−1 dΩ =

�
pΠ0

k−1

�� pHk−1
γ

pΠ0
k−1 ,

where we have defined

mHk−1
γ =

�

E

γmk−1
�
mk−1

��
dΩ,

pHk−1
γ =

�

E

γpk−1
�
pk−1

��
dΩ = Qk−1 mHk−1

γ

�
Qk−1

��
.

7.4 Validation on a reaction-advection-diffusion problem

Before proceding to a detailed analysis of the effects of the basis p in preventing instabilities
on badly shaped elements, we report some numerical results for a validation of the method. In
particular, we aim at showing that the use of the new basis yields a discretization displaying
rates of convergence for the error which correspond to the theoretical ones. Let Ω = (0, 1)×
(0, 1) and consider the reaction-convection-diffusion problem:

�
−∇ · (K∇u) + β ·∇u+ γu = f in Ω,

u = 0 su ∂Ω,

where K(x, y) =
�

1+y2 0

0 1+x2

�
is a non-constant tensor diffusivity parameter, β(x, y) = (x,−y)

is the convection velocity, γ(x, y) = xy is the reaction parameter and f is the right-hand-side
chosen such that the solution is

u(x, y) = −200
�
sin(1− x/π) cos(πx)(1− x)(1− y)xy2 .

k = 1 k = 2 k = 3 k = 4 k=5 k=6
L2 (Ω) 2.08 3.14 4.29 5.25 6.60 7.53
H1

0 (Ω) 1.03 2.12 3.20 4.25 5.55 6.40

Table 7.1: Validation test: rates of convergence on triangular mesh

k = 1 k = 2 k = 3 k = 4 k=5 k=6
L2 (Ω) 1.98 3.01 3.97 4.95 6.05 6.98
H1

0 (Ω) 1.00 1.97 2.98 3.96 5.06 6.00

Table 7.2: Validation test: rates of convergence on hexagonal mesh

The computed rates of convergence for the norms L2 (Ω) and H1
0 (Ω) are reported in

Tables 7.1 and 7.2 and are very close to the expected ones. Being the mesh a good quality
mesh we have that the errors display the same values both with the basis m and p. The
rates of convergence in Table 7.1 are obtained on a triangular mesh with elements of area
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7.5. Interface problem with highly anisotropic mesh

Figure 7.1: Validation Highly distorted Voronoi mesh

equal to 0.1, 0.01, 0.001 and 0.0001 for k = 1, . . . , 4, and with area equal to 0.1, 0.05, 0.01,
0.005 for k = 5, 6, while the results in Table 7.2 are obtained on progressively refined meshes
of mildly distorted hexagons, with diameters spanning from 0.219 to 0.0266 for orders 1 up
to 5, and from 0.219 to 0.071 for order 6.

In order to describe the effect of the use of the basis p we compare the condition numbers
of the projection matrices computed solving the previous problem on an highly distorted
Voronoi mesh displayed in Figure 7.1. Figures 7.2 to 7.4 display the condition numbers of
the projection matrices ∗Π0

k−1,x and ∗Π0
k−1,y (mixed in Figure 7.2), ∗Π∇

k and ∗Π0
k−1 , for

the basis m and the basis p with respect to the aspect ratio. We can observe a very strong
reduction of their condition numbers when p is used. In order to draw these plots we define
the aspect ratio, as the ratio between the largest distance and the smallest distance between
couples of vertices of the polygon. For each element in the mesh we compute the aspect
ratio and we partition the full range of aspect ratios in 100 uniform intervals. In the plots
we report the mean condition numbers computed on all the elements with an aspect ratio in
each of these intervals. We remark that the effect of the use of the basis p is local, and that
the global condition number of the final matrix is not significantly reduced by the process.

7.5 Interface problem with highly anisotropic mesh

To show the capability of the described change of basis in providing a more accurate solution
also with very bad shaped meshes, we consider here a case where oscillations are observed
due to very badly shaped elements. Let

K(x, y) =

�
10 if (x, y) ∈ (0, 0.5)2 ∪ (0.5, 1)2 ,

1 otherwise ,
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Figure 7.2: Validation, order 6 Mean condition number of the matrix representation of
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7.6. Numerical results on Discrete Fracture Networks
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Figure 7.4: Validation, order 6 Mean conditioning number of the matrix representation of

Π0
k−1.

and let

ψ(x) = − 1

µ





x2

2 + cx if (x, y) ∈ (0, 0.5)2,
x2

2 + cx− c− 1
2 if (x, y) ∈ (0.5, 1)× (0, 0.5),

(1−x)2

2 + c(1− x) if (x, y) ∈ (0.5, 1)2,
(1−x)2

2 + c(1− x)− c− 1
2 if (x, y) ∈ (0, 0.5)× (0.5, 1),

where c = −31/44 is chosen in such a way that the co-normal derivative of ψ is continuous.

Furthermore, let Y (y) = y (1− y)
�
y − 1

2

�2
. We consider the problem

�
−∇ · (K∇u) = f in Ω,

u = 0 on ∂Ω,

with f chosen in such a way that the solution is u(x, y) = ψ(x)Y (y). First, we solve the
problem using standard Virtual Elements on the mesh in Figure 7.5a, that is obtained from
a regular 10× 10 square mesh by moving the edges in the region (0.25, 0.75)× (0, 1) towards
the axis x = 0.5 in such a way that the resulting aspect ratio of the central polygons is 104

(see the detail of the central band in Figure 7.5b).
As we can see from Figure 7.6, the use of badly shaped elements in conjunction with high

order VEM (k = 6) causes large errors in the discrete solution, on the badly shaped elements,
where we witness a wrong behaviour in the discrete solution (note the different behaviours
in the region {x ∼ 0.5, 0 ≤ y ≤ 0.5} in Figure 7.6b compared to Figures 7.6a and 7.6c).
These errors are remarkably reduced by the change of basis (Figure 7.6c). In this test, the
orthogonal basis was used on all polygons.

7.6 Numerical results on Discrete Fracture Networks

In this section we consider a computational framework where instabilities arise when per-
forming high order simulations, namely the computation of the hydraulic head inside Discrete

125



Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Mesh

0.49996 0.49998 0.5 0.50002 0.50004

5.69

5.7

5.71

5.72

5.73

5.74

5.75

5.76

5.77

5.78

10
-3

(b) Detail of the central polygon band of the mesh

Figure 7.5: Interface The mesh used for the test on the unity square.

Fracture Networks. These kind of domains are used in geomechanics to model fractured me-
dia in those cases where the rock matrix can be considered fully impervious: fractures are
seen as planar polygons that intersect in the three-dimensional space, and the intersections
are commonly called traces (see Figure 7.7 for a visualization of the DFNs that are considered
in the following).

order

minimum

aspect ratio m polygons

ill-conditioned

polygons

badly shaped

polygons both causes

5 150 4256 124 66 9
5 50 4177 115 145 18
5 10 3775 60 547 73
6 150 3193 1187 43 32
6 50 3143 1149 93 70
6 10 2888 947 348 272

Table 7.3: DFN 27 Number of polygons where orthogonal polynomials were used and the
motivations for their use.

In practical applications, DFNs are generated randomly to respect the properties of the
medium, which can be estimated experimentally, and are then used, for example, to determine
certain quantities of interest through uncertainty quantification techniques [14].

In [7, 8, 11], the use of polygonal meshes in the VEM framework is exploited to obtain
meshes which are conforming to traces, starting from an independent triangulation whose
elements are then cut along the traces. Since these cuts are in fact random, the resulting
polygons are convex but are likely to be very badly shaped.

In order to circumvent the mesh generation problem an optimization approach working
on totally non conforming meshes was developed [13, 15–19]. In this section we show that the
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Figure 7.6: Interface . Results for standard VEM of order 6 and VEM with orthogonal
polynomials.
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(a) DFN 27 (b) DFN 36

Figure 7.7: The DFNs considered for numerical tests

use of orthogonal polynomials as described in the previous sections can prevent instabilities
caused by a very large condition number of the projector matrices arising from the use of
high order VEM on badly shaped polygons.

7.6.1 Mesh Generation process on the DFN fractures. In this subsection we
briefly recall the process described in [11]: we refer the reader to this reference for a detailed
description. A starting triangular mesh is generated on each fracture independently of traces
(fracture intersections) position. The next process of polygonal mesh generation consists
of the generation of a fracture-local mesh conforming to the traces, obtained splitting the
triangles of the baseline mesh into polygons conforming to the traces, iteratively for all the
traces. In this step if a trace ends within an original triangle or in one of the children
polygons we extend the cut segment of this trace up to the next edge. In this operation the
trace is unchanged: only the segment that is cutting the polygons is extended. All the points
generated by intersections between cut segments and mesh edges are added to the mesh as
new vertices. At the end of this step we have a polygonal mesh on each fracture that is
locally conforming with the traces. Finally, for each couple of intersecting fractures Fi and
Fj , generating the trace Tl, we consider on the trace the union of the mesh points coming
from at least one of the two fractures that are on Tl. On each fracture, polygon edges lying
on Tl are accordingly split in several aligned edges at the newly added points. In such a
process we, first, generate a forest of polygons with root in the original triangles. Then, we
modify the leaves polygons with edges on the traces converting the edges on the traces with
the aligned edges generated by the mesh points on the trace of the twin fracture.

We remark that applying a preliminary mesh smoothing step as described in [8] the aspect
ratio of many elements can be strongly reduced, nevertheless in these kind of applications the
geometry can unavoidably produce very badly shaped elements whatever is the conforming
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Figure 7.8: DFN 27, order 6 Mean condition number of the matrix representation of

Π0
k−1∇ and its standard deviation.

mesh generation and smoothing process performed. In order to consider the worst possible
cases, in the presented simulations we decide not to apply any mesh smoothing step.

7.6.2 Problem formulation on the DFN. The computation of the hydraulic head
on the DFN is provided by the solution of coupled problems on each fracture. The model we
are considering is a simple Darcy model for the flow. Let I be the set of the indices of all
the fractures in the DFN. The hydraulic head is given by the following equations ∀i ∈ I:





−∇ · (K∇h) = 0 in Fi,

h = hD on ∂Fi,D,

∇h · n̂ = 0 on ∂Fi,N ,

where ∂Fi,D is the subset of the boundary of the fracture Fi with Dirichlet boundary con-
ditions and ∂Fi,N is the subset of the boundary of the fracture Fi with Neumann boundary
conditions.

Continuity matching conditions for the solution h are imposed at the traces as in [11].
We set a non-homogeneous Dirichlet boundary condition on one side of a source fracture and
a homogeneous Dirichlet condition on one side of a sink fracture and homogeneous Neumann
boundary conditions on all the other fracture-sides of the DFN.

7.6.3 DFN 27. We first consider a DFN composed by 27 fractures and displaying 57
traces (see Figure 7.7a). Starting from a mesh of triangular elements with area smaller than
60, we have created the globally conforming VEM polygonal mesh and assembled the linear
system. We first focus on the condition numbers of the several projection matrices needed
for the solution of the problem.

