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Introduction

Everyday life aspects and directions are guided by decisions. Although passions
and emotions play a fundamental role in taking small and big decisions, many
contexts require a formalization of the decision-making process for solving com-
plex problems. This is the goal of combinatorial optimization, which is a branch
of operations research providing methods and tools for solving optimization
problems arising in different fields. This thesis considers a specific class of
optimization problems: the Knapsack Problems.
These are paradigmatic problems in combinatorial optimization where a set of
items with given profits and weights is available. The aim is to select a subset
of the items in order to maximize the total profit without exceeding a known
knapsack capacity. The classical 0–1 Knapsack Problem (KP), in which each
item can be picked at most once, was the first problem introduced in this class
of optimization problems. Extensions of KP in different directions, such as
modifications of the objective function or different constraints on the available
item set, led to several relevant variants of practical interest. Knapsack Prob-
lems have been strongly investigated both from a theoretical and a practical
point of view (we cite here, among others, two pioneering works [69]-[40], two
books [47]-[61] and three comprehensive surveys [53], [58] and [81]). Although
Knapsack Problems belong to the class of NP–hard problems and thus are
intractable from a theoretical point of view [34], some of them are well-handled
in practice. Very large instances can be solved in a reasonable time thanks to
decades of research devoted to exploiting structures and properties of these
problems. Knapsack Problems have straightforward applications in industrial
contexts such as in cutting stock, scheduling cargo loading, project management,
budget control, finance and in general in resource allocation problems. As an
example, consider the problem of choosing a portfolio of investment projects
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with expected profit/costs, given a monetary budget. The best combination
of projects maximizing the profits corresponds to the solution of a knapsack
problem where the items are the projects, the weights are their costs and the
monetary budget is the knapsack capacity. Even everyday life situations relate
to a knapsack problem like the change provided by an automatic coffee machine
with the least number of coins available or the choice of the objects to carry
for hiking excursion.
Besides, Knapsack Problems often arise as sub–problems in many more com-
plex problems. Among others, KP emerges as a sub–problem in solving the
Generalized Assignment Problem, which in turn is used for solving Vehicle
Routing Problems [50]. Knapsack Problems also appear in graph partitioning
problems [31], scheduling problems [39] and in cryptography [10]-[64].

The focus of the thesis is on four generalizations of KP involving side
constraints beyond the capacity bound. More precisely, we provide solution
approaches and insights for the following problems: The Knapsack Problem with
Setups; the Collapsing Knapsack Problem; the Penalized Knapsack Problem;
the Incremental Knapsack Problem. These problems reveal challenging research
topics with many real–life applications.
The scientific contributions we provide are both from a theoretical and a
practical perspective. On the one hand, we give insights into structural elements
and properties of the problems and derive a series of approximation results for
some of them. On the other hand, we offer valuable solution approaches for
direct applications of practical interest or when the problems considered arise as
sub–problems in broader contexts. As reported in the corresponding chapters,
many contributions have been certified by publications in international journals
and proceedings in conferences while others are about to be submitted to
journals. The thesis is organized as follows:

In Chapter 1, we provide a survey of the research pursued for the classical
0–1 Knapsack Problem. Incidentally, some methods presented in this thesis
rely also on ideas and methods originally designed for KP.

In Chapter 2, we consider the 0–1 Knapsack Problem with Setups (KPS).
In this generalization of KP, items are grouped into families and if any item
of a family is selected, this induces a setup cost as well as a setup resource
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consumption. KPS has many applications of interest such as make–to–order
production contexts, energy sector, cargo loading and product category man-
agement among others and more generally for resource allocation problems
involving classes of elements. We introduce different solution approaches for
this problem. More precisely, we propose an exact enumerative approach which
handles the structure of the ILP formulation of KPS. It relies on partitioning
the variables set into two levels and exploiting this partitioning. The pro-
posed approach favorably compares to the algorithms in literature and to a
commercial solver launched on the ILP formulation. It turns out to be very
effective and capable of solving to optimality, within limited computational
time, large instances with up to 100000 variables. We also introduce a new
dynamic programming algorithm which performs much better than a previous
dynamic program and turns out to be also a valid alternative to the exact
enumerative approach. In addition, we provide further insights into KPS and
derive a general inapproximability result. Furthermore, we investigate several
relevant special cases which still permit fully polynomial time approximation
schemes (FPTASs) and others where the problem remains hard to approximate.

In Chapter 3, we consider the 0–1 Collapsing Knapsack Problem (CKP)
where the capacity of the constraint is not a scalar but a non–increasing function
of the number of included items, namely, it is inversely related to the number
of items placed inside the knapsack. Among others, CKP has wide applications
such as in satellite communication and time–sharing computer systems, namely
in problems where a structural overhead is induced by the number of items
or users considered. On the one hand, we present a novel ILP formulation of
CKP and an effective reduction procedure for restricting the solution space of
the problem. The novel ILP constitutes a significant contribution for tackling
the CKP since it makes possible to exploit the potentials of the modern IP
solvers. On the other hand, we introduce an exact approach for CKP which is
also extended to the multidimensional variants of CKP involving more than a
capacity constraint (M-CKP). The approach relies on the ILP formulation of
CKP and on an original branching scheme that induces the solution of several
KPs (with the additional constraint that the number of items in the knapsack
is fixed) by exploiting the particular structure of CKP. The proposed approach
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favorably compares to the methods available in the literature and manages to
solve to optimality very large size instances particularly for CKP and 2-CKP.

In Chapter 4, we deal with the 0–1 Penalized Knapsack Problem (PKP),
where each item has a profit, a weight and a penalty. The problem calls for
maximizing the sum of the profits minus the greatest penalty value of the
items selected in a solution. PKP may have applications in resource allocation
problems with a bi–objective function involving the maximization of the sum
of the profits against the minimization of the maximum value of a feature
of interest. PKP also arises as a pricing sub–problem in branch–and–price
algorithms for the two–dimensional level strip packing problem in [54]. We
provide theoretical results for the problem as well as an exact solution approach.
More precisely, from the one hand we provide insights into the problem and a
characterization of its linear relaxation. We also derive a surprising negative
approximation result. On the other hand, we propose an exact approach relying
on a procedure which narrows the relevant range of penalties and on dynamic
programming algorithms. The proposed approach turns out to be very effective
in solving hard instances of PKP and compares favorably both to commercial
solver CPLEX 12.5 applied to the ILP formulation of the problem and to the
best available exact algorithm in the literature.

In Chapter 5, we investigate the 0–1 Incremental Knapsack Problem (IKP).
In this generalization of KP the capacity grows over time periods. If an item is
placed in the knapsack in a certain period, it cannot be removed afterwards.
The problem calls for maximizing the sum of the profits over the whole time
horizon. IKP has many real-life applications since, from a practical perspective,
it is often required in allocation resource problems to deal with changes in the
input conditions and/or in a multi–period optimization framework.
We propose a series of results extending the contributions currently available
in the literature. In particular, we manage to prove the tightness of some
approximation ratios of an approximation algorithm presented in [37]. Then,
we devise a Polynomial Time Approximation Scheme (PTAS) when the input
value associated with the time periods is considered as a constant. Also, we
consider a restricted variant of the problem with two time periods and where
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each item can be packed in the first period. Under this assumption, we derive
an algorithm with a constant approximation factor of 6

7 .

In Chapter 6, we provide the conclusions of the thesis and sketch possible
future developments.

A part of the contents presented in chapters 2, 4, 5 was developed within
two research periods (January-March and September-December 2016) spent at
Karl-Franzens University of Graz in Austria, in the Statistics and Operations
Research Department led by Prof. Ulrich Pferschy.

The work presented in the thesis was supported by a fellowship from TIM
Joint Open Lab SWARM (Turin, Italy). SWARM Lab studies and develops
solutions for problems involving group dynamics arising in complex systems.
In particular, the focus is on innovation projects concerning the application of
distributed and pervasive technologies using the paradigm of cooperation and
collaboration, where "things" or "people" with devices interact among them
within complex environments. The activities I carried out in the SWARM
Joint Open Lab ranged in different contexts of practical relevance. The specific
interest to the Knapsack Problems came from connections with industrial
research projects within the smart-home and smart-city paradigms.

The work on the 0–1 Knapsack Problem with Setups has been partially
supported by FLEXMETER, FLEXible smart METERing for multiple energy
vectors with active prosumers, funded by the European Commission under
H2020, Grant Agreement N. 646568 (see [1]). FLEXMETER project involves
the efficient management of the buildings energy consumptions. Within the
project thematics, a problem concerning the proper management of energy peak
demands originated a practical application of KPS, as discussed in Chapter 2.

Also a smart city project within the Internet of Things paradigm shared
connections with knapsack problems. The project involved the study of solutions
for the so-called opportunistic Internet of Things. The Internet of Things
expression refers to the network of physical objects and devices provided with
sensing and computing capabilities. A challenging task could be the collection
of data from these objects since it is not always possible to have a specific
network infrastructure for connecting them. An emerging trend in the IoT
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is the design of solutions based on ad hoc connections provided by mobile
devices (e.g. smartphones) by opportunistically considering daily routines or
habits of the users. I contributed to investigate the problem of covering garbage
bins (equipped with sensors of their filling level) by exploiting the passage of
pedestrians or vehicles. In this respect, a link with Knapsack Problems is to
see users as knapsacks with a given capacity (time window) which can carry
items (bins to cover) with different weights (covering times of the bins). An
introductory work on the matter is presented in [20].



The 0–1 Knapsack Problem

1.1 Introduction

In this first chapter, we provide an overview of the fundamental properties
of the 0–1 Knapsack Problem as well as of the solution approaches proposed
in the literature. The overview is based on the valuable survey in [81] and
the comprehensive book [47]. A particular emphasis is paid to concepts and
methods which have been exploited in the following of this thesis.

1.2 Basic concepts

1.2.1 Integer Linear Programming formulation

The 0–1 Knapsack Problem can be formally stated as follows: a capacity value
c and a set of n items j with weight wj and profit pj are given. The objective
is to choose a subset of the items to maximize the profits such that the total
weight of the items does not exceed c. The problem can be formulated as the
following Integer Linear Programming (ILP) model (denoted (KP ))

(KP ):

maximize
n∑

j=1
pjxj (1.1)

subject to
n∑

j=1
wjxj ≤ c (1.2)
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xj ∈ {0,1} j = 1, . . . ,n (1.3)

where binary variables xj = 1 iff item j is placed in the knapsack. In order
to avoid meaningless cases, the following assumption are made:

n∑
j=1

wj > c;

wj ≤ c j = 1, . . . ,n.
Indeed, instances of KP violating the first condition have the trivial solution
in which all items are picked. Any item violating the second condition can be
trivially removed from the problem. Without loss of generality (W.l.o.g.), it is
also assumed that wj , pj and c are positive integers. Fractional values can be
scaled to integer values by multiplication by suitable factors, while instances
with non positive coefficients can be handled as outlined in [35]. We will denote
the maximum profit and the maximum weight of the items by pmax and wmax

respectively.

For the sake of readability, throughout the thesis, for each considered
problem we will denote the optimal solution value by z∗ and the optimal
solution vector by x∗. Likewise, we will use the general notation zLP and xLP

to denote the optimal solution value and vector of the Linear Programming
relaxations. Some symbols or letters may recur in the different chapters with a
different meaning. For the mathematical formulations of the problems, we will
usually stick to the notation used in the literature.

1.2.2 Reference instances

We briefly sketch the main classes of instances of KP. The generation schemes
of these instances are commonly employed in the construction of challenging
instances for other knapsack problems as well. In a nutshell, different classes of
instances involve a different correlation between the profits and the weights of
the items. Profits and weights range in the interval [1,R], with R positive integer
in general equal to 1000 or 10000. The capacity value is usually proportional
to the sum the weights of the items by a factor < 1. The main groups of KP
instances are:
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1. Uncorrelated instances: pj and wj are randomly distributed in [1,R].
These instances reflect situations where profits are reasonably independent
from the weights. They are expected to be easy to solve since the presence
of very appealing items (high profit, low weight) and particularly worse
items (low profit, high weight).

2. Weakly correlated instances: weights wj randomly range in [1,R] while
the profits pj range in [wj − R

10 ,wj + R
10 ] with pj ≥ 1. These instances

illustrate situations in project management and in finance where the
expected return of an investment is proportional to its cost with some
variations.

3. Strongly correlated instances: These instances involve a greater level of
correlation with weights wj randomly distributed [1,R] and pj = wj + R

10 .
In real-life applications, the profit of a project may be equal to the
investment plus an additional charge.

4. Inverse strongly correlated instances: profits pj range in [1,R] and wj =
pj + R

10 . These instances are similar to the strongly correlated ones but
the fixed contribution is negative.

5. Almost strongly correlated instances: Profits are strongly correlated to
weights with some additional noise. Weights wj range in [1,R] and pj in
[wj + R

10 −
R

500 ,wj + R
10 + R

500 ].

6. Subset sum instances: weights wj range in [1,R] and pj = wj . For these
instances, the goal is to fill the knapsack as much as possible.

7. Uncorrelated instances with similar weights: weights wj are distributed
in a narrow interval with large extremes [100000,100100] while profits pj

range in [1,1000].

1.2.3 Linear relaxation

In the linear relaxation of KP, denoted as KP LP , the integrality constraints
(1.3) are replaced by the inclusion in the interval [0,1]. KP LP has a special
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structure and can be solved in the following straightforward way. First, the
items are sorted according to non–increasing ratios of profits over weights:

p1
w1
≥ p2

w2
≥ ·· · ≥ pn

wn
(1.4)

The ratio pj

wj
represents the profit per weight unit of each item j and it is

also called efficiency of item j. The ordering (1.4) will be assumed throughout
the chapter if not stated otherwise. According to this greedy order of efficiency,
items j = 1,2, . . . are then inserted into the knapsack as long as

j∑
k=1

wk ≤ c. (1.5)

Let us denote as the split item the first item s which cannot be packed.
This item is also called break item or critical item. The optimal solution vector
xLP is given by setting xLP

j = 1 for j = 1, . . . , s−1, xLP
j = 0 for j = s + 1, . . . ,n

and xLP
s = (c−

s−1∑
j=1

wj)/ws.

The optimal solution value zLP is:

zLP =
s−1∑
j=1

pj +(c−
s−1∑
j=1

wj)
ps

ws
(1.6)

This procedure is also known as Dantzig’s rule [21]. A graphical proof of
correctness is outlined in [21]. For a formal proof see [61]. Computing the
optimal solution is xLP is easy and requires O(n) after the ordering of the
items (1.4), which requires O(n logn). Nevertheless, authors in [6] showed
how to solve KP LP in O(n) without any sorting of the items by an advanced
partitioning procedure.

1.2.4 Quick–and–dirty heuristics

We outline here the main heuristic algorithms proposed for KP. Exact solution
approaches are discussed more in detail in Sections 1.3–1.5. Henceforth, we
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indicate the value of any feasible solution of KP as a lower bound for the
problem.

A simple heuristic solution is given by setting to zero the value of the break
item in the optimal solution of KP LP . This solution is known as the split
solution (or break solution) and has a profit and weight equal to p̂ =

s−1∑
j=1

pj

and ŵ =
s−1∑
j=1

wj respectively. An improved heuristic consists in starting from

the split solution and in adding the items j = s +1, . . . ,n one after the other
as soon as they fit in the residual capacity. This heuristic is known as the
Greedy algorithm and has a solution value greater than or equal to p̂. The
quality of the solution provided by the Greedy algorithm with respect to the
optimal solution is discussed in Section 1.6. The running time of this heuristic
is dominated by the sorting of the items, thus its complexity is O(n logn).

We mention two other straightforward heuristics introduced in [75]. These
heuristics are particularly suitable for strongly correlated instances. The forward
greedy algorithm adds a single item to the split solution taking the best objective
value:

zf = max
j=s+1,...,n

{p̂+pj | ŵ +wj ≤ c} (1.7)

The backward greedy algorithm adds the split item to the break solution
and removes one item retaining the best objective value:

zb = max
j=1,...,s−1

{p̂+ps−pj | ŵ +ws−wj ≤ c} (1.8)

For both the heuristics, finding the maximum values requires O(n).

1.2.5 Upper Bounds

Considerable research has been devoted to compute upper bounds on KP as
close to the optimal solution as possible. These upper bounds are exploited in
algorithmic frameworks such as branch and bound and dynamic programming.
A natural upper bound is given by the optimal solution of the continuous
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relaxation zLP . Given the integrality of the profits, a valid bound is given by
rounding down zLP :

U1 =
⌊
zLP

⌋
(1.9)

Another bound can be derived from the Lagrangian Relaxation of KP, which
corresponds to solve the following problem

maximize
n∑

j=1
pjxj +λ(c−

n∑
j=1

wjxj) (1.10)

subject to xj ∈ {0,1} ∀j = 1, . . . ,n (1.11)

where λ≥ 0 is the non negative multiplier associated with the capacity con-
straint. Nevertheless, solving the Lagrangian Relaxation yields a bound greater
than or equal to zLP (see, e.g., [87], Theorem 10.3). A solution value equal to
zLP is attained by setting λ = ps

ws
.

In [59], the following upper bound U2 based on packing the split item or
not is derived:

U2 = max
{⌊

p̂+(c− ŵ) ps+1
ws+1

⌋
,

⌊
p̂+ps +(c− ŵ−ws)

ps−1
ws−1

⌋}
(1.12)

The first term in (1.12) considers the case in which xs = 0. The residual
knapsack capacity (c−ŵ) is filled with the most efficient item xs+1 not packed in
the break solution. Here, the inclusion of xs+1 in {0,1} is replaced by xs+1 ≥ 0.
The second term refers to the case where xs = 1. By definition, the split item
added to the split solution exceeds the knapsack capacity (c− ŵ−ws < 0). A
valid bound for KP is obtained by removing the most effective item before xs

without any restriction, namely xs−1 ≥ 0, until the capacity excess is 0. Clearly,
in any optimal solution the break item xs is either 0 or 1. Therefore, taking
the maximum between the two terms in (1.12) yields a valid upper bound for
KP. We note that U2 ≤ U1. Running the algorithm in [6], U2 can be computed
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in O(n) since the algorithm identifies also items s+1 and s−1 together with
the split item s.

Extending this principle, an upper bound based on a partial enumeration
procedure is proposed in [60]. Let us denote by M a subset of the items
j = 1, . . . ,n. Also, let us denote by XM = {xj ∈ {0,1}, j ∈M} the set of the
0–1 vectors representing the values of the variables xj , with j ∈M . Since every
optimal solution of KP must be originated in one of the vectors in M , an upper
bound on KP is given by

UM = max
x̃∈XM

{U(x̃)} (1.13)

where U(x̃) is a generic upper bound for KP with xj = x̃j and j ∈M . The
complexity of calculating UM is equal to the complexity of computing U(x̃)
times O(2|M |), thus this bound may make sense only for relatively small sets
M . Generally speaking, tighter values of the bound are obtained when M

consists of items with efficiency similar to that of the break item. Other bounds
following a similar reasoning were laid out in [29], [28] and [67].

Finally, we mention further approaches for deriving bounds for KP which
rely on adding valid inequalities to KP LP . These inequalities reduce the
solution space of KP LP without discarding optimal solutions of model (KP ).
We cite the studies of the facets of the knapsack polytope in [5], [36], [86] and
the bounds derived in [5] and [62] by working out cardinality constraints on
the number of items.

1.2.6 Variable Reduction

Methods and techniques have been proposed for reducing the size of KP
instances as well. The first reduction algorithm was presented in [43]. This
and other similar reduction methods are based on computing upper bounds
when a variable xj is set either to 0 or 1. If one of the upper bounds of this
dichotomic search is less than a lower bound available, the variable xj can be
fixed at its optimal value. Let us denote by LB a lower bound for KP found by
some heuristic and by u0

j an upper bound for KP without item j (namely for
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model (KP ) with the additional constraint xj = 0). Similarly, let us denote
by u1

j an upper bound for KP when item j is packed (model (KP ) with the
constraint xj = 1). The set N1 of the variables xj which can be fixed to 1 is

N1 = {j = 1, . . . ,n | u0
j < LB +1}. (1.14)

In fact, if discarding an item would not lead to a solution better than the
incumbent solution, item j must be necessarily part of a possible improving
solution. The term LB + 1 comes from the integrality of the input data.
Analogously, the set N0 of the variables xj which can be fixed to 0 is

N0 = {j = 1, . . . ,n | u1
j < LB +1}. (1.15)

Fixing the variables in N0 and N1 yields a reduced KP instance hopefully
easier to solve than the original one. Given this general picture, the time
complexity of a reduction scheme depends on the computational effort required
to compute the upper bounds. In [27], the following bounds are derived for
each item j

u0
j = p̂−pj +(c− ŵ +wj)

ps

ws
j = 1, . . . , s−1 (1.16)

and

u1
j = p̂+pj +(c− ŵ−wj)

ps

ws
j = s+1, . . . ,n (1.17)

where the integrality constraint on the split item is replaced with xs ≥ 0.
Notice that these upper bounds are based on the optimal solution of the linear
relaxation. Therefore, computing u1

j for j < s and u0
j for j > s is meaningless

since additional constraints on the variables do not affect zLP .
Once the split item is known, each bound can be calculated in constant time.
Therefore, the complexity of the overall reduction is O(n). The reduction
scheme proposed in [43] provides tighter bounds but with a higher complexity
O(n2). An improved reduction approach running in O(n logn) is devised in
[60].
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1.2.7 Core Problem

Computational experiments carried out over many different test instances
indicated that usually only a relatively small subset of the items is critical
for finding an optimal solution of KP. More precisely, the empirical evidence
suggests that items with high efficiency pj

wj
are very likely to be included in the

knapsack while items having a low efficiency are not expected to be part of an
optimal solution. Basically, the crucial decision may concern the selection of
items with efficiency close to that of the split item ps

ws
. These items constitute

the so-called core of a knapsack problem. The first definition of the core was
presented in [6]. This definition assumes the knowledge of the optimal solution
vector x∗ and the sorting of the items by efficiency. Let us define indexes j1

and j2 as

j1 = min {j : x∗
j = 0)}; (1.18)

j2 = max {j : x∗
j = 1)}. (1.19)

The core is constituted by the items in the interval C = {j1, . . . , j2} and the
corresponding core problem is formulated as

maximize
∑
j∈C

pjxj +P (1.20)

subject to
∑
j∈C

wjxj ≤ c−W (1.21)

xj ∈ {0,1} ∀j ∈ C (1.22)

where P =
j1−1∑
j=1

pj and W =
j1−1∑
j=1

wj .

For different classes of instances (with the exception of the strongly corre-
lated instances) the size of the core is expected to be a relatively small fraction
of the number of the items. Therefore, with an a–priori knowledge of j1 and
j2 we could reasonably solve the core problem by algorithms like branch and
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bound or dynamic programming. Clearly, we don’t have this a–priori knowledge.
The core can be only "guessed" by algorithms and, due to this uncertainty, we
also need to validate the setting of the variables outside the core. Nonetheless,
exploiting the core concept constitutes a fundamental ingredient for the most
effective exact solution approaches of the 0–1 Knapsack Problem, as discussed
in Section 1.5.

The main advantage of focusing on a core problem is that high quality (or
optimal) solutions could be reached quickly. On one hand, having good lower
bounds in the early stages may enhance the performances of algorithms in
solving the core problem with a limited computational effort. On the other
hand, high quality solutions make reduction rules more effective in fixing the
variables outside the core. In addition, since only a subset of the items is
considered, the sorting of all items can be avoided. This is beneficial for solving
instances, such as the uncorrelated instances, where the computational time
required for sorting all items dominates the overall solution time.

Nevertheless, a degeneration issue may arise in algorithms relying on the
core concept, as pointed out in [77]. Items in the core have similar efficiency
levels, so basically solving the core problem amounts to getting a filled knapsack.
When the core is composed of items with similar (or proportional) weights, it
may be difficult to reach a good solution which fills the knapsack capacity (for
further details on the matter, see [77]). In these cases, algorithms suffering
from the absence of a good lower bound, like a branch and bound algorithm,
could get stuck in the complete enumeration of the variables in the core with
computational time O(2|C|).

In the next sections, we provide a general picture of the main algorithms
and methods designed for the exact solution of KP: Dynamic programming,
Branch and Bound and Core based algorithms.

1.3 Dynamic programming algorithms

Many combinatorial optimization problems are difficult to solve because their
parts interact. A decision made in one part of the problem influences the
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other parts with unpredictable consequences. However, in some circumstances
it is possible to identify a "channel" through which these interactions are
limited. In particular, a global optimal solution can be reached by defining
suitable sub–problems and combining their optimal solutions. This is the
principle of dynamic programming, which is a technique applied in many areas
of combinatorial optimization. The seminal book by Bellman [7] is the most
valuable reference for an introduction in this field.

1.3.1 Dynamic programming by weights and by profits

In the classical dynamic program designed for KP, called also dynamic program-
ming by weights, the idea is to consider sub–problems induced by a subset of the
items and by a capacity value less or equal than c. The dynamic program works
under the assumption that coefficients wj and c are integer. Suppose that, for
a subset of the items, we are given the optimal solutions of the corresponding
sub–problems for all capacities values from 1 up to c. Then, an item is added
and the solutions for this enlarged subset are easily computed by considering
the previous solutions. The procedure iterates until all items are considered
thus delivering a global optimal solution.

More precisely, let us denote by zj(d) the optimal solution value of the
knapsack sub–problem consisting of items 1, . . . , j and capacity d ≤ c. Once
zj−1(d) has been calculated for all capacities d = 1, . . . , c, the solution values
zj(d) are computed according to the following recursion

zj(d) =
 zj−1(d) if d < wj ,

max{zj−1(d), zj−1(d−wj)+pj} if d≥ wj .
(1.23)

for j = 1, . . . ,n and d = 1, . . . , c. The recursion formula (1.23) is known as
Bellman Recursion and has a straightforward meaning. If d < wj , this means
that item j cannot be part of a sub–problem with capacity less than its weight,
therefore the optimal solution for the sub–problem does not change. Conversely,
if item j fits in the knapsack, there are two possibilities: either item j is
discarded or it is picked. In the former case, clearly the solution zj(d) is equal
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to zj−1(d). In the latter, item j contributes to the objective function with its
profit pj decreasing the capacity available to d−wj . By definition, the best
solution value for the sub–problem with capacity d−wj and items 1, . . . , j−1
is given by zj−1(d−wj). Therefore, taking the maximum between zj−1(d) and
zj−1(d−wj)+pj yields the optimal solution value for zj(d).

After an initialization step where z0(d) = 0 for d = 1, . . . , c, recursion (1.23)
is applied for j = 1, . . . ,n. Eventually, the optimal solution value is given by
zn(c). It is easy to see that, for each item, we compute the optimal solution
values of c sub–problems in constant time. Thus, the overall complexity of
the algorithm is O(nc) establishing a pseudopolynomial algorithm for KP. In a
naive implementation of the algorithm, the complexity in space is also O(nc)
since we have to store all the solution values in the iterations.

The optimal solution set can be obtained by a simple backtracking strategy.
It is sufficient to introduce 0–1 pointers Aj(d) encoding the information whether
item j has been placed into the knapsack sub–problem with capacity d (Aj(d) =
1) or not (Aj(d) = 0), namely

Aj(d) =
 1 if zj(d) = zj−1(d−wj)+pj ,

0 if zj(d) = zj−1(d).
(1.24)

The optimal solution is reconstructed in the following way. If An(c) = 1, item
n is part of the optimal solution and then we check An−1(c−wn). If An(c) = 0,
item n is not in the optimal solution, thus we analyze An−1(c). Following
this reasoning, the overall solution set is computed. In this implementation, a
further table to store the values of the pointers is needed.

We mention a general procedure proposed in [70] for reducing the space
requirements and computing the optimal solution set in dynamic programming
algorithms without increasing the overall running time. This generalized
scheme is based on a recursive divide and conquer strategy which breaks down
a problem in smaller and smaller sub–problems until it becomes easy to identify
the optimal solution sets of the sub–problems at hand. These sets are then
combined to reach a global solution. Among the different applications of
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interest, the space complexity of the dynamic programming for KP is reduced
to O(n+ c).

The dynamic programming by weights has been the first approach proposed
for the exact solution of the knapsack problem. There exists also a dynamic
programming by profits which is also useful for deriving approximation schemes
as described in Section 1.6. Since the algorithm involves similar arguments as
for dynamic programming by weights, we just outline the necessary definitions
and formulas.
The main idea is to define sub–problems with a subset of items where a profit
level must be reached with the minimum weight. Assuming integer profits,
let us denote by yj(q) the minimum weight of the subset of items 1, . . . , j to
reach a total profit q, with q = 1, . . . ,U and U indicating an upper bound on
the objective function. If no solution exist for yj(q), we set yj(q) = c+ 1. First,
we initialize y0(0) = 0 and y0(q) = c + 1 for q = 1, . . . ,U . Then, the following
recursion is iteratively applied for j = 1, . . . ,n and q = 1, . . . ,U

yj(q) =
 yj−1(q) if q < pj ,

min{yj−1(q),yj−1(q−pj)+wj} if q ≥ pj .
(1.25)

The optimal solution value corresponds to max{yn(q) | yn(q)≤ c} and the
time complexity of the dynamic programming by profit is O(nU).

1.3.2 Dynamic programming with states

We outline here a technique which does not improve the worst case complexity
O(nc) of the dynamic programming by weights but often performs much better
in practice. The idea is to see each pair (d,zj(d)) as a state (wj ,pj) where pj

denotes the profit reachable with the first j items and capacity wj . For each
item j, we can introduced a list of states

Lj = [(w1j ,p1j),(w2j ,p2j), . . . ,(wmj ,pmj)] (1.26)
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with the number of states bounded by c. The states in a list may be reduced
applying the following dominance rule:

Given two generic states (w,p) and (w′,p′), if w < w′ and p≥ p′ or w ≤ w′

and p > p′, the state (w′,p′) is said to be dominated by the state (w,p) and it
will never be part of an optimal solution.

Many states may be hopefully discarded according to this principle. There-
fore, if we replace the array representation of all capacity values with a list
representation, we may deal with only a limited number of states during the
iterations with consequent improvements of the running time.

The corresponding algorithm is denoted as Dynamic programming with
states (or with lists). In the initialization step, we have a list L0 only with
the state (0,0). Then, we progressively add items as in the previous dynamic
programming algorithms. Given a list Lj , we can straightforwardly derive
the list Lj+1 for item j +1. First, a list L′

j+1 is created by a componentwise
addition of the pair (wj+1,pj+1) with Lj :

L′
j+1 = Lj⊕ (wj+1,pj+1) (1.27)

Then, the two list are merged by applying the dominance rule so as to obtain
Lj+1. Without going into details, we point out that all these operations can be
performed with complexity O(c) by keeping the states ordered by nondecreasing
weights. Hence, iterating through all items yields an overall complexity O(nc).
We observe that the total number of states is also bounded by O(2n). We
reasonably assume that the complexity O(nc) is lower than O(2n).

From a practical perspective, it is also useful to combine the dominance
concept with upper bounds to further reduce the number of states. An upper
bound for a state (wj ,pj) of item j can be derived by considering the sub–
problem with items j + 1, . . . ,n, initial profit pj and capacity c−wj . If the
upper bound computed is lower than an incumbent solution available, the state
is eliminated.

In the light of these considerations, the dynamic programming with states
can be expected to deliver practical performances much more effective than
the worst case complexity O(nc).
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1.3.3 Primal–Dual dynamic programming

The Bellman recursion computes an optimal solution for KP from scratch by
iteratively adding items. As pointed out in Section 1.2.7, generally only few
items around the split item have a different value in the optimal solutions
of KP and KP LP . This motivates the primal–dual dynamic programming
introduced in [78]. The expression primal–dual refers to the fact that also
infeasible solutions are accepted in the recursions while the previous approaches
consider only feasible solutions and they are also called primal methods.

Let us denote by za,b(d) the optimal solution of the problem:

maximize
a−1∑
j=1

pj +
b∑

j=a

pjxj (1.28)

subject to
b∑

j=a

wjxj ≤ d−
a−1∑
j=1

wj (1.29)

xj ∈ {0,1} ∀j = a, . . . , b (1.30)

In practice, za,b(d) is the optimal solution value of the knapsack problem
where items j < a are placed into the knapsack while items j > b are discarded.
The recursion formulas of the primal–dual dynamic programming are

za,b(d) =
 za,b−1(d) if d−wb < 0,

max{za,b−1(d), za,b−1(d−wb)+pb} if d−wb ≥ 0,
(1.31)

za,b(d) =
 za+1,b(d) if d+wa > 2c,

max{za+1,b(d), za+1,b(d+wa)−pa} if d+wa ≤ 2c.
(1.32)

with a = 1, . . . , s; b = s−1, . . . ,n and d = 0, . . . ,2c. Recursion (1.31) refers to
the possible selection of item b in the knapsack while recursion (1.32) evaluates
the removal of item a from the knapsack.
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The initialization step sets zs,s−1(d) = −∞ for d = 0, . . . , ŵ − 1 and
zs,s−1(d) = p̂ for d = ŵ, . . . ,2c, where ŵ and p̂ are the weight and the profit of the
split solution introduced in Section 1.2.4. After that, the recursion (1.31) and
(1.32) are alternatively used in order to compute zs,s(·),zs−1,s(·),zs−1,s+1(·), . . .
until z1,n(·) is calculated. The optimal solution value corresponds to z1,n(c).

