
17 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Cross-layer system reliability assessment framework for hardware faults / Vallero, Alessandro; Savino, Alessandro;
Politano, GIANFRANCO MICHELE MARIA; DI CARLO, Stefano; Chatzidimitriou, A.; Tselonis, S.; Kaliorakis, M.;
Gizopoulos, D.; Riera, M.; Canal, R.; Gonzalez, A.; Kooli, M.; Bosio, A.; Di Natale, G.. - ELETTRONICO. - (2016), pp. 1-
10. (Intervento presentato al  convegno 47th IEEE International Test Conference (ITC) tenutosi a Forth Worth, TX, USA
nel 2016) [10.1109/TEST.2016.7805863].

Original

Cross-layer system reliability assessment framework for hardware faults

Publisher:

Published
DOI:10.1109/TEST.2016.7805863

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2667644 since: 2017-03-24T13:48:57Z

Institute of Electrical and Electronics Engineers Inc.



1 
 
 
 

Cross-Layer System Reliability Assessment 
Framework for Hardware Faults 

 
A. Vallero, A. Savino,  

G. Politano, S. Di Carlo 
 Politecnico di Torino 

Torino, (Italy) 

A. Chatzidimitriou,  
S. Tselonis, M. Kaliorakis,  

D. Gizopoulos, 
University of Athens, Greece 

 

M. Riera, R. Canal,  
A. Gonzalez 

Universitat Politècnica de Catalunya 
Barcelona, Spain 

 

M. Kooli, A. Bosio,  
G. Di Natale 

LIRMM, Montpellier 
Montpellier, France

Abstract—System reliability estimation during early design 
phases facilitates informed decisions for the integration of 
effective protection mechanisms against different classes of 
hardware faults. When not all system abstraction layers 
(technology, circuit, microarchitecture, software) are factored in 
such an estimation model, the delivered reliability reports must 
be excessively pessimistic and thus lead to unacceptably 
expensive, over-designed systems. We propose a scalable, cross-
layer methodology and supporting suite of tools for accurate but 
fast estimations of computing systems reliability. The backbone 
of the methodology is a component-based Bayesian model, which 
effectively calculates system reliability driven by the masking 
probabilities of individual hardware and software components 
considering their complex interactions. Our detailed 
experimental evaluation for different technologies, 
microarchitectures, and benchmarks demonstrates that the 
proposed model delivers very accurate reliability estimations 
(FIT rates) compared to statistically significant but slow fault 
injection campaigns at the microarchitecture level.  

Keywords—dependable computing system; reliability modeling; 
cross-layer reliability 

I. INTRODUCTION  
As we move deeply into the era of nano-scale devices, 

reliability becomes a key challenge for the semiconductor 
industry. With transistor size reaching the atomic dimensions, 
vulnerability to unavoidable fluctuations in the manufacturing 
process and environmental stress rises dramatically [1]. Failing 
to meet a reliability requirement may add excessive re-design 
costs to recover and may have severe consequences on the 
success of a product [2]. Worst-case design with large margins 
to guarantee reliable operation has been employed for long 
time. However, it is reaching a limit that makes it economically 
unsustainable due to its performance, area, and power costs [3].  

Hardware faults may propagate through the hardware (HW) 
and software (SW) layers of the system stack, reaching the 
system output, or be masked during this propagation process. 
Different protection mechanisms can be employed at different 
layers implementing what is nowadays called cross-layer 
reliability enhancement [4] [5] [6]. Accurately measuring the 
impact on system reliability of any change in the technology, 
circuit, microarchitecture and software is a complex design 
task, involving design teams from all abstraction layers. The 
task has multiple objectives because reliability must be traded-
off against other crucial design attributes such as performance, 
power, and cost [7]. Unfortunately, tools and models for cross-
layer reliability analysis are still at their early stages compared 

to other very mature design tools (e.g., performance and power 
optimization tools). The current practice is to rely either on 
time-consuming gate-level fault injection campaigns or on 
simplified models that guarantee smaller computation time but 
deliver very coarse-grain and conservative (i.e. pessimistic) 
reports of the system reliability [9] [10].  