In Figures 7.8 to 7.10 we report the behaviour of the condition numbers of the projectors
mΠ0

k−1 ∇, mΠ∇
k , mΠ0

k−1 ,
pΠ0

k−1 ∇, pΠ∇
k , pΠ0

k−1 , for different aspect ratios of the VEM
polygonal elements using VEM of order 6, following the same procedure as in the plots of
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Figure 7.9: DFN 27, order 6 Mean condition number of the matrix representation of Π∇
k

and its standard deviation.

order
minimum

aspect ratio
m polygons

ill-conditioned

polygons

badly shaped

polygons
both causes

4 150 4465 22 49 3
4 50 4373 15 141 10
4 10 3874 1 640 24
5 150 4322 165 38 14
5 50 4234 154 126 25
5 10 3795 80 565 99

Table 7.4: DFN 36 Number of polygons where orthogonal polynomials were used and the
motivations for their use.

Figure 7.2. In order to draw these plots we compute the aspect ratio, defined as the ratio of
the largest distance over the smallest distance between any couple of vertices of the polygon,
of all the elements in the DFN and partition the full range of aspect ratios in 100 intervals
uniformly. In the plots we report the mean condition numbers computed on all the elements
with an aspect ratio in each of these intervals. In Figure 7.8 we compare the conditioning of
mΠ0

k−1 ∇ (left) and pΠ0
k−1 ∇ (right), and we can appreciate a strong reduction of the mean

condition numbers induced by the use of the basis p. We can came to the same conclusion
observing Figure 7.9, concerning the projector used in the VEM stabilization, as well as
Figure 7.10. Again, we remark that the effect of the change of basis is purely local, and the
condition number of the global system is not significantly reduced. However, this process
improves the quality of the local projections needed to build the final system, and this results
to be sufficient to correct the instabilities.

In the following figures we report some examples of the instabilities due to the ill condi-
tioned projectors obtained using the monomial basis m and the improved solution obtained
with the new basis. In Figure 7.11 we show the low order solutions on two fractures in the
DFN (Fracture 3 and Fracture 4) obtained with k = 1 and 4. Comparing these pictures we
can appreciate an improvement in the quality of the solution using k = 4. In Figure 7.12

130



7.6. Numerical results on Discrete Fracture Networks

10 0 10 2 10 4

Mean A. R.

10 5

10 10

10 15

10 20

10 25

c
o

n
d

(
Π

0 k
-1

)

(a) Standard basis

10 0 10 2 10 4

Mean A. R.

10 0

10 5

10 10

10 15

10 20

c
o

n
d

(
Π

0 k
-1

)

(b) Orthogonal basis

Figure 7.10: DFN 27, order 6 Mean conditioning number of the matrix representation of

Π0
k−1 and its standard deviation.

order 2 3 4 5 6
error > 1e− 4 0 6 98 1105 4124

error > 1 0 0 8 29 352
error > 10 0 0 1 5 48

error > 100 0 0 0 1 6
max. orthog. error 1.59 · 10−10 9.92 · 10−01 1.18 · 10 1.77 · 103 5.28 · 102

Table 7.5: DFN 36 Counts of the elements with large orthogonalization error and maxi-
mum orthogonalization error for different orders.

we report the solution obtained on Fracture 3 with k = 5 and 6. Observing Figures 7.12a
and 7.12c compared with Figures Figures 7.11a and 7.11b, we can appreciate the instabilities
arising due to the ill conditioning of the local matrices with respect to the monomial basis,
that gets higher as the VEM order increases. We can see that both the shape of the solution
and the values are completely wrong. In Figures Figures 7.12b and 7.12d we can see that the
use of the basis p has a clear stabilizing effect. The same conclusion can be driven observing
Figure 7.13 compared with Figures 7.11c and 7.11d.

For these results, orthogonal polynomials are used only on those polygons such that the
conditioning number of the local mHk−1 is larger than 1010 or such that the aspect ratio is
larger than 150.

In Table 7.3 we report the number of polygons for which orthogonal polynomials are used
for different threshold values on the aspect ratio, ranging from 10 to 150. The third column
reports the number of polygons of the mesh where the monomial basis m is used, the fourth
column reports the number of polygons on which the basis p is introduced only due to the
large conditioning of the mass matrix mHk−1 , in the fifth column the number of polygons
on which p is used due to the large aspect ratio of the element. In the last column we report
the number of polygons that require p for both the previous reasons.
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Figure 7.11: DFN 27 Reference solutions with low order VEM.
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(a) Order 5 (b) Order 5, orthogonal polynomials

(c) Order 6 (d) Order 6, orthogonal polynomials

Figure 7.12: DFN 27, fracture 3 Solutions with increasing VEM order using standard

VEM and behaviour of orthogonal polynomials in correcting the instabilities

7.6.4 DFN 36. Our second test considers a 36 fracture network with 65 traces. We
focus on two particular fractures, where instabilities arise on high order VEM and observe,
in Figures 7.14 and 7.15, how the use of the proposed basis for the space of polynomials in
the construction of the projectors prevents the generation of non-physical oscillations. We
notice that, although using the monomial basis the shape of the solution seems correct, its
values are completely wrong (see Figures 7.14c, 7.14e, 7.15c and 7.15e). Again, the figures
refer to the choice of applying the change of basis only on those polygons where mHk−1

displays a condition number larger than 1010 or with an aspect ratio greater than or equal
to 150. In Table 7.4 we show how the condition number of the matrix mHk−1 is influenced
by the shape of the polygons and the VEM order, and the number of elements on which the
change of basis is applied. We notice again that it is sufficient to apply the change of basis
only locally on certain polygons to cure global instabilities.

The proposed approach is effective for this DFN up to the VEM order 5, but it fails to
stabilize the solution for VEM of order 6. Indeed, in Figure 7.16 we see that instabilities are
still present even using orthogonal polynomials on all the elements (compare Figures 7.16a
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and 7.16b with Figures 7.14a and 7.14b and Figures 7.16c and 7.16d with Figures 7.15a
and 7.15b). This behaviour is related to the ill conditioning of some of the mass matrices
mHk−1 that induces a large approximation error in the computation of the eigenvectors, that
leads to a largely polluted polynomial basis. We remark that these situations can be easily
detected by an evaluation of the orthogonalization error on each element:

���Qk−1 mHk−1 Qk−1� − Ik−1
���
∞

. (7.28)

In Figure 7.17 we report the orthogonalization error with respect to the aspect ratio of the
elements, and in Figure 7.18 the orthogonalization error is plot with respect to the condition
number of mHk−1 . As expected, we can notice an evident correlation between them. We
can remark that when these orthogonalization errors become large the generation of the
orthogonal basis is not reliable and the method should be applied prudently. We can notice
that for order 5 the orthogonalization error is large, but the method provides a basis for the
space of polynomials that is still better than the scaled monomial basis. This is because only
few elements are affected by a large error. In Table 7.5, we report the number of elements
in the DFN with an orthogonalization error larger than 1.0E − 4, 1, 10, 100 for k = 1, ..., 6,
and in the last row the largest orthogonalization error. In order to be more accurate also
on problematic elements, in the computations we use equation (7.8) for the computation of
pHk−1 instead of the identity matrix in order to take advantage from all that situations in
which the basis pk−1 is no longer orthogonal, but provides a better conditioned mass matrix.
As a rule of thumb we can say that when the largest orthogonalization error is not large or
large orthogonalization errors occur on very few elements the method can be used, otherwise
the computations cannot be considered reliable.

Finally, to further assess the behaviour of the method, we show in Figure 7.19 the effect
of the change of basis on the conditioning of the matrices representing the projectors Π0

k−1∇,

Π∇
k and Π0

k−1, respectively. These graphs show the mean condition number with respect to
the aspect ratio of all the elements of the DFN. We see how the use of orthogonal polynomials
strongly mitigates the dependance of the condition number on the aspect ratio.

7.7 Conclusions

Dealing with problems with very complex geometries can easily lead to very strong mesh
generation problems. In these situations the use of more flexible polygonal methods is very
helpful. The VEM is a suitable and effective approach for the discretization of Partial Differ-
ential Equations. Nevertheless, in some of these applications the polygonal mesh generated
for the VEM applications can suffer for very low quality elements. An applicative example
in which these situations are likely to happen is in geophysical simulations following the
DFN model. For the most badly shaped elements the use of the classical monomial basis for
the construction of the local matrices can lead to large problems due to the large condition
number of the local matrices.

In this paper, for high order VEM, we have presented the construction of a polyno-
mial basis that leads to better conditioned local matrices and more accurate solutions. The
construction is based on a local eigenvalue-eigenvector computation. This approach is very
effective for very badly shaped elements, but for some elements with a huge aspect ratio the
eigenvalue-eigenvector problem can be inaccurate and also this approach does not provide a
reliable solution.

We have reported the success of the method in providing good solutions in some applica-
tions and have provided a criterion to evaluate the reliability of the method when the most
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problematic elements are met. The method has also the attractive property to be simply
added to a standard VEM implementation and can be applied selectively only on the elements
that really need an improvement in term of accuracy of the computations, and provides an
indicator that alerts the user when the method is no longer reliable.
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Virtual Element Method For Discrete Fracture Network Simulations”. In: J. Comput.
Phys. 306 (2016), pp. 148–166. doi: 10.1016/j.jcp.2015.11.034.

[9] M. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialò. “Order preserving
SUPG stabilization for the virtual element formulation of advection-diffusion prob-
lems”. In: Computer Methods in Applied Mechanics and Engineering 311 (2016), pp. 18–
40. issn: 0045-7825. doi: 10.1016/j.cma.2016.07.043.

[10] M. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò. “The virtual element method
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[13] S. Berrone, A. Borio, and S. Scialò. “A posteriori error estimate for a PDE-constrained
optimization formulation for the flow in DFNs”. In: SIAM J. Numer. Anal. 54.1 (2016),
pp. 242–261. doi: 10.1137/15M1014760.

[14] S. Berrone, C. Canuto, S. Pieraccini, and S. Scialò. “Uncertainty quantification in
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Figure 7.15: DFN 36, fracture 29 Solutions with increasing VEM order using standard

VEM and behaviour of orthogonal polynomials in correcting the instabilities
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Figure 7.17: DFN 36 Error of orthogonalization of mHk−1 vs. aspect ratio
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Chapter 8

Conclusions about VEM in DFN
simulations

The use of generally shaped polygons to discretize the domain can become crucial in the
context of Discrete Fracture Network flows simulation, expecially as the number of traces
per fracture increases and some kind of conformity to intersection is required, as it is for the
most common domain decomposition techniques. The recently developed Virtual Element
Method allows such flexibility, and thus it is very suitable for DFN simulations.

We have developed a general framework for the use of VEM in the computation of the
distribution of hydraulic head in a DFN (see also [1]), with a particular focus on the coupling
of the Mortar method with the Virtual Element Method [2], proving optimal rates of con-
vergence and obtaining good numerical results. In view of the solution of advection-diffusion
problems on DFNs, with such applications in mind as the simulation of the stationary dis-
tribution of a passive pollutant in the underground, we developed and analyzed a Streamline
Upwind Petrov Galerkin formulation of the method (see also [3]), preserving optimal rates of
convergence and stabilizing advection dominated problems, whose solution can be completely
altered when obtained by a pure Galerkin approach. Furthermore, since the method could
strongly benefit from an adaptive strategy, we considered the problem of the a posteriori es-
timation of the error, developing error estimators which are independent of the stabilization
terms introduced by the VEM, which are arbitrary and cannot be fully estimated. Finally,
since the meshing process we adopted can sometimes generate very badly shaped polygons
which yield instabilities on high order VEM, we pointed out a possible way to avoid such
instabilities without changing the mesh, but solving local eigenproblems in order to obtain a
local quasi orthogonal polynomial basis to be used for computing the projections needed for
the method [4].