In other words, the enumeration starts from the split item and takes in
account the split solution. Then, it proceeds either by adding an item b≥ s in
the knapsack or by removing an item a < s. The complexity of the algorithm
is again O(nc) as for the dynamic programming by weights. However, applying
the recursions with states, dominance rule and upper bounds, the practical
running time can decrease considerably. Empirical evidence showed that in
general only a small number of items around the split item has to be considered.
This concepts have been also applied within the Minknap algorithm proposed
in [76], which is one of the most effective algorithm for KP (see Section 1.5.2).

1.3.4 Balancing, Horowitz and Sahni Decomposition

Finally, we cite other two techniques outlined for dynamic programming al-
gorithms. The first one is balancing. Roughly speaking, a balanced solution
is a solution with a weight sufficiently close to the capacity bound, namely
its weight is not lower than the capacity by more than the weight of a single
item. Indeed, any optimal solution is balanced and so it may be appealing to
consider balanced states only. A balanced dynamic program is proposed in
[78]. The algorithm is capable of solving many knapsack problems in linear
time if profits and weights of the items are bounded by a constant. For KP,
the dynamic program runs with complexity O(npmaxwmax). Consequently,
balanced dynamic programming may be attractive whenever the size of profits
and weights of the items is reasonable limited.
Another method proposed in [40] is based on the decomposition of the initial
KP with n items in two sub–problems of equal size n

2 . Each sub–problem is
solved by dynamic programming with states and the results are easily combined
to find an optimal solution for the original KP. The number of states in each
sub–problem is bounded by O(2n

2 ). Hence, the running time is given by the
minimum between O(nc) and O(2n

2 ), which constitutes an improvement by a
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square root over the complete enumeration O(2n).
We mention the recent research line devoted to the design of exact exponential
algorithms for NP-hard problems. This field has been developed since the last
decade and involves the construction of exact algorithms with an exponential
complexity but which improve on the brute–force search. Incidentally, among
the main techniques, the sort–and–search paradigm ([52]) revisits the idea
in [40] of decomposing a problem in two sub–problems. The performance
comparison of the algorithms is according to the O∗(·) notation where, roughly
speaking, the polynomial contributions to the final complexity are disregarding.
The focus is in fact on the exponential contribution which gives the asymptotic
behavior of the worst case performance for large n. Although the progresses
made in the field for many combinatorial optimization problems, for KP no
improvement of the complexity bound O(2n

2 ) has been obtained so far. For a
general introduction on exact exponential algorithms, see [85, 32].

1.4 Branch and Bound algorithms

The first branch and bound algorithm for KP is proposed in [49] and many
approaches developed afterwards resemble this framework. The most successful
variants iteratively consider the most efficient items as candidate for branching.
In particular, a branch and bound algorithm is proposed in [40]. This algorithm
is denoted as the Primal–Branch algorithm in [47]. Its recursive formulation is
sketched in Algorithm 1. Each iteration corresponds to a branch operation on
the most effective free item xf . The node with xf = 1 is considered first than
the node with xf = 0. Let us denote by p′ and w′ the profit and the weight in
a node given by the previous branching on variables xj (j < f). The algorithm
backtracks either if w′ > c (line 2 of Algorithm 1) or if no additional item can
fit in the residual capacity, namely c−w′ < wf , with wf = min

j=f,...,n
wj (line 4 of

Algorithm 1) . The algorithm may also backtrack if an upper bound computed
for the node is less than a current lower bound LB (lines 5–6 of Algorithm 1) .
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Algorithm 1 Primal–Branch(f ,p′,w′):boolean
1: improved = false;
2: if w′ > c then return improved; end if
3: if p′ > LB then LB = p′; f∗ = f ; improved = true; end if
4: if f > n or c−w′ < wf then return improved; end if
5: Compute an upper bound U ′ with capacity c−w′;
6: if p′ +U ′ ≤ LB then return improved; end if
7: if Primal–Branch(f +1,p′ +pf ,w′ +wf ) then xf = 1; improved = true; end if
8: if Primal–Branch(f +1,p′,w′) then xf = 0; improved = true; end if
9: return improved;

Before launching Primal–Branch(1,0,0), LB and variables xj are set to 0.
Notice that the optimal solution vector x∗ can be defined in constant time
during the backtracking operations through the boolean variable improved. In
fact, when an improved solution is found (line 3 of Algorithm 1) in a node,
Primal–Branch algorithm then returns true in all the parents of the node
inducing the updating of corresponding variables xj (lines 7–8 of Algorithm
1). Tracking the index f∗ when the optimal solution is obtained, the optimal
solution set is simply given by setting x∗

j = xj for j = 1, . . . ,f∗−1 and x∗
j = 0

for j = f∗, . . . ,n.

The ideas of the "lazy" updating of the solution vector and of backtracking
when c−w′ < wf are introduced in [59]. Authors in [59] propose a branch and
bound algorithm, the MT1 algorithm, which is based on the same framework
of the Primal–Branch algorithm but relies also on a new dominance step among
items. Upper bound U2 is used in the iterations of the algorithm. In [61], a
comparison among different branch and bound schemes showed that in general
the MT1 algorithm runs with the lowest running times.

Eventually, we mention the primal–dual branch algorithm introduced in
[75]. In a nutshell, the rationale of the algorithm is related to the idea of
balancing cited in Section 1.3.4. The primal–dual branch algorithm considers
knapsack solutions "appropriately filled" by inserting or removing items around
the split item and the split solution. Contrary to the previous branch and
bound algorithms, the primal–dual algorithm also goes over infeasible solutions.
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1.5 Core based algorithms

The most successful algorithms for KP are based on the core concept introduced
in Section 1.2.7. As said, the definition of the core is based on the knowledge of
the optimal solution. The core is only guessed by algorithms usually through
the choice of 2δ delta items around the split item. The initial step of the
algorithms is the search of an approximated core.
The first methods for finding a core were presented in [6] and [60]. In [75], a
modification of the classical quicksort algorithm ([38]) effectively determines a
core C = {s− δ, . . . , s+ δ} around the split item s of size 2δ +1. The algorithm,
denoted as Find–Core, recursively partitions intervals of items considering
their efficiency levels. The algorithm resembles the quicksort algorithm except
for the fact that only the intervals including the split item are partitioned
further. This characteristic reduces the complexity of the algorithm to O(n).
The discarded intervals constitute a partial ordering of the items by efficiency
and this information may be also used in algorithmic frameworks. Items in
any interval are not sorted but there is an ordering among the intervals. The
final outcome of the Find–Core procedure is the core C and intervals of items
saved in two stacks H and L. Items in an interval H have a higher efficiency
than the one of the items in the core while items in L have a lower efficiency.
The ordering of the intervals by non–increasing efficiency of the items may be
represented as follows:

H︷ ︸︸ ︷
H1,H2, . . . ,HH ,C,

L︷ ︸︸ ︷
Ll, . . . ,L2,L1 (1.33)

Some of the main algorithms based on the core concept are discussed in the
following.

1.5.1 MT2 algorithm

The MT2 algorithm is introduced in [60]. The algorithm is based on computing
and exploiting a fixed core. Its main steps can be summarized as follows:



26 The 0–1 Knapsack Problem

1. An approximated core C = {s− δ, . . . , s+ δ} is first computed. The core
size | C | is equal to n for n < 100, otherwise we set | C |=

√
n.

2. Items in the core are ordered by efficiency and the core problem is solved
by MT1 algorithm. Let denote by z∗

C the corresponding optimal solution
value.

3. The enumerative upper bound UC is calculated (as UM in Section 1.2.5).

If UC ≤
s−δ−1∑

j=1
pj + z∗

C the core solution is optimal and the algorithm
terminates.

4. The reduction scheme in [60] fixes the variables outside the core. If not
all variables can be fixed, the remaining variables are sorted by efficiency
and the induced sub–problem is solved by MT1 algorithm.

Other algorithms with a fixed core are presented in [6] and [29]. A description
of all these algorithms and some computational tests are provided in [61]. A
special variant of MT2 algorithm, called MTh, is proposed in [62]. For this
algorithm, the use of cardinality constraints and other techniques may allow a
drastic improvement the computational performance of MT2.

1.5.2 Minknap algorithm

Since the core is hard to estimate, algorithms based on a variable expanding
core have been proposed in [75] and in [76]. We provide here a more detailed
description of the Minknap algorithm in [76] which constitutes also the backbone
of the current state-of-the-art Combo algorithm. The main idea is to compute a
core with only the split item through the Find–Core procedure and to iteratively
add items considering the intervals in stacks H and L. The solution space of
the expanding core is explored by a dynamic programming with states. An
effective procedure for analyzing dominance among states combined with the
use of suitable upper bounds makes the algorithm very effective. Moreover,
reduction and sorting operations are performed only when they are needed.
We sketch the main features of the algorithm in the following:
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1. First, the Find–Core algorithm finds the core C = {s} as well as the
stacks of intervals H and L.

2. At each iteration, two items h and l are considered for expanding the
core to the left and to the right respectively. These items belong to the
current set of items sorted by efficiency outside the core: h is the item in
H with the smallest efficiency while l is the item in L with the largest
efficiency. The corresponding variables are equal to the value in the
split solution, namely xh = 1 and xl = 0. A dynamic programming with
states alternatively evaluates the insertion of item l in the knapsack or the
removal of item h. Each state is denoted as a triple representing the profit,
the weight and a partial representation of the corresponding solution
set of packed items. The third element is used to efficiently recover the
optimal solution set. Basically, the dynamic program implements the
recursions (1.31) and (1.32) and adds items h and l to the core. If there
is no such item h or l in the set of sorted variables, the next interval
respectively from H or L is selected. The reduction scheme in [27] is
applied to fix variables in the interval. If there are variables not fixed,
these are ordered and added to the set of sorted items.

3. Before the inclusion in the recursions of item h or l, an enumerative upper
bound is computed considering all undominated states. A reduction test
is then performed in order to avoid the inclusion of the items in the core.
Computing this upper bound is time–consuming since we have to go
through all states of the dynamic program. At the same time, it may
limit the size of the core considerably thus yielding savings in the overall
running time.

4. States within dynamic programming can be eliminated by the dominance
criterion or by an upper bound test. Upper bounds on states are computed
in constant time by considering the most effective items on the right or
on left of the core according to whether the weight of the state is less or
greater than the capacity value.

5. The algorithm terminates when all states have been eliminated or all
items outside the core have been fixed. The optimal solution vector is
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reconstructed by an efficient procedure based on consecutively solving a
limited number of knapsack problems.

The Minknap algorithm is proven to yield the smallest symmetrical core
around the split item with respect to a fixed–core algorithm ([76]).
Finally, we cite the Expknap algorithm provided in [75]. The algorithm is very
similar to Minknap and relies on the use of the primal–dual branch algorithm
instead of dynamic programming. Minknap can be seen as a breadth–first
search variant of Expknap and this feature is crucial for properly handling the
structure of the expanding core.

1.5.3 Combo algorithm

The current state-of-the-art algorithm for KP is presented in [57]. The algorithm
is called Combo since it combines different techniques and methods previously
developed and it is very effective in solving large KP instances. We just mention
the features of the algorithm since essentially it is based on the structure of
Minknap. The dynamic programming introduced in Minknap starts with an
initial core with up to eight items. This core is built with some heuristic rules.
The core is then expanded and additional techniques are further introduced if
the problem seems to become difficult to solve. These techniques rely on the
greatest common divisor of the weights of the items, on the introduction of
minimum and maximum cardinality constraints and on pairing the dynamic
programming states with items not included in the core.
The criterion used as measure of the problem hardness is the number of states in
the dynamic program. The comparison with three threshold values establishes
which technique should be employed during the iterations of the algorithm.

In [57], an extensive performance analysis of the most effective exact algo-
rithms for KP is presented. More precisely, algorithms Minknap, MTh and
Combo were tested over several classes of instances with up to 10000 items. The
results showed a comparable performance of Minknap and MTh which solved
many instances in limited computational time (less than one second). However,
there are instances where the algorithms ran into difficulties (e.g. in strongly
correlated instances for Minknap and in even-odd instances for MTh). Combo
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exhibited a stable performance and strongly outperformed both Minknap and
MTh, successfully solving all instances in few milliseconds at most. For further
details on the matter, see [57].

A final remark is that, although the algorithms proposed in the literature
as well as nowadays ILP solvers manage to effectively solve large KP instances,
the research for the knapsack problem cannot be considered concluded. In
[79], computational tests with the same algorithms showed that KP is still
hard to solve for many different instances. These instances were built either
by considering standard instances with profits and weights distributed in
larger intervals, or by designing new classes of instances which compromise
the effectiveness of the commonly employed techniques for computing upper
bounds on KP.

1.6 Approximation schemes

For various reasons, such as limited resources or time, one might be interested
in suboptimal solutions of a problem rather than getting an optimal solution
at all costs. Clearly, it is desirable that the objective value of these solutions
is relatively close to the optimal solution value and to be able to measure the
gap of the computed solution from the optimum. This is the general principle
of approximation algorithms. For the knapsack problem, a lot of research
has been devoted to this topic. In this section, we outline the features of the
main approximation algorithms devised for KP. In addition, we discuss general
conditions to derive approximation schemes according to the results presented
in [83].

1.6.1 Approximation algorithms for KP

We first recall the basic definition of an approximation algorithm with a relative
performance guarantee for a maximization problem. Consider an algorithm A

computing a solution value zA for a problem with optimal solution value z∗.
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Definition 1. Algorithm A is an approximation algorithm with relative perfor-
mance guarantee r (< 1) if

zA

z∗ ≥ r (1.34)

holds for all problem instances.

Thus, algorithm A always provides solutions whose value is at least a given
percentage of the optimal value. The relative performance guarantee r is also
called approximation ratio.
The Greedy algorithm introduced in Section 1.2.4 provides a solution resembling
the optimal solution of the linear relaxation. One might think that the solution
value obtained by Greedy is reasonably not far from the optimum for any
instance of KP. Unfortunately, this is not the case.
Consider the following instance with n = 2, c = M , p1 = 2, w1 = 1, p2 = w2 = M

and M being an arbitrary positive integer number. According to the efficiencies
of the items, Greedy will pack item 1 only obtaining a solution with value 2.
The optimal solution is given by selecting item 2 and has value M . Therefore,
for large values of M , the performance of the heuristic is arbitrarily bad.
However, these pathological situations can be avoided by taking the maximum
between the profits attained by Greedy and the maximum profit of the items
pmax. Denote the corresponding value by zG. From the results of the linear
relaxation of KP in Section 1.2.3, we have:

z∗ ≤ zLP ≤
s−1∑
j=1

pj +pmax ≤ zG + zG = 2zG (1.35)

Hence, this slight modification of Greedy algorithm reaches always a profit
equal to at least one half of the optimal value and therefore constitutes an
algorithm with a relative performance guarantee of 1

2 . It is easy to show that
this performance guarantee is also tight. Consider a slight modification of the
previous instance with entries: n = 3, c = 2M , p1 = 2, w1 = 1, p2 = w2 = p3 =
w3 = M . The algorithm will select item 1 and either item 2 or item 3 getting
a solution with value 2+ M . The optimal solution consists in packing items
2 and 3 and has value 2M , which implies that the approximation ratio goes
arbitrarily close to 1

2 as M increases.
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Recall now the definition of an ε–approximation scheme where the relative
performance guarantee is not constant but depends on a parameter ε.

Definition 2. Algorithm A is an ε–approximation scheme if, for every ε∈ (0,1),

zA ≥ (1− ε)z∗ (1.36)

holds for all problem instances.

An ε–approximation scheme is a Polynomial Time Approximation Scheme
(PTAS) if its running time is polynomial in n, whereas it is a Fully Polynomial
Time Approximation Scheme (FPTAS) if the running time is polynomial both
in n and 1

ε .

All PTASs for KP follow the idea of "guessing" a certain number of items
with the largest profits included in the optimal solution by going through
feasible tuples of items. The residual capacity in the sub–problems is filled in a
heuristic way. All algorithms require a space complexity O(n). We mention
the classical PTAS proposed in [84] which runs with complexity O(n 1

ε ). An
improved PTAS is presented in [12], which has an approximation ratio k+1

k+2 and
complexity O(nk) for some parameter k.

FPTASs for KP are derived by applying a scaling technique on the profits
of the items. We illustrate the basic method to construct an FPTAS. First, we
scale the profits pj and consider new profits p̃j =

⌊
pj

K

⌋
with a constant K to

be appropriately chosen. Then, we simply run the dynamic programming by
profits on the problem with scaled profits. Notice that any feasible solution for
this problem is also feasible for KP. Denote by X̃ the optimal solution set for
the scaled instances and by zA the corresponding solution value in the original
problem, i.e. zA = ∑

j∈X̃

pj . The optimal solution set for KP is denoted by X∗.

Then, the following series of inequalities holds:

zA =
∑
j∈X̃

pj ≥
∑
j∈X̃

K
⌊

pj

K

⌋
≥

∑
j∈X∗

K
⌊

pj

K

⌋
≥

∑
j∈X∗

K
(

pj

K
−1

)
= z∗−K |X∗|

(1.37)
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In particular, the second crucial inequality is due to the fact X̃ is an optimal
solution for the problem with scaled profits, whereas X∗ is not necessarily
optimal for this problem. In order to obtain the performance guarantee of
(1− ε), we must have:

K ≤ εz∗

|X∗|
(1.38)

Since the cardinality of the optimal solution set X∗ is bounded by n and
pmax ≤ z∗, condition (1.38) is easily satisfied by setting K = εpmax

n .
The running time of the dynamic programming is O(nŨ), where Ũ is a generic
upper bound on the scaled problem. A simple upper bound is given by
np̃max ≤ npmax

K = n2

ε . The overall running time is O(n3 1
ε ) thus establishing an

FPTAS for KP. The space complexity is also O(n3 1
ε).

Improving on this basic approach, FPTASs for the knapsack problem were
given in [41], [51], [55]. The current best performing FPTAS is provided in
[45, 46] with complexity O(nmin{logn, log(1

ε )}+ 1
ε2 log(1

ε )min{n, 1
ε log(1

ε )}) in
time and O(n+ 1

ε2 ) in space.

1.6.2 About the existence of an FPTAS and inapprox-
imability

While KP admits a basic FPTAS, in general it may be not immediate to derive
an FPTAS even for apparently slight variations of KP. In some cases, it is also
unclear if any approximation algorithm could exist at all. We briefly describe
straightforward conditions provided in [83] for establishing the existence of an
FPTAS for a general family of problems called subset selection problems. We
report a definition of these problems from [73], which is a variant of the general
definition given in [83].

Definition 3. ([73]) A subset selection problem is defined by a ground set X

with n elements each of which has associated a positive profit p(x) for x ∈X

and for each subset Y of X it can be decided in polynomial time whether Y is
feasible. Moreover assume that every instance of the subset selection problem
has a feasible solution. Then we are looking for a feasible subset of X with
maximum total profit.
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The following theorem about the existence of an FPTAS based on a pseu-
dopolynomial algorithm holds:

Theorem 1. ([83]) If there exists an exact algorithm for a subset selection
problem with running time polynomial in n and in ∑

x∈X
p(x) then there exists

also an FPTAS for this problem.

It easy to see that KP is a subset selection problem and it is solvable by a
pseudopolynomial algorithm with a polynomial running time in the number of
variables and profits (i.e. the dynamic programming by profits). At the same
time, if a KP variant (or another problem) does not belong to this class, this
may be taken as a clue, but not a proof, that an FPTAS and/or approximation
algorithms might not exist.
Negative approximation results are also worthy since they provide insights into
the structural difficulty of a problem, as we shall see in Chapter 2 and Chapter
4.
There are different ways for proving inapproximability. A well–known technique
consists in showing that the existence of an approximation algorithm for a
problem would decide in polynomial time some NP–complete problem thus
contradicting the common belief that P ̸=NP .

1.7 Some variants of the 0–1 Knapsack Prob-
lem

In the following, we mention some classical variants of KP. An exhaustive
discussion of these problems is far beyond the scope of this section. The reader
may refer to the literature for further details on these variants and on other
knapsack–like problems. The literature review of the generalizations of KP
tackled in the thesis is given in the corresponding chapters.

A natural extension of KP is the Bounded Knapsack Problem (BKP), in
which many copies of each item are available. Formally, if we denote by bj the
number of copies of item j, the ILP formulation of the problem corresponds to
model (KP ) where constraint (1.3) is replaced by:
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xj ≤ bj ,xj ∈ N0 j = 1, . . . ,n (1.39)

The Bounded Knapsack Problem reflects situations for example in cargo loading
where different quantities of the same product can be transported. A variant is
the Unbounded Knapsack Problem (UKP) where each item has an unlimited
number of copies.

A famous special case of KP is the Subset Sum Problem (SSP), in which
the profits of the items are equal to their weights, i.e. pj = wj . The optimal
solution of this problem consists in filling the knapsack capacity as much as
possible. The Subset Sum Problem has been intensively studied because of its
numerous applications in different combinatorial optimization problems.

Many real–life applications require the modeling of more than a capacity
constraints. For example, items may have to be packed by considering limits
also on their volumes and/or other features. The resulting generalization
of KP is the multidimensional knapsack problem (MKP) which is another
problem strongly investigated in the literature. The problem can be formulated
by replacing the capacity constraint (1.2) in model (KP ) by the series of
inequalities

n∑
j=1

wijxj ≤ ci i = 1, . . . ,d (1.40)

where wij and ci denote the weights of the items j and the capacity value for
the dimension i = 1, . . . ,d.

Another challenging variant of KP is the quadratic knapsack problem (QKP)
in which the total profit obtained by a solution reflects how well the items fit
together. Denoting by pjj the profit of item j and by pij the additional profit
(or cost) if item j is packed together with another item i, QKP is formulated
by replacing the objective function of model (KP ) by:

maximize
n∑

i=1

n∑
j=1

pijxixj (1.41)
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A further variant is the Multiple Choice Knapsack Problem (MCKP). The
items belong to disjoint classes and MCKP requires that exactly one item from
each class has to be placed into the knapsack. Let us denote m disjoint classes
of items by N1, . . . ,Nm. Each item j ∈ Ni has a weight wij and a profit pij .
MCKP can be expressed by the following model

maximize
m∑

i=1

∑
j∈Ni

pijxij (1.42)

subject to
m∑

i=1

∑
j∈Ni

wijxij ≤ c (1.43)

∑
j∈Ni

xij = 1 i = 1, . . . ,m, (1.44)

xij ∈ {0,1} i = 1, . . . ,m, j ∈Ni (1.45)

where constraint (1.44) ensures that exactly one item is selected from the
corresponding class. In order to guarantee feasible and not trivial solutions, it
is commonly assumed that:

m∑
i=1

min
j∈Ni

{wij} ≤ c <
m∑

i=1
max
j∈Ni

{wij} (1.46)



The 0–1 Knapsack Problem with Setups

2.1 Introduction

The 0–1 Knapsack Problem with Setups (KPS - originally introduced in [16])
can be seen as a generalization of KP where items belong to disjoint families
(or classes) and can be selected only if the corresponding family is activated.
The selection of a family involves setup costs and resource consumptions thus
affecting both the objective function and the capacity constraint. KPS has
many applications of interest such as make–to–order production contexts, cargo
loading and product category management among others and more generally
for resource allocation problems involving classes of elements (see, e.g., [17]).

Another application of KPS comes from the smart-home paradigm where
the goal of efficiently managing the energy consumption in buildings is a strong
commitment (see Project FLEXMETER funded by the European Commission
under H2020 [1]). Here energy providers are requested to manage peak demands
while satisfying an aggregated demand curve in order to avoid blackouts due to
high peak demands. In this context, it may be required to shut down several
home appliances whenever a Demand Response event for overall exceeding
energy consumption is identified. This corresponds to select the best appliances
to be shut down, by taking into account their relevance and their energy
consumption, while also minimizing the houses involved in this shut down.
Here, the families of items are the houses that we do not want to shut down
and the items are their appliances. Thus, this is another practical application
of KPS.
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In [16], the authors consider the case with setup costs and profits of items be-
ing either positive or negative. A pseudopolynomial time dynamic programming
approach and a two–phase enumerative scheme are proposed.

Considering the pseudo–polynomial time algorithm of [16] and the fact
that KP is a special case of KPS, namely in the case where there is only one
family, we can state that KPS is weakly NP–hard. In [89], a branch and bound
algorithm is proposed for KPS. The algorithm turns out to solve instances with
up to 10000 variables. Nonetheless the approach does not solve several large
instances due to memory overflow. The current state-of-the-art exact approach
for KPS is the one reported in [17] where an improved dynamic programming
procedure is proposed. The procedure favorably compares to the commercial
solver CPLEX 12.5 since it solves to optimality instances with up to 10000
items which turn out to be harder than the ones proposed in [89]. Further
references can be found in [17].

Also a number of problems closely related to KPS were treated in the
literature. In [14], a metaheuristic–based algorithm (cross entropy) is proposed
in order to deal with KPS with more than one copy per item (cf. the Bounded
Knapsack Problem). In [4], a variant of KPS with fractional items is considered
and the authors present both heuristic methods and an exact algorithm based
on cross decomposition techniques. In [3], the special case of KPS with no setup
capacity consumptions but only setup costs is considered. For this so-called
fixed–charge knapsack problem the author proposes both heuristic procedures
and an exact branch and bound algorithm. A valuable overview of the literature
of various KPS variants is provided in [65], which also devises a branch and
bound scheme.

In this chapter, we propose two solution approaches for KPS. At first,
we introduce an exact enumerative approach for KPS relying on an effective
exploration of the solution space which exploits the partitioning of the variables
set into two levels and requires the solution of several ILP models that show up
to be easy to solve in practice. While the idea of approaching a combinatorial
optimization problem by solving related simpler ILP formulations was already
done in heuristic procedures (see, for instance, [24] for the closest string
problem), here we do it within an exact approach.
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Then, we introduce a new improved dynamic programming algorithm
motivated by the connection of KPS to a knapsack problem with precedence
constraints. The main aim of the new dynamic programming is to derive
approximation results for KPS. At the same time, this pseudo–polynomial
algorithm can be stated with less involved notation and turns out to outperform
the recent dynamic programming approach by [17]. Moreover, it performs
comparably to the proposed exact enumerative approach but avoids the use of
an ILP-solver.

After discussing our solution approaches, we provide further insights into
KPS and derive a number of approximation results. More precisely, we show
that no polynomial approximation algorithm can exist for the problem in the
general case unless P =NP and we investigate several conditions for deriving
fully polynomial time approximation schemes (FPTASs). Thus, we make
progress in characterizing the borderline between non-approximability and
existence of approximation schemes.

The research contribution of this chapter resulted in papers published ([25])
or accepted for publication ([72]) in international journals. A part of the
contents has been presented at the international conference EURO 2015 and at
the national conference AIRO 2014.
The chapter is organized as follows. In Section 2.2, the linear programming
formulation of the problem is briefly described. We present the exact enumera-
tive approach in Section 2.3 and the new dynamic programming algorithm in
Section 2.4. In Section 2.5 computational results are discussed. Approximation
results are discussed in Section 2.6.

2.2 Notation and problem formulation

In KPS a set of N families of items is given together with a knapsack with
capacity b. Each family i ∈ {1, . . . ,N} has ni items, a non–negative setup cost
represented by an integer fi and a non–negative setup capacity consumption
denoted by an integer di. The total number of items is denoted by n :=∑N

i=1 ni.
Each item j ∈ {1, . . . ,ni} of a family i has a non–negative integer profit pij

and a non–negative integer capacity consumption wij . The problem calls for
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maximizing the total profit of the selected items minus the fixed costs of the
selected families without exceeding the knapsack capacity b. W.l.o.g. we can
assume that wij +di ≤ b for all items. Any item violating this condition can be
removed from the problem since it can never be part of a feasible solution. To
derive an ILP-formulation we associate with each item j of family i a binary
variable xij such that xij = 1 iff item j of family i is placed in the knapsack.
To each family i we associate a binary variable yi such that yi = 1 iff family i

is activated. The following ILP formulation of KPS (denoted KPS1) holds.

KPS1:

maximize
N∑

i=1

ni∑
j=1

pijxij−
N∑

i=1
fiyi (2.1)

subject to
N∑

i=1

ni∑
j=1

wijxij +
N∑

i=1
diyi ≤ b (2.2)

xij ≤ yi j = 1, . . . ,ni, i = 1, . . . ,N (2.3)
xij ∈ {0,1} j = 1, . . . ,ni, i = 1, . . . ,N (2.4)
yi ∈ {0,1} i = 1, . . . ,N (2.5)

The objective function (2.1) maximizes the sum of the profits of the selected
items minus the costs induced by the activated families; the capacity constraint
(2.2) guarantees that the sum of weights for selected items and families does
not exceed the capacity value b; constraints (2.3) ensure that an item can be
chosen if and only if the corresponding family is activated; finally constraints
(2.4), (2.5) indicate that all variables are binary.

2.3 An exact enumerative solution approach

2.3.1 Rationale and preliminaries

Let us denote by KPSLP the linear relaxation of KPS1 where both integrality
constraints (2.4) and (2.5) are replaced by the inclusion in [0,1]. It is known [89]
that there exists at least one optimal solution of KPSLP where there is at most
one fractional variable yi while there are typically many fractional variables
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xij . We recall the special structure of KPSLP sketched by [89] in Section
2.6.1. Anyhow, as an example we tested an instance from [17] with 10000
variables and 30 families: the optimal continuous solution has one fractional
variable yi and 330 fractional variables xij . Then, branching on any fractional
xij always induced continuous solutions with more than 300 fractional xj and
one fractional yi (often different from the one related to the original problem).
Besides, branching on the fractional yi, induced again fractional continuous
solutions (always more than 300 fractional xij and another fractional yi). This,
presumably, is the main reason for which a standard ILP solver runs already
into difficulties on several instances of KPS1 with 1000 items (see Section 2.5).
Our approach instead aims to exploit the structure of KPS, where the set of
variables is partitioned into two levels, variables yi (first level variables) and
variables xij (second level variables). The practical hardness of the problem
comes from these two sets of variables that must be properly combined to reach
an optimal solution. At the same time, once the families are chosen, KPS boils
down to a standard KP, which is in practice well handled by nowadays ILP
solvers and specialized algorithms. Note that the idea of using approaches
based on the repeated solution of NP–hard sub–problems is not new. For
instance, in [2], the famous shifting bottleneck procedure for the job shop
problem was based on the repeated solution of a single machine problem with
release times and tails that, although being NP–hard in the strong sense, is
well solved in practice by the exact algorithm in [13]. Here, as the selection
of the families induces problems that are tractable in practice, we focus on an
efficient exploration of the solution space defined by the first level variables.
In particular, we propose an exact enumerative approach, hereafter denoted
as FLEA (for First Level variables Exploration based Approach), based on
the idea of limiting the range on the number of families that may lead to an
optimal solution and seeking for solutions within this range. Three main steps
are involved. In the first step an initial feasible solution is computed and a
standard variable fixing procedure is applied through the reduced costs of the
non–basic variables in the optimal solution of the continuous relaxation of
the problem. The second step concerns the detection of the range of possible
optimal number of families. This leads to the identification of sub–problems
that are tackled in the third phase. We use the ILP solver (CPLEX 12.5)
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whenever the solution of an ILP model is required by our approach. In the
following, we describe the three steps of FLEA algorithm whose pseudo code
is presented below.

2.3.2 Initial feasible solution computation and variables
fixing

We start by considering KPSLP where, in addition, we require the sum of the
selected families to be integer. Thus, we get the following model (denoted by
KPS2).

KPS2:

maximize
N∑

i=1

ni∑
j=1

pijxij−
N∑

i=1
fiyi (2.6)

subject to (2.2),(2.3)
N∑

i=1
yi = k (2.7)

0≤ xij ≤ 1 ∀j = 1, . . . ,ni, ∀ i = 1, . . . ,N (2.8)
0≤ yi ≤ 1 ∀ i = 1, . . . ,N (2.9)
k ∈N (2.10)

Here, the integrality constraints on variables xij and yi of KPS1 are replaced
by the inclusion in [0,1] while constraint (2.7) forces the sum of the families
to take an integer value through the integer variable k. The optimal solution
of this problem gives an upper bound on the KPS optimum. Moreover, the
optimal value of k, denoted by k∗, provides a first guess on the total number
of families to include in a solution. Then, we consider again model KPS1

with the additional constraint that the number of families to activate is fixed
to a value S and we remove the integrality constraints on variables xij only.
Correspondingly, we get hereafter the following model (denoted by KPS3).
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KPS3:

maximize
N∑

i=1

ni∑
j=1

pijxij−
N∑

i=1
fiyi (2.11)

subject to (2.2),(2.3)
N∑

i=1
yi = S (2.12)

0≤ xij ≤ 1 ∀j = 1, . . . ,ni ∀ i = 1, . . . ,N (2.13)
yi ∈ {0,1} ∀ i = 1, . . . ,N (2.14)

We may expect that problem KPS3 is easy to solve as only the yi variables are
binary and the number of families is relatively limited. Further, the solution
space is restricted to the hyperplane representing the sum S in constraint (2.12).
This argument shows up to hold in practice. We first solve KPS3 by setting
S = k∗. The optimal solution provides a feasible combination of yi, denoted by
the 0–1 vector y′.
If we consider the combination y′ in KPS1, we induce a KP with the capacity
constraint and objective function modified according to the setups of the
families. For the sake of simplicity, hereafter we refer to

KPS1(y′) = KPS1∩
(
yi = y′

i

)
∀ i = 1, . . . ,N (2.15)

as the standard knapsack problem related to any specific combination of families
encoded by vector y′.
Solving KPS1(y′) provides a first feasible solution for KPS. Let us denote the
corresponding solution value by LB′. This is sketched in lines 2-6 of FLEA

pseudo code.
Then, we solve KPSLP . We denote the optimal value of KPSLP by zLP and
the optimal values of variables xij and yi by xLP

ij and yLP
i respectively. Let

rxij and ryi be the reduced costs of non basic variables in the optimal solution
of KPSLP . We then apply standard variable-fixing techniques from Integer
Linear Programming. It is well known (see, for instance, [22]) that, if the gap
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between the best feasible solution available and the optimal solution value of
the continuous relaxation solution is not greater than the absolute value of
a non basic variable reduced cost, then the related variable can be fixed to
its value in the continuous relaxation solution. Correspondingly, we evaluate
the reduced costs of all non basic variables in the optimal solution of KPSLP .
Then, the following constraints are added to the models (lines 7–8 of FLEA):

∀ i, j : |rxij | ≥ zLP −LB′, xij = xLP
ij ; (2.16)

∀ i : |ryi| ≥ zLP −LB′, yi = yLP
i . (2.17)

2.3.3 Identifying the relevant sums of the families

Given the first solution LB′, the number of families in an optimal solution
can be bounded straightforwardly by solving two continuous problems. More
precisely, we minimize and maximize ∑yi subject to constraints (2.2), (2.3)
and to an additional constraint ensuring that the total profit must be strictly
greater than the current solution value. The corresponding ILP formulations
(denoted by KPSmin and KPSmax respectively) are as follows.