This paper proposes a novel system-level cross-layer 
reliability assessment framework built on top of a component-
based Bayesian model of the target system. In component-
based system reliability modeling, the system is more than the 
sum of its parts. Each component affects globally perceivable 
properties of the entire system. By carefully integrating 
parameters from all layers of the system stack we are capable 
of accurately evaluating the failure rate of the full system. The 
proposed system-level reliability model and supporting tools 
deliver several key contributions with respect to current 
approaches. The target system can be described in terms of 
components (technology, hardware and software) and the 
model can efficiently describe how faults and errors propagate 
through components, accounting for complex interactions 
among them that are not modeled with simpler combinatorial 
models (e.g., reliability block diagrams or fault trees [8]). 
Components can be unplugged from the system during their 
characterization and the effect of their interaction can be 
recombined later, thus enabling reuse of information. 
Moreover, the model is highly parameterized and scalable. It 
enables including any factor that can potentially affect the 
reliability of the system (e.g., environmental factors such as 
location and temperature) by simply adding new variables to 
the model. The model scales efficiently to complex systems 
with an analysis time that is significantly shorter than 
traditional fault injection while maintaining adequate levels of 
accuracy. Other system-level approaches provide similar 
execution time [9] [10] but their accuracy is significantly lower 
and can thus lead to more costly design decisions for 
reliability. A statistical model itself would be useless for 
reliability assessment in real applications without supporting 
instruments to populate the model for a specific system and 
workload. Along with the model, we therefore present a 
complete framework comprising a tool-chain able to compute 
the Failures-In-Time (FIT) rate of the final system based on the 
proposed system-level reliability model. In this paper, we 
report experiments for transient faults (soft-errors), but if tools 
and models to estimate conditional failure probabilities for 
different classes of faults (i.e., intermittent and permanent 
faults) are developed, the proposed model can be used to study 
their effect as well.  



2 
 
 
 

II. RELATED WORK 

A. Architectural level reliability analysis 
The Architectural Vulnerability Factor (AVF) of a 

microprocessor and its estimation has attracted significant 
attention by the research community. The AVF of a hardware 
structure is the fraction of faults in it that affect the correct 
program operation [11]. Most AVF estimation methods are 
based on offline analysis with architecture level simulators [11] 
[12] [13]. Offline AVF estimation is a complex process, 
requiring major modifications to the simulators and many 
resources to track values and instructions as they travel through 
microprocessor components. Only a limited number of 
instructions (short programs) can be analyzed in a reasonable 
amount of time because of the excessive memory requirements 
of ACE (Architectural Correct Execution) analysis. Online or 
real-time AVF estimation has been also presented [14] [15] 
[16] [17] [18], but it still requires heavy offline simulation and 
calibration for different workloads. It is not clear to what extent 
the parameters calibrated for one set of workloads will give 
accurate estimation for another set. A general drawback shared 
by all these methods is their AVF over-estimation due to 
worst-case assumptions. A 7x AVF over-estimation is reported 
in [9], whereas [10] reports that even a refined ACE-based 
analysis (which requires even more elaborate modifications of 
the microprocessor simulator model) leads to up to 3x over-
estimation. This leads to over-designed systems. The model 
and method we propose in this paper aims to contribute to the 
design of computing systems without excessive costs for 
reliability.  

B. Accounting for software effects in reliability analysis 
In [20] the authors discussed a first attempt to perform 

static analysis of a computer system including its software. 
However, the approach is limited to errors affecting the 
instruction opcodes before they enter the microprocessor 
pipeline. Three seminal papers by Sridharan and Kaeli first 
considered the software layer in the reliability assessment of a 
system [19] [21] [22]. They propose to compute a Program 
Vulnerability Factor (PVF) to quantify the portion of AVF that 
is attributed to a user program. This concept has been further 
extended in [22] with the introduction of the concept of the 
System Vulnerability Stack. The System Vulnerability Stack is 
a significant advance towards the definition of a system 
reliability model accounting for all layers of the system stack. 
However, it is over-simplified and it considers that layers are 
statistically independent from each other, to allow computing 
the global AVF as a simple product of the vulnerability factors 
of each layer. This is obviously not the case in a real system in 
which there is a very intricate interaction among the different 
layers and among components of each layer, and this 
approximation leads to pessimistic predictions.  

Another interesting solution that considers the impact of the 
application software running on embedded microprocessors 
was discussed in [23]. Despite the fact that it provides 
promising results, the method is still limited to transient faults 
in embedded microprocessors. Moreover, being based on static 
analysis of code traces, it does not capture important masking 
effects introduced during dynamic execution.  

C. Bayesian models for reliability estimation 
Bayesian networks models are very useful statistical 

models employed in many disciplines. Weber et al. in a 
comprehensive review report more than 200 papers published 
between 1998 and 2008 in international journals on 
applications of Bayesian networks in different fields, i.e., 
dependability, risk analysis and maintenance [24]. Differently 
from state-space based models such as Markov models [48] 
Bayesian models are better suited when component-based 
modeling is required. 

