Hydrogeochemical study of Bossea karst system

Original

Availability:
This version is available at: 11583/2667665 since: 2017-03-24T16:03Z

Publisher:
Perm State University

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Hydrogeochemical study of Bossea karst system

A. Fiorucci, B. Moitre & B. Vigna
Politecnico di Torino – Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture, C.so Duca degli Abruzzi 24, Torino, Italy, email: adriano.fiorucci@polito.it, barbara.moitre@tin.it, bariolaomeo.vigna@polito.it

ABSTRACT: The present work concerns the geochemical characterization of the water circulating in the Bossea karst system. In the cavity were sampled, in different hydrodynamic conditions, the waters of the main collector (Mora torrent) and numerous water supplies from drainage network of the unsaturated zone above the cavity and that flow into the main collector. Some seepages are located at the tectonic contact between the rocks of the metamorphic basement (metavolcanic) and carbonate coverage, others come directly from the network of cracks in the limestone and dolomite. In the flow of these seepages generally is very low, less than 1 L s\(^{-1}\). The characterization of the individual contributions and the main collector was performed through comparison of the major elements concentration using the Schöeller diagram and have also considered other parameters such as the lanthanides content, the calcite and dolomite saturation index. The data related to the lanthanides (REE - Rare Earth Elements) content normalized using the PAAS (Post-Archaean Australian Shale) contribute to diversify the individual contributions that have different anomalies (especially cerium and europium) and/or trends in relation to the sampling period. Finally particularly interesting data have emerged from the correlation between the saturation indices of calcite and dolomite. For all the individual seepages is observed good correlation between the two indices, correlation is less marked when you consider all the values of the karst system under consideration. The data obtained shows, therefore, further differentiation between the individual seepages. From the overall analysis of the geochemical data obtained emerging a substantial complexity of the Bossea Karst system already highlighted by the monitoring data of flow rate, temperature and specific electrical conductivity of the water coming from the individual seepages and from the main collector.

KEYWORDS: hydrogeochemistry, saturation index, Bossea cave, rare earth elements.

1 STUDY AREA

The Bossea Karst system is located in the southern Piedmont, in the Ligurian Alps, at an altitude between 800 and 1700 m above sea level. The main absorption area is located between the Corsiglia Valley and the Maudagna Valley.

1.1 Geological and hydrogeological layout

The area is characterized by a complex tectonic history that brought the carbonate sediments, originally have built up over an ancient substrate of permo-carboniferous age (represented by metavolcanics and quartzites characterized by a very low permeability), to instead be interspersed in large outcrops separated from each other by important surfaces of dislocation which border compartments hydro-geologically independent, sometimes interconnected with each other in a particularly complex (figure 1).

The Bossea system is characterized by limestone and dolomitic limestones, laterally confined by the rocks of the metamorphic basement, metavolcanics and quartzites, through a series of sub-vertical tectonic contacts.

The carbonate aquifer is characterized by a relatively high permeability, with an underground circulation set to a main collector that receives the contributions coming from limestone-dolomitic storage and from rocks of the metamorphic basement. These rocks form a secondary aquifer, set along the discontinuity that border the carbonate structure and which, through a series of underground transfers, feeds the main aquifer (Peano et al. 2011; Banzato et al. 2011; Vigna & Doleato 2008).

1.2 Groundwater flow descriptive

The Bossea cave is a cavity collector, Mora Torrent, that seepage in proximity of Corsiglia Torrent. The collector is a series of numerous secondary contributions coming both from the circulation in the cave, also by the surface water, also by the rocks of the metamorphic basement, water contributions are absorbed by concentrated infiltration in riverbed contact (figure 1).

The seepages more important are composed of contributions of open karst, derived from the carbonate aquifer basement (Pollina and Polla). The secondary collector "Sillacidi and distributed in the cavity, are located on the cave, derived from fractures and deposits of the Sillacidi and the Serrone area. They have a flow rate less than 0.008 L s\(^{-1}\), with variable external weather conditions, and occur only in particular situations. Near the catchment area of the springs with moderate flow, there are also springs with rather constant in time, deriving from a metamorphic basement. One of these springs, Sillacidi, is representative of the underground circulation in the metavolcanic rocks (figure 1).

2 HYDROCHEMISTRY OF INDIVIDUAL CONTRIBUTIONS

The water of Bossea Karst system, characterized by a mineralization between 100 and 1700 mg L\(^{-1}\) in terms of TDS. This concentration is found in the waters of the main collector, more than those circulating in more
1.2 Groundwater flow description

The Bossea cave is a cavity crossed by a main karst collector, Mora Torrent, that feeds a series of localized springs in proximity of the riverbed of the Corsaglia Torrent. The collector receives the waters by numerous secondary contributions and is fed in part by the circulation in the carbonate rocks and in part also by the surface water contributions flowing in the rocks of the metamorphic basement. The surface water contributions are absorbed by a series of concentrated infiltration in riverbed in proximity of the contact (figure 1).

The seepages more important, called “polle”, are composed of contributions from fractures relatively open and karstified, usually present at the contact between the carbonate aquifer and the underlying basement (Polle delle Anatre, Polle dell’Orso and Polletta). The secondary seepages, denominated “stillicidi” and distributed in different sections of the cavity, are located on the cave vault and are usually derived from fractures masked by abundant calcite deposits (Stillicidio Milano, Stillicidio Torre, Stillicidio Sacrestia). They have a very low flow, lower than 0.008 L·s⁻¹, with variations closely related to external weather conditions and become inactive only in particular situations of drought.