These results will be the starting point for the study of more complex situations such
as the simulation of time evolving transport of pollutants in the DFN and the coupling of
the DFN with a non impervious surrounding rock matrix. Future work will also include the
development of an adaptive refinement strategy, exploiting the a posteriori error estimates
in order to obtain a well balanced distribution of the error in the domain.
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SUPG stabilization for the virtual element formulation of advection-diffusion prob-
lems”. In: Computer Methods in Applied Mechanics and Engineering 311 (2016), pp. 18–
40. issn: 0045-7825. doi: 10.1016/j.cma.2016.07.043.

[4] S. Berrone and A. Borio. “Orthogonal polynomials in badly shaped polygonal elements
for the Virtual Element Method”. In: Finite Elements in Analysis & Design 129 (C
2017), pp. 14–31. issn: 0168-874X. doi: 10.1016/j.finel.2017.01.006.

146



Appendix A

A posteriori error estimate for a PDE
constrained optimization formulation for

the flow in DFNs

This appendix contains the work published in [5], concerning the development of an a poste-
riori error estimate for a PDE constrained optimization approach to the computation of the
hydraulic head inside a Discrete Fracture Network.

A.1 Introduction

In the approach developed in [6–8] the DFN problem is seen as a PDE constrained opti-
mization problem, in which a cost functional measuring the discontinuity and flux unbalance
at fracture intersections is minimized, constrained by the Darcy law on the fractures. In
this framework, no mesh conformity is required at fracture intersections and the solution is
obtained through the resolution of small weakly dependent sub-problems on the fractures
with an iterative solver. Any difficulty related to the generation of the mesh is avoided and
the approach has a natural parallel implementation with good scalability performances [9].
Further, no modification of the geometry of the network is required, and this is particularly
important for uncertainty quantification procedures, in which a modification of the dispo-
sition of fracture would imply a modification of the probabilistic law at the basis of the
generation of the network.

In the present chapter, residual based a posteriori error estimates [1, 11, 12, 15–17] are
derived for the optimization formulation of the DFN problem described above, in view of a
possible future use within an adaptive algorithm. In deriving the a posteriori error estimates,
particular attention is devoted to highlight the effect of discontinuities of the discrete solution
and unbalance of fluxes at fracture intersections that can cross the interior of mesh elements.
Indeed, the error estimator proposed herein contains several additional terms with respect
to classical residual based a posteriori error estimates; some of these additional terms exploit
known properties of the exact solution. Moreover, part of the work is devoted to estimate
the errors generated by the non-conformity of triangles to fracture intersections and to track
the influence of this non-conformity on the effectivity of the global estimate. In particular,
in deriving the lower bounds (Theorem A.3) we explicitly define a non-conformity coefficient
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that affects the effectivity index.
The structure of the paper is as follows. In Appendix A.2 some useful notations concerning

DFNs are introduced; in Appendix A.3 the problem and its discrete formulation are stated;
in Appendix A.4 and Appendix A.5 suitable estimators are defined and an upper bound of
the error is provided; in Appendix A.6 the efficiency of these estimators is proved and in
Appendix A.7 some numerical results are described.

A.2 Nomenclature and main assumptions

In the present work we consider a network of fractures surrounded by an impervious rock
matrix, with flow occurring only through fractures and across fracture intersections in the
normal direction. Let us denote by Ω the DFN, composed of N intersecting fractures (see
Figure A.1a). Each fracture Fi, i ∈ I = {1, . . . , N} is a planar open polygon, with boundary
∂Fi and the boundary of Ω is ∂Ω =

�
i∈I ∂Fi. We assume that all the fractures in Ω are

connected, i.e. each fracture has at least one intersection with another fracture in the network,
and we call traces these intersections, each denoted by Γm, with m ∈ M = {1, . . . ,M}. For
the sake of simplicity we assume that there are no intersections between traces and that each
trace is shared by exactly two fractures, so, if Γm = F̄i∩F̄j , there is a bijective correspondence
between the index m and the couple of indexes (i, j), thus allowing us to define the ordered
couple Im = (i, j), i < j, (see [6] for relaxing these hypotheses). We further introduce,
for each fracture Fi, the ordered set Mi ⊂ M (Figure A.1a) collecting indexes of traces
belonging to F̄i in increasing order, with Mi = #Mi. Mi(k), for k = 1, . . . ,Mi indicates the
k-th index of a trace in Mi. For each i ∈ I and each m ∈ Mi, n̂

i
m is a fixed normal unit

vector to the trace Γm on Fi (Figure A.1b). The reader can refer to Figure A.2 for some
simple DFNs and to [2, 4, 9] for more complex ones.
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Figure A.1: (a) Simple DFN with three rectangular fractures. For each fracture Fi we list
the set of the indices of the traces of that fracture Mi, and for each trace Γm we list the
ordered set of the intersecting fractures along that trace Im = (i, j), with i < j. (b) Detail
of normals and fluxes on the fractures F1 and F2.
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A.3. Problem formulation

For any given segment σ ⊂ Fi, i ∈ I, γi
σ : H1

0 (Fi) → H
1
2 (σ) is the trace operator and

�µ,β�σ :=
H− 1

2 (σ)
�µ,β�

H
1
2 (σ)

∀µ ∈ H− 1
2 (σ) , ∀β ∈ H

1
2 (σ)

is the duality between H
1
2 (σ) and H− 1

2 (σ). For any given function v ∈ H1
0 (Fi), γMi

(v) ∈�
m∈Mi

H
1
2 (Γm) is the tuple of functions γi

Γm
(v) , m ∈ Mi ordered by increasing trace index

m, and we denote the duality between product spaces on the set of the traces of a fracture
as

∀µ ∈
�

m∈Mi

H− 1
2 (Γm) , ∀β ∈

�

m∈Mi

H
1
2 (Γm) , �µ,β�Mi

:=
�

m∈Mi

�µm,βm�Γm
.

Let us introduce the functional space V := V1 × . . .× VN , where Vi := H1
0,Fi

(1) , ∀i ∈ I.
For any function g ∈ V , we define the jump operator across a trace Γm as �g�Γm

:= γi
Γm

(gi)−
γj
Γm

(gj), ∀m ∈ M and (i, j) = Im. Then �g�Mi
is the vector of jumps of g across the traces

in Mi, ordered according to trace index: �g�Mi
:=

�
�g�ΓMi(1)

, . . . , �g�ΓMi(Mi)

�
. Similarly,

given a function gi ∈ Vi,
�

∂gi
∂n̂i

m

�
Γm

is the jump of the co-normal derivative across Γm on Fi,

and we define the tuple

�
∂gi

∂n̂Mi

�

Mi

:=




�
∂gi

∂n̂i
Mi(1)

�

ΓMi(1)

, . . . ,

�
∂gi

∂n̂i
Mi(Mi)

�

ΓMi(Mi)


 .

A.3 Problem formulation

Let us denote the unknown hydraulic head in Ω as h = (h1, . . . , hN ) ∈ V , where hi ∈ Vi, for
i = 1, . . . , N is the hydraulic head on Fi. Then, in a simplified setting, using homogeneous
Dirichlet boundary conditions, the DFN problem can be stated as: find h ∈ V such that,
∀i ∈ I

(∇hi,∇v)Fi
= (fi, v)Fi

+

��
∂hi

∂n̂Mi

�

Mi

, γMi
(v)

�

Mi

∀v ∈ Vi, (A.1)

where fi ∈ L2 (Fi) ∀i ∈ I is a function representing source terms on the fracture. At fracture
intersections additional matching conditions are added, enforcing continuity of the hydraulic
head and conservation of fluxes: ∀m ∈ M, Im = (i, j)

γi
Γm

(hi)− γj
Γm

(hj) = 0 (A.2)
�
∂hi

∂n̂i
m

�

Γm

+

�
∂hj

∂n̂j
m

�

Γm

= 0. (A.3)

A.3.1 Formulation as an optimization problem. We now aim at a different
formulation of the above problem as an optimization problem of a suitable functional. First

149



A posteriori error estimate for a PDE constrained optimization formulation for the flow in DFNs

of all, we define the fluxes (see Figure A.1b)

∀i ∈ I, ∀m ∈ Mi, u
m
i :=

�
∂hi

∂n̂i
m

�

Γm

∈ H−1/2 (Γm)

∀i ∈ I, ui :=
�
u
Mi(1)
i , . . . , u

Mi(Mi)
i

�
∈

�

m∈Mi

H−1/2 (Γm) := Ui

u := (u1, . . . ,uN ) ∈
�

i∈I
Ui := U.

In general, an element w of U is a 2 (#M)-tuple of functions each belonging to H− 1
2 (Γm),

for some m ∈ M. For all w ∈ U , we indicate by wi the Mi-tuple of functions in w which
are defined on the traces lying on fracture Fi. The component of w related to the trace
Γm and the fracture Fi is denoted by wm

i ∈ H− 1
2 (Γm). Moreover, for any w ∈ U we set

{{w}}Γm
= wm

i + wm
j , ∀m ∈ M with Im = (i, j) and indicate by {{w}}Mi

the vector whose
k-th component is {{w}}ΓMi(k)

. Let us define by U∗
i and U∗ the dual spaces of Ui and U ,

respectively.
Let us define the operator H : U → V , which associates to each vector w ∈ U a vector

H(w) = (hw
1 , . . . , h

w
N ) of solutions to a Darcy’s problem on each fracture independently, that

is
(∇hw

i ,∇vi)Fi
= (fi, vi)Fi

+
�
wi, γMi

(vi)
�
Mi

∀i ∈ I, ∀vi ∈ Vi. (A.4)

Moreover, for each m ∈ M, we define the constrained functional Jm : U → R such that

Jm(w) =
���hw�Γm

��2
H

1
2 (Γm)

+
��{{w}}Γm

��2
H− 1

2 (Γm)
where hw = H(w) . (A.5)

The first term of the functional Jm(w) represents the jump of the hydraulic head on the two
fractures sharing the trace Γm, we call this functional “constrained” because we assume that
these hydraulic heads satisfy equations (A.4) on the two fractures sharing Γm. The second
term of the functional represents the flux conservation at the trace Γm.

We can define the global (constrained) functional J : U → R such that J(w) =�
m∈M Jm(w). We formulate the problem (A.1)-(A.3) as a constrained optimization prob-

lem:
find u ∈ U such that u = argmin

w∈U
J(w). (A.6)

The functional J(w) is positive for all w ∈ U \ {u} and J(u) = 0.

A.3.2 Equivalence with an elliptic differential problem. We recall here the
equivalence between problem (A.6) and a system of partial differential equations involving
h, u and an auxiliary pressure p ∈ V (see [6, Proposition 2.4]).