KPSmin (KPSmax):

min (max)
N∑

i=1
yi (2.18)

subject to (2.2),(2.3)
N∑

i=1

ni∑
j=1

pijxij−
N∑

i=1
fiyi ≥ LB′ +1 (2.19)

0≤ xij ≤ 1 ∀j = 1, . . . ,ni, ∀ i = 1, . . . ,N (2.20)
0≤ yi ≤ 1 ∀ i = 1, . . . ,N (2.21)

Ceiling and flooring the optimal solution values of the above problems
yield the lower and upper bound on the number of families possibly leading
to an optimal solution of KPS. We denote these bounds by Smin and Smax
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respectively . The second step of our approach is summarized in lines 9–12 of
FLEA algorithm.

2.3.4 Solving sub–problems

The third step consists in exploring sub–problems for the possible values of S
in the range [Smin,Smax] (for–loop in lines 13–24 of FLEA).
For each sub–problem we first solve KPS3 and find a combination of families ȳ

as in Section 2.3.2 (lines 14–15 of FLEA). Then we solve KPS1(ȳ) and if its
optimal value is greater than the current best feasible solution value, we update
the latter one (lines 17–20 of FLEA). We solve to optimality a KP, but indeed
ȳ is not guaranteed to be optimal for KPS1. So we search for another possible
combination of yi within the sub–problem by adding to KPS3 the constraint:

N∑
i=1

ȳiyi ≤ S−1 (2.22)

This is a cut in the solution space imposing that at least one of the families of
the previous combination must be discarded. We solve KPS3 with one more
constraint and apply the same procedure until the upper bound provided by
solving KPS3 is not better than the current best solution value or the problem
becomes infeasible (while–loop in lines 16–23 of FLEA). We note that KPS3

can turn out to be difficult to solve when further constraints on variables yi

are added. Nevertheless, additional cuts showed up to be reasonably limited.
Once all sub–problems have been investigated, an optimal solution of KPS is
obtained.

We note that steps 1–12 in FLEA algorithm are executed only once,
requiring the solution of problems KPS2, KPS3, KPS1(y′), KPSLP , KPSmin

and KPSmax and the variable fixing (running in O(∑N
i=1 ni) time) induced

by constraints (2.16, 2.17). Also, the for–loop in lines 13–24 is repeated
[Smax−Smin +1] = O(N) times where at each iteration: (1) KPS3 is solved
once and (2) the while-loop is executed in lines 16–23 requiring first the
solution of KPS1(ȳ) and then the solution of KPS3 until UB ≤Best. Thus
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Algorithm 2 FLEA

1: Input: KPS instance.
◃ Find first solution and fix variables

2: k∗← solve KPS2;
3: S← k∗;
4: (UB′,y′)← solve KPS3;
5: LB′← solve KPS1(y′);
6: Best = LB′;
7: Solve KPSLP ;
8: Apply (2.16, 2.17) and fix variables;
9: zmin← solve KPSmin; ◃ Identify the range of families

10: zmax← solve KPSmax;
11: Smin = ⌈zmin⌉;
12: Smax = ⌊zmax⌋;
13: for all s in [Smin,Smax] do ◃ Solve sub–problems
14: S = s;
15: (UB,ȳ)← solve KPS3;
16: while UB ≥Best+1 do
17: LB← solve KPS1(ȳ);
18: if LB > Best then
19: Best = LB;
20: end if
21: add (

N∑
i=1

ȳiyi ≤ S−1) to KPS3;

22: (UB,ȳ)← solve KPS3;
23: end while
24: end for
25: return Best;
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the bottleneck of the algorithm is indeed the total number of times the while–
loop is executed which could be potentially large but computational testing
indicates that this number is very small in practice (never greater than 33 for
instances with up to 100000 items).

2.4 A new dynamic programming algorithm

The second algorithm we propose is motivated by a dynamic programming
scheme for a special case of the precedence constraint knapsack problem (PCKP)
which is a variant of the standard knapsack problem. In this section we briefly
recall PCKP and its relation to KPS. Then our dynamic programming algorithm
is presented.
We remark that the idea of our dynamic program shares structural elements
with the dynamic programming approach devised in [44]. However, our main
goal is to offer a very simple and viable alternative to the algorithms for KPS
available in the literature without relying on the use of an ILP solver.
Moreover, we exploit our dynamic programming for deriving the approximation
results in Section 2.6. For this purpose, we perform dynamic programming by
profits although we could just as well run the dynamic program over all weight
values.

2.4.1 The Precedence Constraint Knapsack Problem
(PCKP)

The precedence constraint knapsack problem (PKCP) or partially ordered knap-
sack problem (see e.g. [47, ch. 13.2] for an overview) is a generalization of KP
which imposes a partial order on the items. This means that for each item
there is a (possibly empty) set of predecessors which have to be packed into the
knapsack if the item is packed. Formally, we are given a directed acyclic graph
G = (V,A) where the vertices of V correspond to the items and the existence
of an arc (i, j) ∈A means that item j can only be part of a solution if also item
i is in the solution.
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Note that it makes sense to permit also negative profit values in PKCP
since due to the precedence constraints also items with negative profits may be
part of an optimal solution. PKCP is NP–hard in the strong sense but it is
solvable in pseudo–polynomial time on graphs like out–trees and in–trees. An
out–tree is a directed tree with a distinguished vertex called the root such that
there is a directed path (which is unique) from the root to every vertex in the
tree.

KPS can be easily modeled as a PCKP on an out-tree as follows. First,
introduce as a root a dummy item with zero weight and profit which has directed
arcs to N vertices each of which representing one family. An item of PCKP
corresponding to such a family vertex carries the setup capacity consumption
of the associated family as its weight and the setup cost as negative profit.
The actual knapsack items of KPS are inserted in PCKP as leaves of the tree
with an incoming arc emanating from the respective family vertex. Thus, the
selection of an item requires the activation of the corresponding family.

A dynamic programming algorithm for PCKP for out-trees, called the
left–right approach, is due to [44]. The main idea of this profit-based algorithm
is a suitable ordering of sub–problems identified by sub–trees which corresponds
to the structure of the dynamic programming recursion. The computational
complexity of this approach is in O(nUB), with UB indicating an upper bound
on the objective function value. A variant of this algorithm employing dynamic
programming by weights was given by [18]. Its running time is in O(nb).

2.4.2 Dynamic Programming for KPS

Let us denote by KPS(i, j) the sub–problem induced by the first i−1 families,
all their items and the first j items of family i. Also, indicate by r(i, p̄) the
smallest weight for which a solution of KPS(i,ni) with a total profit at least p̄

exists, namely:

r(i, p̄) := min
S
{w(S) | S is a solution of KPS(i,ni) and p(S)≥ p̄}

Here w(S) and p(S) represent the sum of the weights and profits of the items
and families included in a solution set S. The minimum over the empty set
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will be written as ∞. As a restricted variant of r(i, p̄) where a certain family i

is forced to be activated we define for a triple (i, j, p̄):

z(i, j, p̄) := minS′{w(S′) | S′ is a solution of KPS(i, j) with family i
activated and p(S′)≥ p̄}

In case that no feasible solution exists for r(·) or z(·) we will set the corre-
sponding entry to ∞. Note that not packing any item can also be a feasible
solution with profit and weight equal to 0.

The idea is to analyze the families one by one according to a proper ordering
of the sub–problems. More precisely, we first consider the sub–problem with
the first family included without any of its items by calculating z(1,0, p̄). After
that we consider the possible selection of the items of the family one after
the other. The analysis of the contribution of the first family is completed by
computing r(1, p̄). Then we proceed with the other families until r(N,p̄) is
determined. In each iteration the smallest weight to reach a certain profit level
p̄ with the first i families is stored in r(i, p̄) and then this information is used
to analyze the contribution of the next family.

The related approach for PCKP assumes positive profit values. For KPS
we have to consider also the cases with negative profits to cover the activation
costs of a family. If a family ends up with a negative total profit, its items
would not be included at all. Thus, the minimal profit value p0 the algorithm
has to consider is bounded by the negative maximum setup costs.

p0 =−max{fi | i = 1, . . . ,N} (2.23)

As an upper bound UB for the objective function value we could round down
the optimum value of the continuous relaxation of KPS. We remark that the gap
between the linear relaxation and the optimal solution value can be arbitrarily
large as we will see in Section 2.6.1, nevertheless the bound should be reasonably
close to the optimal value in practice. A possible alternative is to consider the
trivial upper bound given by neglecting the capacity constraint and selecting
all items of all families:

N∑
i=1

ni∑
j=1

pij−
N∑

i=1
fi.
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In an initialization step we compute r(0, p̄), namely the case where no family
is activated and no positive profit can be obtained:

1. for each (p0 ≤ p̄≤ UB)

r(0, p̄) =
 0 if p̄≤ 0,

∞ otherwise.

After this initialization step, the following recursions are iteratively applied for
each family (1≤ i≤N , 1≤ j ≤ ni):

2.

z(i,0, p̄) =


r(i−1, p̄+fi)+di if r(i−1, p̄+fi)+di ≤ b

p̄+fi ≤ UB,

∞ otherwise.

3.

z(i, j, p̄) =


min{z(i, j−1, p̄), z(i, j−1,k)+wij} if z(i, j−1,k)+wij ≤ b

(k = max{p0, p̄−pij}),
z(i, j−1, p̄) otherwise.

4.
r(i, p̄) = min{r(i−1, p̄), z(i,ni, p̄)}

As far as Rule 2 is concerned, by definition family i must be contained in the
solution by contributing to the objective only with its setup cost fi. Thus
Rule 2 evaluates if a profit p̄ can be obtained by checking whether the sum of
the weight to get a profit p̄+fi with the first i−1 families (r(i−1, p̄+fi)) and
the setup weight di does exceed b or not. Indeed a value p̄+fi exceeding UB

would lead to an infeasible solution and it is not considered. Likewise Rule 3
evaluates the insertion into the knapsack of the item represented by xij to
get a profit p̄. Clearly we must have p̄− pij ≥ p0 in that case. The classical
knapsack recursion introduced in Rule 4 simply establishes whether the family
i is put into the knapsack or not. The optimal solution for KPS is determined
by taking the maximum value p̄ for which r(N,p̄) <∞.
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To bound the pseudo–polynomial running time of this algorithm for KPS it
suffices to observe that going through all families the array z(·) is evaluated
only once for each item in combination with every profit value while r(·) is
evaluated only for every family and every profit value. This yields a trivial
O(n(UB + |p0|)) time bound.

In practice, we can obtain a considerable speed-up by systematically con-
sidering upper bounds lower than UB for the sub–problems at hand. This will
lead to drastic improvements, especially in the early stages of the algorithm
where a limited number of families is involved.

It is not difficult to modify the above recursions for dynamic programming
by weights where each array entry represents a solution of maximum profit for
a certain weight bound w̄ = 1, . . . , b. Without going into details we just state
that the resulting time complexity is O(nb).

From a practical perspective it is also interesting to analyze different choices
regarding the sequence of families and items. In our computational tests we
consider – somehow counterintuitively – first the less efficient families and the
less efficient items within each family. As usual, the efficiency of an item is
the ratio of profit over weight. For each family, the efficiency is defined as the
ratio between the sum of profits of the items minus the setup cost and the
sum of the weights (including setup capacity consumption). This choice aims
to obtain small upper bounds in the first steps of the dynamic program thus
yielding savings in the total running time.

Historically, space requirements were seen as a major obstacle for applying
dynamic programming algorithms to large problem instances. Although today’s
hardware specifications diminish this issue, it is still relevant to be considered
also from a theoretical point of view. It is easy to see that for evaluating
z(i,0, p̄) and r(i, p̄) only the values of r(i− 1, ·) are required. Hence, we can
overwrite the values of r(i−2, ·) when we start the iteration for family i and
restrict the space requirement for array r to O(UB + |p0|). The same argument
applies for z: Entries z(i, j, p̄) require only z(i, j−1, ·) for j = 1, . . . ,ni. Thus
the space bound of O(UB + |p0|) suffices also for z.
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Another – often overlooked – aspect concerns the storage of the actual
solution sets of packed items. Recall that each dynamic programming entry
should contain not only a weight value but also the associated item set (cf. [47,
ch. 2.3]). This would increase the space requirements by factor of n (or logn,
if a bit representation of item sets is employed). However, we can adapt the
general recursive storage reduction principle from [70] (see also [47, ch. 3.3]) to
keep the space complexity of O(n+UB + |p0|) without increasing the running
time of O(n(UB + |p0|)) but still reporting the optimal solution set. Note that
this storage reduction scheme requires an equipartition of the item set and
the independent solution of the two resulting sub–problems in every iteration.
This is in general impossible for the items of KPS which are structured into
families. However, for the correctness of the recursive argument of [70] it
suffices to construct in each iteration a partitioning of the items into two sets,
each of them containing at least a constant fraction of the current item set.
Without going into details, we mention that we can realize a partitioning into
two subsets each of them containing at least a quarter of the current item set
by either partitioning complete families or partitioning only the items of the
largest family if it contains at least one half of the current item set.

2.5 Computational results

We first present an extensive computational analysis of FLEA algorithm. More
precisely, we compared the proposed approach with the algorithms available in
the literature and we evaluated its scalability on larger instances never tested
before. Besides, we report a direct comparison of our dynamic programming
with the one laid out in [17].
For what concerns FLEA, all tests were conducted on an Intel i5 CPU @ 3.3
GHz with 4 GB of RAM. We used the ILP solver CPLEX 12.5 and the code was
implemented in the C++ programming language. The parameters of CPLEX
12.5 were set to their default values.
We generated the instances according to the scheme provided in [89]. In
addition, we also considered the instances available in [17]. In the scheme
provided in [89], the number of families N is 50 and 100. The cardinalities ni
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of the families are integers uniformly distributed in the ranges [40, 60] and [90,
110]. Setup costs and weights are given by

fi = e1

 ni∑
j=1

pij

 (2.24)

di = e2

 ni∑
j=1

wij

 (2.25)

where e1 and e2 are uniformly distributed in the intervals [0.05, 0.15], [0.15,
0.25], [0.25, 0.35] and [0.35, 0.45]. In the uncorrelated instances, both the items
weights wij and profits pij are integer randomly distributed in the range [10,
10000]. In the correlated instances the profits are integer randomly distributed
in the range [wij-1000, wij+1000], but if the profits are less than 10, then
they range in the interval [10, 100]. The capacity b is an integer randomly

distributed in the range
[
0.4

(
N∑

i=1

ni∑
j=1

wij

)
,0.6

(
N∑

i=1

ni∑
j=1

wij

)]
.

CPLEX 12.5 Algorithm F LEA
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 0.31 0.38 10 0.50 0.64 1 10

[0.15-0.25] 0.34 0.42 10 0.53 0.62 1 10
[0.25-0.35] 0.45 0.59 10 0.57 0.62 1 10
[0.35-0.45] 0.35 0.56 10 0.45 0.57 1 10

50 [90-110] [0.05-0.15] 0.49 0.66 10 0.71 0.91 1 10
[0.15-0.25] 0.73 0.97 10 0.90 1.03 1 10
[0.25-0.35] 2.15 10.41 10 0.96 1.15 1 10
[0.35-0.45] 1.12 2.68 10 0.86 1.26 1 10

100 [40-60] [0.05-0.15] 0.45 0.66 10 0.67 0.88 1 10
[0.15-0.25] 0.69 0.91 10 0.82 1.00 1 10
[0.25-0.35] 0.65 1.03 10 0.80 1.17 1 10
[0.35-0.45] 0.65 0.89 10 0.76 0.97 1 10

100 [90-110] [0.05-0.15] 0.98 1.33 10 1.16 1.58 1 10
[0.15-0.25] 1.86 3.25 10 1.73 2.22 1 10
[0.25-0.35] 1.35 2.15 10 1.49 1.75 1 10
[0.35-0.45] 1.33 2.08 10 1.52 2.41 1 10

Table 2.1 KPS uncorrelated instances with wij and pij in [10,10000]: time (s)
and number of optima.
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CPLEX 12.5 Algorithm F LEA

Average Max Average Max Max
N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 1.02 2.53 10 0.72 1.14 2 10

[0.15-0.25] 0.67 0.97 10 0.59 0.89 2 10
[0.25-0.35] 0.63 1.45 10 0.61 0.78 1 10
[0.35-0.45] 0.96 2.62 10 0.65 0.81 2 10

50 [90-110] [0.05-0.15] 3.53 13.14 10 0.99 1.31 1 10
[0.15-0.25] 7.65 22.17 10 1.18 1.47 1 10
[0.25-0.35] 3.41 10.87 10 1.15 1.42 1 10
[0.35-0.45] 9.46 39.08 10 1.27 1.81 1 10

100 [40-60] [0.05-0.15] 1.51 5.40 10 0.81 1.08 1 10
[0.15-0.25] 1.95 7.13 10 0.98 1.31 1 10
[0.25-0.35] 1.01 2.48 10 1.04 1.37 2 10
[0.35-0.45] 1.37 2.50 10 1.17 1.76 2 10

100 [90-110] [0.05-0.15] 11.15 71.98 10 1.93 2.59 1 10
[0.15-0.25] 31.14 173.21 10 2.00 2.50 1 10
[0.25-0.35] 71.22 652.02 10 2.30 4.57 2 10
[0.35-0.45] 15.32 42.56 10 2.18 3.40 2 10

Table 2.2 KPS correlated instances with wij in [10,10000] and pij in [wij −
1000,wij +1000]: time (s) and number of optima.

We compared the solutions reached by CPLEX 12.5 running on KPS1 to
the solutions obtained with FLEA over 10 instances within each category. The
results are reported in Tables 2.1 and 2.2 in terms of average and maximum
CPU time and number of optima reached within a time limit of 1200 seconds.
We also report the maximum number of the relevant sub–problems, that is
Smax−Smin +1, identified by the proposed algorithm.

Uncorrelated instances show up to be very easy to solve for both FLEA

and CPLEX 12.5. We remark that the same conclusion applies to the instances
in [16], which are uncorrelated with positive or negative profits for the items
and setup costs. As mentioned in [89], these instances are not difficult, since a
preprocessing step reduces the problems size considerably.

For the correlated instances, CPLEX 12.5 solves to optimality all the
instances but performs slightly worse. FLEA reaches the optimum over all
instances in no more than 5 seconds. We note that the method proposed in
[89] requires significantly higher computational time and runs out-of-memory
in several cases for similar correlated instances. So, even if we were not able
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to obtain from the authors the instances reported in [89], we can reasonably
expect our algorithm to outperform their approach.

We further tested a stronger correlation between the profits of the items
and their weights. More precisely, we generated instances where wij is an
integer uniformly distributed in the range [10, 100], while the profits of items
are pij = wij +10. The results are provided in Table 2.3.

CPLEX 12.5 Algorithm F LEA
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 126.17 1200.00 9 1.80 4.91 2 10

[0.15-0.25] 6.76 34.10 10 1.41 3.46 2 10
[0.25-0.35] 4.25 10.06 10 1.20 2.43 3 10
[0.35-0.45] 2.47 6.91 10 0.83 1.68 2 10

50 [90-110] [0.05-0.15] 701.84 1200.00 5 2.13 4.52 2 10
[0.15-0.25] 241.20 1200.00 9 2.70 9.86 2 10
[0.25-0.35] 307.96 1200.00 9 2.10 4.84 2 10
[0.35-0.45] 28.75 214.94 10 1.49 2.14 1 10

100 [40-60] [0.05-0.15] 30.66 157.59 10 9.48 65.13 2 10
[0.15-0.25] 18.85 100.34 10 3.83 13.62 2 10
[0.25-0.35] 5.55 14.49 10 2.29 5.29 2 10
[0.35-0.45] 9.65 24.24 10 2.69 7.00 3 10

100 [90-110] [0.05-0.15] 498.44 1200.00 7 5.56 11.92 2 10
[0.15-0.25] 197.00 1200.00 9 5.35 10.66 2 10
[0.25-0.35] 267.26 1200.00 9 6.40 22.07 2 10
[0.35-0.45] 188.75 1200.00 9 5.37 9.95 2 10

Table 2.3 KPS correlated instances with wij in [10,100] and pij = wij +10: time
(s) and number of optima.

These instances turned out to be harder to solve than the correlated instances
in Table 2.2. A reasonable interpretation is that in [89] a weaker correlation is
considered and weights vary in a much wider range ([10, 10000]), increasing
the probability of having items much more profitable than others. Nevertheless
FLEA still manages to handle all instances in very reasonable computational
time, while CPLEX 12.5 is not capable of reaching all the optima. It is quite
evident from our testing that one of the strengths of the proposed approach is
the capacity of drastically limiting the number of sub-problems to be explored
in the last step of the algorithm. A natural question that may arise is whether
this last task can be accomplished just by letting an ILP solver tackle the
sub-problems. It would indicate to what extent the procedure devised in the
third step of our algorithm provides an effective contribution in solving the
problem. We investigated this aspect by exploring the behavior of FLEA if
CPLEX 12.5 is launched (with a time limit of 1200 seconds) on each of the
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sub–problems in the third step of the method, that is the sub–problems of
subsection 2.3.4. We denote as FLEA(II) this last version of the proposed
approach.

We then compared the two versions of FLEA to the dynamic programming
algorithm in [17] and to CPLEX 12.5 over a set of instances proposed in
[17]. These instances involve a high level of correlation between profits and
weights where wij is an integer uniformly distributed in the range [10,100] and
pij = wij +10. In Table 2.4, we report the performances of CPLEX 12.5, the
two versions of FLEA and the dynamic programming algorithm proposed in
[17]. The number of families varies from 5 to 30 and the total number of items
n from 500 to 10000. Within each category, 10 instances were tested.

F LEA(II)
CPLEX 12.5 Algorithm F LEA Dynamic Progr. from [17] using CPLEX 12.5

for solving sub–problems
Average Max Average Max Max Average Max Average Max

N n time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt time (s)∗ time (s)∗ #Opt time (s) time (s) #Opt
5 500 44.17 218.18 10 0.43 0.72 2 10 0.31 0.49 10 4.11 34.45 10

1000 568.37 1200.00 7 0.51 0.66 1 10 0.92 1.06 10 192.25 1200.00 9
2500 1106.42 1200.00 1 0.98 1.28 1 10 5.34 5.71 10 3.25 11.40 10
5000 929.04 1200.00 3 1.57 1.84 1 10 20.81 21.52 10 126.53 1200.00 9

10000 987.01 1200.00 2 3.03 3.67 1 10 83.93 85.19 10 17.98 58.52 10
10 500 71.73 423.98 10 0.46 0.64 2 10 1.50 11.32 10 1.11 5.83 10

1000 1200.00 1200.00 0 0.47 0.67 2 10 1.27 1.38 10 0.61 0.91 10
2500 1200.00 1200.00 0 0.84 1.01 1 10 7.33 7.72 10 121.28 1200.00 9
5000 825.85 1200.00 4 1.47 1.62 1 10 29.18 30.52 10 633.70 1200.00 5

10000 1200.00 1200.00 0 3.10 3.48 1 10 149.73 154.61 10 966.57 1200.00 2
20 500 382.23 1200.00 7 0.61 1.14 2 10 0.56 0.78 10 6.04 55.21 10

1000 50.76 229.96 10 0.51 0.87 1 10 2.15 2.63 10 1.60 9.33 10
2500 1200.00 1200.00 0 0.88 1.40 2 10 13.01 13.68 10 1.18 1.69 10
5000 1054.83 1200.00 2 1.58 1.95 1 10 53.45 54.99 10 19.53 173.16 10

10000 1200.00 1200.00 0 2.96 3.74 1 10 346.58 353.68 10 143.82 1200.00 9
30 500 237.75 1200.00 9 1.62 4.73 5 10 0.76 0.89 10 5.51 37.41 10

1000 499.63 1200.00 8 0.87 1.95 2 10 3.32 3.63 10 2.44 17.33 10
2500 1175.79 1200.00 1 0.99 1.25 2 10 19.58 20.20 10 3.39 13.21 10
5000 380.40 1200.00 8 1.62 2.59 1 10 79.76 83.42 10 4.73 23.68 10

10000 907.74 1200.00 5 4.82 8.07 2 10 526.61 549.03 10 37.36 249.21 10

Table 2.4 KPS benchmark instances (from [17]): time (s) and number of optima.

These instances involve a lower number of families and show up to be harder
for CPLEX 12.5 than the previous ones. Nevertheless, even though CPLEX 12.5
runs out of time for most of the large instances, FLEA is able to find all optima
with limited computational effort. The dynamic programming algorithm is
capable of reaching all the optima as well. However the computational times
are much larger and increase with the size of the instances. We remark that the
tests in [17] were carried out on a slightly less performing machine (an asterisk
is introduced in the table to point out that times refer to another machine,
namely an Intel core TMi3 CPU @ 2.1 GHZ with 2GB of RAM). Anyhow
given these results, it is very reasonable to assume that the differences in the
performance would remain significant even if the algorithms were launched on
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the same machine. We also note that the use of the ILP solver combined with
the first two steps of the proposed approach, namely FLEA(II) algorithm,
enhances the performance of CPLEX 12.5 launched on the ILP formulation of
KPS. At the same time, this algorithmic variant turns out to be less performing
than FLEA and not capable of reaching all the optima within the time limit.
Then, we tested the scalability of FLEA on larger instances with e1 = e2

uniformly ranging in the interval [0.15, 0.25], wij integer uniformly distributed

in the range [10,100] and pij = wij +10, b = 0.5
(

N∑
i=1

ni∑
j=1

wij

)
with the number of

families and items up to 200 and 100000 respectively. The results are reported
in Table 2.5.

CPLEX 12.5 Algorithm F LEA

Average Max Average Max Max
N n time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
5 20000 380.64 1200.00 7 6.93 12.20 1 10

50000 630.15 1200.00 5 55.49 97.38 1 10
100000 752.66 1200.00 6 285.74 542.94 1 10

10 20000 374.49 1200.00 7 4.38 8.21 1 10
50000 427.40 1200.00 7 27.14 52.92 1 10

100000 731.80 1200.00 5 135.99 390.62 1 10
20 20000 1031.29 1200.00 2 6.35 9.16 1 10

50000 1190.44 1200.00 1 26.98 43.01 1 10
100000 1095.40 1200.00 1 102.92 231.63 1 10

30 20000 736.75 1200.00 4 9.40 14.49 1 10
50000 749.91 1200.00 4 31.84 39.87 1 10

100000 1092.11 1200.00 2 127.39 179.67 1 10
50 20000 685.84 1200.00 5 8.27 14.81 2 10

50000 1196.78 1200.00 1 51.06 87.31 2 10
100000 1139.12 1200.00 1 147.89 218.74 2 10

100 20000 750.62 1200.00 5 18.34 59.61 2 10
50000 1116.64 1200.00 1 89.39 497.89 1 10

100000 1090.48 1200.00 1 128.84 272.81 2 10
200 20000 367.69 1200.00 8 19.94 43.13 2 10

50000 966.37 1200.00 3 105.39 284.50 1 10
100000 1113.78 1200.00 1 163.02 359.18 2 10

Table 2.5 KPS larger instances: time (s) and number of optima.

We notice that FLEA effectively solves also these larger instances, requiring
approximately 540 seconds for the worst-case instance with 100000 items.
CPLEX 12.5 fails to reach the optimum within the time limit of 1200 seconds
in more than 60% of the instances of Table 2.5.
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These extensive computational experiments confirm the effectiveness of our
algorithm, which strongly outperforms CPLEX 12.5 and the algorithms reported
in the literature. FLEA is capable of solving to optimality all instances within
the time limit.

Finally, we compared our dynamic programming with the dynamic program-
ming described in [17] and with FLEA. We considered again the instances
available in [17]. The code of our dynamic programming has been implemented
in the C++ language under the Linux operating system. The results are
reported in Table 2.6 in terms of average and maximum CPU time taken to
reach the optimal solutions. A double asterisk in the table indicates that the
times of our dynamic programming refer to another machine, i.e. an Intel i5
CPU @ 3.2 GHz with 16 GB of RAM.

Algorithm New Dynamic Dynamic Progr.
FLEA Programming from [17]

Average Max Average Max Average Max
N n time (s) time (s) time (s)∗∗ time (s)∗∗ time (s)∗ time (s)∗

5 500 0.43 0.72 0.02 0.02 0.31 0.49
1000 0.51 0.66 0.07 0.08 0.92 1.06
2500 0.98 1.28 0.54 0.56 5.34 5.71
5000 1.57 1.84 2.00 2.16 20.81 21.52

10000 3.03 3.67 8.67 8.98 83.93 85.19
10 500 0.46 0.64 0.01 0.02 1.50 11.32

1000 0.47 0.67 0.07 0.08 1.27 1.38
2500 0.84 1.01 0.49 0.50 7.33 7.72
5000 1.47 1.62 1.79 1.84 29.18 30.52

10000 3.10 3.48 7.15 7.33 149.73 154.61
20 500 0.61 1.14 0.02 0.02 0.56 0.78

1000 0.51 0.87 0.07 0.07 2.15 2.63
2500 0.88 1.40 0.42 0.45 13.01 13.68
5000 1.58 1.95 1.68 1.70 53.45 54.99

10000 2.96 3.74 6.69 6.71 346.58 353.68
30 500 1.62 4.73 0.02 0.03 0.76 0.89

1000 0.87 1.95 0.06 0.07 3.32 3.63
2500 0.99 1.25 0.45 0.46 19.58 20.20
5000 1.62 2.59 1.66 1.68 79.76 83.42

10000 4.82 8.07 6.58 6.74 526.61 549.03
Table 2.6 Comparison of the approaches on KPS benchmark instances (from
[17]): Average and maximum time (s) for computing the optimal solutions.

For the instances considered, also our dynamic programming algorithm
is capable of finding all optima with limited computational effort: it solves
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all instances in at most 9 seconds (required for one of the largest instances
involving 10000 items), but usually much less. The approach outperforms the
dynamic programming algorithm in [17] and the differences in computational
times increase as the size of the instances increases. We again remark that
tests in [17] were performed on a slightly less performing machine. Anyhow,
the significant differences, in particular on large instances, illustrate that the
speed-up we obtain is much larger than the improvement attributed to the
different hardware and underlines the impressive effectiveness of our approach.
Notice also that the order of magnitude of costs/profits and setups/weights of
the families/items is similar for the instances considered. Therefore the mere
fact that our algorithm runs over profits rather than weights is not expected
to be significant in explaining the differences of the performances. Moreover,
our dynamic programming compares favorably also to FLEA running on a
similar machine. Computational performances are fully comparable and our
dynamic programming can be regarded as a valuable alternative to the exact
enumerative approach but without the necessity to use an ILP-solver.

It might be noted that for a direct comparison to [17] we rely on the strongly
correlated instances available on-line. To get a broader picture we also ran tests
on weakly-correlated instances, where profits were chosen as pij = wij +u with u

uniformly distributed in [−10,10]. Comparing the performance of our dynamic
programming algorithm with FLEA the general trends observed above were
confirmed. Both algorithms managed to solve these weakly-correlated instances
in roughly half the time required for the strongly-correlated instances.
We finally remark that, in our computational experiments, we decided to stick
to the generation schemes of the instances in the literature. We leave to future
research the construction of instances involving other classical correlations
between profits and weights of the items.

2.6 Approximation results

In this section we investigate the properties of KPS and conditions which allow
the construction of fully polynomial time approximation schemes (FPTAS) for
the problem. For the standard knapsack problem the performance analysis of
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simple approximation algorithms, such as the greedy algorithm, often relies
on a comparison with the linear relaxation of KP. The following consideration
shows that this is not a meaningful strategy for KPS.

2.6.1 Linear relaxation KPSLP

It was shown in [89] that the linear relaxation of KPS has a special structure
and can be solved in linear time by a reduction to the linear relaxation of a
standard KP as follows. Consider the items sorted in nonincreasing order of
their efficiency pij/wij . Then for each family compute the maximum reachable
efficiency, which is given by the first k∗

i items of family i with:

k∗
i = argmax

k

k∑
j=1

pij−fi

k∑
j=1

wij +di

(k = 1, . . . ,ni) ∀ i = 1, . . . ,N (2.26)

These items are grouped into a new virtual item for each family with profit

and weight equal to
k∗

i∑
j=1

pij−fi and
k∗

i∑
j=1

wij +di respectively. Then consider an

instance of KP consisting of N virtual items and all the original items with
capacity b. Its linear relaxation can be solved by applying Dantzig’s rule and
the optimal solution of this problem yields an optimal solution of the linear
relaxation of KPS as well (see [89] for a complete proof).