Among the different application fields, Bayesian models 
have been largely used to create software reliability models, 
i.e., to predict the probability of failure-free software operation 
for a specified period of time in a specified environment [25] 
[26] [27] [28]. Software reliability differs from system 
reliability considered in this paper since it reflects the software 
design perfection, rather than hardware manufacturing 
perfection and tolerance of the system to design variability and 
environmental stresses [29].   

Finally, a large set of publications present high-level 
theoretical Bayesian models to predict system reliability in 
different fields ([31] [32] [33] and their references). The main 
drawback of these approaches is that they focus on models 
optimizations to improve the capability of the analysis but do 
not provide solutions to collect all parameters required to build 
the model in a specific application domain. Moving in this 
direction Vallero at al. propose in [34] to use Bayesian 
networks to model software traces linking each instruction with 
the hardware resources required for their execution. While the 
model is interesting, only faults in the register file of a 
microprocessor are considered and there is no provision on 
how parameters for other hardware structures can be computed. 

Our model and reliability assessment method is a major 
step forward. We explicitly consider a Bayesian model in the 
field of cross-layer reliability focusing on system level effects 
of hardware faults. Our methodology comprises both the 
theoretical framework required to properly describe the target 
system using a Bayesian network and a complete integrated 
tools framework able to compute all parameters required to 
feed the model for virtually all realistic cases of hardware and 
software components. 

III. SYSTEM LEVEL RELIABILITY MODEL 
In this paper, we focus on system reliability assessment 

against low-level technology faults due to effects such as 
fabrication defects, process variations, radiations, etc. [3].  

 
Figure 1: System stack. Faults originate at the lower layer of the system 
stack and are either masked or propagated to the upper layer possibly 
resulting in a failure at system level. 

Te ch n o l o gy
T e m p e r a t u r e

P r o c e s s 	 v a r i a t i o n
C r o s s t a l k

A g i n g
R a d i a t i o n s
…

Physical	sources	of	
defects

Faults	modeling	physical	defects	
(e.g.,	single	event	upset,	stuck-at	
faults)

Errors	

Failures

M
as
kin

g/
Pr
op
ag
at
io
n

H a r d wa r e 	( HW )

So f t wa r e ( SW )

S y s t em

faults



3 
 
 
 

Errors resulting from low-level faults may manifest, be 
masked or be propagated through the HW and SW layers of the 
system stack, possibly resulting in partial or total failure of the 
system activities (Figure 1). Other reliability issues such as 
HW/SW design bugs are out of the scope of this paper. 

We propose a reliability assessment model allowing 
designers to obtain reliability estimations early in the system 
design cycle. This supports architectural decisions and gives 
indications about those portions of the system that are critical 
and deserve customized development effort to improve 
reliability. Among different modeling styles [48], following the 
component-based system design approach we propose a 
component-based reliability model [38]. In component-based 
reliability modeling, system reliability is estimated using 
reliability information and other properties (e.g., size, 
complexity, etc.) of individual system components and their 
interconnections (the system architecture). Our model exploits 
Bayesian Networks (BNs) as a statistical foundation for full-
system reliability analysis. BNs offer several interesting 
features for system reliability modeling: (i) efficient calculation 
scheme, (ii) capability of fitting on field and simulation data, 
(iii) intuitive and compact representation, (iv) decision support. 
A BN is a compact representation of a multivariate statistical 
distribution function encoding the Probability Density Function 
(PDF) governing a set of random variables by specifying a set 
of conditional independent statements together with a set of 
conditional probability functions.    

The proposed system reliability model is composed of a 
qualitative model representing the architecture of the system 
and a quantitative model, representing the reliability of each 
component and their relations. 

A. Qualitative model of the system 
The system architecture is defined through a directed 

acyclic graph G (Figure 2):  

 G = # = $ ∪ & , ( = )) ∪ &)  (1) 

The set of vertices V is split into two subsets: components 
(C) and parameters (P). Components are blocks composing the 
system. Depending on the architectural layer (technology, HW, 
SW) the component definition changes as discussed later in 
this section. Components are associated to Bayesian nodes, i.e., 
their reliability is associated to a set of random variables. 
Parameters are special vertices that are not direct part of the 
system Bayesian model. They represent implementation details 
of a component (e.g., operating temperature, workload, etc.) 
exploited by our framework to build the quantitative model of 
the system described later in this section. The reliability 
relations )) = 	 {(-., -/) ∈ $×$} is the set Bayesian arcs that 
define temporal or physical reliability relations among 
components, e.g., a failure state of a component may influence 
the state of another component. Finally, the parameters 
relations &) = 	 {(45., -/) ∈ 6&×$}  is the set of relations 
between a component and its implementation parameters. 
Based on the system stack shown in Figure 1, components of a 
system are split into four subsets or domains (Figure 2) each 
requiring different techniques to be characterized for reliability. 