Proposition A.1. The unique minimum of the functional J(w) corresponds to the first
order stationary conditions ∀i ∈ I:

�
{{u}}Mi

, µi

�
Mi

= −
�
γMi

(pi) , µi

�
Mi

∀µi ∈ U∗
i , (A.7)

(∇pi,∇qi)Fi
=

�
�h�Mi

, γMi
(qi)

�
Mi

∀qi ∈ Vi , (A.8)

(∇hi,∇vi)Fi
= (fi, vi)Fi

+
�
ui, γMi

(vi)
�
Mi

∀vi ∈ Vi . (A.9)

Remark A.1. From (A.2)-(A.3), we see that �h�M is the null vector as well as {{u}}M.
Therefore, the exact solution of (A.8) corresponds to pi ≡ 0 ∀i ∈ I.
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A.3. Problem formulation

We now want to find a suitable elliptic operator that describes our problem. We define
the functional spaces L := V × V × U and L∗ := V × V × U∗ whose norms are:

�(h,p,u)�L :=

��

i∈I

�
|||hi|||2Fi

+ |||pi|||2Fi
+

�

m∈Mi

�um
i �2

H− 1
2 (Γm)

�� 1
2

, (A.10)

�(v,q,µ)�L∗ :=

��

i∈I

�
|||vi|||2Fi

+ |||qi|||2Fi
+

�

m∈Mi

�µm
i �2

H
1
2 (Γm)

�� 1
2

. (A.11)

We can define the bilinear continuous operator L : L× L∗ → R such that

L ((h,p,u), (v,q,µ)) :=
�

i∈I

�
(∇hi,∇vi)Fi

−
�
ui, γMi

(vi)
�
Mi

+(∇pi,∇qi)Fi
−

�
�h�Mi

, γMi
(qi)

�
Mi

+
�
γMi

(pi) + {{u}}Mi
,µi

�
Mi

�
. (A.12)

Using this definition, the system of equations of Proposition A.1 can be written in compact
form as

∀ (v, q, µ) ∈ L∗, L ((h, p, u) , (v, q, µ)) =
�

i∈I
(fi, vi)Fi

. (A.13)

This problem has a unique solution being equivalent to (A.1)–(A.3), thus applying Nečas The-
orem (see, for example, [13, Theorem 3.3]), we can say that L satisfies an inf-sup condition:

∃β > 0 : �(h,p,u)�L ≤ β sup
(v,q,µ)∈L∗

L ((h,p,u), (v,q,µ))

�(v,q,µ)�L∗
. (A.14)

A.3.3 Problem discretization. An important advantage of the formulation intro-
duced in the previous sections is that the discretization of each fracture has not to be con-
forming to the traces, i.e. triangles can freely cross traces. In the following, we assume that
each fracture is meshed by a good quality triangulation Tδ,i [10]. Let Tδ =

�
i∈I Tδ,i be the

set of all the triangles on the DFN. Let Vδ be the set of the vertices of the triangles in Tδ, Eδ
the set of all the edges of the triangles in Tδ. Vδ,i and Eδ,i coherently are the subsets of Vδ

and Eδ containing the objects defined on fracture Fi. For all T ∈ Tδ, we indicate by
◦
T the

interior of T , by MT the set of indices of those traces having non empty intersection with
◦
T , and by �mT the segment Γm ∩

◦
T , for all m ∈ MT . Coherently, for any given σ ∈ Eδ we

indicate by Mσ the set of those m ∈ M such that |Γm ∩ σ| �= ∅. Moreover, on each trace
Γm shared by two fractures Fi and Fj , we fix two discretizations Λm,i and Λm,j defined on
the two fractures respectively. In the following, the symbol h� denotes the diameter of an
arbitrary geometrical object �.

To solve the minimization problem in (A.6) we start by discretizing (A.13). Let us define

the following finite dimensional subspaces: Vδ,i ⊂ Vi, ∀i ∈ I, Um
δi ⊂ L2 (Γm) ⊂ H− 1

2 (Γm) =
Um
i ∀i ∈ I,m ∈ Mi, and let us set Uδi :=

�
m∈Mi

Um
δi , ∀i ∈ I, Uδ :=

�
i∈I Uδi, Vδ :=�

i∈I Vδi. Our discrete problem is to find hδ,pδ ∈ Vδ and uδ ∈ Uδ such that

L ((hδ, pδ, uδ) , (vδ, qδ, µδ)) =
�

i∈I
(fi, vδi)Fi

∀vδ, qδ ∈ Vδ, µδ ∈ Uδ , (A.15)

151



A posteriori error estimate for a PDE constrained optimization formulation for the flow in DFNs

that is to solve the following system of equations ∀i ∈ I:
�
{{uδ}}Mi

, µδi

�
Mi

= −
�
γMi

(pδi) , µδi

�
Mi

∀µδi ∈ Uδi , (A.16)

(∇pδi,∇vδi)Fi
=
�
�hδ�Mi

, γMi
(vδi)

�
Mi

∀vδi ∈ Vδi , (A.17)

(∇hδi,∇vδi)Fi
= (fi, vδi)Fi

+
�
uδi, γMi

(vδi)
�
Mi

∀vδi ∈ Vδi . (A.18)

This is equivalent (see [6]) to minimize a functional with the same structure of J but involving
L2 (Γm) norms of the discrete functions hδ and uδ. Indeed, if we define Hδ : Uδ → Vδ such
that (hδ1, . . . , hδN ) = Hδ(uδ) is the solution vector of

(∇hδi,∇vδi)Fi
= (fi, vδi)Fi

+
�
uδi, γMi

(vδi)
�
Mi

∀vδi ∈ Vδi, ∀i ∈ I , (A.19)

then we can define, for any given wδ ∈ Uδ and any m ∈ M the functional Jmδ such that

Jmδ(wδ) =
���hw

δ �Γm

��2
Γm

+
��{{wδ}}Γm

��2
Γm

with hw
δ = Hδ(wδ) . (A.20)

The system (A.16)–(A.18) is equivalent to the following minimum problem:

uδ = argmin
wδ∈Uδ

Jδ(wδ) = argmin
wδ∈Uδ

�

m∈M
Jmδ(wδ) . (A.21)

A.4 Error and error estimators

The following quantities define the error performed approximating (A.13) by (A.15):

eh = h− hδ, ep = p− pδ, eu = u− uδ . (A.22)

Since (eh, ep, eu) ∈ L, we have the following Lemma.

Lemma A.1. Let L be defined by (A.12) and eh, ep, eu by (A.22). Then, for any vδ, qδ ∈
Vδ and µδ ∈ Uδ, L ((eh, ep, eu), (vδ, qδ, µδ)) = 0.

We define the error measure as

err := �(eh, ep, eu)�L . (A.23)

The main result of next section is that the error measure (A.23) can be controlled by the
following quantities ∀i ∈ I:

Residual estimator:
ηR,T := hT �fi +Δhδi�T ∀T ∈ Tδ,i . (A.24)

Estimator for the approximation of the flux through edges: ∀σ ∈ Eδ,i,

ξF,σ := (hσ)
1
2

����
�
∂hδi

∂n̂σ

�

σ

− ũδi,σ

����
σ

where ũδi,σ :=

�
um
δi ∀m ∈ Mσ,

0 elsewhere .
(A.25)

Estimator for the nonconformity of the discretization:

ξmNC,T :=
�
h�mT

� 1
2 �um

δi��mT ∀T ∈ Tδ,i, m ∈ MT . (A.26)
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Local estimator for the pressure induced by discontinuity:

ηP,T := |||pδi|||T ∀T ∈ Tδ,i. (A.27)

Local estimator for the pressure induced by the unbalancing of fluxes:

ξiP,λ := h
1
2

λ

��γi
Γm

(pδi)
��
λ

∀m ∈ Mi, λ ∈ Λm,i. (A.28)

Local estimator of the minimization error:

Jδ,λ(uδ) := h
1
2

λ

���{{uδ}}Γm

��
λ
+
���hδ�Γm

��
λ

�
∀m ∈ Mi, λ ∈ Λm,i. (A.29)

A.5 Reliability

This section is devoted to obtain an a posteriori upper bound for the error norm (A.23)
based on condition (A.14). After stating some auxiliary results (Appendix A.5.1), we obtain
(Theorem A.2) our estimate.

A.5.1 Auxiliary results. In the following, we apply the well know properties of the
Clement’s pseudo-interpolation operator on the fracture Fi, i ∈ I, denoted by Πδi. Given a
fracture Fi, i ∈ I, let us consider a triangle T ∈ Tδ,i and an edge σ ∈ Eδ,i. Then, for any
v ∈ H1

0(Fi),

�v −Πδi(v)�T � hT |||v|||ωT
, (A.30)

|||v −Πδi(v)|||T � |||v|||ωT
, (A.31)

��γi
σ(v −Πδi(v))

��
σ
� (hσ)

1
2 |||v|||ωσ

, (A.32)

where ωT is the union of all triangles having a side or a vertex in common with T and ωσ is
the union of the two triangles having σ in common.

Concerning trace spaces, given a bounded open set Ω ⊂ R2, a segment λ ⊆ ∂Ω and a
function g ∈ H

1
2 (λ), one can define the set H1

g,λ(Ω) :=
�
v ∈ H1(Ω) : γλ(v) = g

�
⊆ H1(Ω)

and the seminorm
|g| 1

2 ,λ
:= inf

v∈H1
g,λ

�∇v�Ω .

The following Lemma A.2 defines the function of minimum norm.

Lemma A.2. Let Ω be a bounded open set, λ ⊆ ∂Ω. Let g ∈ H
1
2 (λ). Then

∃!u ∈ H1 (Ω) tale che |g| 1
2 ,λ

= |u|1,Ω

and u is the unique solution of problem

Find u ∈ H1
g,λ(Ω) such that

a(u, v) = 0 ∀v ∈ H1
0,λ (Ω) (A.33)

where

a : H1 (Ω)×H1 (Ω) → R such that a(w, v) =

�

Ω

∇w ·∇v
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Proof. Let u ∈ H1
g,λ (Ω) be the solution of (A.33), Rg ∈ H1

g,λ (Ω) such that Rg �= u. We

need to show that |u|1,Ω < |Rg|1,Ω. If we introduce u0 = u − Rg ∈ H1
0,λ (Ω), we have that

a(u, u0) = 0. Since the seminorm H1 (Ω) is generated by a,

|Rg|1,Ω = a(Rg, Rg) = a(u− u0, u− u0) =

= a(u, u) − 2✘✘✘✘a(u, u0) + a(u0, u0) =

= |u|1,Ω + |u0|1,Ω > |u|1,Ω ,

being |u0|1,Ω > 0 because u0 ∈ H1
0,λ (Ω) is the unique solution of

a(u0, v) = a(Rg, v) ∀v ∈ H1
0,λ .

The existence of the function u of Lemma A.2 is exploited in the proof of the following
important result.

Theorem A.1. Let λ be a segment of length hλ and P : H
1
2 (λ) → L2 (λ) a continuous

linear operator preserving a.e. constant functions. Then,

∃C > 0 : ∀g ∈ H
1
2 (λ) , �g − Pg�0,λ ≤ Ch

1
2

λ |g| 1
2 ,λ

. (A.34)

Proof. The hypothesis that P is the identity for constants is necessary since

g ∈ P 0(λ) ⇒ |g| 1
2 ,λ

= 0

which invalidates the thesis. To start we consider a segment λ̂ of length 1. By contraddiction,
suppose

∀C > 0, ∃ĝ ∈ H
1
2

�
λ̂
�
: �ĝ − P ĝ� 0, λ̂ > C |ĝ| 1

2 ,λ̂

Then, ∀N ∈ N one can find ĝN ∈ H
1
2

�
λ̂
�
such that,

�ĝN − P ĝN�0,λ̂ > N |ĝN | 1
2 ,λ̂

(A.35)

and it is clearly always possible to choose ĝN such that

|ĝN | 1
2 ,λ̂

= 1 (A.36)

Since H
1
2

�
λ̂
�
is compact in L2

�
λ̂
�
, there exists a subsequence {ĝNk

} that converges to some

element ĝ� ∈ L2
�
λ̂
�
. Then, by continuity of P ,

ĝNk
− P ĝNk

→ ĝ� − P ĝ� .