In an optimal solution at most one variable is fractional, either an original
item or a virtual item. In the former case an item xℓj is fractional while the
corresponding family ℓ is selected together with all its items of efficiency greater
than pℓj/wℓj . In the latter case a fractional part of all the most effective
items, namely the items xhj with j ≤ k∗

h, of a specific family h is considered.
This reformulation of the problem allows us to show that the optimal solution
value of the LP-relaxation can exceed the optimal solution value of KPS by an
arbitrarily large quantity.

Proposition 1. The difference zLP − z∗ can be arbitrarily large.
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Proof. Consider the following KPS instance with N = 1 and capacity b = M +1
with M being an arbitrary large integer number: There is f1 = M −1, d1 = M

and n1 = 2 identical items with p1j = M and w1j = 1.

The optimal solution of this problem can pack only one item with total
profit p1j−f1 = 1. The linear relaxation distributes the setup weight equally
over the two items and sets y1 = x1j = M+1

M+2 which gives a total weight of

2 M +1
M +2 +M

M +1
M +2 = M +1 = b.

This yields a total profit of

2M
M +1
M +2 − (M −1)M +1

M +2 = (M +1)M +1
M +2 ≈M,

which can become arbitrarily large compared to the integer optimal solution
value of 1.

Thus, for KPS we cannot derive an algorithm with bounded performance
guarantee by exploiting the properties of the linear relaxation, as it was done
for the standard KP.

2.6.2 Negative approximation result

We prove here the more general result that no polynomial time approximation
algorithm exists for KPS (under P ̸=NP).

Theorem 2. KPS does not have a polynomial time approximation algorithm
with a bounded approximation ratio unless P =NP.

Proof. The theorem is proved by reduction from the Subset Sum Problem (SSP)
cited in Section 1.7, where n items j with integer weights w′

j (with j = 1, . . . ,n)
and a value W ′ (with ∑n

j=1 w′
j > W ′) are given. The decision version of SSP is

a well–known NP–complete problem and asks whether there exists a subset of
items represented by x∗ such that ∑n

j=1 w′
jx

∗
j = W ′.

We build an instance of KPS with just one family with setup cost and
weight f1 = d1 = W ′−1, profits and weights of the n1 = n items p1j = w1j = w′

j
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(with j = 1, . . . ,n ) and capacity b = 2W ′−1. The capacity bound implies that
for every feasible solution x1j there is ∑n1

j=1 p1jx1j =∑n1
j=1 w1jx1j ≤ b−d1 = W ′.

Hence, the optimal solution of this KPS instance is bounded by ∑n1
j=1 p1jx1j−

(W ′−1)≤ 1. Not activating the family at all yields the trivial solution with
profit 0. By integrality of the input data this limits the optimal solution value
to 0 or 1, where the latter value can be attained if and only if SSP has a
solution.

Thus if there was a polynomial time approximation algorithm with a
bounded approximation ratio, we could resolve SSP just by checking if the
approximate solution of KPS is strictly positive. Clearly this is not possible
under the assumption that P ̸=NP .

Note that in the KPS-instance of the above proof all items have identical
profits and weights and this applies also to the setup values. Thus, the result
of Theorem 2 holds also for the “Subset Sum” variant of KPS.

2.6.3 Four special cases of KPS

Given this general inapproximability result, it is interesting to investigate to
what extent approximation algorithms can be derived when instances with
restricting assumptions are considered. In fact, we try to characterize the
border between non-approximability and existence of approximation schemes
by analyzing four relevant special cases of KPS.

Case 1, each family can be packed: di +
ni∑

j=1
wij ≤ b ∀ i = 1, . . . ,N

This case considers the situation where each single family can be packed into
the knapsack with all its items. We first show that a constant performance
guarantee exists under this assumption. Consider the linear relaxation of
KPS throughout the reduction to the classical knapsack problem as in Section
2.6.1. As in KP, we can consider a feasible solution of KPS consisting of those
variables set to 1 in the optimal solution of the linear relaxation. Denote by
zLG the value of such a solution. Then we introduce the following KPS–Greedy
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algorithm with objective function value zG.

zG = max{zLG,pmax = max
i

 ni∑
j=1

pij−fi

} (2.27)

That is, the KPS–Greedy algorithm simply takes the best solution among
the one given by the variables set to 1 in the optimal solution of the linear
relaxation and the ones provided by packing one family only. In addition, it
is straightforward to see that for the optimal solution value z∗ of KPS the
following inequality holds, regardless if the fractional variable of the linear
relaxation is an existing item or a virtual item:

z∗ < zLG +pmax (2.28)

Consequently we can easily show that KPS–Greedy is a 1/2–approximation
algorithm for KPS.

Proposition 2. Algorithm KPS–Greedy has a relative performance guarantee
of 1/2 and this bound is tight.

Proof. Consider the approximation ratio ρ = max{zLG,pmax}
z∗ for an arbitrary

instance of KPS. We get with (2.28):

ρ >
max{zLG,pmax}

zLG +pmax
≥ max{zLG,pmax}

2max{zLG,pmax}
= 1

2

We can show that the ratio 1
2 is tight by considering the following example

with N = 2 families each with ni = 2 and the following entries:

b = 2(M +1);
f1 = 1, d1 = 1, p11 = 1, p12 = M , w11 = 1, w12 = M ;

f2 = 2, d2 = M , p21 = M , p22 = 1, w21 = 1, w22 = M ;

M is an arbitrary large integer value. The maximum reachable efficiency of
the families is equal to M

M+2 for family 1 and M−2
M+1 for family 2. Since the

first family has a greater efficiency ( M
M+2 −

M−2
M+1 = M+4

(M+2)(M+1) > 0), the linear
relaxation sets y1 = x11 = x12 = 1 and y2 = x21 = M

M+1 ,x22 = 0. Therefore
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algorithm KPS–Greedy considers a solution where only the items of the first
family are packed into the knapsack with an approximate solution value zG = M

(since zLG = pmax = M).

The optimal solution instead involves the selection of the second item of
the first family and of the first item of the second family with optimal solution
value equal to 2M − 3, which implies that the approximation ratio can be
arbitrarily close to 1

2 as the value of M increases.

For the case at hand an FPTAS can also be derived.

Theorem 3. There is an FPTAS for KPS if each family can be packed into
the knapsack.

Proof. First we apply the well–known scaling technique of the profits adopted
for the standard knapsack problem. More precisely, we round down the profits
of the items pij and round up the setup costs of the families fi by considering
a scaling factor K yielding the following scaled values:

p̃ij =
⌊

pij

K

⌋
∀ i, j and f̃i =

⌈
fi

K

⌉
∀ i (2.29)

Running the dynamic programming depicted in Section 2.4.2 on the problem
with scaled profits and costs we get an optimal solution denoted by the sets
of the items and families X̃ and Ỹ respectively. We also indicate by zA the
approximate solution value of KPS with items and families in X̃ and Ỹ . Finally
we denote an optimal solution of KPS by X∗ and Y ∗ (with value z∗). The
following series of inequalities holds:
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zA =
∑

ij∈X̃

pij−
∑
i∈Ỹ

fi

≥
∑

ij∈X̃

K
⌊

pij

K

⌋
−
∑
i∈Ỹ

K

⌈
fi

K

⌉

≥
∑

ij∈X∗
K
⌊

pij

K

⌋
−
∑

i∈Y ∗
K

⌈
fi

K

⌉

≥
∑

ij∈X∗
K
(

pij

K
−1

)
−
∑

i∈Y ∗
K

(
fi

K
+1

)
=

= z∗−K (|X∗|+ |Y ∗|)

(2.30)

Therefore the dynamic programming has a performance guarantee of (1− ε) if:

K ≤ εz∗

|X∗|+ |Y ∗|
(2.31)

Considering that the cardinality of both X∗ and Y ∗ is trivially bounded by
the total number of items n, we can easily satisfy condition (2.31) by setting
K = εpmax

2n .

The running time is dominated by executing the dynamic program on the
scaled items. A simple upper bound on the profit range of the problem with
scaled items is given by npmax

K = 2n2 1
ε . This yields an overall running time of

O(n3 1
ε), which establishes an FPTAS for KPS.

Case 2, bounded setup costs: fi < max(pij) j = 1, . . . ,ni ∀ i = 1, . . . ,N

We consider now the case in which the setup costs of the families are strictly
bounded by the value of their most profitable items. As in the general case, we
prove that there is no approximation algorithm unless P =NP .

Theorem 4. For KPS with fi < max(pij) no polynomial time approximation
algorithm with bounded approximation ratio exists unless P =NP.

Proof. The theorem is proved again by reduction from the Subset Sum Problem
involving n items xj with integer weights w′

j (with j = 1, . . . ,n) and subset
sum W ′ and employs a refinement of the proof of Theorem 2. Let us assume
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that an approximation ratio ρ > 0 (possibly as a function ρ(n)) exists. We
build an instance of KPS with one family with weight d1 = 0, setup cost
f1 = (1+ρ

ρ )(W ′− 1) and capacity b = W ′. Consider then n + 1 items with
weights w1j = w′

j , profits p1j = (1+ρ
ρ )w′

j for j = 1, . . . ,n and w1(n+1) = W ′,
p1(n+1) = f1 +1. The optimal solution value of this KPS instance can be:

• z∗ = 1 if SSP has answer “No”. In this case the best option is to place into
the knapsack only the item (n+ 1) reaching a profit equal to 1, since the
other items cannot produce a whole positive profit: (1+ρ

ρ )(
n∑

j=1
w1jx1j−

W ′ +1)≤ 0.

• z∗ = 1+ρ
ρ > 1 if SSP has answer “Yes”. In such a case including into the

knapsack the items corresponding to a feasible solution of SSP dominates
the alternative of packing only the item (n+1).

Therefore, if SSP admits a solution, a ρ–approximation algorithm would yield
a solution value for KPS zA ≥ ρ(1+ρ

ρ ) > 1. Similarly to the general case, simply
checking that zA is strictly greater than 1 would decide a NP–complete problem
contradicting the assumption that P ̸=NP .

Case 3, bounded setup costs: For some constant k ≥ 1 there is
fi ≤ k ·min(pij) j = 1, . . . ,ni ∀ i = 1, . . . ,N

This case refers to the situation where the setup costs of each family do not
exceed the lowest profit of their items by more than a constant factor. In
particular the sub–case where k=1 represents the plausible assumption that
every item gives a positive contribution, even on its own. First we compute
suitable lower and upper bounds for the optimal solution of KPS. Then we rely
on the scaling technique discussed in Case 1 in order to derive an FPTAS.

For each family, we consider all ℓ-tuples of items as possible solutions for
1 ≤ ℓ ≤ k, which takes O(nk) time. Moreover, in O(nk) time we can also
compute a k+1

k+2–approximation algorithm for the standard knapsack problem
induced by selecting family i with capacity equal to b−di, see [47, Sec. 6.1].

Denote by zAKP
i the approximate solution value of the classical knapsack

and by zAKP S
i the corresponding KPS value: zAKP S

i = zAKP
i −fi.
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Likewise, we indicate the optimal value of the knapsack problem induced by
family i by zOKP

i and the corresponding KPS solution value by zOKP S
i =

zOKP
i −fi. We can show:

Proposition 3. zAKP S
i ≥ zOKP S

i
(k+1)(k+2) ∀ i = 1, . . . ,N

Proof. We prove our claim by distinguishing if the optimal solution of the
standard knapsack consists of at most k or more than k items. In the former
case the approximation algorithm for the standard knapsack problem would
find the optimal solution and thus zAKP

i = zOKP
i and zAKP S

i = zOKP S
i . In the

latter case at least k +1 items are included in the optimal solution implying
that zOKP

i ≥ (k +1)minj pij ≥ (k +1)fi
k . Then the following inequalities hold:

zAKP S
i = zAKP

i −fi

≥ zAKP
i − k

k +1zOKP
i

≥ k +1
k +2 zOKP

i − k

k +1zOKP
i

= k2 +2k +1−k2−2k

(k +1)(k +2) zOKP
i = zOKP

i

(k +1)(k +2)

≥ zOKP S
i

(k +1)(k +2)

which completes the proof.

If we take the maximum among the zAKP S
i and denote this value by zAKP S ,

we have with Proposition 3:

zAKP S = max
i

(zAKP S
i )≥max

i

(
zOKP S

i

(k +1)(k +2)

)
≥ z∗

N(k +1)(k +2) (2.32)

Therefore, we obtain upper and lower bounds on the optimal value z∗ of KPS:

zAKP S ≤ z∗ ≤N(k +1)(k +2)zAKP S (2.33)

We remark that other procedures to further narrow the interval around z∗ may
be devised, but this is out of the scope of the present work. Anyhow given the
lower and upper bounds in (2.33) we can prove that:
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Theorem 5. There is an FPTAS for KPS with fi≤ k ·min(pij) for any positive
constant k.

Proof. The theorem is proved by simply applying the scaling technique as in
Case 1 and by setting K = εzAKP S

2n , a value that satisfies condition (2.31). An
upper bound on the profit range for the problem with scaled items and families
follows from (2.33), namely N(k + 1)(k + 2)zAKP S 1

K = 2nN(k + 1)(k + 2)1
ε .

Also in this case the dynamic programming algorithm implies an FPTAS with
running time complexity O(n3 1

ε +nk).

Case 4, families of bounded size: ni ≤ C ∀ i = 1, . . . ,N

We analyze here the case where the number of items in each family is bounded
by a constant value C. Under this assumption, it is convenient to see KPS as
a special case of the Multiple Choice Knapsack Problem (MCKP) introduced
in Section 1.7. We outline the reduction of KPS to MCKP in the following.
Associate with a class of MCKP a family from KPS. Then for each possible
subset of items in a given family create an item in the corresponding class of
MCKP with:

• a profit equal to the sum of the profits of the subset minus the setup cost
of their family;

• a weight equal to the sum of the weights of the subset plus the setup
weight of the corresponding family.

An item with profit and weight equal to 0 corresponds to the situation in
which the family is not selected in a solution of KPS. Subsets yielding a non–
positive profit are discarded. Finally, setting the capacity of MCKP equal to b

completes the reduction. Since each class of MCKP has a cardinality bounded
by the constant 2C , the cardinality of the power set of the largest family, the
total number of items in MCKP is bounded by N2C . It follows immediately
from the corresponding results for MCKP that there is a 1/2−approximation
algorithm for this special case of KPS with running time O(N2C) and also
a 4/5−approximation in O(N logN2C) time. If we consider the FPTAS for
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MCKP as outlined in [47, ch. 11] with complexity O(n′m′

ε ), where n′ and m′

indicate the number of items and classes respectively, we get an FPTAS for
KPS as well with running time complexity O(N2

ε 2C). Thus we can state the
following theorem:

Theorem 6. KPS with ni ≤ C for a constant C admits an FPTAS.



The 0–1 Collapsing Knapsack Problem

3.1 Introduction

The 0–1 Collapsing Knapsack Problem (CKP) can be seen as a generaliza-
tion of the standard 0–1 Knapsack Problem (KP) where the capacity of the
constraint is not a scalar but a non–increasing function of the number of
included items, namely, it is inversely related to the number of items placed
inside the knapsack. While KP has been widely studied, CKP has gained less
attention. According to [82], CKP has wide applications such as in satellite
communication and time–sharing computer systems, namely in problems where
a structural overhead is induced by the number of items or users considered.
In a satellite communication, a correct transmission on the band requires that
the parts of the band dedicated to each user must be separated by proper
gaps. In time–sharing computer systems, just the adding of a process while
other processes are running causes an overhead of the processing capabilities.
Another application of interest is the transportation of fragile items, which may
require additional coverings if they are transported with other items. These and
similar real-life applications can be modeled as Collapsing Knapsack Problems
where the non–increasing function of the capacity represents the overhead of
the resources produced by the number of items included in a solution.

CKP was first introduced in [82], where an implicit enumeration algorithm
was proposed. An exact algorithm making use of new upper and lower bounds
was presented in [30]. In [71], a pseudopolynomial time dynamic programming
approach was proposed together with a reduction scheme to the standard
knapsack problem. An improved reduction scheme is proposed in [42]. Finally,
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an exact algorithm based on the partitioning of the CKP into sub–problems
was presented in [88].

The contribution of our work is twofold. On the one hand, we present a novel
ILP formulation of CKP and an effective reduction procedure for restricting
the solution space of the problem. We remark that our novel ILP formulation,
despite its simplicity, provides a significant contribution for tackling the CKP
since it makes possible to exploit the potentials of the modern IP solvers. The
previous formulation of the problem is not linear and the reduction schemes
to a standard KP illustrated in [71] and [42] induce very large size coefficients
that make the KP very difficult to solve in practice.
On the other hand, we introduce an exact approach for CKP which is also
extended to the multidimensional variant of CKP denoted hereafter M-CKP
(with M > 1 indicating the number of capacity constraints). To the best
of the author’s knowledge, no work has been developed to tackle collapsing
knapsack problems with more than one capacity constraint. We propose a new
exact approach that relies on the ILP formulation of CKP and on an original
branching scheme that induces the solution of several KPs (with the additional
constraint that the number of items in the knapsack is fixed) by exploiting the
particular structure of CKP. In this respect, the approach shares the general
algorithmic idea proposed for KPS of inducing problems tractable in practice
through an effective exploration of the solution space of first level variables.
The proposed approach is capable of solving to optimality all instances with up
to 100000 items within a time limit of 600 seconds, while instances tackled in
the literature until now were limited to 1000 items in size. The exact approach
is capable of solving to optimality also 2-CKP in instances up to 100000 items
in reasonable time. For M-CKP with M = 3,4,5, the proposed approach is
capable of solving to optimality all instances with up to 16000,1500 and 1000
respectively within a time limit of 3600 seconds.

These contributions resulted in a paper published in a journal ([26]). I
presented the results on CKP at EURO 2015 conference and as finalist of the
Prix Jeune Chercheur at ROADEF 2015 conference.
The chapter is organized as follows. In Section 3.2, the new integer linear
programming formulation of the problem is provided together with its general-
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ization to the multidimensional CKP. In Section 3.3 the reduction procedure
is introduced. Section 3.4 is devoted to the description of the proposed exact
solution algorithm. In Section 3.5, computational results for CKP and M-CKP
are presented.

3.2 ILP modeling of CKP and M-CKP

In this section, we briefly recall the original formulation of CKP and we
investigate the effectiveness of two schemes laid out in the literature for reducing
CKP to the classical knapsack problem. After that, we present our novel ILP
formulation and its extension to the multidimensional variant of the problem.

3.2.1 A previous formulation of CKP

According to [88], the 0–1 Collapsing Knapsack Problem (CKP) can be ex-
pressed as follows:

maximize
n∑

i=1
pixi (3.1)

subject to
n∑

i=1
wixi ≤B

(
n∑

i=1
xi

)
(3.2)

xi ∈ {0,1} i = 1, . . . ,n (3.3)

where pi and wi, positive integers, denote profit and weight of each item
i. Function B(·) is non-increasing over {1,2, . . . ,n}, indicating the capacity of
the knapsack. This implies that the capacity will decrease while the number
of the items inserted into the knapsack increases. Each binary variable xi

indicates if item i is selected or not. CKP is known to be weakly NP–hard as
it is pseudopolynomially solvable [71] and contains KP as special case (when
function B(·) is a constant).

Naively, according to model (3.1)–(3.3), one can enumerate all possible
sub–problems by iteratively fixing the total number of items and taking the
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corresponding capacity value from the function B(·). Then, one can solve all the
sub–problems and consider the best solution among them. This task corresponds
for each sub–problem to solve a KP problem with the additional constraint that
the number of items in the knapsack is fixed, which is generally handled well
by simply using a standard ILP solver. However, this approach is not expected
to be effective as soon as the number of variables, and correspondingly the
number of possible capacity values, increases.

3.2.2 Reduction schemes of CKP to a standard KP

In [71] a reduction scheme of CKP to a pure KP is proposed. That reduction
relies on doubling the number of variables and introducing coefficients of very
large size. The authors of [71], however, indicated that the presence of very
large coefficients made those KP intractable in practice. Indeed, in [57], Combo,
the current state-of-the-art algorithm for KP, was limited to instances with
up to 200 items only, as the generation of larger instances was not possible
on the machine used by the authors. Preliminary computational tests on that
reformulation confirmed this fact. We considered CKP instances with 1000
items generated as the largest instances in [71]. Then, we launched CPLEX
12.5 for solving the standard knapsack problem produced by the reduction
scheme: a CPU time limit of 1200 seconds was not sufficient to reach the
optimal solution. An improved reduction scheme is proposed in [42]. The
scheme produces coefficients smaller than those in [71]. We tested this scheme
by CPLEX 12.5 as well. Such a scheme was able to solve to optimality the
1000-item instances in few seconds but was not able to reach the optimum on
instances with 2000 items, within a CPU time limit of 1200 seconds.

In the light of these considerations, the reduction schemes in the literature
are not appealing in practice. We propose instead, in the following, a new
ILP formulation of CKP and M-CKP that constitutes the basic element of the
proposed solution approach.
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3.2.3 A novel ILP formulation

It is possible to formulate explicitly function B(·) in CKP, by adding a new set
of 0–1 variables and two constraints in order to deal with the non–increasing
property of function B(·). Let denote by bj = B(j) (j = 1, . . . ,h) the h (with
h≤ n) possible capacity values associated with the sum of selected items xi.
We introduce h 0–1 variables yj indicating whether a specific capacity value j
is selected or not. Then, we have the following ILP model for CKP:

maximize
n∑

i=1
pixi (3.4)

subject to
n∑

i=1
wixi ≤

h∑
j=1

bjyj (3.5)

h∑
j=1

yj = 1 (3.6)

n∑
i=1

xi =
h∑

j=1
jyj (3.7)

xi ∈ {0,1} i = 1, . . . ,n (3.8)
yj ∈ {0,1} j = 1, . . . ,h (3.9)

Constraint (3.5) links the weighted sum of the items to all possible capacity
values. Constraint (3.6) ensures that exactly one capacity value is selected.
Constraint (3.7) relates an index j to the total number of items selected in the
solution. In other words if a variable yj is selected, then we guarantee that
the capacity value bj corresponds to the associated number of selected items.
Finally in (3.8) and (3.9) variables xi and yj are defined as binary.

We remark that a simple upper bound on the total number of the items
present in the optimal solution can be straightforwardly computed. Let denote
by means of square brackets the set of weights sorted in nondecreasing order so
that w[1] ≤ w[2] ≤ ...≤ w[n]. The following Property which is a reformulation of
Proposition 5 in [71] holds.
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Property 1. (Proposition 5 in [71]) Let k∗ = min{k|∑k
j=1 w[j] > bk}. Then,

without loss of optimality, yl = 0 ∀l ∈ [k∗, ...,h].

From Property 1, the following constraint is added without loss of generality
to (namely the relevant variables are deleted from) model (3.4)–(3.9).

yl = 0 ∀l ∈ [k∗, ...,h] (3.10)

From now on, we will denote model (3.4)–(3.10) as model CKPa.

This novel ILP model turns out to be quite effective in tackling large size
instances of the problem, just by allowing the use of a MIP solver like CPLEX
12.5. More precisely, CPLEX 12.5 manages to solve CKP instances with up
30000 items within a CPU time limit of 600 seconds. This constitutes already
a significant improvement of the results reached by the previous approaches in
the literature.

3.2.4 Extending the ILP formulation to M-CKP

M-CKP can be seen as a generalization of the multidimensional knapsack
problem, that is it contains the multidimensional knapsack problem as a special
case when the functions associated to the capacities are constants. Model
(3.4)–(3.9) can be extended to M-CKP by replacing constraint (3.5) with the
following set of constraints:

n∑
i=1

w
(m)
i xi ≤

h∑
j=1

b
(m)
j yj m = 1, . . . ,M (3.11)

Where w
(m)
i and b

(m)
j denote the weights of the items and the capacities

values in the capacity constraint m. Similarly to CKPa, an upper bound on
the number of items for M-CKP can be computed by applying Property 1 to
all capacity constraints. Let denote by k∗

1, ...,k∗
M the max number of items in
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each of the capacity constraints. Let us consider the minimum of these values
denoted by t = min(k∗

1, ...,k∗
M ). Then, the following constraint is added without

loss of generality to the model:

yl = 0 ∀l ∈ [t, ...,h] (3.12)

Henceforth we will indicate model (3.4), (3.6)–(3.9), (3.11)–(3.12) as model
M-CKPa.

In the following, we analyze structure and properties of model CKPa. We
first devise a simple reduction procedure that shows up to effectively restrict the
solution space and improve the performance of CPLEX 12.5. Then, we propose
an exact solution approach that takes in input the output of the reduction
procedure and related reduced ILP model and provides in output the optimal
solution. The approach is outlined for CKP (the extension to M-CKP being
generally straightforward) with few integrations for M-CKP when required.

3.3 A reduction procedure for CKP

We propose a reduction procedure that consists in finding a first solution
and correspondingly reducing the relevant sums of items that may lead to an
optimal solution. A further step seeks for variables to be univocally fixed to 0
or 1 without loss of optimality. Each step of the procedure is detailed in the
following.

3.3.1 Computing a first solution

The goal of this step is to effectively compute a first solution for CKP strongly
based on the optimal solution of the related continuous relaxation.

First, we consider and solve the continuous relaxation CKP LP
a of model

CKPa. Flooring the optimal sum of items of this problem provides a possible
value S of the total number of items in the optimal solution of CKPa : S′ =
⌊

n∑
i=1

xLP
i ⌋. We remark that S′ always constitutes a feasible sum of items for
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CKPa, given the initial computation of the upper bound on the number of items
obtained by means of Property 1. Then, we consider again model CKPa where,
however, we add the constraint yS′ = 1, that is:

n∑
i=1

xi = S′. This corresponds
to solve the following model (denoted by CKPa(S′)).

CKPa(S′):

maximize
n∑

i=1
pixi (3.13)

subject to
n∑

i=1
wixi ≤ bS′ (3.14)

n∑
i=1

xi = S′ (3.15)

xi ∈ {0,1} i = 1, . . . ,n (3.16)

Model CKPa(S′) is a KP with the additional constraint that the number of
items is given (for a discussion of knapsack problems with cardinality constraints
see [12]). We first consider its continuous relaxation CKPa(S′)LP .

The following Lemma holds.

Lemma 1. The optimal solution of CKPa(S′)LP has either zero or two frac-
tional variables.

Proof. It is well known from standard textbooks of linear programming (see,
for instance, [68]) that for any continuous LP model with p constraints and
bounded variables, there exists at least one optimal basic solution with p basic
variables where only the basic variables can have a value that differs from the
bounds. Hence, in this case, with 2 constraints at most 2 variables can have
fractional value. Besides, the optimal solution of CKPa(S′)LP cannot have just
one fractional variable or else

n∑
i=1

xi would not be integer violating constraint
(3.15) as S′ is integer.

If the optimal solution of CKPa(S′)LP has zero fractional variables, it
constitutes an optimal integer solution of CKPa(S′) as well. Alternatively,
there are two fractional variables xi,xj and a feasible solution for CKPa(S′)
can be obtained by taking between i and j the item with the lowest weight
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and discarding the other one (see Lemma 1 in [12]). Denote the value of this
heuristic solution as LB′.

For M-CKP, the following Corollary holds.

Corollary 1. The optimal solution of M-CKPa(S′)LP has either zero or from
2 to M +1 fractional variables.

Proof. By applying the same reasoning of Lemma 1, the result holds.

In this latter case, a feasible integer solution can be found by trying to
insert in the solution either one or more of the fractional items. This is done
by solving model M-CKPa(S′) modified by adding constraints

xi = xLP
i (S′) ∀i : xLP

i (S′) is integer (3.17)

and by replacing equation (3.15) with inequality

n∑
i=1

xi ≤ S′ (3.18)

where xLP
i (S′) denote the optimal values of variables xi in M-CKPa(S′)LP .

Due to Corollary 1, the additional constraints induce a resulting model with
at most M +1 variables that is therefore immediate to solve in practice when
M is limited by means of a MIP solver like CPLEX 12.5. Notice also that,
even if none of the fractional variables can be selected, we still get a feasible
solution for M-CKPa by simply keeping the rest of the solution, as the value
of the sum of the items in this case is less than S′.

3.3.2 Limiting the relevant range of sums of items

After the computation of the first solution LB′, the possible sums of the items
in an optimal solution can be straightforwardly limited by solving other two
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continuous problems. More precisely, we minimize and maximize the sum
of items ∑xi subject to constraints (3.5)–(3.7), (3.10) and to an additional
constraint ensuring that the total profit must be strictly greater than the
current solution value. Notice also that the sum S′ of the items in the first
solution provides an upper bound and a lower bound for the minimization and
maximization problem respectively. Thus further constraints on the yi variables
can be added. The corresponding models to solve (denoted by CKPmin and
CKPmax respectively) are as follows.

CKPmin:

min
n∑

i=1
xi (3.19)

subject to
n∑

i=1
pixi ≥ LB′ +1 (3.20)

h∑
j=S′

yj = 0 (3.21)

(3.5)− (3.7),(3.10)
0≤ xi ≤ 1 i = 1, . . . ,n (3.22)
0≤ yj ≤ 1 j = 1, . . . ,h (3.23)

CKPmax:

max
n∑

i=1
xi (3.24)

subject to
n∑

i=1
pixi ≥ LB′ +1 (3.25)

S′∑
j=1

yj = 0 (3.26)

(3.5)− (3.7),(3.10)
0≤ xi ≤ 1 i = 1, . . . ,n (3.27)
0≤ yj ≤ 1 j = 1, . . . ,h (3.28)

Ceiling and flooring the optimal solution values of CKPmin and CKPmax

yield the extremes of the range of the number of items possibly leading to
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an optimal solution of CKP. Let us denote these extremes by Smin and Smax.
At the end of this step, the following constraints are added without loss of
optimality:

yj = 0 ∀j ∈ [1, ...,Smin−1] (3.29)
yj = 0 ∀j ∈ [Smax +1, ...,h] (3.30)

3.3.3 Variables fixing

We get back then to model CKP LP
a . Let indicate the optimal value of CKP LP

a

by zLP and the optimal values of variables xi and yi by xLP
i and yLP

i , respec-
tively. Let rxi and ryi be the reduced costs of non basic variables in the optimal
solution of CKP LP

a . We apply then the standard variable-fixing techniques
from Integer Linear Programming as shown for KPS in Section 2.3.2. Thus,
the following constraints are added to the models.

∀ i : |rxi| ≥ zLP −LB′, xi = xLP
i (3.31)

∀j : |ryj | ≥ zLP −LB′, yj = yLP
j (3.32)

This step is fast, since it relies on solving continuous problems with a limited
number of constraints. At the same time, it shows up to be very effective
in reducing the problem size and in our case (in general, fixing variables
may sometimes generate instances that are more difficult to solve than the
original ones) also in strongly improving the performance as indicated in the
computational results section. The pseudo code of the reduction procedure is
outlined in Algorithm 3.
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Algorithm 3 Reduction procedure
1: Input: CKP instance.
2: ◃ Finding an initial feasible solution
3: xLP ← solve model CKP LP

a ;
4: S′← ⌊

n∑
i=1

xLP
i ⌋;

5: LB′← solve model CKPa(S′)LP and apply Lemma 1;
6: ◃ Identifying the relevant sums of items
7: zmin← solve model CKPmin;
8: zmax← solve model CKPmax;
9: Smin = ⌈zmin⌉;

10: Smax = ⌊zmax⌋;
11: Set in model CKPa: yj = 0 ∀j ∈ [1, ...,Smin−1] and
12: yj = 0 ∀j ∈ [Smax +1, ...,h];
13: ◃ Variables fixing
14: Apply (3.31, 3.32) and fix variables in model CKPa;
15: return LB′;

3.4 An exact solution approach

The proposed approach applies initially the reduction procedure that provides
an initial feasible solution LB′ and an ILP model with reduced size where,
in particular, some of the yj variables have typically already been fixed to 0
stating correspondingly that there exists at least one optimal solution with∑

xj ̸= j. Then, our exact approach aims to further reduce, with limited
computational effort, the subset of variables yj that may possibly lead to an
optimal solution when set to 1, that is the relevant range of optimal sums
over items. Consequently, the optimal solution for each element of this subset
(where the knapsack capacity is given) is computed. The approach is based
on three main steps. The first step consists in improving the initial feasible
solution provided by the reduction procedure. The second step concerns the
identification of the smallest subset of variables yj that can lead to an optimal
solution, that is the relevant range of optimal sums over items. In the third
step, the corresponding sub-problems with given yj are solved. In practice,
we reconsider here the algorithmic idea proposed for the Knapsack Problem
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with Setups and based on an effective exploration of the solution space of first
level variables (yj) in order to induce sub–problems tractable in practice even
though NP–Hard (namely, in this case, KPs with a cardinality constraint).

3.4.1 Finding an improved starting feasible solution

Consider model CKPa and relax the integrality constraint on the xi variables
only, that is substitute constraints (3.8) with constraints

0≤ xi ≤ 1 i = 1, . . . ,n (3.33)

so as to get a mixed integer model denoted here after model CKPb where the
yj variables remain binary. We remark that the set of yj variables represents a
special ordered set and therefore it is likely that model CKPb may constitute
a problem relatively easy to solve. This consideration showed up to hold in
practice. The optimal solution value of model CKPb, provides, on the one
hand, an upper bound on the optimum. On the other hand, it provides also a
possible integer value S of the total number of selected items, where S is the
number of selected items in the optimal solution of model CKPb.