  
Figure 2: System reliability estimation model. System components are 
modeled by component nodes. The topology of the network provides the 
qualitative description of the system. Conditional probability tables 
(CPT) associated to each component node of the network provide the 
quantitative description of the reliability of the system.  Parameter nodes 
model information required to compute the CPTs of the component 
nodes. 

The technology domain (TD) models the physical layer of 
the system. Components in this domain list all fabrication 
processes used to build the hardware structures of the system 
(e.g., 16nm Bulk CMOS for a microprocessor component, 
14nm FinFET CMOS for external DRAM, 14nm NAND Flash 
for external storage, etc.). These components set the raw fault 
probabilities of the system. Implementation parameters in this 
domain model physical quantities influencing the raw fault 
probability of a technology (e.g., temperature, voltage, 
location, radiation effects, etc.). 

The hardware domain (HwD) models the hardware 
architecture. Components in this domain list the hardware 
blocks such as CPUs, GPUs, memories, accelerators, custom 
IP cores, used to build the system. Granularity at which 
hardware blocks are modeled in this domain depends on the 
level of detail the designer needs for the reliability analysis, 
and the degree of freedom the designer has with the design of 
selected components. A complex component such as a 
microprocessor can either be considered as a whole or split into 
its subcomponents (e.g., register files, ALUs, buffers, queues, 
speculation units, etc.) to allow a fine-grained analysis and 
optimization. Each hardware component is associated to a set 
of implementation parameters such as size (e.g., number of bits 
of a memory), speed, workload, etc. 

The software domain (SwD) models the software 
architecture. To decouple the analysis of the SwD from the one 
of the HwD, special attention is required to define the interface 
between the two layers. Components of this domain are further 
split in two sub-domains: (1) software fault models (SFM), and 
(2) software modules (SM). 

Technology	domain	(TD)

Hardware	domain	(HwD)

Software	domain	(SwD)

System	domain	(SD)

Implementation	parameters
(e.g.,	temperature,	location,	voltage,	etc.)

Technologies
(e.g.,	18	nm	bulk	CMOS,	

14	nm	Fin-FET,	etc.)

Hardware	Components
(e.g.,	CPU,	Register	file,	L1/L2	cache,	

RAM,	custom	IP	cores)

Software	fault	models
(e.g.,	wrong	operand,	wrong	instruction,

control	flow	error,	etc.	)

Software	modules
(e.g.,	custom	functions,	libraries,

system	calls,	etc.	)

IP1 IP2

T3
CPT

T2
CPT

T1
CPT

IP3 IP4

H1
CPT H2

CPT H4
CPT

H5
CPT

H3
CPT

Implementation	parameters
(e.g.,	size,	speed,	workload,	etc.)

SFM1
CPT

SFM2
CPT

SFM3
CPT

IP5 IP6

S3
CPT

S1
CPT

S2
CPT

Implementation	parameters
(e.g.,	workload,	execution	time,	etc.)

O2
CPT

Parameters

Components



4 
 
 
 

SFMs are the approach introduced by our model to 
translate hardware failures into the software domain and 
therefore decouple the two domains so that the corresponding 
supporting tools for the hardware and the software domains can 
operate independently. SFMs model program alterations that 
can be linked to alterations of the Instruction Set Architecture 
(ISA) of the hardware block executing the software. Table 1 
lists the set of SFMs currently supported by our framework for 
selected microprocessor architectures. The table is not intended 
to be exhaustive. Additional SFMs can be plugged in the model 
given that proper tools for the evaluation of their occurrence 
and effect are designed. 

Table 1: Example of SFMs taxonomy. 
Software Fault Model Description 
Wrong Data in a Operand 

(WDO) 
An operand of the instruction changes its value 

Source Operand Forced 
Switch (SOFS) 

An operand is used in place of another 

Instruction Replacement 
(IR) 

An instruction is used in place of another 

Faulty Instruction (FI) The instruction is executed incorrectly 
Control Flow Error (CFE) The control flow is not respected  

On the other hand, SMs model the software architecture. 
The granularity of the description in this domain depends on 
the specific application. A node may represent a high-level 
library or framework, a single function, a portion of a function 
or even a specific data structure (e.g., an array), thus allowing 
for a fine-grained customization of the model. Implementation 
parameters in this domain mainly include the workload of each 
module. 