Near the catchment area are present a number of springs with moderate flow, around 0.5-2 L·s⁻¹, but rather constant in time, recharged by the rocks of the metamorphic basement. One of these sources, called Sorgente dei Matti, was called “sample spring” representative of the underground circulation set in metavolcanic rocks (figures 2, 3).

2 HYDROCHEMISTRY CHARACTERIZATION OF INDIVIDUAL CONTRIBUTIONS

The water of Bossea Karst system presents an average mineralization between 162.23 and 409.51 mg·L⁻¹ in terms of TDS. The lowest values are found in the waters of the main collector (Torrente Mora) and those circulating in metaevolcani (Sorgente dei Matti) while the higher ones belong to the individual seepages.

The hydrochemical facies found in several samples remain essentially constant over time but are substantial differences between the different sampling points (figure 4). Bicarbonate-calcium-magnesium facies are observed in the seepages called Milano and Polletta and bicarbonate-calcium facies in other seepages, in the main collector and in water circulating in the metavolcanic rocks. In the bicarbonate-calcium facies can be seen, however, differences in the \(\text{Ca}^{2+}/\text{Mg}^{2+} \) ratio ranging from 4.11 (Polle delle Anatre – mean value) to 41.49 (Sacrestia – mean value). This ratio report presents average values of 6.99 in main collector and 21.96 in the waters circulating in metavolcanic rocks. The wide variability of the \(\text{Ca}^{2+}/\text{Mg}^{2+} \) ratio is due to the different contents of the ion \(\text{Mg}^{2+} \) which is the only parameter, including the main ones, to differentiate the different seepages. The parameters with concentrations lower than 0.1 meq·L⁻¹ (alkali, chlorides and sulfates) are subject to greater variations in time.

Sorgente dei Matti and Polle delle Anatre are characterized by alkali concentrations greater than those of the chlorides. This fact shows the presence of water coming mainly from metavolcanic rocks.

3 LANTHANIDES FOOTPRINT

The lanthanides are a family of 15 chemical elements with chemical properties very similar to each other that in the hydrogeological field can be used
for the characterization of the aquifers. The concentrations and distributions depend, especially by the different rocks with which the water came in contact, and despite the low concentrations present specific trends for different waters (Biddau et al. 2009; Banks et al. 1999; Fiorucci & Moitre 2012). Moreover, at present, do not have a full-blown human footprint, and for this reason can be used for the study of the natural geochemical fund.

![Graph 1](image1)

Figure 4. Schönfeld diagrams.

The rare earth elements concentration in the basal complex spring remains almost constant in the different sampling and seems quite high (average value equal to 765 ng·L⁻¹). The seepages, instead, are characterized by a different behavior and highlight remarkable changes in the course of the sampling.

The concentrations ranges of the seepages are quite large. Polla delle Anatre is the one with major variations, between 21 ng·L⁻¹ (high flow condition) to 1481 ng·L⁻¹ (low flow condition). The minimum and maximum concentrations are found in the same periods for Stillicidio Milano, the difference is in the values (40 and 180 ng·L⁻¹). High values, above 400 ng·L⁻¹, are found in two samples in the Stillicidio Sacrario and in a sampling of the main collector (570 ng·L⁻¹).

The concentrations of the REE were normalized with the Post-Archean Australian Shale – PAAS (McLennan 1989), to highlight the changes in time and the differences between the main collector, secondary seepages and the basal complex springs (figures 5-12).

Unlikely Schönfeld diagrams, the diagrams which characterize the relationship between the REE and PAAS not remain constant in time but show differences between the different sampling periods. The only exception is Sorgente dei Matti, whose trend remains unchanged in time. These differences may indicate that the Boscan Karst is a complex system, in which it is possible to highlight different catchment circuits between the various seepages and the main collector. Furthermore, important quantitative trend changes are observed in the same seepages, in different hydrodynamic conditions.

![Graph 2](image2)

Figure 5. Torrente Mora REE/PAAS concentration.

![Graph 3](image3)

Figure 6. Stillicidio Milano REE/PAAS concentration.

![Graph 4](image4)

Figure 7. Sorgente dei Matti REE/PAAS concentration.

![Graph 5](image5)

Figure 8. Torre REE/PAAS concentration.

![Graph 6](image6)

Figure 9. Pola Orzo REE/PAAS concentration.

![Graph 7](image7)

Figure 10. Polletta REE/PAAS concentration.
4 SATURATION INDICES

The calcite and dolomite saturation index were calculated using the ratio between the product of ionic activity (with the single ion activity determined with the equation of Debye-Hückel) and the solubility product.

The waters in almost all samples are to be supersaturated in respect of calcite, while recording a considerable number of cases in which they are undersaturated in respect of dolomite.

Considering all the samples there is a fairly good correlation (figure 13) between the two indices (r^2 equal to 0.7738), evaluating the correlation for each contribution is noted that these have values of correlation coefficient always greater than 96% and angular coefficients of the correlation lines are very similar, varying from a minimum of 0.4330 (Sorgente dei Matti) to a maximum of 0.5036 (Polla delle Anatre).

5 CONCLUSIONS

The geochemical data show a substantial complexity of the Bossea Karst system already highlighted by the monitoring data of flow rate, temperature and specific electrical conductivity of the water of seepages and main collector.
The saturation indices calculated indicate waters almost always supersaturated in respect of calcite and also largely for the dolomite. The correlation between the two indices show high values when considering the individual seepages, while it is lower when comparing the overall data. This aspect seems to further highlight the complexity of the Bossea Karst system as already shown by other geochemical indices. Every circuit is independent of the others, but instead the collector receives the waters of all the karst and non-karst networks.

REFERENCES