Consider then CKPa(S) that is another problem that shows up to be easy
to solve in practice. Its solution provides a feasible solution for model CKPa.
Let denote by LB the value of the improved starting feasible solution, that is
the maximum between LB′ and the optimal solution value of CKPa(S).

3.4.2 Identifying the relevant sub–problems

Given a feasible solution with value LB with exactly S items included, we pro-
pose a binary branching scheme on the number of items present in the solution.
At the first level of the search tree, then, and additional constraint is added
in such a way that either

n∑
i=1

xi ≤ S− 1 (left branch) or
n∑

i=1
xi ≥ S + 1 (right

branch). In the left branch, we solve model CKPb subject to the above men-
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tioned additional constraint and stop the analysis if the obtained upper bound
is not superior to the current best available feasible solution. Alternatively, we
store the information that

n∑
i=1

xi = S−1 is a potential candidate for the optimal

solution of model CKPa and consider the case with
n∑

i=1
xi ≤ S−2. We continue

then in this way until the stopping condition is met. Similar analysis holds
on the right branch where first we consider

n∑
i=1

xi ≥ S +1, then
n∑

i=1
xi ≥ S +2

and so on. At the end of this step, we have covered the relevant range on the
number of items that may be present in the optimal solution of model CKPa.
Finally, we remark that, at each level of the search tree, we just replace an
inequality constraint on the sum of the items with another one. Therefore,
we solve model CKPb with a single additional inequality constraint in each
of the branches. Generally speaking, adding inequalities to a problem may
increase the computational effort required to solve it. Given the characteristics
of model CKPb outlined in the previous sub–section 3.4.1, it is reasonable
not to expect a meaningful increase of the computational cost when a single
inequality constraint is added. Our computational experiments confirm this
statement.

3.4.3 Solving the sub–problems

The last step consists in solving by means of an ILP solver several times model
CKPa(S) for different values of S in constraint (3.15). Then, the best solution
among the solutions of the various sub-problems yields the optimal solution of
CKP.
The pseudo code of the approach is provided in Algorithm 4.
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Algorithm 4 Exact approach
1: Input: CKP instance.
2: LB′← Apply the reduction procedure;
3: (ŨB, x̃)← solve model CKPb;
4: S←

n∑
i=1

x̃i;

5: LB← solve model CKPa(S);
6: Best←max{LB,LB′};
7: check:=TRUE, sleft := S;
8: while check do ◃ Left branch
9: sleft = sleft−1;

10: (ÛB, x̂)← solve model CKPb
⋂ n∑

i=1
xi ≤ sleft);

11: if ÛB < Best+1 then
12: check:=FALSE;
13: else
14: add

n∑
i=1

xi = sleft to the sub–problems list;

15: end if
16: end while
17: check:=TRUE, sright := S;
18: while check do ◃ Right branch
19: sright = sright +1;
20: (ÛB, x̂)← solve model CKPb

⋂ n∑
i=1

xi ≥ sright;

21: if ÛB < Best+1 then
22: check:=FALSE;
23: else
24: add

n∑
i=1

xi = sright to the sub–problems list;

25: end if
26: end while
27: for all s in the sub–problems list do ◃ Solve sub–problems
28: LBsub← solve model CKPa(S) with S = s;
29: if LBsub > Best then
30: Best← LBsub;
31: end if
32: end for
33: return Best;
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3.5 Computational results

All tests have been conducted on a Intel i5 CPU @ 3.3 GHz with 4 GB of Ram.
The ILP solver used was CPLEX 12.5 and the code has been implemented in
C++ programming language. The parameters of CPLEX 12.5 were set to their
default values.

3.5.1 Results for CKP

In preliminary testing, we generated instances according to the scheme provided
in literature in [30], [71] and [88]. The instances are uncorrelated with the
profits of items randomly ranging from 1 to a parameter p, while the weights of
items vary from 1 to a parameter w. The capacity values of B(·) are constructed
by randomly generating h numbers in a range from 1 to c, sorting these values
in non–increasing order and assigning them to B(1),. . . ,B(h) and B(j) = 0
for j = h+1,. . . ,n. We generated instances with 1000 items (the largest size
considered up to now in literature) by using the same parameters of [88], that
is p = 300, w = 1000 and c = 1000. CPLEX 12.5 applied to model CKPa solves
to optimality all instances with 1000 items in less than a second in the worst
case.

We considered then much larger size and challenging instances involving
different correlations between profits and weights of the items . More precisely,
we investigated 9 types of correlations as proposed in [57]. We considered
instances with up to 100000 items with profits and weights ranging in [1,1000].
We chose the value of parameter c proportional to the sum of the weights, in
particular we set c equal to 0.1∑w, and we considered three possible values of
h proportional to the number of items (0.1n, 0.2n, 0.5n). The results obtained
by CPLEX 12.5 on model CKPa are reported in Table 3.1 and Table 3.2 where,
for each value of n, are reported the average and maximum CPU time and the
number of optima reached within a time limit of 600 seconds. The average
CPU times consider also the cases where the optimum is not found.

We first notice that CPLEX 12.5 applied to model CKPa is in general well
performing on CKP solving to optimality most of the instances, but it does not
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CPLEX 12.5 n 10000 20000 30000 40000 50000
Average Max Average Max Average Max Average Max Average Max

Correlation h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
Uncorr. 0.10 1.30 2.82 20 2.20 5.77 20 6.83 15.09 20 23.11 189.23 20 22.16 139.92 20

0.20 1.39 4.06 20 5.35 30.76 20 7.05 16.22 20 16.22 121.40 20 27.58 132.76 20
0.50 1.25 2.54 20 9.80 87.81 20 34.58 180.24 20 29.89 200.26 20 50.34 600.00 19

Weakly corr. 0.10 1.05 7.41 20 1.95 7.15 20 10.76 65.10 20 47.73 320.13 20 74.74 457.27 20
0.20 3.08 23.17 20 6.85 44.71 20 20.10 129.65 20 24.27 128.84 20 155.46 600.00 19
0.50 3.03 28.30 20 8.18 83.27 20 39.70 220.93 20 147.79 600.00 18 297.86 600.00 13

Strongly corr. 0.10 0.35 0.92 20 0.36 1.23 20 0.74 2.75 20 1.04 4.21 20 1.38 5.04 20
0.20 0.28 0.87 20 0.72 2.61 20 0.82 2.04 20 2.70 5.83 20 4.02 25.24 20
0.50 0.17 0.42 20 0.20 0.30 20 0.56 3.60 20 0.47 1.33 20 0.72 4.13 20

Inverse 0.10 0.26 0.94 20 0.32 1.22 20 0.73 3.14 20 0.95 3.42 20 1.00 4.09 20
strongly corr. 0.20 0.32 1.08 20 0.45 1.26 20 0.63 3.42 20 1.80 5.74 20 2.53 10.06 20

0.50 0.41 1.45 20 1.32 5.98 20 2.08 5.88 20 3.93 8.80 20 3.84 9.50 20
Almost 0.10 0.38 1.08 20 0.80 2.39 20 1.56 8.10 20 1.33 4.34 20 1.88 7.69 20

strongly corr. 0.20 0.46 1.42 20 1.08 5.13 20 1.30 5.68 20 3.87 15.90 20 4.80 19.86 20
0.50 0.42 2.57 20 0.63 3.71 20 0.65 1.36 20 1.14 5.82 20 0.85 2.32 20

Subset–sum 0.10 0.24 1.03 20 0.27 1.01 20 0.85 2.43 20 1.44 6.30 20 1.02 4.27 20
0.20 0.28 1.39 20 0.77 2.23 20 1.56 7.91 20 2.92 8.32 20 3.05 7.33 20
0.50 0.51 1.93 20 1.07 3.00 20 2.14 5.74 20 4.93 18.55 20 4.84 12.18 20

Even–odd 0.10 0.20 0.61 20 0.30 0.81 20 0.67 2.23 20 1.22 2.89 20 1.30 3.54 20
subset sum 0.20 0.28 1.17 20 0.80 2.84 20 1.65 5.98 20 2.00 6.15 20 4.25 20.83 20

0.50 1.10 4.13 20 1.28 2.90 20 1.54 3.57 20 4.66 19.24 20 3.94 13.21 20
Even–odd 0.10 0.24 0.69 20 0.38 1.45 20 0.74 2.03 20 1.04 3.82 20 1.03 4.48 20

strongly corr. 0.20 0.32 1.12 20 0.92 2.14 20 1.60 5.54 20 2.54 6.38 20 2.50 7.64 20
0.50 0.16 0.45 20 0.23 0.44 20 0.41 2.57 20 0.45 0.97 20 0.67 4.32 20

Uncorr. with 0.10 0.20 0.22 20 0.37 0.75 20 0.53 0.76 20 0.64 0.94 20 1.14 2.71 20
similar weights 0.20 0.21 0.33 20 0.38 0.56 20 0.67 1.08 20 0.95 1.70 20 1.34 2.28 20

0.50 0.29 0.66 20 0.44 0.56 20 0.73 1.09 20 1.20 1.92 20 1.60 2.29 20

Table 3.1 CPLEX results on CKP instances with different correlations between
profits and weights. Number of items from 10000 to 50000.

manage to solve weakly correlated and uncorrelated instances with more than
30000 variables. CPLEX 12.5 fails to reach the optimum within 600 seconds
in several cases as the size of the instances increases. The uncorrelated and
weakly correlated instances turned out to be the even more challenging than
the strongly correlated ones as considered in the schemes in literature. The
other types of correlation appear to be relatively easy to solve to optimality
even for instances with 100000 items.

We focused then on the first two correlation types and apply the reduction
procedure presented in Section 3.3 to instances from 30000 with up to 100000
items. After that we launched CPLEX 12.5 on the reduced problems. The
results are reported in Table 3.3 where, for each value of n the average and
maximum CPU time within a time limit of 600 seconds are reported. We
also report the minimum percentages of the sums of items (namely the yj

variables) further discarded with respect to the feasible sums obtained after
the application of Property 1.

The procedure shows up to be able of drastically reducing the solution space
of the problem. It allows to discard at least the 87.9% of the sums of the items
for all the instances considered. As one may expect, the method enhances
the performance of the ILP solver, which is able to solve to optimality all the
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CPLEX 12.5 n 60000 70000 80000 90000 100000
Average Max Average Max Average Max Average Max Average Max

Correlation h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
Uncorr. 0.10 58.71 384.68 20 63.58 600.00 19 126.11 600.00 19 138.27 600.00 18 271.50 600.00 13

0.20 73.07 504.73 20 152.01 600.00 19 186.29 600.00 18 184.75 600.00 18 414.78 600.00 10
0.50 95.68 600.00 19 138.24 600.00 17 128.22 600.00 18 250.26 600.00 13 339.71 600.00 12

Weakly corr. 0.10 154.73 600.00 17 246.25 600.00 16 299.88 600.00 15 415.56 600.00 11 408.88 600.00 9
0.20 200.87 600.00 16 381.67 600.00 11 366.69 600.00 12 429.12 600.00 10 363.00 600.00 10
0.50 204.85 600.00 16 311.59 600.00 13 432.05 600.00 8 417.84 600.00 9 427.79 600.00 8

Strongly corr. 0.10 2.16 9.84 20 3.19 11.56 20 3.89 12.32 20 5.66 18.53 20 4.36 15.23 20
0.20 4.09 15.82 20 4.80 11.97 20 6.32 16.18 20 6.71 16.90 20 7.95 63.49 20
0.50 0.71 2.28 20 0.89 5.12 20 0.63 1.17 20 0.79 1.42 20 0.77 0.81 20

Inverse 0.10 1.47 5.48 20 2.72 7.66 20 3.31 8.99 20 6.17 26.26 20 5.12 13.11 20
strongly corr. 0.20 3.78 17.21 20 5.17 13.26 20 4.60 19.05 20 5.78 14.45 20 6.39 20.76 20

0.50 3.19 14.99 20 7.30 26.01 20 7.82 36.75 20 8.00 28.53 20 12.84 59.70 20
Almost 0.10 4.32 10.97 20 5.18 18.00 20 6.57 22.31 20 9.22 19.39 20 7.49 18.13 20

strongly corr. 0.20 5.37 16.79 20 5.37 20.95 20 8.14 26.19 20 6.80 29.13 20 17.65 71.34 20
0.50 0.94 1.33 20 1.70 7.10 20 1.73 5.40 20 2.88 13.40 20 2.59 10.16 20

Subset–sum 0.10 2.65 9.59 20 2.53 6.66 20 2.54 7.69 20 6.63 21.95 20 4.22 11.54 20
0.20 4.19 10.03 20 3.88 10.25 20 5.90 12.90 20 5.94 16.49 20 7.72 32.89 20
0.50 5.16 14.90 20 7.99 25.13 20 7.62 31.20 20 7.19 22.65 20 18.97 95.43 20

Even–odd 0.10 2.40 5.41 20 2.67 7.11 20 3.61 9.78 20 4.61 22.31 20 5.45 15.93 20
subset sum 0.20 3.98 27.55 20 4.83 31.61 20 7.29 21.89 20 5.19 22.43 20 10.63 30.30 20

0.50 7.40 24.93 20 6.25 15.34 20 7.25 18.25 20 8.52 28.55 20 11.49 44.24 20
Even–odd 0.10 1.43 6.43 20 3.07 9.53 20 3.40 18.88 20 4.73 24.32 20 6.61 18.27 20

strongly corr. 0.20 4.72 19.81 20 6.19 20.67 20 6.60 22.60 20 8.39 30.47 20 10.85 47.30 20
0.50 0.58 1.16 20 0.56 0.90 20 0.72 1.55 20 0.79 2.37 20 1.78 11.01 20

Uncorr. with 0.10 1.43 4.38 20 1.61 3.92 20 2.02 4.91 20 3.00 12.36 20 2.57 5.76 20
similar weights 0.20 1.74 2.92 20 2.38 4.04 20 3.07 6.26 20 2.99 5.62 20 3.46 5.80 20

0.50 1.98 2.90 20 2.82 4.68 20 2.94 4.65 20 3.37 5.90 20 3.65 5.57 20

Table 3.2 CPLEX results on CKP instances with different correlations between
profits and weights. Number of items from 60000 to 100000.

instances with up to n = 100000 in less than 102 seconds approximately in the
worst case (for a weakly correlated instance with 90000 items).

In Table 3.4 are reported the related results of the exact approach of
Section 3.4: The results are similar to those of Table 3.3. We notice, however,
that the exact approach generally performs slightly better in the worst-case
instances and manages to solve to optimality all instances requiring at most 82
seconds. As discussed in Section 3.5.3, the exact approach makes a difference
in the performance for M-CKP, in particular in 2-CKP.

3.5.2 Comparison with the algorithms in literature

We remark that even though a direct comparison with the algorithms present
in literature is not provided, we claim that our approach is supposed to be
significantly superior to these algorithms. Let us consider first the approach
proposed in [71]. The experimental results were carried out approximately 20
years ago, thus it is very hard to perform a comparison between the computers.
Nevertheless, that approach has a complexity O(nKb1), where K indicates the
number of possible capacity values in an optimal solution. In our computational
experiments we have b1 ≥ 0.1∑wi, K ≥ 0.05n. As, ∑wi

∼= 500n, roughly
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Reduction proc.
+ CPLEX 12.5 n 30000 40000 50000 60000

Average Max Average Max Average Max Average Max
Correlation h/n time (s) time (s) time (s) time (s) time (s) time (s) time (s) time (s)

Uncorr. 0.10 3.02 5.99 3.44 5.71 5.99 9.88 6.57 13.95
0.20 3.46 7.66 4.22 8.10 5.25 13.81 5.65 11.97
0.50 3.26 7.94 4.32 8.80 5.78 13.34 8.05 23.70

Weakly corr. 0.10 2.37 3.64 3.82 12.26 4.58 6.30 6.95 20.76
0.20 2.87 6.82 4.33 7.18 5.43 7.75 6.54 11.20
0.50 5.15 17.30 6.91 17.86 11.45 42.79 9.75 27.85

Min % of sums of
items discarded 88.0 88.9 87.9 91.0

n 70000 80000 90000 100000
Average Max Average Max Average Max Average Max

Correlation h/n time (s) time (s) time (s) time (s) time (s) time (s) time (s) time (s)
Uncorr. 0.10 8.59 17.52 9.26 16.47 11.00 23.26 13.16 37.60

0.20 9.22 15.88 11.67 24.52 10.70 23.76 14.33 32.64
0.50 8.93 15.46 13.16 32.67 14.80 28.44 14.03 29.61

Weakly corr. 0.10 7.59 11.72 8.95 16.41 10.92 19.91 11.48 17.41
0.20 8.65 13.64 10.93 19.33 11.37 20.53 13.59 28.13
0.50 21.11 90.46 21.82 58.89 24.08 101.93 22.69 93.57

Min % of sums of
items discarded 89.3 91.2 89.8 92.1

Table 3.3 CKP uncorrelated and weakly correlated instances. Results obtained
by applying the reduction procedure before running CPLEX 12.5.

speaking, we have b1 ∼= 50n and O(nKb1) =O(2.5n3). If we consider the largest
instances handled by our approaches, i.e. n = 100000, we have 2.5n3 = 2.5∗1015.
Even with a processor running at 10GHz, namely more than three times faster
than our machine, this would induce more than 105 seconds of computation
time, while we solve to optimality all instances in less than 82 seconds.

Let now consider the algorithm in [88]. The largest instances considered are
with 1000 items and they are solved in more than 1000 seconds on a computer
with a Celeron 300A CPU. We solved the same kind of instances in less than
1 second on a machine which is approximately 11 times faster1. We may
reasonably assume that the differences in the performance of the algorithms
would remain significant even if they were launched on the same machine.

3.5.3 Results for M-CKP

We consider M-CKP involving up to 5 capacity constraints. We first present
the results for 2-CKP, which is a generalization of 2-KP, the well–known 2-
constraint variant of the standard KP (see, e.g., [63]). We conducted a broad

1We consulted the following website for comparing the CPUs: http://cpuboss.com.
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Exact approach
n 30000 40000 50000 60000

Average Max Average Max Average Max Average Max
Correlation h/n time (s) time (s) time (s) time (s) time (s) time (s) time (s) time (s)

Uncorr. 0.10 3.75 4.99 5.06 6.77 7.56 10.25 8.94 12.76
0.20 3.62 4.59 5.91 8.49 7.39 10.67 8.69 11.72
0.50 3.87 5.48 5.53 7.11 7.81 10.59 9.92 13.92

Weakly corr. 0.10 3.42 4.26 5.73 12.22 7.00 8.11 9.09 10.98
0.20 3.75 4.60 6.03 6.91 7.70 9.06 9.52 10.78
0.50 4.89 6.96 8.36 20.12 10.92 16.68 13.26 40.61

n 70000 80000 90000 100000
Average Max Average Max Average Max Average Max

Correlation h/n time (s) time (s) time (s) time (s) time (s) time (s) time (s) time (s)
Uncorr. 0.10 11.95 15.30 13.24 18.31 16.60 22.71 18.50 24.26

0.20 12.45 17.94 14.87 19.16 16.37 21.68 17.88 26.83
0.50 11.55 16.36 14.93 22.71 19.12 25.33 20.53 24.93

Weakly corr. 0.10 10.63 12.56 12.57 15.40 15.17 23.26 16.32 24.37
0.20 11.90 14.48 14.21 19.10 16.04 21.09 17.58 23.81
0.50 16.59 28.86 22.72 50.50 23.16 48.28 26.89 82.09

Table 3.4 CKP uncorrelated and weakly correlated instances. Results obtained
by applying the exact approach.

computational analysis by testing different sets of instances according to a
scheme provided in the literature for the the two-dimensional KP. The results
underline a remarkable effectiveness of our exact approach which turns out
to outperform significantly both CPLEX 12.5 standalone and CPLEX 12.5
launched in cascade after the application of the reduction procedure. Then,
we present the results for the other multidimensional variants. Our approach
still globally outperforms the competitors, even though we notice a relevant
decrease in the size of the instances solved to optimality within the time limit
considered.

2-CKP

In 2-CKP, we considered the generation scheme for the instances of the two-
dimensional KP provided in literature by [63], where different sets of instances
are analyzed. In instances labeled as "B(R)" the weights are randomly generated
from the uniform distribution [1, R], with R being an arbitrary parameter. The
profit of each item is equal to one half of the sum of its weights plus r, with r

randomly generated from the uniform distribution [1, R/2]. The capacity value
of each constraint is equal to 0.25∑wi in B1, 0.5∑wi in B2 and 0.75∑wi in
B3. In classes A1, A2, and A3 different correlation between profits and weights



3.5 Computational results 89

of items are considered (see [63] for a detailed description). The capacity value
of each constraint is equal to 0.5∑wi.

We generated instances for 2-CKP with parameter R fixed to 1000 and by
constructing two non-increasing functions of the capacity values. Similarly to
CKP, the capacity function of each constraint is built by generating h numbers
in a range from 1 to a parameter c. Considering how the instances of 2-KP
problem have been generated, we set the parameter c equal to 0.4∑wi for
class B1, 0.8∑wi for classes A1, A2, A3 , B2 and equal to ∑wi for class B3
respectively. Two values of h proportional to the number of items have been
considered (0.25n, 0.5n). We generated instances from 10000 to 100000 items
and batches with 20 instances within each category. Table 3.5 summarizes
the performance of CPLEX 12.5 standalone, CPLEX 12.5 launched in cascade
after the application of the reduction procedure and our exact approach for the
various classes of instances. For each class, the average and maximum CPU
time within a time limit of 600 seconds and the number of optima reached over
400 instances are reported. The average times include also the cases where
the optimum is not reached. Detailed results for different sets of instances are
reported in Tables 3.6–3.11.

Reduction proc.
CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
Class time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

A1 437.82 600.00 160 103.92 600.00 368 16.2 69.25 400
A2 255.03 600.00 279 13.19 88.39 400 9.82 34.51 400
A3 306.40 600.00 242 15.76 129.01 400 11.52 41.29 400
B1 474.64 600.00 123 167.93 600.00 334 27.86 121.96 400
B2 447.12 600.00 150 104.10 600.00 381 21.49 96.99 400
B3 459.76 600.00 147 97.51 600.00 380 19.50 80.04 400

Table 3.5 2-CKP benchmark instances time (s) and number of optima for each
class, average over 400 instances.
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Reduction proc.
Class A1 CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
n h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

10000 0.25 22.40 57.38 20 2.79 8.55 20 1.97 3.00 20
0.50 53.66 141.77 20 3.07 7.01 20 2.40 4.05 20

20000 0.25 125.41 336.24 20 25.64 215.61 20 4.01 5.96 20
0.50 309.35 600.00 15 29.16 283.47 20 4.99 6.76 20

30000 0.25 282.70 600.00 19 13.54 82.29 20 6.81 9.39 20
0.50 479.90 600.00 8 74.27 544.22 20 8.58 13.31 20

40000 0.25 416.92 600.00 11 40.35 422.31 20 8.18 10.56 20
0.50 477.06 600.00 7 35.54 210.82 20 9.71 15.09 20

50000 0.25 493.69 600.00 6 105.85 600.00 17 11.97 16.65 20
0.50 519.76 600.00 6 148.85 600.00 18 13.79 18.00 20

60000 0.25 533.41 600.00 3 95.20 600.00 18 14.35 27.58 20
0.50 487.57 600.00 6 179.31 600.00 16 18.22 23.10 20

70000 0.25 582.27 600.00 3 95.36 600.00 19 17.06 23.62 20
0.50 529.16 600.00 4 208.58 600.00 16 21.02 32.65 20

80000 0.25 571.13 600.00 4 117.22 600.00 19 21.08 28.91 20
0.50 556.46 600.00 2 142.27 600.00 18 24.40 34.24 20

90000 0.25 586.86 600.00 1 209.55 600.00 15 28.45 38.77 20
0.50 560.31 600.00 2 119.01 600.00 19 36.20 58.33 20

100000 0.25 594.51 600.00 1 170.75 600.00 17 30.10 43.54 20
0.50 573.96 600.00 2 262.01 600.00 16 41.26 69.25 20

Table 3.6 2-CKP benchmark instances (class A1) time (s) and number of optima,
average over 20 instances.
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Reduction proc.
Class A2 CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
n h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

10000 0.25 6.12 19.28 20 1.08 1.58 20 1.06 1.39 20
0.50 7.09 28.14 20 1.13 1.93 20 1.21 1.55 20

20000 0.25 18.99 78.44 20 2.04 3.96 20 2.20 2.89 20
0.50 38.97 361.75 20 2.47 4.59 20 2.81 3.79 20

30000 0.25 51.11 144.38 20 4.45 8.44 20 4.02 5.34 20
0.50 137.45 600.00 19 4.01 8.69 20 4.04 5.90 20

40000 0.25 166.60 600.00 17 6.88 10.47 20 5.37 8.74 20
0.50 215.51 600.00 17 7.73 12.09 20 5.91 8.19 20

50000 0.25 154.89 600.00 17 8.48 13.28 20 7.05 9.10 20
0.50 205.25 600.00 16 9.99 16.51 20 7.68 10.53 20

60000 0.25 298.21 600.00 12 11.88 19.80 20 9.70 16.19 20
0.50 247.63 600.00 16 10.45 18.71 20 9.48 12.31 20

70000 0.25 324.79 600.00 11 17.53 88.39 20 11.89 15.68 20
0.50 304.08 600.00 15 17.67 46.08 20 13.71 20.61 20

80000 0.25 427.37 600.00 10 17.78 37.96 20 14.89 20.45 20
0.50 452.50 600.00 8 24.55 47.77 20 18.50 30.87 20

90000 0.25 448.37 600.00 9 20.70 41.59 20 15.85 25.01 20
0.50 520.78 600.00 5 35.28 59.56 20 20.90 32.54 20

100000 0.25 492.48 600.00 6 26.36 52.03 20 18.79 34.01 20
0.50 582.40 600.00 1 33.26 82.66 20 21.43 34.51 20

Table 3.7 2-CKP benchmark instances (class A2) time (s) and number of optima,
average over 20 instances.
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Reduction proc.
Class A3 CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
n h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

10000 0.25 5.79 31.95 20 0.85 1.90 20 1.11 1.55 20
0.50 13.47 53.74 20 1.57 4.95 20 1.28 1.64 20

20000 0.25 20.45 73.04 20 2.79 14.37 20 2.43 3.45 20
0.50 76.24 375.77 20 3.38 7.01 20 2.94 4.38 20

30000 0.25 72.88 374.60 20 3.38 7.39 20 3.71 5.13 20
0.50 137.45 518.16 20 7.24 35.66 20 4.72 6.27 20

40000 0.25 118.27 383.17 20 5.20 12.43 20 5.30 7.21 20
0.50 193.50 600.00 16 8.99 29.50 20 6.75 9.05 20

50000 0.25 267.41 600.00 15 9.11 30.22 20 7.21 9.94 20
0.50 405.46 600.00 10 14.31 56.82 20 9.52 12.45 20

60000 0.25 301.67 600.00 14 13.22 32.51 20 10.44 14.12 20
0.50 403.70 600.00 11 11.25 24.31 20 11.47 14.15 20

70000 0.25 384.41 600.00 10 15.22 40.42 20 12.06 20.20 20
0.50 568.97 600.00 2 27.68 112.80 20 16.06 23.60 20

80000 0.25 456.37 600.00 8 18.88 61.09 20 14.97 22.09 20
0.50 560.58 600.00 2 37.32 93.32 20 21.85 30.26 20

90000 0.25 513.64 600.00 5 28.87 84.02 20 18.83 25.44 20
0.50 540.57 600.00 3 41.81 129.01 20 25.65 35.66 20

100000 0.25 521.56 600.00 4 31.07 126.72 20 22.72 27.85 20
0.50 565.66 600.00 2 32.98 76.85 20 31.46 41.29 20

Table 3.8 2-CKP benchmark instances (class A3) time (s) and number of optima,
average over 20 instances.
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Reduction proc.
Class B1 CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
n h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

10000 0.25 96.08 289.27 20 9.46 61.76 20 4.64 20.28 20
0.50 169.03 494.10 20 81.99 495.04 20 7.07 10.42 20

20000 0.25 280.67 600.00 18 25.17 203.95 20 5.38 7.64 20
0.50 387.24 600.00 11 90.26 600.00 19 9.10 16.55 20

30000 0.25 433.28 600.00 11 77.82 600.00 19 8.28 12.09 20
0.50 533.96 600.00 5 179.77 600.00 16 14.39 25.58 20

40000 0.25 455.70 600.00 6 121.20 600.00 18 13.18 18.78 20
0.50 434.39 600.00 7 162.36 600.00 16 24.01 38.77 20

50000 0.25 498.39 600.00 4 190.58 600.00 16 19.33 31.82 20
0.50 543.23 600.00 3 196.05 600.00 15 22.61 34.16 20

60000 0.25 578.51 600.00 1 316.58 600.00 13 22.40 34.29 20
0.50 553.92 600.00 2 157.07 600.00 17 32.96 68.50 20

70000 0.25 524.73 600.00 5 193.30 600.00 16 27.14 41.73 20
0.50 508.35 600.00 5 183.25 600.00 16 42.15 73.43 20

80000 0.25 547.68 600.00 3 123.87 600.00 18 33.68 47.96 20
0.50 573.03 600.00 1 254.80 600.00 14 51.13 84.33 20

90000 0.25 574.59 600.00 1 198.53 600.00 15 40.45 61.28 20
0.50 600.00 600.00 0 273.88 600.00 14 65.00 121.96 20

100000 0.25 600.00 600.00 0 293.89 600.00 15 47.45 61.31 20
0.50 600.00 600.00 0 228.82 600.00 17 66.94 94.72 20

Table 3.9 2-CKP benchmark instances (class B1) time (s) and number of optima,
average over 20 instances.
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Reduction proc.
Class B2 CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
n h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

10000 0.25 31.68 101.92 20 10.14 140.31 20 2.20 4.48 20
0.50 116.79 280.82 20 28.52 157.05 20 4.21 9.41 20

20000 0.25 159.51 383.57 20 17.07 122.68 20 4.24 6.37 20
0.50 348.15 600.00 14 23.78 152.01 20 6.80 9.77 20

30000 0.25 341.16 600.00 14 21.64 167.44 20 6.57 10.14 20
0.50 512.97 600.00 6 53.41 399.86 20 10.06 14.95 20

40000 0.25 417.21 600.00 11 34.57 294.82 20 10.67 19.09 20
0.50 484.35 600.00 6 170.43 600.00 18 14.63 22.18 20

50000 0.25 470.93 600.00 9 46.88 489.99 20 14.35 21.84 20
0.50 486.17 600.00 5 176.01 600.00 16 21.58 29.17 20

60000 0.25 522.39 600.00 3 86.90 490.26 20 20.33 30.23 20
0.50 577.96 600.00 1 238.53 600.00 17 27.02 40.76 20

70000 0.25 547.93 600.00 3 95.64 600.00 19 23.45 40.17 20
0.50 580.36 600.00 1 185.45 600.00 18 33.15 46.93 20

80000 0.25 534.30 600.00 5 94.09 377.10 20 26.01 32.48 20
0.50 552.29 600.00 2 173.76 600.00 18 37.40 52.42 20

90000 0.25 534.29 600.00 6 151.51 600.00 19 31.79 51.75 20
0.50 568.92 600.00 2 138.76 476.66 20 44.43 64.90 20

100000 0.25 600.00 600.00 0 179.42 600.00 18 38.40 50.50 20
0.50 555.01 600.00 2 155.44 600.00 18 52.46 96.99 20

Table 3.10 2-CKP benchmark instances (class B2) time (s) and number of
optima, average over 20 instances.
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Reduction proc.
Class B3 CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
n h/n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

10000 0.25 28.90 100.20 20 7.32 71.07 20 2.36 4.46 20
0.50 78.07 228.54 20 6.72 33.74 20 3.49 5.43 20

20000 0.25 189.62 484.35 20 13.33 66.27 20 4.07 5.68 20
0.50 364.75 600.00 14 71.34 585.30 20 5.76 7.93 20

30000 0.25 275.89 600.00 17 20.64 155.33 20 6.44 10.41 20
0.50 513.19 600.00 4 58.14 419.84 20 8.68 12.36 20

40000 0.25 426.72 600.00 12 59.67 339.53 20 9.86 17.30 20
0.50 485.34 600.00 6 151.04 600.00 16 12.69 19.33 20

50000 0.25 537.35 600.00 7 61.75 600.00 19 13.00 16.43 20
0.50 570.78 600.00 3 55.98 458.02 20 15.74 21.93 20

60000 0.25 541.41 600.00 5 79.37 346.02 20 18.23 28.66 20
0.50 589.43 600.00 3 204.84 600.00 15 23.89 41.11 20

70000 0.25 561.97 600.00 4 114.24 560.76 20 21.48 34.76 20
0.50 562.00 600.00 4 105.29 600.00 18 28.79 46.04 20

80000 0.25 560.31 600.00 3 121.57 600.00 19 26.81 38.97 20
0.50 588.91 600.00 1 148.16 600.00 18 34.62 44.40 20

90000 0.25 577.55 600.00 1 36.67 105.99 20 28.08 38.72 20
0.50 548.52 600.00 2 148.78 600.00 19 38.94 57.77 20

100000 0.25 600.00 600.00 0 180.79 568.14 20 35.67 57.75 20
0.50 594.49 600.00 1 304.66 600.00 16 51.48 80.04 20

Table 3.11 2-CKP benchmark instances (class B3) time (s) and number of
optima, average over 20 instances.