Performing system level reliability analysis requires the 
definition of a set of observation points where the behavior of 
the system is evaluated and properly classified. In most 
applications, observation points are a set of software 
components whose outputs define the outcome of the system. 
Nevertheless, associating the concept of observation points to 
the software domain is limiting. To model this concept, the 
system domain (SD) has been split from the other domains and 
placed at the higher-level of our model to separately identify 
those components where the entire system’s reliability is 
observed. 

B. Quantitative model of the system 
The quantitative model of the system defines the 

probability of occurrence of an error/fault in a component 
depending on the condition of its direct interacting components 
and on its implementation parameters. In a Bayesian model 
such as the one proposed in this paper, the quantitative model 
is a set of Conditional Probability Tables (CPTs): one CPT 
�7|9 for each node c ∈ C and its parent nodes < (Figure 3). 

 
Figure 3: Example of CPT for node c3. 

Each node c is associated to a set of states, which identify 
possible error or error-free conditions of the node (e.g., a 
memory can be error free, or it can be affected by a single bit-
flip, or by a double bit-flip). The set of states of the nodes 
depends on the node domain and the specific characteristics of 
the node. For each state of a node, we need to look at all 
combinations of states of its parent nodes. Each such 
combination is called an instantiation u of the parent set U. 
The CPT �7|9	  maps each instantiation c|u to a probability 
�7|=  such that �7 7|= = 1 . Nodes without parents, called 
root nodes, are described according to their marginal 
probability distributions.  

Computing CPTs can be both difficult and time consuming. 
It is typically an assignment given to a group of specialists that 
need to collect information and organize them according to the 
model. In this paper, we perform a significant step forward by 
providing a framework of tools, each designed to operate in 
one of the four node domains and able to compute conditional 
probabilities for major classes of software and hardware 
modules of modern electronic systems. The tools enable to 
consider each instantiation of a node and to setup a set of 
simulations to compute the corresponding conditional 
probabilities in a fast and optimized way. It is important to note 
that, if a node has many parents or if the parents can take a 
large number of states, the CPT becomes very large. The size 
of the CPT is, in fact, exponential in the number of parents. To 
cope with the exponential number of probabilities in CPT we 
resort to the Noisy-MAX approach [44]. The Noisy-Max is a 
generalization of the interaction of a child node and its direct 
ancestors that allows reducing the size of the computed CPT 
thus reducing the number of required simulations.  

C. Reasoning on the model of the system 
Once the system is described, the proposed reliability 

model can be used to reason about the its reliability properties.  

Bayesian reasoning is a well-known approach and the 
reader may refer to [45] for further details. Two main types of 
reasoning are supported. In the predictive reasoning, starting 
from information about fault causes (i.e., raw technology 
failure rates) the designer is able to obtain new beliefs about 
their effect on the system failures, following the forward 
directions of the network arcs. This enables early reliability 
analysis of the complete system. In the diagnostic reasoning 
the designer reasons from symptoms to cause (backward 
direction of the network arcs), i.e., the observation of a system 
failure updates the belief about the contribution of components 
to the failure. This allows us to identify weak components that 
most likely contributed to the failure, in order to drive the 
reliability design effort toward the most critical components 
thus optimizing the overall system at the lower cost. Moreover, 
the model can be used to calculate new beliefs when new 
information (evidence) is available. For example, by setting the 
evidence that a given component is in a given state (e.g., a 
hardware component is faulty), the model enables to update the 
belief of the system failure given this new information, as well 
as to update the belief of the root causes that lead to this 
component failure.  

c3
F H

c1
F c2

F
H

H c2
F
H

P(c3=F|c1=F	and	c2=F)

States
H:	fault-free
F:	faulty

C1
CPT C2

CPT

C3
CPT

Simulations
Dedicated	tools

IP1



5 
 
 
 

IV. INTEGRATED TOOLS FRAMEWORK 
This section describes available tools we developed to 

populate quantitative information in the proposed system 
reliability model.  

A. Technology Domain 
In the technology domain, for different technologies, we 

developed a tool chain  able to characterize the main building 
blocks composing a logic circuit in order to compute their 
marginal fault probability with respect to a given failure mode1. 
The current implementation focuses on soft-errors caused by 
particle strikes. Figure 4 summarizes the technologies and 
blocks analyzed so far for soft-errors. Further technologies and 
blocks can be analyzed given the availability of a proper 
technology and circuit model. Each block and each technology 
is analyzed for different combinations of run-time parameters. 
Supported parameters currently include combinations of 
voltage, temperature and geographical location. The 
geographical location is considered to accurately predict the 
error rates caused by particle strikes as detailed.  