From (A.35),




∀Nk, |ĝNk

| 1
2 ,λ̂

<
�ĝNk

−P ĝNk�0,λ̂

Nk

limNk→∞
�ĝNk

−P ĝNk�0,λ̂

Nk
= 0

⇒ |ĝNk
| 1
2 ,λ̂

Nk→∞−−−−−→ 0
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which contradicts the choice (A.36). Thus, the following inequality must hold:

∀ĝ ∈ H
1
2

�
λ̂
�
, ∃C > 0 : �ĝ − P ĝ� 0, λ̂ ≤ C |ĝ| 1

2 ,λ̂
(A.37)

Now, consider segment λ and turn our attention to the first member of (A.34). Let g ∈ H
1
2 (λ)

and ĝ be its mapping on λ̂, that is ĝ(x̂) = g(x/hλ), x̂ ∈ (0, 1) and x ∈ (0, hλ). Then,

�g − Pg�20,λ =

�

λ

(g(x)− Pg(x))
2
dx = hλ

�

λ̂

(ĝ(x̂)− P ĝ(x̂))
2
dx̂ =

= hλ �ĝ − P ĝ�20,λ̂ ⇒ ∃C > 0 : �g − Pg�0,λ ≤ Ch
1
2

λ |ĝ| 1
2 ,λ̂

Now, consider a square Ω having λ as one of its sides, mapped on Ω̂, having λ̂ as one of

its sides, by the transformation (x̂, ŷ) = (x/hλ, y/hλ). Then, if we define ∇̂ =
�

∂
∂x̂ ,

∂
∂ŷ

�
,

vg ∈ H1 (Ω) such that γ(v)λ = g and �vg�1,Ω = |g| 1
2 ,λ

(whose existence is guaranteed by

Lemma A.2) and v̂g its mapping on Ω̂ with just stated transformation. Then it is easy to
check that v̂ is the solution of (A.33). Thus we have

|ĝ|21
2 ,λ̂

= |v̂g|21
2 ,λ̂

=

�

Ω̂

�
∇̂v̂g

�2

dx̂dŷ =

�

Ω̂

��
∂v̂g
∂x̂

�2

+

�
∂v̂g
∂ŷ

�2
�
dx̂dŷ =

=
1

��h
2
λ

�

Ω

�

��h
2
λ

�
∂vg
∂x

�2

+��h
2
λ

�
∂vg
∂y

�2
�
= |vg|21,Ω = |g|21

2 ,λ

and this concludes the proof.

A.5.2 Upper bound. In this section we derive an upper bound for the error.

Theorem A.2. Let eh, ep, eu be defined by (A.22) and let all the quantities defined in
(A.24)–(A.29) be given. Then,

err �
�

i∈I


 �

T∈Tδ,i

�
ηR,T + ηP,T +

�

m∈MT

ξmNC,T

�
+

�

σ∈Eδ,i

ξmF,σ

+
�

m∈Mi

�

λ∈Λm,i

�
ξiP,λ + Jδ,λ(uδ)

�

 .

Proof. From (A.14) we have

err = �(eh, ep, eu)�L � sup
(v,q,µ)∈L∗

L ((eh, ep, eu), (v,q,µ))

�(v,q,µ)�L∗
.

From Lemma A.1 we know that, for any given vδ, qδ ∈ Vδ and µδ ∈ Uδ,

L ((eh, ep, eu), (v, q, µ)) = L ((eh, ep, eu), (v − vδ, q− qδ, µ− µδ)) =

=
�

i∈I

�
(∇(hi − hδi),∇(vi − vδi))Fi

−
�
u− uδ, γMi

(vi − vδi)
�
Mi

+(∇(pi − pδi),∇(qi − qδi))Fi
−

�
�h− hδ�Mi

, γMi
(qi − qδi)

�
Mi

+
�
γMi

(pi − pδi) + {{u− uδ}}Mi
,µi − µδi

�
Mi

�
.
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We now proceed by estimating separately the terms involving different test functions. Let
i ∈ I be fixed:

terms with test function vi − vδi. Since h = H(u) (thus hi and ui are linked by (A.9))
and, by Green’s formula applied on Tδ,i,

(∇(hi − hδi),∇(vi − vδi))Fi
−

�
(ui − uδi), γMi

(vi − vδi)
�
Mi

=

=
�

T∈Tδ,i

(fi +Δhδi, vi − vδi)T −
�

σ∈Eδ,i

��
∂hδi

∂n̂σ

�

σ

, γi
σ(vi − vδi)

�

σ

+
�

m∈Mi

�
um
δi , γ

i
Γm

(vi − vδi)
�
Γm

.

Then, since
�

∂hδi

∂n̂σ

�
σ
∈ L2 (σ), um

δi ∈ L2 (Γm) ⊂ H− 1
2 (Γm), γi

σ(vi − vδi) ∈ H
1
2 (σ) ⊂

L2 (σ), γi
Γm

(vi − vδi) ∈ H
1
2 (Γm) ⊂ L2 (Γm) it is possible to write the duality product

on each trace as a scalar product in L2:

−
�

σ∈Eδ,i

��
∂hδi

∂n̂σ

�

σ

, γi
σ(vi − vδi)

�

σ

+
�

m∈Mi

�
um
δi , γ

i
Γm

(vi − vδi)
�
Γm

=

=
�

σ∈Eδ

�
ũδi,σ −

�
∂hδi

∂n̂σ

�

σ

, γi
σ(vi − vδi)

�

σ

+
�

T∈Tδ,i

m∈MT

�
um
δi , γ

i
Γm

(vi − vδi)
�
�mT

.

Then, taking vδi = Πδi(vi) and using inequalities (A.30) and (A.32),

(∇(hi − hδi),∇(vi − vδi))Fi
−

�
ui − uδi, γMi

(vi − vδi)
�
Mi

≤

≤





�

T∈Tδ,i

�
hT �fi +Δhδi�T +

�

m∈MT

h
1
2

�mT
�um

δi��mT

�

+
�

σ∈Eδ

h
1
2
σ

����
�
∂hδi

∂n̂σ

�

σ

− ũδi,σ

����
σ

�
|||vi|||Fi

.

terms with test function qi − qδi. Using equation (A.8), Green’s formula applied on
Tδ,i and the fact that �h�Mi

= 0 and pi = 0,

(∇(pi − pδi),∇(qi − qδi))Fi
−

�
�h− hδ�Mi

, γMi
(qi − qδi)

�
Mi

=

=
�

T∈Tδ,i

(−∇pδi,∇(qi − qδi))T +
�

m∈Mi

�
− �hδ�Γm

, γi
Γm

(qi − qδi)
�
Γm

.

For any given m ∈ Mi, we introduce a discretization Λm,i writing
�
− �hδ�Γm

, γi
Γm

(qi − qδi)
�
Γm

≤
�

λ∈Λm,i

���hδ�Γm

��
λ

��γi
Γm

(qi − qδi)
��
λ
,

then, choosing qδi = Πδi(qi) and using inequalities (A.30) and (A.32),

(∇(pi − pδi),∇(qi − qδi))Fi
−

�
�h− hδ�Mi

, γMi
(qi − qδi)

�
Mi

≤

≤


 �

T∈Tδ,i

|||pδi|||T +
�

m∈Mi

�

λ∈Λm,i

h
1
2

λ

���hδ�Γm

��
λ


 |||qi||| .
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term with test function µi − µδi. Using (A.7) and since γi
Γm

(pδi) , µ
m
i ∈ H

1
2 (Γm) ⊂

L2 (Γm), um
δi ∈ L2 (Γm) ⊂ H− 1

2 (Γm) we obtain, rewriting the duality product as a
scalar product in L2 (Γm) and using discretization Λm,i,

�
γMi

(pi − pδi) + {{ui − uδi}}Mi
,µi − µδi

�
Mi

=

=
�

m∈Mi

�

λ∈Λm,i

�
−γi

Γm
(pδi) , µ

m
i − µm

δi

�
λ
+
�
{{uδ}}Γm

, µm
i − µm

δi

�
λ
�

�
�

m∈Mi

�

λ∈Λm,i

h
1
2

λ

���γi
Γm

(pδi)
��
λ
+
��{{uδ}}Γm

��
λ

�
�µm

i � 1
2 ,Γm

,

where last estimate is obtained by supposing µm
δi is the image of µm

i through a linear
continuous operator that preserves constants, by applying Theorem A.1 and since

|µm
i | 1

2 ,Γm
≤ �µm

i � 1
2 ,Γm

= inf
v∈H1(ωΓm,i)

γi
m(v)=µm

i

�v�1,ωΓm,i
,

where ωΓm,i is a subregion of Fi having Γm on its boundary.

The proof is concluded since ∀i ∈ I and ∀m ∈ Mi

|||vi|||Fi
≤ �(v,q,µ)�L∗ , |||qi|||Fi

≤ �(v,q,µ)�L∗ , �µm
i � 1

2 ,Γm
≤ �(v,q,µ)�L∗ .

For the sake of notational simplicity, we define the global estimator

estδ :=
�

i∈I


 �

T∈Tδ,i

�
ηR,T + ηP,T +

�

m∈MT

ξmNC,T

�
+

�

σ∈Eδ

ξmF,σ

+
�

m∈Mi

�

λ∈Λm,i

�
ξiP,λ + Jδ,λ(uδ)

�

 . (A.38)

A.6 Efficiency of the a posteriori error estimate

In this section we prove the efficiency of the estimators presented in Theorem A.2, i.e. we
show that for the a posteriori error estimator of Theorem A.2 we can write a lower bound in
terms of a multiple of the error norm defined by (A.23).

From now on, ∀i ∈ I we assume that the discretization Λm,i which was fixed in Ap-
pendix A.3.3 is the one induced on Γm by the triangulation Tδ,i, that is Λm,i =

�
T∈Tδ,i

�mT .
For any triangle T ∈ Tδ, the following non-conformity measure can be defined:

hNC,T :=
�

m∈MT

h�mT
. (A.39)

Such quantity is zero for all triangles having empty intersection with all traces and is less or
equal than #MT hT for those intersecting some of them. It is not too restrictive to suppose
hNC,T < 1, assuming that the problem is written in non-dimensional way. The results in
Appendices A.6.1 to A.6.3 together prove the following theorem.

157



A posteriori error estimate for a PDE constrained optimization formulation for the flow in DFNs

Theorem A.3. Let estδ be defined by (A.38), eh, eu and ep be defined by (A.22) and hNC,T

be defined by (A.39) for all T ∈ Tδ. Then, if hNC,T < 1 ∀T ∈ Tδ,

estδ � |||ep||| + CNC


max
σ∈Eδ

{1, hσ} (|||eh||| + �eu�U ) + max
i∈I

T∈Tδ,i

hT �fi − fT �


 ,

where fT is the mean of fi on triangle T ∈ Tδ,i and

CNC := max
T∈Tδ

�
1 + hNC,T

1− hNC,T

�
.

Remark A.2. We remark that the efficiency of the a posteriori estimate depends on the non-
conformity of the triangulation through CNC , which tends to 1 by refining the mesh. In a
non-dimensional formulation of the problem, it is however always possible to ask that the
coarsest considered triangulation satisfies hNC,T ≤ 1

2 (thus having CNC ≤ 3).

A.6.1 Auxiliary results. In the following we apply classical results about suitable cut-
off functions [16], which exploit the properties of special polynomial functions with compact
support, called bubble functions.