From Table 3.5, we see that CPLEX 12.5 applied to model 2-CKPa fails to
reach all the optima running out of time in many cases. As shown in Tables
3.6–3.11, CPLEX 12.5 does not solve to optimality instances with more than
10000 variables. The application of the reduction procedure and then CPLEX
12.5 in cascade improves the performance but does not manage to solve to
optimality all instances within the time limit. The proposed exact approach
of Section 3.4 significantly outperforms the competitors being able to solve to
optimality all instances with limited computational effort. The time required is
122 seconds approximately in the worst case (for an instance of class B1 with
90000 items). Our exact approach performs in general very well and confirms
its effective contribution in solving a more challenging variant of the problem.
Notice also that, as far as the exact approach is concerned, for 2-CKP the third
main step was repeated in each instance at most four times (that is the number
of times the procedure solved model CKPa(S)). This is a remarkable strength
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of the approach and probably crucial for solving large instances of the problem
in limited time.

3-4-5-CKP

For these other M-CKP versions, we considered the generation scheme of M-KP
provided in the literature by [19]. The weights of the items in each of the m

capacity constraints are integer numbers randomly generated from the uniform
distribution [1, 1000], while the profits of the items are correlated with their

weights, namely pi =
M∑

m=1
w

(m)
i /M +qi (i = 1, ...,n), with qi randomly generated

from the uniform distribution [1, 500]. Similarly to the instances of 2-CKP,
we generated M (with M = 3,4,5) non-increasing functions of the capacity
values. The capacity function of each constraint is generated by extracting h

numbers in a range from 1 to a parameter c. Considering the tightness ratios
adopted in the instances of the multidimensional knapsack problem, we set the
parameter c equal to 0.4∑wi, 0.8∑wi and ∑wi. We considered two values of h

proportional to the number of items (0.25n, 0.5n) and generated batches with
10 instances within each category. We tested instances with up 16000, 2000 and
1500 items in 3-CKP, 4-CKP and 5-CKP respectively. The profits and weights
in the instances of 5-CKP with 500 items are those from the corresponding
M-KP instances in [19]. The performance of CPLEX 12.5 standalone, CPLEX
12.5 launched in cascade after the application of the reduction procedure and
our exact approach are reported in Table 3.12. Each entry in the table gives
the average and maximum CPU time and the number of optima reached over
60 instances within a time limit of 3600 seconds. The average times include
the cases where the optimum is not found.

From Table 3.12, we notice that the size of the instances solved to optimality
by our exact approach is much more limited with respect to the results reached
for CKP and 2-CKP. Our approach still outperforms the competitors on 3-CKP
and 4-CKP and is comparable to CPLEX 12.5 launched in cascade after the
application of the reduction procedure on 5-CKP (while CPLEX 12.5 reaches
worse performance). Nevertheless, our approach is less effective as soon as the
number of the items and the number of the capacity constraints increase. Our
approach manages to solve to optimality all instances involving 12000, 1500
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Reduction proc.
CPLEX 12.5 + CPLEX 12.5 Exact approach

Average Max Average Max Average Max
M n time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt

1000 5.85 42.51 60 3.59 22.14 60 3.02 17.63 60
2000 27.65 203.24 60 11.89 111.54 60 7.47 55.27 60

3 4000 385.78 3600.00 59 128.13 856.68 60 45.99 378.29 60
8000 1259.09 3600.00 49 391.79 3600.00 57 153.14 1262.95 60

12000 2158.14 3600.00 37 706.54 3600.00 54 285.94 1892.24 60
16000 2573.36 3600.00 24 1024.03 3600.00 52 462.42 3600.00 59

500 3.73 21.20 60 2.85 13.57 60 2.90 16.46 60
4 1000 40.49 339.27 60 26.38 210.32 60 19.82 142.15 60

1500 196.77 1547.59 60 126.45 1512.27 60 76.95 797.80 60
2000 503.25 3600.00 57 294.16 3600.00 58 224.49 3600.00 59
500 12.88 169.21 60 9.27 111.71 60 8.70 99.58 60

5 1000 365.11 3600.00 59 234.36 2466.63 60 224.18 3528.01 60
1500 1151.51 3600.00 48 820.82 3600.00 52 758.84 3600.00 52

Table 3.12 3-CKP, 4-CKP, 5-CKP benchmark instances time (s) and number
of optima, average over 60 instances.

and 1000 items in 3-CKP, 4-CKP and 5-CKP respectively. As a matter of fact,
these results were quite predictable, as we dealt with a generalization of M-KP,
which is well–known to be hard to solve when the capacity constraints are more
than two (see, e.g., [33] for a survey on the problem). Indeed, at the current
state of the art, several instances of M-KP with 500 items and 30 constraints
are still unsolved and the best performing recent approaches [9, 23, 56] do not
reach in reasonable time the optimal solution value in several instances of M-KP
with 500 items and 10 constraints only (just reference [9] reached all optima for
the instances with 500 items and 10 constraints but required in the worst case
several days of CPU). Our exact approach relies on solving in the first step a
multidimensional knapsack problem with the additional constraint that the
number of items placed into the knapsack is fixed. Thus, finding a solution in
the first step turns out to be very demanding when M increases, while this task
is accomplished quite easily by the modern ILP solvers in CKP and 2-CKP.
This constitutes a bottleneck for solving the multidimensional variants of CKP
and marks the limit of applicability of our exact method within reasonable
computational times.

Statistical performance analysis

In order to highlight the performance of the reduction procedure and of the
different steps of the exact approach, we report a statistical analysis of the results
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obtained in the computational experiments. For each instance, we first consider
the LP relaxation and the upper bound UB provided by its optimal solution.
The quality of the upper bound is evaluated by computing the percentage gap
between UB and the first feasible solution LB′ (LP Gap = 1− LB′

UB ). Then, we
consider the percentage of variables xi fixed by applying (3.31) as well as the
percentage of variables yj which would be fixed to 0 through the reduced costs
but without applying the reduction procedure. These outcomes provide further
insights about the effectiveness of the reduction procedure. For this procedure,
we report the percentage of variables yj set to 0 and the percentage difference
between the optimal solution z∗ and the first solution LB′ (Opt Gap = 1− LB′

z∗ ).
The computational times (% of the total CPU time) of the reduction procedure
and each of the 3 steps of the exact approach are also reported. For the second
step, we provide the percentage of the sub–problems left at the end of the step.
Eventually, we indicate the average and maximum number of sub–problems
solved in step 3. Table 3.13 summarizes the results in terms of average and
standard deviation values for each of the M-CKP versions considered. The
analysis considers the instances solved to optimality within the CPU time limit.

Exact approach
LP Relaxation Reduction Procedure Step 1 Step 2 Step 3

yj xi LP yj Opt Sub-pb (Max)
Fixed Fixed Gap Time Fixed Gap Time Time left Time Sub-pb Sub-pb

M-CKP (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) solved solved
2-CKP Average 50.4 0.1 0.3 34.5 99.1 0.1 42.7 22.8 0.0 0.0 0.0 4

Std. Dev. 30.5 1.8 0.3 12.2 0.6 0.1 13.7 6.5 0.0 0.5 0.1
3-CKP Average 45.8 0.3 0.8 3.6 97.6 0.2 92.6 3.6 0.0 0.3 0.1 16

Std. Dev. 30.1 3.1 0.8 5.5 1.7 0.3 10.9 5.3 0.1 2.0 0.9
4-CKP Average 37.6 0.8 1.5 5.8 96.1 0.5 88.3 5.0 0.1 1.0 0.3 6

Std. Dev. 29.1 5.3 1.2 8.4 2.2 0.5 15.7 7.2 0.3 4.8 0.8
5-CKP Average 30.3 0.0 1.7 5.6 96.1 0.6 87.6 4.2 0.2 2.7 0.3 4

Std. Dev. 26.2 0.0 1.2 8.2 1.9 0.6 16.9 6.4 0.4 9.6 0.7

Table 3.13 Statistical performance analysis of the reduction procedure and of
the exact approach for M-CKP.

The results in Table 3.13 illustrate the impressive effectiveness and the
robustness of the reduction procedure in limiting the solution space of the
problems. The procedure discards at least 96.1% of the yj variables on average.
Besides, the fluctuations around the average values are limited. Despite the
overall good quality of the first solutions and of the LP bounds, on average the
yj variables which would be fixed to 0 by exploiting only the LP relaxation are
much smaller. Large standard deviation values denote a quite high variability
of the results as well. In general, the number of xj variables fixed to their
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optimal values is low. Moreover, as previously outlined for 2-CKP, the statistics
indicate that the first two steps of the exact approach are usually sufficient
to solve to optimality the instances of the multidimensional variants of CKP.
The sub–problems solved in step 3 are very few with a maximum value of 16
reached in an instance of 3-CKP with 4000 items. Finally, the results in column
"Step 1" underline the drastic increase of the computational effort required in
the first step of the approach when the capacity constraints are more than two.

Let us finally remark that in this chapter we presented an extensive compu-
tational analysis which broadened the previous analysis for CKP. We considered
instances involving all classical correlations between profits and weights of the
items and proposed a set of new benchmark instances for multidimensional
variants with up to five capacity constraints. To get a broader picture of the
effectiveness of our approaches, we may investigate in future research different
generation schemes of the capacity values through non linear functions of the
sum of the items. This would provide further insights about how the practical
hardness of the problems could be related to the distribution of the capacity
entries.



The 0–1 Penalized Knapsack Problem

4.1 Introduction

We consider the 0–1 Penalized Knapsack Problem (PKP), as introduced in [15].
PKP is a generalization of KP where each item has a profit, a weight and a
penalty. The problem calls for maximizing the sum of the profits minus the
greatest penalty value of the items included in a solution.
PKP may have applications in allocation resource problems with a bi–objective
function involving the maximization of the sum of the profits against the
minimization of the maximum value of a feature of interest. As an example,
applications may derive in batch production systems where the processing
time/cost of batches of products depends on the maximum processing time
of each product. PKP may also occur as sub–problem within algorithmic
frameworks designed for more complex problems. For instance, PKP arises as
a pricing sub–problem in branch–and–price algorithms for the two–dimensional
level strip packing problem in [54].
PKP is NP–hard in the weak sense since it contains the standard KP as special
case, namely when the penalties of the items are equal to zero, and it can
solved by a pseudo–polynomial algorithm. In [15], a dynamic programming
approach is recalled with time complexity O(n2c), with n and c being the
number of items and the capacity of the knapsack respectively. Moreover, an
exact algorithm is presented and successfully tested on instances with 1000
variables while running into difficulties on instances with 10000 variables. The
approach relies on solving standard knapsack problems induced by choosing
the item yielding the penalty value, denoted as leading item, and discarding
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the items with higher penalties. The order of the sub–problems to be explored
is greedily determined according to the upper bounds given by their linear
relaxation.

The contribution of this work is twofold. At first, we provide insights into
the problem and a characterization of its linear relaxation. We also present a
surprising negative approximation result.
Secondly, we propose an exact approach that relies on a procedure nar-
rowing the relevant range of penalties and on dynamic programming algo-
rithms. A straightforward pseudopolynomial algorithm running with complex-
ity O(max{n logn,nc}) is lined out. Then, as our major contribution, we devise
a dynamic programming algorithm based on a core problem and the algorithmic
framework proposed in [76].
We investigate the effectiveness of our approach on a large set of instances gen-
erated according to the literature and involving different types of correlations
between profits, weights and penalties. The proposed approach turns out to be
very effective in solving hard instances and compares favorably to both solver
CPLEX 12.5 and the exact algorithm in [15], successfully solving all instances
with up to 10000 items.

A journal version of the contribution of this chapter has been recently
submitted. Part of the contents has been presented at AIRO 2015 conference.
The chapter is organized as follows. In Section 4.2, the linear programming
formulation of the problem is introduced. In Section 4.3, insights on the
structure and properties of PKP are provided. We outline our new exact
solution approach in Section 4.4 and discuss the computational results in
Section 4.5.

4.2 Notation and problem formulation

In PKP a set of n items is given together with a knapsack with capacity c.
Each item j has a non–negative integer weight wj , a non–negative profit pj

and a non–negative penalty πj . The problem calls for maximizing the total
profit minus the greatest penalty value of the selected items without exceeding
the knapsack capacity c.
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In order to derive an ILP-formulation, we associate with each item j a
binary variable xj such that xj = 1 iff item j is placed into the knapsack. Also,
we associate a real variable Π with the decrease in the objective produced by
the highest penalty value of the items placed in the knapsack. The problem
can be formulated as follows:

(PKP ):

maximize
n∑

j=1
pjxj−Π (4.1)

subject to
n∑

j=1
wjxj ≤ c (4.2)

πjxj ≤ Π j = 1, . . . ,n (4.3)
xj ∈ {0,1} j = 1, . . . ,n (4.4)
Π ∈R (4.5)

(4.2) is the standard capacity constraint. Constraints (4.3) ensure that Π will
carry the highest penalty value in any feasible solution of PKP; variable Π can
be defined as real (constraint (4.5)) and will take in an optimal solution of
model (PKP) one of the values πj . The objective function (4.1) maximizes the
sum of the profits minus the greatest penalty value of the selected items. We
will denote the optimal objective function value by z∗ and the item yielding
the optimal penalty by j∗.
Henceforth, we will assume that items are sorted in decreasing order of penalties,
i.e.

π1 ≥ π2 ≥ . . .≥ πn (4.6)

Also, for any considered sub–problem PP the optimal objective function value
will be written as z(PP ).
For further analysis, we will consider the penalty value Π as a fixed parameter
and define PKP (Π) as an instance of PKP where the penalty value in the
objective function is fixed to Π. In the binary case, this simply means that all
items j with πj > Π are eliminated from consideration and the remaining prob-
lem reduces to a standard 0–1 knapsack problem (KP). Notice that PKP (Π)
only needs to be considered at most for the n relevant choices Π ∈ {π1, . . . ,πn}.
This implies that (PKP) can be solved to optimality by solving at most n
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different 0-1 knapsack problems of type PKP (Π) and taking the maximum
objective function value. Clearly, this approach is not expected to be effective
as soon as the number of items and thus of the penalty values increases.

4.3 Generalities and algorithmic insights

We provide here further insights on the structure and properties of PKP. We
first show how the linear relaxation of the problem has a special structure and
can be effectively solved. Then, we discuss an improved variant of the procedure
proposed in [15] for computing upper bounds on the sub–problems induced by
the selection of the leading item. We also derive a negative approximation result.
Finally, we outline a basic dynamic programming algorithm with running time
O(max{n logn,nc}).

4.3.1 Linear relaxation of PKP

In the linear relaxation of PKP, denoted PKP LP , constraints (4.4) are replaced
by the inclusion in the interval [0,1], i.e. items can be split and only a fractional
part is packed. In this case a proportional part of the penalty applies. The
optimal objective function value will be denoted by zLP .

The LP-relaxation parametrically depending on Π will be denoted as
PKP LP (Π). In the LP-relaxation for a given value Π, each variable xj is
upper bounded by the following expression:

xj ≤min{1,Π/πj}. (4.7)

This means that all items with a penalty exceeding the current Π, are reduced
by scaling such that their penalty contribution is equal to Π. After imposing
this bound the problem reduces again to an instance of KP (for fixed Π) for
which the LP-relaxation is trivial.

As usually, the split item is the first item that would exceed the capacity if
set to its upper bound according to (4.7). Considering the optimal solution
value of PKP LP (Π) as a function in Π we get the following characterization.
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Theorem 7. zLP (Π) is a piecewise-linear concave function in Π consisting of
at most 2n linear segments.

Proof. Consider an arbitrary value of Π and the corresponding solution xLP (Π).
Let S denote the set of items j with xLP

j (Π) = Π/πj , i.e. all items whose values
are currently bounded by the considered penalty value Π. The current split
item will be denoted as s.

We analyze the slope on the left-hand side of (Π, zLP (Π)) by considering
the change of the function implied by a decrease of the penalty bound from Π
to Π− ε for some small ε > 0. Formally, this change δ(Π) is given as follows:

δ(Π) = zLP (Π)− zLP (Π− ε) = −ε+
∑
j∈S

ε

πj
pj︸ ︷︷ ︸

reduction of items in S

− ps

ws

∑
j∈S

ε

πj
wj︸ ︷︷ ︸

increase of split item

= ε

−1+
∑
j∈S

wj

πj

 pj

wj
− ps

ws︸ ︷︷ ︸
≥0


 (4.8)

This expression can be positive or negative, but it shows that δ(Π) is propor-
tional to ε. Thus, in a neighborhood of (Π, zLP (Π)) the function consists of a
linear piece which will end in one of the following three cases:

1. Π− ε = πk for some k ̸∈ S. This means that lowering Π, a new item is
found for inclusion in S. Plugging in the extended set S in (4.8) will
clearly increase the change δ(Π).

2. xs reaches 1. This means that the split item becomes integral and item
s+1 becomes the new split item. Thus, we replace ps

ws
by ps+1

ws+1
in (4.8)

again implying an increase of δ(Π).

3. xs reaches (Π− ε)/πs. This means that the increase of the split item
reaches the lowered penalty bound. In this case, s is included in S and
s+1 becomes the new split item. Again, δ(Π) is increased by combining
both of the above arguments.

Summarizing, we have shown that starting with an arbitrary value of Π and
decreasing Π, zLP (Π) consists of a linear piece which ends with some Π′ ≤Π in
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one of three possible configurations. The slope of this linear piece is given by
δ(Π)

ε . The preceding linear segment of zLP (Π′) will have an increased change
δ(Π′) if Π′ is further decreased. This means that the previous linear segment at
zLP (Π′) has a larger slope than zLP (Π). Thus, the slope of zLP (Π) is decreasing
with increasing Π which proves the concavity of zLP (Π).

Starting the above procedure with Π = maxn
j=1 πj and reducing Π iteratively

until Π = 0, it is clear that each item may cause the end of a linear segment
of zLP (Π) at most twice: Once, by becoming a new split item and once by
being included in set S. Each such event can occur at most once for each item.
Therefore, there can be at most 2n linear pieces.

Proposition 4. PKP LP can be computed in O(n logn) time.

Proof. Algorithmically, one can easily exploit the structure established in
Theorem 7 by performing a binary search over Π to determine a maximum1 of
the concave function zLP (Π). For each query value Π, one can compute the
split item in linear time and also assemble the corresponding set S in one pass
through the set of items. Thus, for each query value Π the sign of the slope
can be calculated from (4.8) in linear time.
Applying the binary search over all possible penalty values would yield a total
running time of O(n logπmax) which is polynomial in the size of the (binary)
encoded input, i.e. weakly polynomial. To obtain a strongly polynomial time
algorithm whose running time depends only on the number of input values,
we can first perform a binary search over all n values πj and thus compute
in O(n logn) time the interval of two consecutive penalties [πk,πk−1] for some
k (with πk−1 ≥ πk according to (4.6)) which will include the optimal penalty
value ΠLP.
Let us denote the optimal split item by sLP and the split items associated with
penalties πk−1 and πk by sk−1 and sk respectively. If we consider the items
sorted by decreasing pj

wj
, item sk−1 will precede item sk in the ordering.

If πk−1 = πk, clearly we have sLP = sk−1 = sk and ΠLP = πk−1 = πk. Otherwise,
1Note that the maximum is not necessarily unique, since there may exist a linear segment

of zLP (Π) with slope 0.
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we have to find sLP in the interval [sk−1, sk] and related ΠLP in the interval
[πk,πk−1].
Let us consider a generic item s as candidate for the split item. The best
penalty Π associated with it can be calculated as follows. Given the interval
[πk,πk−1], we set xj = 1 (j = 1, . . . , s−1) if πj ≤ πk, xj = Π

πj
otherwise. This

implies that the weight and profit sums of the items preceding s are linear
functions of Π in the form

s−1∑
j=1

wjxj = γ1Π+γ2, (4.9)

s−1∑
j=1

pjxj = θ1Π+ θ2, (4.10)

with non-negative coefficients γ1, γ2, θ1, θ2 determined according to the above
xj setting. Item s can be the split item if and only if ∑s−1

j=1 wjxj < c and its

value xs fulfills the capacity (i.e. xs = c−
∑s−1

j=1 wjxj

ws
) while satisfying the bound

(4.7). Correspondingly, the feasible interval of Π, denoted as Is(Π), which
allows s to be the split item is defined by the following system of inequalities:

Is(Π) :=



πk ≤ Π≤ πk−1

γ1Π+γ2 ≤ c− ε

c−γ1Π−γ2
ws

≤ β with β =

1 if πs ≤ πk;
Π
πs

otherwise

(4.11)

Item s̄ is a relevant candidate for the split item only if the corresponding
interval Is(Π) is non-empty. In such a case, the overall profit given by s as
split item is

Ps(Π) =
s−1∑
j=1

pjxj +psxs−Π = (θ1−
ps

ws
γ1−1)Π+ θ2 + ps

ws
(c−γ2) (4.12)

and will be maximized by choosing either the left extreme of Is(Π) if the term
(θ1− ps

ws
γ1−1) < 0 or the right extreme otherwise.

Summarizing, the best penalty value associated with a candidate item can be
computed in constant time if coefficients γ1, γ2, θ1, θ2 are given. Hence, we may
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first consider item sk−1 as candidate for sLP and compute related coefficients in
(4.9)–(4.10) and penalty value. Then, we iteratively move to the next item after
updating coefficients γ1, γ2, θ1, θ2 in one pass due the inclusion of the previous
candidate item among items j = 1, . . . , s−1. After the evaluation of item sk,
the optimal split item sLP and penalty ΠLP are returned. Since the execution
time of this part is bounded by O(n), the overall complexity for solving the LP
relaxation is O(n logn).

4.3.2 Computing upper bounds

A natural upper bound on PKP is given by zLP . We may compute more involved
upper bounds as follows. As pointed out above, the optimal solution of PKP is
determined by a penalty value Π and a subset of items j with πj ≤Π. Therefore,
we consider sub–problem PKPj := PKP (πj) for j = 1, . . . ,n. Recalling (4.6)
each PKPj is an instance of KP with item set {j,j +1, . . . ,n} and capacity c

where πj is subtracted from the final solution value.

Fixing Π = πj for some j is only relevant for the final solution if item j

is actually included in the solution. Hence, as in [15], we also consider sub–
problem PKP +

j , where item j is packed, a fixed penalty of Π = πj is subtracted
from the objective function, and for the reminder of the solution a KP is solved
with capacity c−wj and item set {j +1, . . . ,n}.

For both PKPj resp. PKP +
j we consider the LP-relaxation as upper bound

denoted by PKP LP
j resp. PKP +LP

j . It is easy to see that

z(PKP +
j )≤ z(PKPj) (4.13)

z∗ = max
j=1,...,n

z(PKPj)≤ max
j=1,...,n

z(PKP LP
j ) =: UBsub (4.14)

z∗ = max
j=1,...,n

z(PKP +
j )≤ max

j=1,...,n
z(PKP +LP

j ) =: UB+
sub (4.15)

The following dominance relations exist for the upper bounds UBsub, UB+
sub

and zLP .

Proposition 5. For any PKP instance, we have that

UB+
sub ≤ UBsub ≤ zLP (4.16)
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and there are instances where the inequalities are strict.

Proof. Clearly, the restricted feasible domain of UB+
sub cannot lead to a greater

value than UBsub and thus UB+
sub ≤ UBsub. Let us denote by j′ the item

yielding UBsub, i.e. UBsub = z(PKP LP
j′ ). Computing PKP LP (Π) with Π = πj′

gives a feasible solution for the LP relaxation whose value is less than (or
equal to) the optimal value zLP but at least as large as UBsub. The latter
holds because all items are involved (and bounded according to (4.7)) in the
computation while only items i with πi≤ πj′ are considered for solving PKP LP

j′ .
This implies that UBsub ≤ zLP .

To show that inequalities in (4.16) can be strict, consider the following PKP
instance with n = 2 items, capacity c = 7 and the entries:

p1 = 10,w1 = 5,π1 = 1; p2 = 6,w2 = 4,π2 = 2

For this instance we have zLP = 12, z(PKP LP
1 ) =−1+10 = 9, z(PKP LP

2 ) =
−2+10+ 2

46 = 11, z(PKP +LP
1 ) =−1+10 = 9, z(PKP +LP

2 ) =−2+6+ 3
510 = 10.

Thus, we have:
UB+

sub = 10 < UBsub = 11 < zLP = 12

Although the three bounds can be computed efficiently and can be expected
to be reasonably close to the optimal value in practice, we show a negative
result on their deviation from the optimum.

Proposition 6. There are instances of PKP where the differences (UB+
sub−z∗),

(UBsub− z∗) and (zLP − z∗) are arbitrarily large.

Proof. Consider the following instance with n = 2 items, capacity c = M and
the following entries: pj = wj = M

2 +1 and πj = M
2 for j = 1,2. In an optimal

solution only one item j is packed and, correspondingly, z∗ = pj−πj = 1. Also,
it is easy to see that UB+

sub = M
2 , which, in combination with (4.16), shows the

claim.
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Algorithmically, it is not difficult to see that all values z(PKP LP
j ) for

j = 1, . . . ,n can be computed in O(n logn) time. Also from a practical point of
view, the effort hardly exceeds sorting. As a preprocessing step an auxiliary
array is constructed containing all items sorted in decreasing order of efficiencies
pj/wj . Then the problems PKP LP

j are considered iteratively for j = 1, . . . ,n,
i.e., in decreasing order of penalties πj . First, PKP LP

1 is solved in linear time
and the corresponding split item is identified. We keep a pointer to this split
item in the sorted array of items. Moving to PKP LP

2 , we just remove item 1
from the solution and increase the split item, or possibly move to a new split
item by shifting the pointer towards items with lower efficiency. All together,
after sorting, all values z(PKP LP

j ) can be determined in linear time by one
pass through the sorted array of items.

In [15], the authors presented an O(n2) procedure to compute all values
z(PKP +LP

j ) for j = 1, . . . ,n. In the following, we show that in fact O(n logn)
time is sufficient to perform this task.

Theorem 8. All values z(PKP +LP
j ) for j = 1, . . . ,n can be computed in

O(n logn) time.

Proof. The algorithm is based on an auxiliary data structure consisting of a
binary tree. First, the items are sorted in decreasing order of efficiencies. Based
on this sequence we construct a binary tree as follows: Each item corresponds to
a leaf node of the tree. These are nodes at level 0. A parent node is associated
with each pair of consecutive items (with a singleton remaining at the end for
n odd) thus yielding other ⌈n

2 ⌉ nodes in the level 1 of the tree. This process is
iterated recursively up the tree, which trivially reaches a height of O(logn).

In each node v of the tree we store as W (v) (resp. P (v)) the sum of weights
(resp. profits) of all items corresponding to leaf nodes in the subtree rooted in v.
Clearly, such a tree and its additional information can be built in O(n) time.

For any given capacity c′ the corresponding split item and also the value
of the optimal LP-relaxation can be found in O(logn) time by starting at the
root node and going down towards a leaf node by applying the following rule
in every node v with left and right child nodes vL and vR:
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If W (vL) > c′ then set v := vL.
Otherwise set v := vR and c′ := c′−W (vL).

The item corresponding to the leaf node reached by this procedure is the split
item. The solution value can be reported by keeping track of the P (v) values
during the pass through the tree.

In the main iteration of the algorithm we compute z(PKP +LP
j ) iteratively

for j = 1, . . . ,n in decreasing order of penalties πj . First we remove item j

permanently from consideration. This means that the leaf node corresponding
to j is removed from the tree and all O(logn) labels W (v) (resp. P (v)) on the
unique path from this leaf to the root of the tree are updated by subtracting
wj (resp. pj). Then we solve an LP-relaxation with capacity c′ := c−wj and
add pj−πj to the objective function.

All together there are n iterations, each of which requiring O(logn) time to
find the solution of the LP-relaxation and O(logn) time to update the labels
of the binary tree.
Note that we might expect a considerable speed–up of the running time
O(n logn) in a practical implementation since the tree looses vertices in each
iteration and path contractions can be performed.

4.3.3 Negative approximation result

The 0–1 Knapsack Problem admits basic approximation algorithms (see, e.g.,
[47]). PKP has “only” an additional penalty to consider in the objective with
respect to KP. Thus, one might expect some straightforward approximation
algorithm for this problem as well. Nonetheless, we prove here the general
result that no polynomial time approximation algorithm exists for PKP (under
P ̸=NP).

Theorem 9. PKP does not have a polynomial time approximation algorithm
with a bounded approximation ratio unless P =NP.

Proof. Similarly to the proof for KPS in Section 2.6.2, the theorem is proved by
reduction from the Subset Sum Problem (SSP). Given n items j with integer
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weights w′
j (with j = 1, . . . ,n) and a value W ′ (with ∑n

j=1 w′
j > W ′), we recall

that the decision version of SSP is an NP–complete problem and asks whether
there exists a subset of items represented by x∗ such that ∑n

j=1 w′
jx

∗
j = W ′.

We build an instance of PKP with n items, profits and weights pj = wj =
w′

j , penalties πj = W ′− 1 (with j = 1, . . . ,n ) and capacity c = W ′. The
capacity constraint implies that for every feasible solution there is ∑n

j=1 pjxj =∑n
j=1 wjxj ≤W ′. The penalty value will be equal to either W ′−1 if we pack

at least one item or 0 otherwise, therefore the optimal solution of this PKP
instance is bounded by ∑n

j=1 pjxj− (W ′−1)≤ 1. Not placing any item in the
knapsack attains the trivial solution with value equal to 0. By integrality of
the input data, this limits the optimal solution value to 0 or 1, where the latter
value can be reached if and only if the Subset Sum Problem has a solution.

Hence, if there was a polynomial time approximation algorithm with a
bounded approximation ratio, we could decide the Subset Sum Problem just
by checking if the approximate solution of PKP is strictly positive. Clearly
this is not possible unless P =NP .

4.3.4 A basic dynamic programming algorithm

As recalled in [15], a straightforward pseudo–polynomial algorithm for PKP
consists of solving j standard knapsack problems PKP +

j by the classical
dynamic programming by weights running in O(nc). The overall complexity
is thus O(n2c). The following proposition shows that the complexity can be
reduced to O(max{n logn,nc}).

Proposition 7. PKP can be solved with complexity O(max{n logn,nc}).

Proof. It suffices to consider the items sorted by increasing penalty and to run
the dynamic program for KP only once. If we denote by Fj(d) the optimal
solution value of the sub–problem of KP consisting of items 1, . . . , j and capacity
d≤ c, the optimal value of any PKP instance is simply given by

max
j=0,...,n−1

{Fj(c−wj+1)+pj+1−πj+1} (4.17)
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That is, we evaluate the choice of item j +1 as leading item just by considering
the maximum profit reachable with the previous items in a knapsack with
capacity c−wj+1. The running time is in O(max{n logn,nc}), where the term
O(n logn) is due to the sorting of the items by penalty.

4.4 An exact solution approach

4.4.1 Overview

The DP algorithm of Proposition 7, hereafter denoted as DP1, may be appealing
whenever the capacity c is of reasonably limited size. As in KP, the recursion in
the dynamic program computes an optimal solution by starting from the first
item and by iteratively adding the other items. Nevertheless, as discussed in
Section 1.5, the most effective algorithms for KP are based on the core problem.
Our idea is to exploit the core concept for PKP similarly to the framework of
the Minknap algorithm (see Section 1.5.2). We remark that the presence of
penalties compromises in PKP the structure of an optimal solution with respect
to a standard KP. This difference would typically affect the performance of an
approach based on a core problem. Further, the presence of penalties limits the
effectiveness of the classical dominance rule in KP based on the profits and the
weights of the states. Anyhow, from a practical perspective it is still beneficial
to run a dynamic programming algorithm starting from the split solution of
KP and not from scratch. In addition, by narrowing the interval of penalty
values which can possibly lead to an optimal solution, the “noise” added by
the penalties can be further reduced.

We propose an exact approach involving two main steps. In the first step,
we effectively compute an initial feasible solution for the problem and identify
the relevant interval of penalties values possibly leading to an optimal solution.
In the second step, we run a dynamic programming algorithm with states based
on the core concept. In case the first step yields a reduced problem with a
reasonably limited input size, we could as well launch the DP1 algorithm. In
the following subsections we describe the steps of the approach whose pseudo
code is presented in Algorithm 5.
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Algorithm 5 Exact solution approach
1: Input: PKP instance, parameters T1, T2, T3, α.