 
Figure 4: Building blocks and technologies analyzed 

Figure 5 summarizes the simulation workflow.  

 
Figure 5: Technology Domain characterization workflow 

A Python simulation engine drives an exhaustive design 
space characterization for a given component implemented in a 
given technology. The analysis is organized into a set of nested 
loops to simulate an element subject to different operating 
temperatures, voltage, locations and technology models. To 
study the impact of particle strikes, in the inner loop we 
iteratively increase the current injected in the sensitive nodes of 
an element until a flip or glitch is detected measuring the stored 
value (SRAM) or the output (Logic Gates). Each electrical 
simulation is performed in HSPICE. The minimum charge 
generated from a pulse that causes a malfunction is stored and 
defined as the Qcrit of that element. Finally, for each Qcrit, a raw 
soft error rate (SER) is computed using the model in [36]. 

Through the use of this framework we have been able to 
build a technology library of SERs for different blocks under 

                                                             
1  The marginal distribution of a random variable is the probability 
distribution of the variable without reference to the values of the other 
variables (i.e., opposite to conditional probabilities). Since technology nodes 
are root nodes they are described by marginal probabilities rather than 
conditional probabilities. 

different technologies, geographical locations, and 
voltage/temperature. Data from this library can be fed to our 
system model any time a new system must be analyzed, 
without repeating the underlying simulations. The reader may 
refer to [35] for additional implementation details. 

B. Hardware Domain (HwD) 
At the hardware domain we focused our effort on the 

development of a tool-chain able to characterize the different 
micro-architectural blocks of a microprocessor. 
Microprocessors are our main target since they are one of the 
most complex and important blocks of a system. This analysis 
starts from the assumption that a fault (e.g., a single event 
upset) affects one of the blocks of the microprocessor. Whether 
this transforms into an error for other blocks depends on 
several parameters that are analyzed at this level and in 
particular on the microprocessor workload (i.e., the executed 
software).  

To compute CPTs for the different structures composing a 
complex microprocessor we resort to microarchitecture-level 
fault injection, which delivers very accurate results for array-
based structures, unlike ACE analysis that is faster but suffers 
from over-estimation of the final reliability assessments [9] 
[13] [37]. We improved an existing microarchitecture level 
fault injection tool GeFIN [39] based on Gem5 [43] (a cycle-
accurate full-system simulator) with an extra operation mode 
designed to cover the requirements of this work 2. GeFIN gives 
us the opportunity to run experiments for two of the major 
ISAs (ARM and x86). The new GeFIN operation mode 
developed in this paper is the IRS (Injection Runs up to the 
Software level) mode (for several different modes of operation 
of GeFIN see also [49]. This mode, enables to run fast 
injection experiments in which simulations end at the first 
visible fault effect at software layer; i.e., the moment that the 
first instruction affected by the fault commits to the 
architectural state. This isolates the fault in the HwD before it 
is transferred to the SwD. By running this fast operation mode 
it is possible to detect how errors propagate among 
microprocessor hardware structures and how they translate 
into the SFMs presented in Table 1, thus enabling to compute 
CPTs for all these nodes. Another operation mode provided by 
GeFIN is the IRE (Injection Runs up to the End) mode. This 
mode implements a full fault injection campaign running 
experiments to the end of a benchmark. It allows us to observe 
the fault effect at the application output. This mode of 
operation is very time consuming and is only used at the end 
of our paper to compare the reliability estimations that our 
model delivers with the reliability estimations of a very 
detailed fault injection campaign. 

Figure 6 summarizes the behavior of the two GeFIN fault 
injector modes. The pre-fault period represents the interval 
from the start of the benchmark until the fault injection. This 
period consumes an average of ~50% of the simulation 
lifetime. We can further speedup both IRE and IRS modes by 
skipping the pre-fault period.  

                                                             
2 Any other similar tool can be also used with the appropriate modifications 
(e.g., MaFIN in [39]). 

Technology (CMOS) Technology	node

Bulk	Planar (ASU	PTM	Models) 22nm	and	16nm

Bulk	FinFET (ASU	PTMModels) 20nm	and	14nm

SOI	Planar	(UTSOI	Model) 22nm

Circuits
SRAM	Cells	6T/8T/10T

Flip	Flop	- D

Latch

Logic	Gates	(AND, OR,	NOT)

X

SPICE	
circuit

Configuration	Parameters
(Pulse,	 Temperature,	Voltage,	Input/Stored	

Value,	Sensitive	Node

SPICE	
simulator

Critical	Charge	
(Qcrit)

Post	
process SER

Compact	model
(Current	and	predictive	technologies)

SER	
Model Location

Python	script	per	component
Note:Qcrit and	SER	are	provided	 for	
multiple	 configurations.