Given i ∈ I and any triangle T ⊂ Tδ,i, let us denote by bT the triangle bubble function,
as defined in [16]. It has the following properties:

supp bT = T, 0 ≤ bT ≤ 1, max
x∈T

bT (x) = 1, (bT , 1)T =
9

20
|T | ,

from which, since bT ∈ H1
0 (T ), the following estimates can be obtained (see [16, Lemma

1.3]):

�bT �T = [(bT , bT )T ]
1
2 ≤ [(bT , 1)T ]

1
2 ⇒ �bT �T � hT , (A.40)

�∇bT �T � h−1
T �bT �T ⇒ �∇bT �T � 1 . (A.41)

Let l ⊂ T be a segment not necessarily intersecting ∂T , L its prolongation up to ∂T . Then,

since γL(bT ) ∈ H
1
2
00(L) and hL ≤ hT , applying the continuity of the trace operator on L, we

have
�γl(bT )� 1

2 ,l
≤ �γL(bT )� 1

2 ,L
� �γL(bT )�

H
1
2
00(L)

� �∇bT �T � 1 . (A.42)

All the constants depend on the quality of the considered triangle, namely on the minimum
of its angles. It is possible to prove the following useful result [14, Lemma 4.1].

Lemma A.3. Let i ∈ I, T ∈ Tδ,i, bT the bubble function on T . Let P(T ) ⊂ H1(T ) be a
finite dimensional space. Then, for any given v ∈ P(T ),

�v�2T �
�
bT , v

2
�
T
, �vbT �T ≤ �v�T , (A.43)

|||bT v|||T � h−1
T �v�T . (A.44)

We now consider a side σ ⊂ Fi shared by two triangles R and L belonging to a regular
triangulation, that is such that hR ∼ hL ∼ hσ. We denote by bσ the side bubble function of
σ, as defined in [16]. It has the following properties:

supp bσ = ωσ, 0 ≤ bσ ≤ 1, max
x∈ωσ

bσ = 1, (γσ(bσ) , 1)σ =
2

3
hσ ∼ hσ ,

∀T ∈ {R,L}, (bσ, 1)T =
1

3
|T | ,
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from which, since bσ ∈ H1
0(ωσ),

�γσ(bσ)�2σ = (γσ(bσ) , γσ(bσ))σ ≤ (γσ(bσ) , 1)σ ⇒ �γσ(bσ)�σ � h
1
2
σ ,

�bσ�2ωσ
= (bσ, bσ)ωσ

≤ (bσ, 1)ωσ
⇒ �bσ�ωσ

� hσ ,

�∇bσ�ωσ
� h−1

σ �bσ�ωσ
⇒ �∇bσ�ωσ

� 1 .

Let l ⊂ ωσ be a segment that does not necessarily intersects ∂ωσ, L its straight prolongation

whose extrema intersect ∂ωσ. Then, since bσ ∈ H
1
2
00(L) and hL ≤ hσ, by applying the

continuity of the trace operator on L,

�γl(bσ)� 1
2 ,l

≤ �γL(bσ)� 1
2 ,L

� �γL(bσ)�
H

1
2
00(L)

� �∇bσ�ωσ
� 1 . (A.45)

Again, constants depend on the minimum angle in ωσ. The following Lemma, analogous
to Lemma A.3, also involves the continuation operator defined in [16], which extends a
function from a side σ of a triangle T to the whole triangle. We denote this operator by
CT : L∞(E) → L∞(T ). The following Lemmas can be proved using [14, Lemma 4.1] and the
techniques in [16].

Lemma A.4. Let σ ⊂ Fi be a segment shared by two triangles R and L, bσ its bubble
function defined on the union of the two triangles. Let P(σ) ⊂ H

1
2 (σ) be a finite dimensional

space. Then, for any given v ∈ P(σ) and any triangle T ∈ {R,L},
�v�2σ � (v, v γσ(bσ))σ , �vbσ�σ ≤ �v�σ , (A.46)

|||CT (v) bσ|||T � h
− 1

2

T �v�σ , �CT (v) bσ�T � h
3
2

T �v�σ . (A.47)

A.6.2 Efficiency of estimators. In these subsection we report the results about the
efficiency of the estimators. These results, together with the ones in the following subsec-
tion, prove Theorem A.3. Lemmas A.5 and A.6 are used in the proofs of the subsequent
Propositions.

Lemma A.5. Let u ∈ U , uδ ∈ Uδ be the solutions of (A.6) and (A.21). Let h = H(u) and
hδ = Hδ(uδ). Then, for any given i ∈ I, v ∈ Vi,

�

σ∈Eδ,i

��
∂hδi

∂n̂σ

�

σ

, γσ(v)

�

σ

=
�

T∈Tδ

(fi +Δhδi, v)T +
�
ui, γMi

(v)
�
Mi

+ (∇(hδi − hi),∇v)Fi
.

Proof. Let i ∈ I, v ∈ Vi. By applying definition (A.4) and using Green’s formula on Tδ,i we
obtain

(∇(hi − hδi),∇v)Fi
= (fi, v)Fi

+
�
ui, γMi

(v)
�
Mi

− (∇hδi,∇v)Fi
=

=
�

T∈Tδ

(fi +Δhδi, v)T +
�
ui, γMi

(v)
�
Mi

−
�

σ∈Eδ,i

��
∂hδi

∂n̂σ

�

σ

, γi
σ(v)

�

σ

.

Lemma A.6. Let f be the vector of forcing terms in problem (A.1) and fT = 1
|T | (fi, 1)T its

mean value on each T ∈ Tδ,i (i ∈ I). Then,

�fT +Δhδi�T � �fi − fT �T +
1

hT

�
|||hi − hδi|||T +

�

m∈Mi

�um
i − um

δi�− 1
2 ,�

m
T
+ ξmNC,T

�
.
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Proof. Let bT be the bubble function of T . Then, if wT := (fT +Δhδi) bT ∈ H1
0 (Fi), using

Lemmas A.3 and A.5 (where the terms in
�

∂hδi

∂n̂σ

�
σ
vanish because γi

σ(wT ) = 0 ∀σ ∈ Eδ,i),
using inequalities (A.40) and (A.41) and the definition of wT , we obtain

�fT +Δhδi�2T � (fT +Δhδi, wT )T = (fi +Δhδi, wT )T + (fT − fi, wT )T =

= (∇(hi − hδi),∇wT )T −
�

m∈Mi

�
um
i , γi

Γm
(wT )

�
�mT

+ (fT − fi, wT )T ≤

≤ �fi − fT �T �wT �T + |||hi − hδi|||T |||wT |||T
+

�

m∈Mi

�
�um

i − um
δi�− 1

2 ,�
m
T

��γi
Γm

(wT )
��

1
2 ,�

m
T

+ �um
δi��mT

��γi
Γm

(wT )
��
�mT

�
,

by which the thesis is proved using (A.43), (A.44), the continuity of γi
Γm

from H1
0 (T ) to

H
1
2
00 (�

m
T ), the fact that 0 ≤ bT ≤ 1 and a standard trace inequality:

�wT �T = �(fT +Δhδi) bT �T ≤ �fT +Δhδi�T ,

|||wT |||T = |||(fT +Δhδi) bT |||T � h−1
T �fT +∇hδi�T ,

��γi
Γm

(wT )
��

1
2 ,�

m
T

� |||wT |||T � h−1
T �fT +Δhδi�T ,

��γi
Γm

(wT )
��
�mT

� h
1
2

�mT
|||wT |||T � h

1
2

�mT
h−1
T �fT +Δhδi�T .

Proposition A.2 (efficiency of ηR,T ). Let i ∈ I, T ∈ Tδ,i. Let ηR,T be the estimator defined
by (A.24). Then

ηR,T � |||hi − hδi|||T +
�

m∈Mi

�
�um

i − um
δi�− 1

2 ,�
m
T
+ ξmNC,T

�
+ hT �fi − fT �T .

Proof. The thesis immediately follows from Lemma A.6:

ηR,T = hT �fi +Δhδi�T ≤ hT (�fT +Δhδi�T + �fi − fT �T ) �
� |||hi − hδi|||T +

�

m∈Mi

�
�um

i − um
δi�− 1

2 ,�
m
T
+ ξmNC,T

�
+ hT �fi − fT �T .

Proposition A.3 (efficiency of ξF,σ). Let i ∈ I, σ ∈ Eδ,i, let ξF,σ be defined by (A.25), let
ξmNC,T defined by (A.26) and ηR,T by (A.24). Then,

ξF,σ �
�

T∈ωσ

�
|||hi − hδi|||T + hσηR,T +

�

m∈Mi

ξmNC,T

�
+

�

m∈Mi

�um
i − um

δi�− 1
2 ,Γm∩ ◦

ωσ
.

Proof. If we define wσ as the function such that wσ|T := CT
��

∂hδi

∂n̂σ

�
σ
− ũδi,σ

�
bσ ∀T ⊂ ωσ

and wσ ≡ 0 elsewhere, since
�

∂hδi

∂n̂σ

�
σ
− ũδi,σ belongs to a finite dimensional subspace of
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H
1
2 (σ), it is possible to apply (A.46):

����
�
∂hδi

∂n̂σ

�

σ

− ũδi,σ

����
2

σ

�
��

∂hδi

∂n̂σ

�

σ

− ũδi,σ, γ
i
σ(wσ)

�

σ

=

=

��
∂hδi

∂n̂σ

�

σ

, wσ

�

σ

−
�

m∈Mi

�
um
δi , γ

i
σ(wσ)

�
Γm∩σ

.

We now use Lemma A.5 on the first term, considering that wσ vanishes on Eδ,i \ {σ} and
partitioning the traces having |Γm ∩ ωσ| �= 0 in those for which |Γm ∩ σ| �= 0 and those for
which |Γm ∩ σ| = 0:

����
�
∂hδ

∂n̂σ

�

σ

− ũδi,σ

����
2

σ

� (fi +Δhδi, wσ)ωσ
+ (∇(hδi − hi),∇wσ)ωσ

+
�

m∈Mi

|Γm∩σ|�=0

�
um
i − um

δi , γ
i
Γm

(wσ)
�
Γm∩σ

+
�

m∈Mi

|Γm∩σ|=0

�
um
i , γi

Γm
(wσ)

�
Γm∩ ◦

ωσ
.

Now, we add and subtract the quantity
�
um
δi , γ

i
Γm

(wσ)
�
Γm∩◦

ωσ
for all those m such that |Γm∩

σ| = 0:

����
�
∂hδ

∂n̂σ

�

σ

− ũδi,σ

����
2

σ

� (fi +Δhδi, wσ)ωσ
+ (∇(hδi − hi),∇wσ)ωσ

+
�

m∈Mi

� �
um
i − um

δi , γ
i
Γm

(wσ)
�
Γm∩◦

ωσ
+
�
um
δi , γ

i
Γm

(wσ)
�
Γm∩ (◦

ωσ\σ)

�
=

=
�

T⊂ωσ

�
(fi +Δhδi, wσ)T + (∇(hδi − hi),∇wσ)T +

�

m∈MT

��
um
δi , γ

i
Γm

(wσ)
�
�mT

+
�
um
i − um

δi , γ
i
Γm

(wσ)
�
Γm∩T

��
≤

�

T⊂ωσ

�
�fi +Δhδi�T �wσ�T

× �wσ�T + |||hi − hδi|||T |||wσ|||T +
�

m∈MT

�
�um

δi��mT
��γi

Γm
(wσ)

��
�mT

+ �um
i − um

δi�− 1
2 ,Γm∩T

��γi
Γm

(wσ)
��

1
2 ,Γm∩T

��
.