◃ Step 1
2: KP1 = PKP without penalties;
3: (z,j,f)← ModMinknap(KP1);

4: Compute z(PKP +LP
j ) for j = f +1, . . . ,n;

5: UB = max
j

z(PKP +LP
j );

6: if UB ≤ z then z∗ = z, j∗ = j; return (z∗, j∗); end if

7: k = argmax
j

z(PKP +LP
j );

8: KP2 = KP1 ∩ (xj = 0 j = 1, . . . ,k−1);
9: (ẑ, ĵ, f̂)← ModMinknap(KP2);

10: if ẑ > z then z = ẑ, j = ĵ; end if

11: l← Apply (4.18);
12: r← Apply (4.19);
13: Πmax = πl;
14: Πmin = πr;

15: if [Πmin,Πmax] = ∅ then z∗ = z, j∗ = j; return (z∗, j∗); end if

16: PKP ′ = PKP ∩ (xj = 0 j = 1, . . . , l−1; Π≥Πmin);
17: n′ = n− l +1;

◃ Step 2
18: if n′c≤ T1 and (r− l +1)≥ T2 then
19: (z′, j′)← DP1(PKP ′);
20: if z′ > z then z∗ = z′, j∗ = j′; else z∗ = z, j∗ = j; end if
21: else
22: (z∗, j∗)← DP2(PKP ′,z, j,T3,α);
23: end if

24: return (z∗, j∗);
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4.4.2 Step 1: Computing an initial feasible solution and
the relevant interval of penalty values

The approach takes in input four parameters T1, T2, T3, α and starts by solving
the standard knapsack problem KP1 given by disregarding the penalties of the
items in PKP (lines 2-3 in Algorithm 5). This problem is solved as follows.
Denote the index of the first item in the optimal solution of KP1 (according to
the ordering (4.6)) by f . The corresponding first feasible solution of PKP has
objective value z(KP1)−πf .
Similarly to Proposition 2 in [15], the following proposition holds

Proposition 8. All items j = 1, . . . ,f − 1 can be discarded without loss of
optimality.

Proof. Since z(KP1) is the optimal solution value, including any item j =
1, . . . ,f −1 leads to a solution with profits less than (or equal to) z(KP1) and
induces a penalty greater than (or equal to) πf . Consequently, every solution of
PKP with at least one of these items included cannot improve the first solution
value z(KP1)−πf .

Thus, if there is more than one optimal solution of KP1, we are interested
in the solution yielding the lowest penalty value for PKP (i.e. the highest index
f). This task is easily accomplished by considering a slight variant of Minknap,
hereafter denoted as ModMinknap, which keeps track of all optimal solutions
of KP1 and the corresponding penalty values in PKP. In addition, we can
compute PKP solutions during the iterations of ModMinknap just by tracking
the largest penalty associated to each feasible state. We then take the overall
best solution found for PKP. Denote by z its value and by j the index of the
leading item.
We remark that ModMinknap is only a heuristic algorithm for PKP since it does
not explicitly consider the penalties of the items in the iterations. At the same,
it may “stumble” upon good quality solutions of PKP with just a negligible
increase of the computational effort required for solving a KP instance.

After that, we compute z(PKP +LP
j ) for j = f +1, . . . ,n. If the maximum of

these values is less that z, we have already certified an optimal solution for PKP
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(lines 4–6 in Algorithm 5). Otherwise we greedily consider the index k yielding
the maximum z(PKP +LP

j ) and solve KP1 without items j = 1, . . . ,k−1. We
update the values of z and j if an improving solution is found (lines 7–10 in
Algorithm 5).

Finally, we compare the values z(PKP +LP
j ) with the incumbent solution

value z and narrow the range of possible penalty values that may lead to an
optimal solution of PKP. More precisely, we define indexes l and r

l = min {j : z(PKP +LP
j ) > z}; (4.18)

r = max {j : z(PKP +LP
j ) > z}. (4.19)

The relevant interval of penalties is thus [Πmin,Πmax], with Πmin = πr and
Πmax = πl (line 11–14 in Algorithm 5). If this interval is empty, the current
PKP solution is also optimal and the algorithm terminates. Otherwise we get
a reduced PKP with only items j = l, . . . ,n and the additional constraint on
the penalty value Π≥ Πmin. Denote this problem by PKP ′ and its number of
items by n′, i.e. n′ = n− l +1 (lines 15–17 in Algorithm 5).

This first step is expected to be fast since it relies on solving two standard
knapsack problems at most and on effectively computing upper bounds for
sub–problems PKP +

j . We remark that this step is also sufficient to compute
an optimal solution for a large number of instances considered in the literature.

4.4.3 Step 2: A core–based dynamic programming algo-
rithm

In this step we propose a core–based dynamic programming algorithm, hereafter
denoted as DP2, that constitutes a revisiting of Minknap algorithm. Notice
that, if the size of the reduced problem PKP ′ is reasonably small and the
number of relevant penalties is large, we could otherwise solve PKP ′ by DP1

and take the best solution between z(PKP ′) and z. The choice between the
algorithms is made by comparing the quantities n′c and (r− l + 1) with the
threshold parameters T1 and T2 (lines 18–23 in Algorithm 5).
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DP2 algorithm searches in PKP ′ for better solutions than z. In the following
we describe the algorithm after some preliminary definitions. Given the sorting
of the items j = 1, . . . ,n′ by decreasing pj

wj
, we define an expanding core as

the interval of items Ca,b = {a, . . . , b} with items a and b as variable extremes.
Correspondingly, we define the set of 0–1 partial vectors enumerated within
the core as

Xa,b = {xj ∈ {0,1}, j ∈ Ca,b}. (4.20)

Since in any iteration of the algorithm we will have the following situation

xj = 1︷ ︸︸ ︷
x1, . . . ,xa−1,Ca,b,

xj = 0︷ ︸︸ ︷
xb+1, . . . ,xn′ (4.21)

we associate each partial vector x̃ ∈Xa,b with a state (ν̃, µ̃, π̃core, π̃tot) where:

1. ν̃ =
a−1∑
j=1

pj +
b∑

j=a
pj x̃j ;

2. µ̃ =
a−1∑
j=1

wj +
b∑

j=a
wj x̃j ;

3. π̃core = max
j=a,...,b

{πj : x̃j = 1};

4. π̃tot = max{π̃core, max
j=1,...,a−1

πj}.

ν̃ and µ̃ are the profits and weights of a solution with variables in the core and
all variables to the left of the core; π̃core represents the maximum penalty of
the items selected in the core while π̃tot is the overall maximum penalty of the
state. Each state with µ̃≤ c and π̃tot ≥Πmin represents a feasible solution of
PKP ′ with value ν̃− π̃tot.
We can now sketch the main steps of DP2 in the following pseudo code.
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Algorithm 6 DP2(PKP ′, z, j,T3,α)
1: Sort items in PKP ′ by decreasing pj

wj
;

2: KP ′ = PKP ′ without penalties;
3: Find the split item s′ of KP ′;

4: a = b = s′, Ca,b = {s′}; Xa,b = {(0),(1)};

5: Reduce set Xa,b;
6: while Xa,b ̸= ∅ and (b−a+1 < n′) do
7: a← a−1;
8: if ua

0 > z then
9: if ũa > z then

10: Xa,b←Merge(a,Xa+1,b,Πmin,T3,α);
11: Update (z,j);
12: Reduce set Xa,b;
13: end if
14: end if

15: b← b+1;,
16: if ub

1 > z then
17: if ũb > z then
18: Xa,b←Merge(b,Xa,b−1,Πmin,T3,α);
19: Update (z,j);
20: Reduce set Xa,b;
21: end if
22: end if

23: end while

24: return (z,j);
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The algorithm takes in input PKP ′, the current solution (z,j) and param-
eters T3, α.
We first sort the items j (j = 1, . . . ,n′) by decreasing pj

wj
and find the split

item s′ of the standard knapsack problem (KP ′) induced by disregarding the
penalties in PKP ′. We then initialize the core with item s′ only (lines 1–4 of
the pseudo code).
Then, we enlarge the core as in Minknap (while–loop in lines 6–23) by alter-
nately evaluating the removal of an item a from the left (lines 7–14) and the
insertion of an item b from the right (lines 15–22). The expansion of the core
is performed by a dynamic programming with states through a procedure,
denoted as Merge, which iteratively yields undominated states in the enlarged
set Xa,b = Xa+1,b +a or Xa,b = Xa,b−1 +b. We may update the current solution
(z,j) if an improved solution is found while enumerating the core (lines 11 and
19).
The dynamic programming with states is combined with an upper bound test
to reduce the number of states (lines 5, 12 and 20) and two upper bound tests
to limit the insertion of the variables in the core (lines 8–9 and 16–17). The
algorithm terminates whenever either the number of states is 0 or all variables
have been enumerated in the core.
The ingredients of the algorithm are detailed in the following.

Dynamic programming with states

The Merge procedure performs the enumeration of the variables in the core by
resembling the procedure introduced in [74] and used in Minknap, which in
turn corresponds to the recursions of the primal–dual dynamic programming
algorithm in [78] (see Section 1.3.3).
The proposed procedure merges, in any iteration, the current set of states X

and X +d, where X +d is set X with profits, weights and penalties of the states
updated according to the removal/insertion of item d from/in the knapsack.
In the merging operation the states are kept ordered by increasing weights
so as to effectively apply a dominance rule for PKP. The classical dominance
rule in KP considers the weights and profits of the states (see Section 1.3.2).
For PKP, let us define the quantity ρ = ν−max{πcore,Πmin} which represents
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the difference between the profit of a state and the minimum penalty that the
state must have for yielding an optimal solution. This penalty corresponds
to the maximum between Πmin and πcore since, due to the enumeration of
the core, for any state πcore constitutes a minimum penalty value in all states
originating from it while Πmin is the minimum penalty required in any solution
with a value greater than z. We introduce the following dominance rule for two
generic states i and j.

Proposition 9. Given states i and j and their quantities fulfilling

µi ≤ µj , νi ≥ νj , ρi ≥ ρj , (4.22)

Then state j is said to be dominated by state i and can be discarded in the
search for an optimal solution of PKP.

Proof. The first two conditions represent the dominance of state i in the
standard KP. The condition ρi ≥ ρj implies that all successive states deriving
from state i and possibly optimal for PKP (i.e. with a penalty greater than
Πmin) would have a no worse solution value than those deriving from state
j.

We remark that, given the presence of penalties, the ordering of states by
increasing weights does not imply the ordering of the profits as in Minknap.
To better detect situations of dominance, we apply the rule in Proposition 9 by
comparing each state with a number of states (with a lower weight) given by
parameter α.

Whenever only the condition involving the penalties prevents the fathoming
of state j, we may combine the dominance rule with an upper bound on state
j depending on a penalty value π > max{πj

core,Πmin}.
This upper bound, denoted by UB(π)j , is computed as follows. We first solve
the linear relaxation of the KP induced by packing the items selected in the core
for state j and by disregarding the items outside the core with a higher penalty
than π. From the optimal solution value of this problem we then subtract the
maximum value between πj

core and Πmin. The following proposition holds
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Proposition 10. Given two states i and j and the quantities

µi ≤ µj , νi ≥ νj , ρi < ρj , (4.23)

consider the maximum penalty π̂ which would not induce the dominance of state
i according to (4.22), i.e. π̂ = max {π : νj−π > ρi}. If UB(π̂)j ≤ z, then state
j can be discarded.

Proof. We analyze the solution values deriving from state j when the overall
maximum penalty is upper bounded by a quantity π′. For any π′ ≤ π̂, since
UB(π̂)j ≤ z we can discard state j because all states deriving from state j

cannot reach a solution values greater than z. Likewise, we can as well discard
state j if π′ > π̂ since this condition would induce a dominance of state i.

Computing UB(π) has complexity O(n) and would be time–consuming if
the number of states involved is sufficiently large. Thus, we calculate this
bound only if the number of states overcomes the threshold value T3.

As in Minknap, in any iteration the running time of the Merge procedure
is linear with the number of states. In each iteration the number of states
can be bounded by O(n′c) since the weights of the states range from 1 to
2c and there could be at most n′ (with n′ ≤ n) states with the same weight
due to different values of ρ. Hence, the running time of DP2 is bounded by
O(2n) for the enumeration of the states in the core in combination with the
pseudopolynomial bound O(n2c).

Reduction of the states

To further reduce the set of states, we also perform an upper bound test in
constant time for each state. In any iteration, we compute the following upper
bound for a state i associated with a vector in Xa,b:

UBi =


ρi +(c−µi) pb+1

wb+1
if µi ≤ c

ρi +(c−µi) pa−1
wa−1

if µi > c
(4.24)



4.4 An exact solution approach 121

and discard state i if UBi ≤ z. These upper bounds are computed by replacing
the integrality constraint on xa−1 and xb+1 with xa−1 ≥ 0 and xb+1 ≥ 0 and by
disregarding the penalty values of the variables outside the core.

Upper bound tests on the variables outside the core

Since the insertion of variables in the core may be computationally expensive,
we perform two upper bound tests whenever an item j is candidate to be
included in the core.
We first compute similar bounds to the ones proposed in [27] for KP (i.e bounds
(1.16) and (1.17) in Section 1.2.6). Let us denote by uj

0 an upper bound on
PKP ′ without item j. Also, let us denote by uj

1 the upper bound when item j

is packed. The following bounds are computed in constant time for each item
j:

uj
0 = p′−pj−Πmin +(c−w′ +wj)

ps′

ws′
j = 1, . . . , s′−1 (4.25)

uj
1 = p′ +pj−max{πj ,Πmin}+(c−w′−wj)

ps′

ws′
j = s′ +1, . . . ,n (4.26)

Here w′ =
s′−1∑
j=1

wj and p′ =
s′−1∑
j=1

pj respectively represent the weight and the

profit of the split solution of KP ′. If uj
0 (resp. uj

1) ≤ z, we can fix variable
xj = 1 (resp. xj = 0).

In cascade, we may perform a second test by computing a stronger upper
bound in linear time with the number of states. As in Minknap, we evaluate
the impacts of removing (inserting) item j with j < s′ (j > s′) in all states
in the current set X, namely we derive states i ∈X + j and compute upper
bounds (4.24) on these states. A valid upper bound for item j, denoted as ũj ,
is constituted by the maximum of these bounds. As pointed out in [76], ũj can
be seen as a generalization of the enumerative bound in [60] (bound (1.13) in
Section 1.2.5). If ũj ≤ z, then variable xj is fixed to the value taken in the split
solution.

After this second step, the optimal solution value z∗ and the optimal leading
item j∗ are returned. The optimal solution set of items can be determined by
solving the standard knapsack problem PKP +

j∗ .
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4.5 Computational results

All tests were performed on an Intel i7 CPU @ 2.4 GHz with 8 GB of RAM. The
code was implemented in the C++ programming language. We generated the
instances according to the generation scheme proposed in [15]2. We considered
2 types of weights: a1 and a2. In the former type, the weights are randomly
distributed in [1,R], with R being an arbitrary parameter. In the latter type,
the weights are equal to R

2 + v, with v uniformly distributed in [0, R
2 ]. Basically

small weights are not considered in a2.
We generated 8 classes of penalties (π1, . . . ,π8) and 7 classes of profits (p1, . . . ,p7)
according to different correlations of penalties/profits with the weights, as illus-
trated in Table 4.1. The first 6 correlations correspond to classical correlations
in KP instances. In class π7 penalties πj are equal to R−wj + 1 (constant
perimeter correlation) while in class π8 we set πj = R

wj
(constant area correla-

tion). In class p7 we set pj = πjwj . Finally, three different values of the ratio
τ between the knapsack capacity and the sum of the weights of the items are
considered: 0.5, 0.1 and 0.01.

π type Correlation p type
π1 No correlation p1
π2 Weak correlation p2
π3 Strong correlation p3
π4 Inverse strong correlation p4
π5 Almost strong correlation p5
π6 Subset-sum correlation p6
π7 Constant perimeter
π8 Constant area

Profit = area p7
Table 4.1 Correlation types from [15].

We first generated instances with 1000 items and R = 1000. Within each
category, 5 instances were tested for a total of 1680 instances. Similarly, we
generated 1680 instances with 10000 items and R = 10000. We compared the
solutions reached by our approach, the exact approach in [15] and CPLEX 12.5
running on model (PKP). After a preliminary experimentation, we considered

2We would like to thank Alberto Ceselli and Giovanni Righini for providing us with the
code of their algorithm and the generation scheme of the instances.
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the following values of the parameters for our approach: α = 15, T1 = 5∗109,
T2 = n

10 , T3 = 3∗106. The parameters of the IP solver were set to their default
values.
The results are summarized in Tables 4.2 and 4.3 in terms of average, maximum
CPU time and number of optima obtained within a time limit of 100 seconds.
The average CPU times consider also the cases where the time limit is reached.
The results are aggregated by profit classes and weight types. Each entry in
the tables reports the results over 120 instances. The detailed results for all
correlations and capacity ratios are reported in Tables 4.4–4.7.

n = 1000 CPLEX 12.5 Algorithm in [15] Exact approach
Profit Weight Average Max Average Max Average Max
class type time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
p1 a1 0.18 0.25 120 0.00 0.01 120 0.00 0.00 120

a2 0.19 0.48 120 0.00 0.01 120 0.00 0.03 120
p2 a1 0.39 1.69 120 0.00 0.01 120 0.00 0.10 120

a2 1.12 6.32 120 0.00 0.01 120 0.01 0.27 120
p3 a1 3.90 100.00 117 0.04 0.89 120 0.01 0.40 120

a2 6.83 100.00 117 0.50 8.02 120 0.02 0.29 120
p4 a1 59.56 100.00 57 0.10 1.38 120 0.02 0.18 120

a2 66.97 100.00 46 0.28 7.75 120 0.04 0.26 120
p5 a1 4.13 100.00 117 0.03 0.89 120 0.02 0.20 120

a2 14.97 100.00 114 0.41 4.50 120 0.07 1.40 120
p6 a1 2.67 90.38 120 0.00 0.06 120 0.00 0.03 120

a2 2.97 13.57 120 0.01 0.15 120 0.01 0.08 120
p7 a1 27.58 100.00 89 0.00 0.01 120 0.00 0.02 120

a2 38.24 100.00 75 0.01 0.06 120 0.01 0.07 120

Table 4.2 Summary results for instances with 1000 items and different corre-
lations between profits and weights: time (s) and number of optima over 120
instances.
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n = 10000 CPLEX 12.5 Algorithm in [15] Exact approach
Profit Weight Average Max Average Max Average Max
class type time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
p1 a1 0.95 2.68 120 0.01 0.02 120 0.01 0.03 120

a2 4.19 100.00 117 0.01 0.04 120 0.01 0.03 120
p2 a1 5.41 33.84 120 0.01 0.02 120 0.02 0.13 120

a2 12.43 100.00 114 0.01 0.07 120 0.04 0.73 120
p3 a1 44.61 100.00 74 25.59 100.00 96 2.59 58.46 120

a2 74.13 100.00 46 48.26 100.00 74 5.53 29.00 120
p4 a1 91.60 100.00 11 17.68 100.00 106 2.81 18.88 120

a2 94.69 100.00 7 26.34 100.00 106 7.82 80.02 120
p5 a1 25.45 100.00 95 10.70 100.00 113 2.66 70.71 120

a2 65.99 100.00 48 23.74 100.00 101 7.04 58.60 120
p6 a1 83.08 100.00 58 0.67 40.17 120 0.22 5.38 120

a2 81.05 100.00 44 3.62 100.00 119 1.95 16.65 120
p7 a1 51.00 100.00 63 0.17 0.94 120 0.42 2.50 120

a2 40.12 100.00 75 0.54 3.94 120 1.41 11.46 120

Table 4.3 Summary results for instances with 10000 items and different corre-
lations between profits and weights: time (s) and number of optima over 120
instances.
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n = 1000 CPLEX 12.5 Algorithm in [15] Exact approach
Weight Profit Average Max Average Max Average Max

type τ class time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
a1 0.5 p1 0.19 0.25 40 0.00 0.00 40 0.00 0.00 40

p2 0.32 0.92 40 0.00 0.01 40 0.00 0.10 40
p3 10.59 100.00 37 0.10 0.89 40 0.03 0.40 40
p4 62.27 100.00 16 0.14 1.34 40 0.02 0.05 40
p5 11.08 100.00 37 0.09 0.89 40 0.04 0.20 40
p6 2.29 18.94 40 0.00 0.00 40 0.00 0.02 40
p7 36.28 100.00 26 0.00 0.01 40 0.00 0.01 40

0.1 p1 0.20 0.25 40 0.00 0.01 40 0.00 0.00 40
p2 0.49 1.13 40 0.00 0.00 40 0.00 0.05 40
p3 0.54 1.44 40 0.02 0.11 40 0.01 0.04 40
p4 74.13 100.00 11 0.12 1.38 40 0.02 0.18 40
p5 0.93 10.24 40 0.01 0.06 40 0.01 0.05 40
p6 4.23 90.38 40 0.00 0.01 40 0.00 0.03 40
p7 28.61 100.00 29 0.00 0.01 40 0.01 0.02 40

0.01 p1 0.14 0.18 40 0.00 0.01 40 0.00 0.00 40
p2 0.35 1.69 40 0.00 0.00 40 0.00 0.01 40
p3 0.58 8.34 40 0.00 0.03 40 0.00 0.01 40
p4 42.27 100.00 30 0.04 0.20 40 0.01 0.03 40
p5 0.38 3.65 40 0.00 0.01 40 0.00 0.01 40
p6 1.48 4.05 40 0.00 0.06 40 0.00 0.01 40
p7 17.87 100.00 34 0.00 0.01 40 0.00 0.02 40

a2 0.5 p1 0.18 0.32 40 0.00 0.00 40 0.00 0.00 40
p2 0.47 3.19 40 0.00 0.01 40 0.00 0.00 40
p3 10.66 100.00 37 0.89 8.02 40 0.03 0.11 40
p4 53.29 100.00 19 0.50 7.75 40 0.04 0.11 40
p5 23.32 100.00 36 0.65 4.50 40 0.12 1.40 40
p6 4.65 13.57 40 0.00 0.01 40 0.02 0.08 40
p7 17.76 100.00 33 0.00 0.01 40 0.01 0.03 40

0.1 p1 0.22 0.33 40 0.00 0.00 40 0.00 0.00 40
p2 1.52 6.32 40 0.00 0.01 40 0.01 0.27 40
p3 3.40 41.67 40 0.41 2.17 40 0.03 0.29 40
p4 87.51 100.00 6 0.31 7.30 40 0.04 0.26 40
p5 10.75 100.00 38 0.38 1.63 40 0.07 0.38 40
p6 1.91 5.30 40 0.00 0.08 40 0.01 0.04 40
p7 35.62 100.00 26 0.01 0.03 40 0.01 0.07 40

0.01 p1 0.18 0.48 40 0.00 0.01 40 0.00 0.03 40
p2 1.38 4.26 40 0.00 0.01 40 0.00 0.01 40
p3 6.43 18.53 40 0.20 1.17 40 0.02 0.03 40
p4 60.12 100.00 21 0.04 0.14 40 0.03 0.05 40
p5 10.84 60.54 40 0.19 0.84 40 0.02 0.04 40
p6 2.36 6.48 40 0.03 0.15 40 0.01 0.07 40
p7 61.34 100.00 16 0.01 0.06 40 0.02 0.06 40

Table 4.4 Detailed results for instances with 1000 items and different correlations
between profits and weights: time (s) and number of optima over 40 instances.



126 The 0–1 Penalized Knapsack Problem

n = 10000 CPLEX 12.5 Algorithm in [15] Exact approach
Weight Profit Average Max Average Max Average Max

type τ class time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
a1 0.5 p1 1.00 2.28 40 0.01 0.02 40 0.02 0.03 40

p2 3.73 9.40 40 0.01 0.02 40 0.02 0.03 40
p3 62.62 100.00 16 45.29 100.00 23 6.65 58.46 40
p4 82.03 100.00 8 17.43 100.00 34 2.79 10.73 40
p5 53.44 100.00 20 24.99 100.00 33 7.16 70.71 40
p6 90.65 100.00 12 0.01 0.06 40 0.23 2.56 40
p7 21.31 100.00 33 0.09 0.33 40 0.15 0.51 40

0.1 p1 1.12 2.68 40 0.01 0.01 40 0.01 0.02 40
p2 11.05 33.84 40 0.01 0.02 40 0.02 0.13 40
p3 55.29 100.00 21 26.62 100.00 33 1.02 8.73 40
p4 95.24 100.00 2 16.64 100.00 37 3.54 18.88 40
p5 20.70 100.00 35 6.24 78.90 40 0.76 6.13 40
p6 77.25 100.00 24 0.09 1.97 40 0.33 5.38 40
p7 64.61 100.00 15 0.27 0.94 40 0.57 2.26 40

0.01 p1 0.73 1.28 40 0.00 0.01 40 0.00 0.01 40
p2 1.45 2.74 40 0.00 0.02 40 0.01 0.02 40
p3 15.92 100.00 37 4.86 59.95 40 0.12 1.00 40
p4 97.53 100.00 1 18.97 100.00 35 2.10 14.20 40
p5 2.22 6.56 40 0.86 7.79 40 0.07 0.56 40
p6 81.35 100.00 22 1.91 40.17 40 0.11 1.69 40
p7 67.09 100.00 15 0.14 0.56 40 0.54 2.50 40

a2 0.5 p1 1.93 11.22 40 0.01 0.02 40 0.02 0.02 40
p2 3.86 11.72 40 0.01 0.02 40 0.02 0.03 40
p3 70.77 100.00 18 53.23 100.00 23 8.09 25.55 40
p4 86.05 100.00 6 24.86 100.00 35 8.72 26.06 40
p5 60.26 100.00 19 24.30 100.00 32 9.93 58.60 40
p6 86.29 100.00 7 0.08 0.95 40 2.62 16.65 40
p7 14.30 100.00 36 0.31 2.23 40 0.48 3.34 40

0.1 p1 1.27 2.19 40 0.01 0.02 40 0.01 0.02 40
p2 10.99 29.04 40 0.01 0.02 40 0.04 0.66 40
p3 66.31 100.00 19 50.95 100.00 24 4.33 14.29 40
p4 98.01 100.00 1 34.25 100.00 35 11.28 80.02 40
p5 54.25 100.00 21 27.97 100.00 35 5.97 40.59 40
p6 82.95 100.00 13 0.29 1.47 40 2.28 7.87 40
p7 51.33 100.00 20 0.77 3.94 40 1.83 11.46 40

0.01 p1 9.37 100.00 37 0.01 0.04 40 0.01 0.03 40
p2 22.45 100.00 34 0.01 0.07 40 0.06 0.73 40
p3 85.32 100.00 9 40.59 100.00 27 4.18 29.00 40
p4 100.00 100.00 0 19.92 100.00 36 3.46 15.36 40
p5 83.47 100.00 8 18.96 100.00 34 5.22 20.51 40
p6 73.90 100.00 24 10.50 100.00 39 0.96 3.90 40
p7 54.74 100.00 19 0.55 3.47 40 1.92 8.74 40

Table 4.5 Detailed results for instances with 10000 items and different corre-
lations between profits and weights: time (s) and number of optima over 40
instances.
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n = 1000 CPLEX 12.5 Algorithm in [15] Exact approach
Weight Penalty Average Max Average Max Average Max

type τ class time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
a1 0.5 π1 6.65 100.00 33 0.01 0.05 35 0.01 0.03 35

π2 16.33 100.00 30 0.02 0.14 35 0.01 0.12 35
π3 19.56 100.00 29 0.08 0.89 35 0.02 0.14 35
π4 21.98 100.00 28 0.03 0.39 35 0.01 0.06 35
π5 22.95 100.00 28 0.05 0.38 35 0.01 0.10 35
π6 25.89 100.00 27 0.04 0.89 35 0.01 0.05 35
π7 15.49 100.00 30 0.09 1.34 35 0.01 0.03 35
π8 11.73 100.00 31 0.06 0.63 35 0.03 0.40 35

0.1 π1 7.53 100.00 33 0.00 0.05 35 0.01 0.18 35
π2 15.01 100.00 30 0.01 0.08 35 0.01 0.08 35
π3 29.18 100.00 25 0.01 0.08 35 0.01 0.03 35
π4 17.96 100.00 29 0.01 0.06 35 0.01 0.03 35
π5 18.44 100.00 29 0.01 0.09 35 0.01 0.03 35
π6 12.68 100.00 31 0.01 0.11 35 0.00 0.04 35
π7 17.93 100.00 30 0.09 1.38 35 0.01 0.05 35
π8 5.98 100.00 33 0.03 0.58 35 0.01 0.05 35

0.01 π1 0.70 3.83 35 0.00 0.00 35 0.00 0.01 35
π2 7.19 100.00 33 0.00 0.03 35 0.01 0.03 35
π3 7.52 100.00 34 0.00 0.05 35 0.00 0.03 35
π4 20.09 100.00 30 0.01 0.05 35 0.01 0.03 35
π5 16.57 100.00 32 0.01 0.05 35 0.00 0.03 35
π6 3.37 30.16 35 0.00 0.01 35 0.00 0.01 35
π7 15.94 100.00 30 0.02 0.20 35 0.00 0.01 35
π8 0.70 8.34 35 0.01 0.09 35 0.00 0.01 35

a2 0.5 π1 10.77 100.00 32 0.02 0.14 35 0.02 0.17 35
π2 16.60 100.00 31 0.08 1.07 35 0.07 1.40 35
π3 22.18 100.00 29 0.42 4.57 35 0.04 0.32 35
π4 19.38 100.00 30 0.51 7.81 35 0.03 0.21 35
π5 21.57 100.00 29 0.28 3.00 35 0.03 0.28 35
π6 11.32 100.00 32 0.47 8.02 35 0.03 0.23 35
π7 9.68 100.00 32 0.49 7.75 35 0.02 0.11 35
π8 14.59 100.00 30 0.05 0.80 35 0.01 0.09 35

0.1 π1 14.78 100.00 32 0.02 0.17 35 0.05 0.38 35
π2 21.28 100.00 28 0.04 0.30 35 0.02 0.22 35
π3 18.82 100.00 29 0.22 2.16 35 0.03 0.27 35
π4 30.67 100.00 25 0.28 2.17 35 0.03 0.13 35
π5 25.16 100.00 27 0.22 1.98 35 0.02 0.12 35
π6 28.61 100.00 26 0.19 1.63 35 0.02 0.09 35
π7 10.08 100.00 32 0.26 7.30 35 0.02 0.11 35
π8 11.68 100.00 31 0.04 0.44 35 0.01 0.07 35

0.01 π1 1.60 12.74 35 0.00 0.01 35 0.01 0.03 35
π2 28.11 100.00 28 0.01 0.14 35 0.01 0.04 35
π3 26.29 100.00 28 0.15 0.73 35 0.02 0.05 35
π4 19.68 100.00 31 0.11 1.17 35 0.02 0.05 35
π5 33.97 100.00 25 0.10 0.67 35 0.02 0.05 35
π6 24.26 100.00 29 0.12 0.84 35 0.02 0.06 35
π7 17.34 100.00 30 0.02 0.10 35 0.01 0.03 35
π8 11.77 100.00 31 0.02 0.16 35 0.00 0.02 35

Table 4.6 Detailed results for instances with 1000 items and different correlations
between penalties and weights: time (s) and number of optima over 35 instances.
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n = 10000 CPLEX 12.5 Algorithm in [15] Exact approach
Weight Penalty Average Max Average Max Average Max

type τ class time (s) time (s) #Opt time (s) time (s) #Opt time (s) time (s) #Opt
a1 0.5 π1 26.96 100.00 29 1.07 8.74 35 1.04 10.54 35

π2 51.68 100.00 18 4.93 100.00 34 0.89 8.74 35
π3 45.50 100.00 20 8.83 100.00 33 1.06 5.78 35
π4 52.72 100.00 17 24.28 100.00 28 2.22 17.67 35
π5 54.65 100.00 17 18.01 100.00 29 1.66 10.09 35
π6 55.55 100.00 16 23.99 100.00 27 2.46 20.65 35
π7 38.21 100.00 25 11.72 100.00 31 1.08 10.73 35
π8 34.49 100.00 27 7.54 100.00 33 9.05 70.71 35

0.1 π1 27.19 100.00 28 0.88 18.70 35 0.72 18.88 35
π2 48.67 100.00 22 2.17 20.73 35 0.70 6.27 35
π3 54.65 100.00 18 7.52 100.00 33 1.30 18.19 35
π4 59.08 100.00 17 15.20 100.00 32 0.91 7.16 35
π5 57.49 100.00 19 8.46 100.00 34 1.00 8.53 35
π6 51.93 100.00 21 7.55 100.00 34 0.39 2.26 35
π7 48.77 100.00 22 11.15 100.00 32 0.85 8.59 35
π8 23.95 100.00 30 4.07 73.67 35 1.27 8.73 35

0.01 π1 21.36 100.00 30 0.17 3.00 35 0.31 6.57 35
π2 37.31 100.00 26 6.20 73.05 35 0.58 5.66 35
π3 45.55 100.00 21 2.26 33.15 35 0.28 3.69 35
π4 45.75 100.00 21 2.36 59.95 35 0.33 2.50 35
π5 49.01 100.00 21 1.25 10.15 35 0.46 5.62 35
π6 44.44 100.00 23 1.28 26.15 35 0.58 14.20 35
π7 38.94 100.00 22 13.75 100.00 31 0.47 3.36 35
π8 21.96 100.00 31 3.30 100.00 34 0.35 6.39 35

a2 0.5 π1 50.50 100.00 18 4.70 44.55 35 2.91 17.61 35
π2 51.30 100.00 18 16.08 100.00 30 4.55 53.64 35
π3 46.81 100.00 21 19.17 100.00 29 5.14 42.97 35
π4 55.72 100.00 19 14.48 100.00 32 4.80 58.60 35
π5 52.02 100.00 19 20.40 100.00 30 4.84 29.21 35
π6 47.85 100.00 21 18.55 100.00 29 4.29 39.81 35
π7 37.68 100.00 24 11.97 100.00 32 3.61 25.55 35
π8 27.78 100.00 26 12.14 100.00 33 4.02 26.06 35

0.1 π1 46.84 100.00 21 11.89 100.00 33 3.47 41.73 35
π2 49.39 100.00 21 15.23 100.00 34 3.55 40.59 35
π3 57.48 100.00 18 21.44 100.00 29 4.78 28.76 35
π4 60.68 100.00 18 19.71 100.00 31 3.62 19.90 35
π5 73.48 100.00 10 23.79 100.00 29 4.05 14.26 35
π6 57.68 100.00 18 23.00 100.00 31 6.56 80.02 35
π7 41.52 100.00 22 8.76 100.00 33 1.70 7.87 35
π8 30.19 100.00 26 6.75 100.00 34 1.70 15.50 35

0.01 π1 61.19 100.00 16 2.94 26.59 35 3.98 29.00 35
π2 60.12 100.00 19 5.40 49.36 35 3.37 20.51 35
π3 65.69 100.00 14 15.40 100.00 31 1.87 12.09 35
π4 77.25 100.00 10 16.77 100.00 30 2.39 13.24 35
π5 73.10 100.00 12 17.29 100.00 30 2.08 11.25 35
π6 60.01 100.00 18 16.08 100.00 30 1.71 8.97 35
π7 58.23 100.00 17 24.62 100.00 30 1.70 6.82 35
π8 34.99 100.00 25 4.95 51.47 35 0.97 6.53 35

Table 4.7 Detailed results for instances with 10000 items and different correla-
tions between penalties and weights: time (s) and number of optima over 35
instances.
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From Tables 4.2 and 4.3 we see that, for the instances with 1000 items, both
the proposed exact approach and the algorithm in [15] outperform CPLEX
12.5 which does not reach all the optima within the time limit. Although
the performances of the algorithms are similar, we note that our approach
generally performs slightly better and requires 1.4 seconds at most for solving
to optimality all instances.
In the largest instances with 10000 items, our algorithm strongly outperforms
both CPLEX 12.5 and the algorithm in [15]. Our approach is capable of
reaching all optima with limited CPU time (80 seconds at most for an instance
in class p4) while the solver and the competing algorithm run out of time for
several large instances. The largest differences in computational times involve
instances in classes p3, p4 and p5.
The most challenging instances for our algorithm turned out to be the ones
without small weights (a2). In general, the absence of small weights might in-
crease the computational effort required for solving even standard KP instances
(as pointed out, e.g., in [15]) and this is presumably the reason of the increase
in CPU times of our algorithm as well.
In many instances, the first main step relying on solving standard KPs is
sufficient to certificate an optimal solution for PKP. Indeed, this constitutes a
remarkable strength of our procedures. In Tables 4.8 and 4.9 we report the
percentage of the optimal solutions already computed by the first step of the
procedure for the instances with 1000 and 10000 items respectively. Averaged
computational times (% of the total CPU time) of the two steps of our approach
are also reported. Finally, we report the average and maximum values (in
thousands) of the maximum number of states reached by DP2 algorithm in
each instance. We point out that DP1 algorithm is called a limited number
of times with respect to DP2 (5% of the cases) and mainly in the smallest
instances with 1000 items.
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Exact approach Step 1 Step 1 and Max number of states
(n = 1000) only Step 2 in DP2

Profit Weight #Opt Time Time Average Max
class type (%) (%) (%) (x103) (x103)
p1 a1 72.5 54.0 46.0 0.1 0.2

a2 60.0 56.8 43.2 0.1 0.5
p2 a1 43.3 50.6 49.4 0.8 16.0

a2 49.2 49.4 50.6 1.6 20.5
p3 a1 69.2 58.1 41.9 2.8 56.2

a2 52.5 78.0 22.0 1.8 6.8
p4 a1 48.3 78.0 22.0 2.1 19.6

a2 57.5 73.7 26.3 2.6 14.9
p5 a1 22.5 43.0 57.0 5.1 36.1

a2 24.2 43.5 56.5 13.4 58.9
p6 a1 82.5 41.5 58.5 4.9 25.2

a2 27.5 36.0 64.0 7.6 47.8
p7 a1 59.2 51.0 49.0 0.9 3.2

a2 58.3 48.5 51.5 2.3 7.5

Table 4.8 Numerical insights of the exact approach for instances with 1000
items.