6 
 
 
 

 
Figure 6: IRE and IRS modes of GeFIN operation. 

All array structures of the CPU, which occupy the vast 
portion of the chip’s area and mainly determine the reliability 
of the entire chip, can be studied through fault injection using 
GeFIN. For the purposes of this study, we present results 
targeting five important hardware components: Integer 
physical register file, Load/Store Queue, L1I cache, L1D 
cache, L2 unified cache. Finally, to generate the initial fault 
mask list of all our campaigns at the microarchitecture level we 
used statistical fault sampling as described in [40]. The number 
of required fault injection runs per campaign depends on the 
size of the structure (in bits), the number of execution cycles of 
the benchmark, the confidence level and the error margin. The 
error margin and the confidence level mainly affect the total 
number of the injections. For all the hardware structures and all 
benchmarks of our study, the number of fault injection runs 
was rounded up to 2000, which corresponds to 2.88% error 
margin and 99% confidence level. Increasing the error margin 
and decreasing the confidence level of the sample, leads to 
decrease of the execution time of our fault injection campaigns 
(running less injection runs), decreasing consequently the 
accuracy of the final estimation results. 

C. Software-level (SwD) 
The SwD models the software architecture by considering 

SFMs and SMs. SFMs are the error sources for this domain 
and their CPTs are computed as the final outcome of the HwD 
analysis using GeFIN. To compute CPTs of SMs we 
developed a software-level fault injector, which, naturally, is 
very fast compared to the hardware-level injection tools. To 
study the SFM effects in the SwD, we need to investigate 
methods to describe the software independently from the 
target hardware architecture. This in turns means decoupling 
this layer from the ISA of the software execution platform. 
We exploit LLVM (Low Level Virtual Machine), a compiler 
framework that uses virtualization with virtual instruction sets 
to abstract the software analysis from the target 
microprocessor ISA, thus enabling to reuse the same results to 
characterize systems based on different hardware 
architectures. LLVM uses the Intermediate Representation 
(IR) as a form to represent code in the compiler. IR is an 
intermediate representation between the assembly level and 
the source code level, and it is independent from the source 
language and the target machine.  

Two relevant LLVM based fault injection frameworks 
have been proposed LLFI [41] and KULFI [42]. However, 
both injectors are not designed to work with the high-level 
SFMs described in our model and focus on simpler fault 
models such as bit-flips. For this reason, we developed a 
software-level LLVM based fault injector named LIFILL that 
targets the SFMs presented in Table 1. Starting from the 

original target source code, the tool generates the LLVM code 
that will be used later in the whole process of injection and 
analysis. Four main steps are performed:  

1) Trace Execution: The fault free program is first 
executed to generate an instruction trace, i.e., the list of 
executed LLVM instructions. Moreover, in this step, the 
function call graph of the program is generated (including 
calls to system functions) in order to automatically construct 
the nodes topology of the analyzed software.  

2) Fault Injection: SFMs are injected into the LLVM code 
respecting the input parameters. The injection technique 
consists in mutating the LLVM code. For each injection a 
mutated program is generated.  

3) Execution: the golden LLVM code and each faulty 
program are executed with their output redirected to a log file. 
We log all information concerning the LLVM execution 
(execution time, software outputs, value of each data structure 
to monitor, etc.).  

4) Analysis: the log files corresponding to the outputs of 
the faulty programs are compared to the golden output in order 
to evaluate the software behavior and determine the CPTs of 
each node. The considered faulty behaviors are defined in the 
Table 2. 

Table 2: Software Faulty Behavior Classifications. 
Fault 

Classification 
Description 

Masked The application execution terminates normally. All the 
application outputs are correct.	

Silent Data 
Corruption (SDC)	

The application execution terminates normally. However, 
the application outputs are different from the fault free 
outputs.	

Unresponsive	 The application execution does not terminate normally: it 
stops working or it never stops.	

D. System domain (SD) 
All tools described in the previous sections are integrated 

into a system level reliability analyzer that implements the 
high-level BN model. The tool whose GUI is shown in Figure 
7 is written in C++ and QT and provides the following 
functionalities to the user: 
• System architecture design: the graph based system 

architecture can be easily designed. The architecture of 
complex hardware components (e.g., complex 
microprocessors) can be selected from a library of 
components and customized in terms of parameters, 
whereas the software architecture can be automatically 
derived from the function call graph provided by the 
LIFILL tool. 