It is possible to control norms of wσ using Appendix A.6.1, (A.46) and (A.47), the continuity
of the trace operator and a trace inequality. Indeed, for any given T ⊂ ωσ

�wσ�T =

����CT
��

∂hδi

∂n̂σ

�

σ

− ũδi,σ

�
bσ

����
T

� h
3
2

T

����
�
∂hδi

∂n̂σ

�

σ

− ũδi,σ

����
σ

,

|||wσ|||T =

����
����
����CT

��
∂hδi

∂n̂σ

�

σ

− ũδi,σ

�
bσ

����
����
����
T

� h
− 1

2

T

����
�
∂hδi

∂n̂σ

�

σ

− ũδi,σ

����
σ

,

��γi
Γm

(wσ)
��
�mT

� h
1
2

�mT
|||wσ|||T � h

1
2

�mT
h
− 1

2

T

����
�
∂hδi

∂n̂σ

�

σ

− ũδi,σ

����
σ

,

��γi
Γm

(wσ)
��

1
2 ,Γm∩T

� |||wσ|||T � h
− 1

2

T

����
�
∂hδi

∂n̂σ

�

σ

− ũδi,σ

����
σ

,

from which the thesis is obtained by definition of ξF,σ, ηR,T , and ξmNC,T .
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Proposition A.4 (efficiency of ξmNC,T ). Let i ∈ I, T ∈ Tδ,i, m ∈ MT and let ξmNC,T be the
estimator defined by (A.26). Then, assuming that um

δi has a finite number of jumps in �mT ,

ξmNC,T � �um
i − um

δi�− 1
2 ,�

m
T
+ |||hi − hδi|||T + h�mT

ηR,T .

Proof. First, suppose um
δi is continuous on �mT . Let R, L ⊂ T be two triangles lying in the

interior of T and sharing �mT as a side. Let b�mT be the bubble function of �mT , having support
on ω�mT

= R∪L ⊂ T , CR and CL the continuation operators of R and L respectively. Let w�mT

be the function such that w�mT

��
E

:= CE(um
δi) b�mT ∀E ∈ {R,L}. Since CR(um

δi) and CL(um
δi)

belong to a finite dimensional subspace, we can apply (A.46) on the two triangles R and L,
obtaining

�um
δi�2�mT �

�
um
δi , γ

i
�mT

�
w�mT

��
�mT

.

Since um
δi ∈ L2 (�mT ) ⊂ H− 1

2 (�mT ) and γi
�mT

�
w�mT

�
∈ H

1
2 (�mT ), we can rewrite the scalar product

above as a duality product. Then, adding and subtracting um
i ,

�um
δi�2�mT �

�
um
δi , γ

i
�mT

�
w�mT

��
�mT

=
�
um
δi − um

i , γi
�mT

�
w�mT

��
�mT

+
�
um
i , γi

�mT

�
w�mT

��
�mT

=
�
um
δi − um

i , γi
�mT

�
w�mT

��
�mT

+
�
∇hi,∇w�mT

�
ω�m

T

−
�
fi, w�mT

�
ω�m

T

=
�
um
δi − um

i , γi
�mT

�
w�mT

��
�mT

+
�
∇(hi − hδi),∇w�mT

�
ω�m

T

+
�
∇hδi,∇w�mT

�
ω�m

T

−
�
fi, w�mT

�
ω�m

T

=
�
um
δi − um

i , γi
�mT

�
w�mT

��
�mT

+
�
∇(hi − hδi),∇w�mT

�
ω�m

T

+
�
−fi −Δhδi, w�mT

�
ω�m

T

≤ �um
i − um

δi�− 1
2 ,�

m
T

×
���γi

�mT

�
w�mT

����
1
2 ,�

m
T

+ |||hi − hδi|||ω�m
T

������w�mT

������
ω�m

T

+ �fi +Δhδi�ω�m
T

��w�mT

��
ω�m

T

,

where Green’s formula has been applied, using the fact that there are no jumps of ∇hδi inside
ω�mT

. Using the continuity of the trace operator and (A.47), we obtain, for all E ∈ {R,L},
���γi

�mT

�
w�mT

����
1
2 ,�

m
T

�
������w�mT

������
E
=
������CE(um

δi) b�mT
������
E
� h

− 1
2

�mT
�um

δi��mT ,

and, since h�mT
≤ hT ,

��w�mT

��
E
=
��CE(um

δi) b�mT
��
E
� h

3
2

�mT
�um

δi��mT ≤ hT h
1
2

�mT
�um

δi��mT .

The thesis comes from the definitions of ηR,T , ξ
m
NC,T and from |||·|||ω�m

T

≤ |||·|||T . If um
δi has

some jumps, it is sufficient to apply this procedure on each of the sub-segments of �mT upon
which it is continuous.

Proposition A.5 (efficiency of ηP,T and ξiP,Γm
). Let i ∈ I, T ∈ Tδ,i. Then

ηP,T = |||pi − pδi|||T .

Moreover, let m ∈ Mi, λ ∈ Λm,i. Then

ξiP,λ � |||pi − pδi|||ωλ
,

where ωλ is the union of two triangles having λ as one of their sides.
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Proof. The first estimate derives directly from the fact that pi = 0. For what concerns
the estimate of ξiP,λ, let R and L be two triangles sharing only λ as a side and such that
hλ = hR = hL. Let bλ be the bubble function of λ defined on ωλ = R∪L and let wλ = pδi bλ.
We can apply Lemma A.4 because wλ belongs to a finite dimensional space. Moreover, we
can add γi

λ(pi) ≡ 0:

��γi
λ(pδi)

��2
λ
� (pδi, wλ)λ =

�
γi
λ(pδi − pi) , γ

i
λ(wλ)

�
λ
≤

≤
��γi

λ(pi − pδi)
��
λ

��γi
λ(wλ)

��
λ
≤
��γi

λ(pi − pδi)
��

1
2 ,λ

��γi
λ(wλ)

��
1
2 ,λ

.

Thus, for the continuity of the trace operator, (A.47) and the fact that hλ = hR = hL,

��γi
λ(pδi)

��2
λ
�
��γi

λ(pi − pδi)
��

1
2 ,λ

��γi
λ(pδi bλ)

��
1
2 ,λ

� |||pi − pδi|||ωλ
|||pδi bλ|||ωλ

�

� |||pi − pδi|||ωλ

�

T∈ωλ

h
− 1

2

T

��γi
λ(pδi)

��
λ
� h

− 1
2

λ |||pi − pδi|||ωλ

��γi
λ(pδi)

��
λ
.

The thesis is proved since ξiP,λ = h
1
2

λ

��γi
λ(pδi)

��
λ
.

Proposition A.6 (efficiency of J i
δ,λ). Let uδ be the solution of (A.21), hδ = Hδ(uδ). Let

i ∈ I, m ∈ Mi, λ ∈ Λm,i, J
i
δ,λ(uδ) be the quantity defined by (A.29). Then, if Γm = Fi ∩Fj,

J i
δ,λ � |||hi − hδi|||Fi

+ |||hj − hδj |||Fj
+ �um

i − um
δi�− 1

2 ,λ
+
��um

j − um
δj

��
− 1

2 ,λ
.

Proof. We recall that

J i
δ,λ(uδ) = h

1
2

λ

���{{uδ}}Γm

��
λ
+
���hδ�Γm

��
λ

�
.

The proof follows the same pattern as the one done for Proposition A.5. Consider two
triangles R, L ⊂ Fi (possibly not in Tδ,i) having λ as common side and such that hλ = hR =
hL. Define ωλ = R ∪ L and let bλ be the bubble function of λ defined on ωλ. We estimate
the two terms of the sum separately.

First, let wλ,u|E := CE
�
{{uδ}}Γm

�
bλ ∀E ∈ {R,L}. It is possible to apply (A.46) and

consider um
i + um

j = 0:

��{{uδ}}Γm

��2
λ
�
�
{{uδ}}Γm

, γΓm
(wλ,u)

�
λ
=
�
um
δi + um

δj , γΓm
(wλ,u)

�
λ

=
�
um
δi + um

δj + um
i − um

j , wλ,u

�
λ
≤
�
�um

i − um
δi�− 1

2 ,λ
+
��um

j − um
δj

��
− 1

2 ,λ

�

× �wλ,u� 1
2 ,λ

.

Since by continuity of the trace operator and applying (A.47) we have

�wλ,u� 1
2 ,λ

� h
− 1

2

λ

��{{uδ}}Γm

��
λ
,

and since hλ = hR = hL,

��{{uδ}}Γm

��2
λ
� h

− 1
2

λ

�
�um

i − um
δi�− 1

2 ,λ
+
��um

j − um
δj

��
− 1

2 ,λ

���{{uδ}}Γm

��
λ
,

and this estimates the first term.
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Similarly, let wλ,h|E := CE
�
�hδ�Γm

�
bλ ∀E ∈ {R,L}. It is possible to apply (A.46). Then,

since γi
Γm

(hi) ≡ γj(hj)Γm and γi
Γm

(hi) , γ
j
Γm

(hj) ∈ H
1
2 (λ) ⊂ L2 (λ), we have

���hδ�Γm

��
λ
�
�
�hδ�Γm

, γi
Γm

(wλ,h)
�
λ
=
�
γi
Γm

(hδi)− γj
Γm

(hδj) , γ
i
Γm

(wλ,h)
�
λ
=

=
�
γi
Γm

(hδi)− γj
Γm

(hδj)− γi
Γm

(hi) + γj
Γm

(hj) , γ
i
Γm

(wλ,h)
�
λ
≤

≤
���γi

Γm
(hi − hδi)

��
1
2 ,λ

+
���γj

Γm
(hj − hδj)

���
1
2 ,λ

����hδ�Γm
γi
Γm

(bλ)
��

1
2 ,λ

,

if we define ωj
λ,h ⊂ Fj such that λ ⊂ ∂ωj

λ,h. Applying the continuity of the trace operator on
Fi and Fj , (A.47) and since hλ = hR = hL, we have estimated the second term:

���hδ�Γm

��
λ
�
�
|||hi − hδi|||ωλ

+ |||hj − hδj |||ωj
λ

�
|||wλ,h|||ωλ

�

� h
− 1

2

λ

�
|||hi − hδi|||Fi

+ |||hj − hδj |||Fj

����hδ�Γm

��
λ
.

A.6.3 Final lower bounds. In this subsection we collect the previous efficiency results
to complete the proof of Theorem A.3.

Assuming hNC,T < 1 ∀T ∈ Tδ, we first look at the result of Proposition A.2, together
with the result of Proposition A.4. From these we can obtain an efficiency estimate for ηR,T

involving only the exact errors and higher order terms (this is standard: see for example
[16]). For any given i ∈ I and a triangle T ∈ Tδ,i,

ηR,T � |||hi − hδi|||T +
�

m∈MT

�ui − uδi�− 1
2 ,�

m
T
+ hT �fi − fT �T

+
�

m∈MT

�
�ui − uδi�− 1

2 ,�
m
T
+ |||hi − hδi|||T + h�mT

ηR,T

�
.