Exact approach Step 1 Step 1 and Max number of states
(n = 10000) only Step 2 in DP2

Profit Weight #Opt Time Time Average Max
class type (%) (%) (%) (x103) (x103)
p1 a1 85.0 79.1 20.9 0.7 6.3

a2 69.2 62.3 37.7 1.5 5.5
p2 a1 50.0 68.3 31.7 3.4 66.2

a2 52.5 48.6 51.4 19.5 166.1
p3 a1 77.5 58.0 42.0 146.3 1115.8

a2 56.7 90.1 9.9 45.8 247.4
p4 a1 73.3 74.5 25.5 119.9 713.0

a2 79.2 83.8 16.2 139.8 885.8
p5 a1 27.5 39.3 60.7 164.5 1244.3

a2 25.0 39.2 60.8 444.4 3088.3
p6 a1 83.3 32.0 68.0 187.5 700.5

a2 33.3 26.8 73.2 321.6 1292.2
p7 a1 55.0 60.3 39.7 81.1 493.3

a2 63.3 60.2 39.8 145.6 764.9

Table 4.9 Numerical insights of the exact approach for instances with 10000
items.

The results in the tables illustrate the effectiveness of the first step in
solving PKP instances. Usually more than 50% of the instances are solved to
optimality within this step. When both steps are involved, the computational
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effort is on average equally distributed. We note however an increase of the
percentages of the second step in classes p5 and p6. The number of states
is in general reasonably limited allowing our algorithm to effectively solve
all instances considered. The largest values of the number of states (with a
maximum of about 3 millions) are reached in the instances with 10000 items.



The 0–1 Incremental Knapsack Problem

5.1 Introduction

We consider the 0–1 Incremental Knapsack Problem (IKP) as introduced in [37].
IKP is a generalization of the standard 0–1 Knapsack Problem (KP) where
the capacity grows over T time periods. If an item is placed in the knapsack
in a certain period, it cannot be removed afterwards. The problem calls for
maximizing the sum of the profits over the whole time horizon.
IKP has many real-life applications since, from a practical perspective, it is
often required in allocation resource problems to deal with changes in the
input conditions and/or in a multi–period optimization framework. In [37],
incremental versions of maximum flow, bipartite matching, and knapsack
problems are introduced. The authors in [37] discuss the complexity of these
problems and show how the incremental version even of a polynomial time
solvable problem, like the max flow problem, turns out to be NP–hard. General
techniques to adapt the algorithms for the considered optimization problems
to their respective incremental versions are discussed. Also, a general purpose
approximation algorithm is introduced. In [8], a PTAS is derived for IKP under
the assumption T = O(

√
logn), where n is the number of items. In addition,

a constant factor algorithm is provided under mild restrictions on the growth
rate of the knapsack capacity. The algorithm works also when discount factors
are applied in each period. For further details on the matter, see [8].
In this chapter, we prove, first, the tightness of some approximation ratios
derived in [37]. Then, we devise a PTAS for IKP when the number of time
periods T can be considered as a constant. While this is a stronger assumption
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than the one made for the PTAS in [8], our algorithm is much simpler and can
be stated with less involved notation. Eventually, we consider the case where
each item can be packed in the first period. Under this reasonable assumption,
we manage to derive an algorithm with a constant approximation factor of 6

7
when T = 2.

A journal version of the obtained results is currently being finalized. The
remainder of the chapter is organized as follows. The linear programming
formulation of the problem and the structure of its linear relaxation are described
in Section 5.2. In Section 5.3, our approximation results are discussed.

5.2 Notation and problem formulation

In IKP a set of n items is given together with a knapsack with increasing
capacity values ct over time periods t = 1, . . . ,T . Each item i has a non–
negative integer profit pi and a non–negative integer weight wi. The problem
calls for maximizing the total profit of the selected items without exceeding
the knapsack capacity over the given time horizon. If an item is placed in the
knapsack, it cannot be removed at a later time. To derive an ILP-formulation,
we associate with each item i a binary variable xit such that xit = 1 iff item i

is placed in the knapsack in period t. IKP can be formulated according to the
following ILP model (denoted by (IKP )):

(IKP ):

maximize
T∑

t=1

n∑
i=1

pixit (5.1)

subject to
n∑

i=1
wixit ≤ ct t = 1, . . . ,T ; (5.2)

xi(t−1) ≤ xit i = 1, . . . ,n, t = 2, . . . ,T ; (5.3)
xit ∈ {0,1} i = 1, . . . ,n, t = 1, . . . ,T. (5.4)

The objective function (5.1) maximizes the sum of the profits over the whole time
horizon; the capacity constraints (5.2) guarantee that the items weights sum
does not exceed the capacity ct in each time period t; precedence constraints
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(5.3) ensure that if an item is chosen at time t, it will be not removed in
successive periods; finally, constraints (5.4) indicate that all variables are binary.
We will denote the optimal solution value of model (IKP ) by z∗.

For each period t and the related capacity value ct, we define the correspond-
ing standard knapsack problem as KPt. This means that in KPt we consider
only one of the T constraints (5.2). Finally, we remark that the linear relaxation
of model (IKP ), where constraints (5.4) are replaced by the inclusion in the
interval [0,1], can be easily computed. In fact, it suffices to order the items by
non–increasing pi

wi
in O(n logn) and to fill the capacity of the knapsack in each

period according to this ordering in O(n). The execution time for solving the
linear relaxation of IKP, hereafter denoted by IKP LP , is thus O(n logn).

5.3 Approximating IKP

5.3.1 Approximation ratios of a general purpose algo-
rithm

In [37], a general framework for deriving approximation algorithms is provided.
Following the scheme in [37] for IKP, we consider the following algorithm A.
The algorithm employs an ε–approximation scheme to obtain a feasible solution
for each knapsack problem KPt. Denote the corresponding solution value by
zA

t for t = 1, . . . ,T . Each such solution is also a feasible solution for IKP where
zA

t is present in all successive time periods. The algorithm chooses as a solution
value zA the maximum among all these candidates, i.e.

zA = max
t=1,...,T

{(T − t+1)zA
t }. (5.5)

The following Theorem which is a reformulation of Theorem 3 in [37] holds.

Theorem 10. Algorithm A is an approximation algorithm for IKP with ratio
bounded by 1−ε

HT
, where HT is the harmonic number 1+ 1

2 + · · ·+ 1
T .
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The authors in [37] proved the tightness of this approximation bound for the
incremental max flow problem. For IKP, the tightness of the bound is an open
question. In this contribution, we consider the case where algorithm A solves
each KPt to optimality (using e.g. dynamic programming by weights or the
Combo algorithm) and thus provides an approximation ratio of 1

HT
. We manage

to prove the tightness of this approximation bound by an alternative analysis of
the performance of the algorithm based on a Linear Programming (LP) model.
More precisely, we consider an LP formulation with non-negative variables
hA and ht associated with zA and zA

t respectively and a positive parameter
OPT > 0 associated with z∗. The corresponding LP model for evaluating the
worst case performance of algorithm A is as follows:

minimize hA (5.6)
subject to hA ≥ (T − t+1)ht t = 1, . . . ,T ; (5.7)

T∑
t=1

ht ≥OPT (5.8)

hA ≥ 0 (5.9)
ht ≥ 0 t = 1, . . . ,T. (5.10)

The value of the objective function (5.6) provides a lower bound on the
worst case performance of algorithm A. Constraints (5.7) guarantee that the
contribution of each knapsack problem KPt as a solution of IKP will be taken
into account according to (5.5). Constraint (5.8) indicates that the sum of
the optimal KPs solution values zA

t over all T knapsack problems constitute a
trivial upper bound on z∗. Constraints (5.9, 5.10) indicate that variables are
non-negative. We will denote the optimal value of hA and ht (t = 1, . . . ,T ) by
hA∗ and h∗

t respectively. By setting parameter OPT to an arbitrary positive
value, the corresponding lower bounds on the performance ratio of algorithm
A for any T are given by hA∗

OP T .

Model (5.6)–(5.10) allows us to prove the tightness of the approximation
bound 1

HT
of algorithm A.
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Theorem 11. For any value of T , if algorithm A solves to optimality each
KPt (t = 1, . . . ,T ), the approximation ratio 1

HT
of the algorithm is tight for

IKP.

Proof. We first provide a characterization of the optimal solution of model
(5.6)–(5.10) and show that, for any T, the bound hA∗

OP T is actually equal to 1
HT

.
Given the constraints in the model, we note that the optimal value hA∗ will be
naturally equal to at least one of the right–hand side values (T − t + 1)h∗

t of
constraints (5.7). Also, the optimal solution will always fulfill ∑T

t=1 h∗
t = OPT .

Suppose by contradiction that there is an optimal solution with ∑T
t=1 h∗

t >

OPT . In such a case, we could always decrease hA∗ by jointly decreasing the
corresponding h∗

t values (i.e. such that hA∗ = (T − t+1)h∗
t ), thus contradicting

the optimality of the solution.
Moreover, in the optimal solution all right–hand side values of constraints (5.7)
will reach the same value. Suppose again by contradiction that there exists
an optimal solution where this structure does not hold, i.e. there are two time
periods t′ and t′′ with (T − t′ +1)ht′ = max

t
{(T − t+1)ht}> (T − t′′ +1)ht′′ . In

this case, we could lower the objective by decreasing ht′ and increasing ht′′ by
the same value thus preserving the equality in (5.8) but allowing a decrease of
hA, which contradicts the claim.
Based on this structural property, computing the optimal solution of the LP
model amounts to solving the following system with T +1 equations in T +1
unknowns inducing a unique solution:


h∗

t = hA∗

T −t+1 t = 1, . . . ,T
T∑

t=1
h∗

t = OPT
(5.11)

Indeed, by combining the first T equations with the latter one, correspondingly,
we have that

hA∗

T
+ hA∗

T −1 + · · ·+hA∗
=HT hA∗

= OPT =⇒ hA∗
= OPT

HT

(5.12)
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that is hA∗

OP T = 1
HT

. To prove the tightness of the bound 1
HT

, notice from (5.11)
and (5.12) that we have

h∗
t = OPT

HT (T − t+1) t = 1, . . . ,T. (5.13)

Then, it suffices to derive instances where the optimal solution values of KPs
in each period are equal to h∗

t (t = 1, . . . ,T ) and the optimal solution value for

IKP is equal to the sum of all these solutions, namely z∗ =
T∑

t=1
h∗

t . Such target
instances can be generated by the following procedure:

1. We first represent the harmonic number HT as a fraction, i.e. HT = a
b

where b is the smallest common multiple of the denominators of the
fractions 1

2 + · · ·+ 1
T . Then, we set OPT = a and solve model (5.6)–(5.10)

according to (5.12)–(5.13). This setting guarantees to get integer h∗
t .

2. After that, we generate an IKP instance with: n = b, pj = wj = 1 (j =
1, . . . ,n), ct = h∗

t (t = 1, . . . ,T ). The optimal solution of each KPt will
pack items until the corresponding capacity ct is fulfilled and thus will
yield a solution value equal to h∗

t . The number of items is b because the
capacity in the last period T is cT = h∗

T = OP T
HT (T −T +1) = a

a
b

= b. At the
same time, the optimal solution for IKP can be obtained by progressively
packing all items over time periods while fulfilling the capacities ct, hence
z∗ =

T∑
t=1

ct =
T∑

t=1
h∗

t .

As an example of the outlined procedure, consider the case with T = 3 for
which HT = 11

6 . We solve model (5.6)–(5.10) by setting OPT = 11. Then, the
following IKP instance is generated:

n = 6, pj = wj = 1 (j = 1, . . . ,6), c1 = 2, c2 = 3, c3 = 6.

The optimal solution of IKP is given by packing all items over time
periods and fulfilling the corresponding capacities (z∗ = 11). The optimal
solutions values of the KPs are equal to 2, 3, 6 respectively. Hence we have
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zA = max{3∗2,2∗3,6}= 6 which proves the tightness of the approximation
bound 1

H3
= 6

11 .

We remark that the bound tightness cannot be straightforwardly generalized
when a ε–approximation scheme is adopted for solving each KP. We could
get the ratio in Theorem 10 by solving model (5.6)–(5.10) where the term∑T

t=1 ht in constraint (5.8) is divided by (1− ε). However, the generation of
tight instances is strictly related to the choice of the approximation algorithm
for KPs.

5.3.2 A PTAS when T is a constant

Similarly to the line of reasoning for deriving PTAS’s for KP (see, e.g., [84, 12]),
we propose an approximation scheme for IKP based on guessing the k items
with largest profits in an optimal solution. We first define the following variant
of algorithm A described in Section 5.3.1, denoted as algorithm A′. We run
an FPTAS for each time period t yielding ε-approximations zA′

t . Then we also
consider an alternative solution for IKP derived by computing the optimal
solution of IKP LP and rounding down all fractional variables to 0. Thus, we
get a feasible solution for IKP with solution value z′. Finally, we take the
maximum between these T +1 candidates reaching a solution value zA′ , namely

zA′
= max{z′, max

t
{(T − t+1)zA′

t }}. (5.14)

Since computing z′ requires O(n logn) and the running time of the FPTAS
for KP can be bounded by O(n log(1

ε)+(1
ε)3 log2(1

ε)) (see [45, 46]) the overall
running time of algorithm A′ is

O(n logn+T (n log(1
ε

)+(1
ε

)3 log2(1
ε

))).

A useful property of algorithm A′ is the following. Because of the special
structure of IKP LP , at most T fractional variables will be rounded down to
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get z′. Thus, we have that

z∗ ≤ z′ +Tpmax ≤ zA′
+Tpmax (5.15)

where pmax is the maximum profit of any item.
The overall approximation ratio of algorithm A′, denoted by ρ, can be stated
by considering the solution values zA′

t in each time period. Hence, according to
Theorem 10, we have ρ = 1−ε

HT
.

We can now state our approximation scheme, denoted by algorithm Approx,
as follows:

1. We first sort the items by decreasing efficiency pj

wj
. We then guess the

k items with largest profits in an optimal solution as well as how these
k items are distributed over the T time periods. This corresponds to
consider O(nk) choices for the items together with O(kT ) possible choices
for their distributions over time.

2. For each feasible distribution of the items, we then consider the remaining
IKP instance. We indicate by P (k) the overall profit contribution of the
k items. We also denote by cR

t the residual capacities after the insertions
of the items in each time period t.

3. In order to maintain the incremental structure of the problem, we set
cR

t = min{cR
t , cR

t+1} in decreasing order of t, i.e. for t = T −1, . . . ,1. The
corresponding residual IKP instance is denoted by R.

4. Given the ordering of the items, we apply algorithm A′ to instance R

getting a solution value zA′
R . The sum zA′

R +P (k) yields the corresponding
solution value for IKP.

5. The overall best solution over all choices of k with value zApprox is even-
tually returned.

When the input T is considered as a constant, the outlined algorithm
constitutes a PTAS for IKP.

Theorem 12. Algorithm Approx is a PTAS for IKP when T is a constant.
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Proof. We first show that the algorithm is an ε–approximation scheme. We
consider two cases depending on a parameter f ∈ (0,1) and analyze the iteration
where the optimal distribution of the items with largest profits is selected. In
the following, we will denote by z∗

R and by pR
max the optimal solution value and

the maximum profit of the items in instance R.

Case 1: P (k)≥ f · z∗

When the optimal distribution of the k items with largest profits is considered,
we have z∗ = z∗

R +P (k). Hence, the following series of inequalities holds:

zApprox ≥ P (k)+ zA′
R ≥ P (k)+ρz∗

R

= P (k)+ρ[z∗−P (k)] = (1−ρ)P (k)+ρz∗

≥ (1−ρ)fz∗ +ρz∗ = [(1−ρ)f +ρ]z∗

(5.16)

Case 2: P (k) < f · z∗

Since pR
max is less than (or equal to) the minimum profit of the k items which in

turn is less than 1
kf · z∗ (consider that each of the k selected items contributes

to P (k) at least once with its profit), we have that

pR
max <

1
k

fz∗. (5.17)

Then, the following series of inequality holds:

z∗ = P (k)+ z∗
R ≤ P (k)+ zA′

R +TpR
max ≤ zApprox +T

1
k

fz∗ (5.18)

The first inequality comes from (5.15). The second inequality derives from the
fact that P (k)+ zA′

R ≤ zApprox and (5.17). We have from (5.18) that

zApprox ≥ (1−T
1
k

f)z∗. (5.19)
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Now, given ε and ρ, we set k and f as follows:

k :=
⌈

T

ε

⌉
(5.20)

f := 1− ε

1−ρ
= 1−ρ− ε

1−ρ
(5.21)

We easily note that f < 1 and we also have f > 0 since ρ = 1−ε
HT

and thus
1− ε > ρ.
For Case 1, plugging the value of f in (5.16) yields

zApprox ≥ [(1−ρ)f +ρ]z∗

= [(1−ρ− ε)+ρ]z∗ = (1− ε)z∗.
(5.22)

For Case 2, we plug (5.20) in (5.19) and get

zApprox ≥ (1− εf)z∗ ≥ (1− ε)z∗. (5.23)

Hence, algorithm Approx is an ε–approximation scheme. The running time is
given by the initial sorting of the items and by the running time of algorithm
A′ (without the sorting contribution) multiplied by O(nkkT ). The overall time
complexity of the approximation scheme is

O(n logn+n⌈ T
ε ⌉(
⌈

T

ε

⌉
)T T (n log(1

ε
)+(1

ε
)3 log2(1

ε
))) (5.24)

which establishes a PTAS for IKP when T is a constant.

We remark that [8] introduces a PTAS for T = O(
√

logn) thus providing a
stronger theoretical result in terms of approximation schemes. Nonetheless, the
PTAS in [8] relies on solving a large number, namely O(n(1

ε +T )O(log( T
ε )/ε2)),

of non–trivial LP models. Our approach instead does not require the solution
of any complicated LP model and it can be also stated with less involved
notation. Hence, from a practical perspective, our PTAS may constitute an
appealing approximation algorithm for reasonable values of T . A representative
comparison of the performance of the algorithms is provided in Figure 5.1. The
Figure plots the complexity of Approx algorithm and the number of the LP
models required in the PTAS in [8] for different values of n (= 100,1000,10000)
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Figure 5.1 Numerical comparison between the complexity of Approx algo-
rithm and the number of LPs required by the PTAS in [8]. Tests with
n = 100,1000,10000 (resp. T = 2,3,4), ε = 0.15,0.1,0.05.

and ε (= 0.15,0.1,0.05). The number of period is T =
√

logn according to the
assumption in [8]. As shown in Figure 5.1, the differences are remarkable even
without considering the execution time for solving each LP.

5.3.3 A constant factor algorithm for a restricted vari-
ant

We provide a constant factor approximation algorithm for IKP with two periods
(T = 2) under the mild assumption that each item can be packed in the first
period, i.e. wi ≤ c1 (i = 1, . . . ,n). The algorithm, denoted as H, is based on the
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optimal solutions of the two knapsack problems KP1 and KP2 associated with
each of the two time periods. The algorithm can be outlined as follows:

1. We solve to optimality KP1. We then solve KP2 where the optimal
solution set of items in KP1 is placed inside the knapsack.

2. As an alternative solution, we first solve to optimality KP2. Then, we
consider the optimal set of items in KP2 and solve KP1 with these items
only.

3. The best solution found is returned.

We again rely on Linear Programming to derive the approximation ratio of
algorithm H. First, let us define the following subsets of items Si:

• S1: subset of items included both in the optimal solutions of KP1 and
KP2;

• S2: remaining subset of items in the optimal solution of KP1;

• S3: remaining subset of items not exceeding capacity c1 in the optimal
solution of KP2;

• S4: first item exceeding c1 in the optimal solution of KP2;

• S5: remaining subset of items in the optimal solution of KP2.

We will denote the sum of the profits and weights of the items included in
subset Si by Pi and Wi respectively.
The union of S1 and S2 constitutes the optimal solution set of items of KP1.
Likewise, the union of S1, S3, S4 and S5 represents the optimal solution set of
KP2. Figure 5.2 illustrates the decomposition of the optimal solution sets in
each time period. The dashed lines in Figure 5.2 refer to the item in S4 which
exceeds the first capacity value.
According to the above definitions, we have the following inequalities

W1 +W2 ≤ c1; (5.25)
W1 +W3 ≤ c1; (5.26)
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S1 S2

S3 S4 S5S1

KP1 :

KP2 :

c1

c2

Figure 5.2 Decomposition of the optimal solutions of KP1 and KP2.

W1 +W3 +W4 > c1; (5.27)
W1 +W3 +W4 +W5 ≤ c2; (5.28)
W1 +W2 +W5 < c2. (5.29)

Inequality (5.29) derives directly from inequalities (5.25), (5.27) and (5.28).
The optimal solution values of KP1 and KP2 are equal to P1 + P2 and P1 +
P3 + P4 + P5 respectively. Now we can state three feasible solutions reached by
algorithm H:

• The optimal solution set of KP1 in the two periods plus the additional
packing of items in S5 in the second period. The whole profit is: 2(P1 +
P2)+P5;

• the optimal solution set of KP2 in the second period with the packing
of items in subsets S1 and S3 in the first period. The resulting profit is:
2(P1 +P3)+P4 +P5;

• the optimal solution set of KP2 in the second period with item S4

placed in the knapsack in the first period. The profit of this solution is:
P1 +P3 +2P4 +P5.

Algorithm H will return a solution at least as good as the best of the above
three solutions. In order to evaluate the worst case performance of the heuristic,
we consider an LP formulation where we associate a non–negative variable h

with the solution value computed by the algorithm. In addition, the profits of
the subsets Si are associated with non–negative variables p̄i (i = 1, . . . ,5). As
in Section 5.3.1, the positive parameter OPT represents z∗. This implies the
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following LP model:

minimize h (5.30)
subject to h≥ 2(p̄1 + p̄2)+ p̄5 (5.31)

h≥ 2(p̄1 + p̄3)+ p̄4 + p̄5 (5.32)
h≥ p̄1 + p̄3 +2p̄4 + p̄5 (5.33)
(p̄1 + p̄2)+(p̄1 + p̄3 + p̄4 + p̄5)≥OPT (5.34)
h≥ 0 (5.35)
p̄i ≥ 0 i = 1, . . . ,5. (5.36)

The value of the objective function (5.30) represents a lower bound on the
worst case performance of algorithm H. Constraints (5.31)–(5.33) guarantee
that the algorithm will select the best of the three feasible solutions constructed
as described above. Constraint (5.34) is due to the fact that the sum of the
optimal values of KP1 and KP2 is an upper bound on z∗. Constraints (5.35),
(5.36) indicate that the variables are non-negative.

Setting the parameter OPT = 1, we get an optimal value h∗ equal to
0.8571 . . . = 6

7 . Thus, a lower bound on the performance ratio provided by
algorithm H is equal to h∗

OP T = 6
7 .

We can show that the ratio of 6
7 is tight by considering an instance with

n = 5, c1 = 3 + δ, c2 = 4 (with δ > 0 being an arbitrary small number) and the
following entries:

i 1 2 3 4 5
pi 3 2 2 1− δ 1− δ
wi 3+ δ 2 2 1 1

The optimal solution of KP1 consists of item 1. The corresponding IKP
solution considers only item 1 in the second period with a total profit of 6. The
optimal solution of KP2 consists in packing items 2 and 3. In the corresponding
IKP solution either item 2 or item 3 is placed in the knapsack in the first period.
The resulting profit is again 6. An optimal solution of IKP selects items 2 and
4 in the first period together with item 5 in the second period, thus z∗ = 7−3δ.
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The approximation ratio of algorithm H is

max{6,6}
7−3δ

= 6
7−3δ

which can be arbitrarily close to 6
7 as the value of δ goes to 0. Hence, we can

state the following theorem.

Theorem 13. Algorithm H is an approximation algorithm for IKP with a
tight approximation ratio of 6

7 .

Algorithm H is not a polynomial time algorithm since requires the optimal
solutions of KP1 and KP2. We could solve these knapsack problems by an
ε–approximation scheme (PTAS or FPTAS) to get a polynomial running time
at the cost of a decrease of the approximation bound. The following Corollary
shows that the bound is decreased by a factor (1− ε).

Corollary 2. If an ε–approximation scheme is employed for solving the stan-
dard knapsack problems KP1 and KP2, the approximation ratio of algorithm
H is bounded by 6

7(1− ε).

Proof. We consider again model (5.30)–(5.36) to evaluate the performance of
the algorithm. If the subsets Si (i = 1, . . . ,5) correspond to the items of the
ε–approximations for KP1 and KP2, constraints (5.31)–(5.33) straightforwardly
hold. Then, we just replace constraint (5.34) by constraint

(p̄1 + p̄2)+(p̄1 + p̄3 + p̄4 + p̄5)≥OPT (1− ε) (5.37)

which indicates that the sum of the approximate solutions divided by (1− ε)
provides an upper bound on the optimal solution value of IKP. Since we get
h∗ = 6/7 when we set OPT (1− ε) = 1, a lower bound on the approximation
ratio of algorithm H is equal to h∗

OP T =
6
7
1

1−ε

= 6
7(1− ε).



Conclusions and Future Developments

In this thesis we dealt with four generalizations of the classical Knapsack
Problem (KP) involving side constraints beyond the capacity bound. We first
presented an overview of the research pursued in the literature for KP in
Chapter 1. Then, we considered the 0–1 Knapsack Problem with Setups (KPS),
the 0–1 Collapsing Knapsack Problem (CKP), the 0–1 Penalized Knapsack
Problem (PKP) and the 0–1 Incremental Knapsack Problem (IKP).

In Chapter 2, we proposed an exact enumerative approach for KPS based on
an effective exploration of a specific set of variables that leads to solve standard
knapsack problems. The presented approach proves to be very effective and
capable of handling instances with up to 100000 items and 200 families with
little computational effort while previous approaches were limited to instances
with up to 10000 items. The approach outperforms CPLEX 12.5 and favorably
compares to the algorithms available in literature. We also devised an improved
dynamic programming algorithm by effectively leveraging a method from the
literature applied for a related knapsack problem.
Then, we derived a general non-approximability result. To gain further insights
into the structural difficulty of KPS, we investigated several relevant special
cases of KPS arising from certain additional, but plausible restrictions on
the input data. We managed to derive several approximation algorithms and
resulting fully polynomial time approximation schemes (FPTASs). In this way
we narrowed the gap between approximable (in the sense of existence of an
FPTAS) and inapproximable cases.
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In Chapter 3, we presented a novel 0–1 linear programming formulation
for CKP and an efficient method for tackling CKP and the related multi-
dimensional variant. The novel formulation of CKP shows to be very effective
when solved by CPLEX 12.5 and manages to handle instances of much larger
size than the ones considered by the approaches available in the literature. A
reduction procedure based on solving continuous problems drastically limits
the solution space and significantly enhances the performance of the ILP solver.
An efficient exact approach applying an original branching scheme to the
proposed ILP formulation is able to further improve the results. Our approach
is capable of finding optimal solutions for instances with up to 100000 items,
while previous approaches were limited to 1000 items. We considered also
M-CKP involving M capacity constraints. The proposed exact approach turns
out to be very effective for 2-CKP, where the approach showed up to solve
to optimality with limited time instances with up 100000 items. In other
multidimensional variants with up to 5 capacity constraints, the exact method
globally outperforms CPLEX 12.5 standalone and CPLEX 12.5 launched in
cascade after the application of the reduction procedure, even though the size
of the instances solved to optimality significantly decreases when M increases.

In Chapter 4, we proposed a dynamic programming based exact approach
for PKP which leverages an algorithmic framework originally constructed for
KP. The proposed approach turns out to be very effective in solving instances
of the problem with up to 10000 items and it favorably compares to both solver
CPLEX 12.5 and an exact algorithm in the literature. We also gave further
insights on the structure and properties of PKP by providing a characterization
of its linear relaxation, an effective procedure to compute upper bounds on the
problem and a negative approximation result.

In Chapter 5, we devised a series of results for IKP extending the con-
tributions in the literature. At first, we managed to prove approximation
ratios of a general purpose algorithm previously laid out. Secondly, we derived
approximation algorithms under reasonable restrictions on the input data. We
established a polynomial time approximation scheme (PTAS) when one of the
problem inputs can be considered as a constant and we introduced an algorithm
with an approximation ratio of 6

7 for a variant involving two time periods.
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The research contributions provided in the thesis can be extended in differ-
ent directions.
In KPS and CKP we exploited the partitioning of the variables set into two
levels. Our general algorithmic idea relies on inducing problems tractable in
practice through an effective exploration of the solution space of first level
variables. A possible future development would be to adapt our methods to
other knapsack–like problems or to optimization problems involving two sets
of variables. Besides, it would be interesting to study further adaptations
of algorithmic frameworks for KP, as we did for PKP, to other relevant KP
variants.
We derived negative approximation results by exploiting the presence of vari-
ables with positive and negative impacts in the objective functions of KPS
and PKP. When this general condition holds, we may investigate whether our
procedures for establishing inapproximability results could be extended to other
optimization problems.
To the author’s knowledge, no computational experience has been provided
for IKP so far. Thus, in future contributions we could design new solution
approaches for the problem and test their performance after generating bench-
mark and challenging to solve instances.
Another appealing research topic could be the tolerance (or stability) analysis.
This analysis studies the robustness of the optimal solutions of integer program-
ming problems when perturbations of the input data occur. A paper recently
appeared ([80]) introduces effective techniques to perform a tolerance analysis
for KP. In this respect, we could investigate possible extensions of the results
provided in [80] to the considered knapsack problems.
After completion of the thesis, we became aware of two recent published papers
at SODA 2017 conference ([11], [48]). The papers introduce new approaches
and improved pseudopolynomial algorithms for the Subset Sum Problem. It
might be also interesting to evaluate applications of the techniques employed
in [11, 48] to the problems tackled in the thesis.
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