Then, since #MT ≤ #Mi and #Mi is fixed, thanks to the assumption hNC,T < 1 we have

ηR,T � 1

1− hNC,T

�
|||hi − hδi|||T +

�

m∈MT

�um
i − um

δi�− 1
2 ,�

m
T

�

+
hT

1− hNC,T
�fi − fT �T . (A.48)

Now we consider Proposition A.4. Since #MT is bounded independently on the dis-
cretization, summing on all m ∈ MT both members we obtain

�

m∈MT

ξNC,T � #MT |||hi − hδi|||T +
�

m∈MT

�um
i − um

δi�− 1
2 ,�

m
T
+

� �

m∈MT

h�mT

�

� �� �
hNC,T

ηR,T �

� |||hi − hδi|||T +
�

m∈MT

�um
i − um

δi�− 1
2 ,�

m
T
+ hNC,T ηR,T .
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We remark that the constants may depend on #MT ≤ #Mi. We now make use of Propo-
sition A.2 for bounding ηR,T with the exact error and ξNC,T , obtaining

�

m∈MT

ξNC,T � |||hi − hδi|||T +
�

m∈MT

�um
i − um

δi�− 1
2 ,�

m
T
+ hNC,T

�
|||hi − hδi|||T

+
�

m∈MT

�ui − uδi�− 1
2 ,�

m
T
+ hT �fi − fT �T

�
+ hNC,T

�

m∈MT

ξNC,T .

Then,

�

m∈MT

ξmNC,T � 1 + hNC,T

1− hNC,T

�
|||hi − hδi|||T

�

m∈MT

�um
i − um

δi�− 1
2 ,�

m
T

�

+
hNC,ThT

1− hNC,T
�fi − fT �T . (A.49)

The influence of non-conformity on the efficiency of our estimate is clear.
Finally, let’s turn to the result of Proposition A.3. To have an explicit estimate for ξF,σ

we use equations (A.48), (A.49) and the fact that

�um
i − um

δi�− 1
2 ,Γm∩◦

ωσ
≤

�

T∈ωσ

�um
i − um

δi�− 1
2 ,�

m
T

.

For any given i ∈ I, σ ∈ Eδ,i and indicating by ωσ the set of triangles in Tδ,i having σ as one
of their sides, algebraic calculations yield

ξF,σ � max {1, hσ}
�

T∈ωσ

1

1− hNC,T

�
|||hi − hδi|||T + +

�

m∈MT

�um
i − um

δi�− 1
2 ,�

m
T

�

+
hT (1 + hNC,T )

1− hNC,T
�fi − fT �T , (A.50)

where we see the same kind of dependence. Using the results from Propositions A.5 and A.6
and (A.48)–(A.50), we can prove Theorem A.3.

A.7 Numerical Results

We show here the results of numerical experiments mainly performed in order to evaluate
the effectivity index, defined as the ratio between the true error err and the estimated error
estδ (see Table A.1):

ε :=
err

estδ
.

In order to approximate the norm of the error u − uδ in the dual space H− 1
2 (Γm), for all

m ∈ M, we have used the following weighted L2 (Γm) norm:

∀i ∈ I, ∀m ∈ Mi, �um
i − um

δi�− 1
2 ,Γm

∼


 �

λ∈Λm,i

hλ �um
i − um

δi�2Γm




1
2

,
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where Λm,i is defined as the discretization of the trace Γm induced by the mesh Tδ,i.
We consider three DFNs, as shown in Figure A.2. All simulations are performed using

linear finite elements on a sequence of refined grids, and using, for each trace Γm, a contin-
uous piecewise linear approximation for um

i and um
j on the induced meshes Λm,i and Λm,j ,

respectively. In all the considered meshes, traces are arbitrarily placed with respect to the
mesh-edges (full non-conformity between the meshes).

All the results are collected in Table A.1, where the effectivity index ε for the different
cases is reported. Further, Figure A.3 shows the behaviour of the error estimator estδ and
of the error err with respect to the meshsize for the three DFNs.

(a) test1 3D representation, with mesh (b) test2 3D representation, with mesh

(c) 7 fract 3D representation, with mesh
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Figure A.2: Views of the considered DFNs

A.7.1 Problem test1. The first test problem deals with two identical fractures inter-
secting each other orthogonally (see Figure A.2a):

F1 = {(x, y, z) ∈ R3 : z ∈ (−1, 1), y ∈ (0, 1), x = 0},
F2 = {(x, y, z) ∈ R3 : x ∈ (−1, 1), y ∈ (0, 1), z = 0}.
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A.7. Numerical Results

h
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exact error, m = 0.77498

(a) test1 Error estimate (blue) and error
(green) vs. h
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(b) test2 Error estimate (blue) and error
(green) vs. h
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(c) 7 fract Error estimate (blue) and error
(green) vs. h
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(d) test2 Discrete solution in F1

Figure A.3
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maxT∈Tδ
hT ε

0.0047 0.3130
0.0063 0.3251
0.0097 0.3160
0.0112 0.3146
0.0146 0.2907
0.0221 0.3011
0.0305 0.2810
0.0331 0.2595
0.0339 0.2643
0.0773 0.2526
0.0899 0.2892
0.1012 0.2614
0.1250 0.2888
0.2435 0.3507
0.3860 0.3297
0.4373 0.3454
0.4375 0.3518

(a) test1

maxT∈Tδ
hT ε

0.0049 0.2943
0.0054 0.2672
0.0101 0.2394
0.0103 0.2478
0.0157 0.2324
0.0234 0.2183
0.0317 0.2079
0.0413 0.2075
0.0488 0.2007
0.0815 0.1978
0.0938 0.1933
0.1047 0.1949
0.1415 0.2050
0.2582 0.1980
0.2795 0.2329
0.3953 0.2347
0.5014 0.2146

(b) test2

maxT∈Tδ
hT ε

0.0180 1.2598
0.0261 1.2769
0.0327 1.2377
0.0450 1.2809
0.0508 1.2676
0.0822 1.2210
0.1115 1.2359
0.1250 1.2780
0.1766 1.2505
0.2111 1.2763
0.4004 1.2003
0.4337 1.2604
0.4719 1.3189
1.1180 1.1613
1.4142 1.8722
1.7321 1.7375
2.2361 1.6907

(c) 7 fract

Table A.1: Tables of effectivity indexes

We have M = {1} and Γ1 = {(x, y, z) ∈ R3 : x = 0, z = 0, y ∈ (0, 1)}, we set homogeneous
Dirichlet boundary conditions on both fractures. For further details regarding this problem
we refer to [6].

Results for this first problem are reported in Table A.1a, where the values of the effectivity
indices for different meshsizes are shown. We can see that the effectivity index is almost
independent of the meshsize, with values oscillating in a range between 0.2526 and 0.3518
for h spanning two orders of magnitude. In Figure A.3a we plot the true errors and the
estimated errors. In the legend of this Figure we report the exponent m of the fitting of
these errors with respect to h (err ∼ hm and estδ ∼ hm). The plots show a good agreement
between the error and the estimator.

A.7.2 Problem test2. In the second test problem we consider the two fracture DFN
displayed in Figure A.2b. In particular, F1 is not intersected completely by F2:

F1 =
�
(x, y, z) ∈ R3 : −1 < x < 1, −1 < y < 1, z = 0

�
,

F2 =
�
(x, y, z) ∈ R3 : −1 < x < 0, y = 0, −1 < z < 1

�
.

Again, we have M = {1} and we set Γ1 =
�
(x, y, z) ∈ R3 : y = z = 0, −1 < x < 0

�
, and

Dirichlet boundary conditions are set on all the boundaries. In this case we have a less
regular solution around the trace tip (see [3, 8]). In Figure A.3d we report a computed
solution on F1. In Table A.1b we report the values of the effectivity indices for different
meshsize. We can see that, again, these values are quite stable with respect to the meshsize.
In Figure A.3b we plot the true errors and the estimated errors and report the slopes m of
the fitting. The plots show a good agreement between the error and the estimator.

A.7.3 Problem 7 fract. The last test problem considers the DFN of 7 fractures
intersecting in 11 traces shown in Figure A.2c. We set a constant Dirichlet boundary condition
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A.8. Conclusions

hD = 10 on one side of F6 and an homogeneous Dirichlet boundary condition on one side of
F7 (see Figure A.2d). The stated problem has a piecewise linear solution on each fracture
(see [6]), that could be exactly computed by the FEM method if one had meshes totally
conforming to traces. This is not the case of our meshes, thus this is a good test for the
behaviour of the non-conformity estimators. In Figure A.3c we plot the true errors and the
estimated errors and in Table A.1c we report the values of the effectivity indices. We note
that for the three coarsest meshes the effectivity indices are larger than the values observed
for the other meshes. This shows the influence of non-conformity on the efficiency of the
estimate: indeed, these meshes feature a non-conformity indicator maxT∈Tδ

hNC,T ≈ 0.8571,
which yields CNC ≈ 13 (Theorem A.3). With mesh refinement, starting from the fourth
coarsest mesh, we have maxT∈Tδ

hNC,T ≤ 0.5, and the value of CNC critically drops to
values lower than or equal to 3 (see Remark A.2) and the effectivity index becomes almost
constant.

A.7.4 Estimators characterization. It is interesting to characterize the estimators
with respect to the information they can provide about the distribution of the errors on the
domain. With this target we define, for all T ∈ Tδ, two different indicators:

ηres,T :=

�
ηR,T + 1

2

�
σ∈Eδ,T

ξF,σ if ∀m ∈ M, |Γm ∩ T | = 0

ηR,T otherwhise

ηtr,T :=

�
ηP,T + ξP,T + ξNC,T + 1

2

�
σ∈Eδ,T

ξF,σ if ∃m ∈ M: |Γm ∩ T | �= 0

ηP,T + ξP,T + ξNC,T otherwhise

where Eδ,T indicates the set of the edges of T . In Figure A.4 we see the behaviour of these
two quantities for problem test2 on F1, whose solution is depicted in Figure A.3d. The
quantity ηres,T provides information about the error on each fracture that is related to the
Finite Element approximation of the solution of (A.9) in the interior of the fractures far
from the traces. On the other hand, the quantity ηtr,T provides information about the non
conformity errors and the violation of matching conditions on the traces. In Figure A.4 we
plot these two quantities on the elements of two different meshes for F1, being the coarsest
of these meshes the one used for the solution shown in Figure A.3d. On the first two top
figures we report ηres,T (left) and ηtr,T (right) on the coarse mesh, we see that ηres,T is
larger where the solution displays strong curvatures, i.e. far from the trace and around trace
tip. Instead, as expected, the conformity indicator ηtr,T is concentrated around the trace. A
similar behaviour with different order of magnitude of the estimators is obtained on the finer
grid.

A.8 Conclusions

In this chapter we have derived residual based “a posteriori” error estimates for the con-
strained optimization formulation of a simple model for the flow in DFNs. Numerical results
have confirmed very weak dependence of the effectivity index on the meshsize, a very good
agreement between the estimator and the error distribution, and we have identified a pa-
rameter correlating the estimate with the non-conformity of the meshes. The terms of the
estimator can be collected in two indicators with a clear meaning: an indicator related to the
error inside each fracture, essentially related to the attitude of the Finite Element space to
describe the hydraulic head in each fracture, and a second indicator essentially concerning
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Figure A.4: test2 Behaviour of ηres,T (left) and ηtr,T with two different mesh sizes

the lack of continuity of the hydraulic head, the flux mismatch at the traces and the non-
conformity of the meshes of intersecting fractures. The different nature of the estimators is a
useful tool for their use in an adaptive algorithm that will be object of future investigations.
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