• Quantitative model: the output of the different supporting 
tools can be directly imported in the system analyzer to 
automatically compile the quantitative model of the 
system. 

• Reliability analysis: once a system is described, Bayesian 
analysis can be performed on the resulting network. Both 
predictive and diagnostic reasoning is implemented and 
available to the user.  

Start EndFault EffectInjection

Pre-fault 
Period

IRS

IRE

Software 
Corruption

End



7 
 
 
 

 
Figure 7: System level reliability analyzer interface. 

V. EVALUATION 
To demonstrate the capability of the proposed reliability 

assessment framework we have setup an extensive campaign of 
experiments (Table 3). We analyzed a set of microprocessor-
based systems, denoted hereinafter as configurations, each one 
characterized by: (i) a technology process, (ii) a 
microprocessor ISA and microarchitecture and (iii) an executed 
software benchmark. 

Table 3: Experimental setup 
TECHNOLOGY DOMAIN 

T1: 22nm Bulk Planar (FIT: 194.7E-7*), T2: 22nm Bulk FinFET (FIT:  
177.6E-9*), T3: 22nm SOI Planar (FIT: 111.2E-8*)  

HARDWARE DOMAIN 
x86 out-of-order CPU and ARM out-of-order CPU 

Register file (256 regs each 64-bits, 2KB) 
L1 Instruction Cache (32KB) 
L1 Data Cache (32KB) 
L2 Cache (1MB) 
Load/Store Queue (128B) 

Main memory 

DRAM protected with ECC (i.e., no fault injected) 

SOFTWARE DOMAIN 
Linux operating system executing one of the following MiBench programs: (1) 
susan smooth, (2) susan edges, (3) susan corners, (4) qsort, (5) string search, (6) 
sha, (7) fft 
* single bit FIT rate 6T SRAM cells with typical conditions (1V, 50C) 

We considered three technology processes taken from our 
technology library and two microprocessor ISAs: (i) x86 out-
of-order model and (ii) ARM Cortex-A15 out-of-order model. 
This covers two of the main microprocessor families used in 
commercial products in most computing markets. Each CPU 
has been split into a set of relevant components as reported in 
Table 3. We assume the main memory is ECC protected and 
the analysis focuses on soft-errors (single event upsets) in the 
microprocessor structures (the model can of course be use with 
an unprotected main memory). Each system runs the Linux 
operating system and executes one of the considered 
applications. All applications have been selected from the 
MiBench benchmark suite [46]. MiBench benchmarks have 
been extensively used in reliability studies [37] [39] [9] [47]. In 
total, considering 7 applications, 2 microprocessor ISAs and 3 
technologies we analyzed a total of 42 different configurations. 

Figure 8 shows the implemented validation flow. The FIT 
rate of every configuration (FITBN) has been computed through 
our system reliability model. This required to: (i) retrieve SERs 
for the target technology from our technology library, (ii) 
analyze the microprocessor structures using the GeFIN fault 
injector in IRS mode, and (iii) analyze the SwD using LIFILL. 
We considered three SFMs: WDO, IR and CFE. In parallel, the 
same analysis has be performed through a full fault injection 
campaign using the GeFIN fault injector in the IRE mode, 
which is very accurate but also very time consuming. Results 
of this campaign have been derated considering the raw SER of 
the technology and used to compute a fault-injection FIT rate 
of the system (FITFI). FITFI is the reference value to evaluate 
the accuracy of our model. Finally, we performed an additional 
fast analysis using our reliability model but considering 
approximated CPTs for nodes in the HwD computed as 
average values over all benchmarks. Populating CPTs of the 
HwD is the most computational intensive task. By avoiding 
this task using average values we were able to perform very 
fast even if not highly accurate analyses (FITFBN) that can be 
useful for designers to take very early design decisions. For all 
fault injection campaigns at all levels (hardware and software) 
we used statistical fault sampling as described in [40] in order 
to reach a 3% error margin and 99% confidence level for all 
estimated parameters. Finally, since parameters of the system 
model are affected by an error margin, Monte Carlo simulation 
(100,000 samples) is used to analyze the effect of this error on 
the final estimations. 

 
Figure 8: Summary of the validation flow used to validate the proposed 
reliability estimation framework. 

Figure 9 shows a set of boxplots reporting for each 
configuration the three FIT rates reported in Figure 8 for the 
two ISAs and technology T1. Figure 9 shows the accuracy of 
the proposed model compared to the fault injection case, which 
we consider as the baseline. When comparing the FITBN (red 
boxes) with the FITFI (cyan boxes) we can observe for all 
configurations very small differences in the order of a few 
units, confirming the accuracy of the proposed framework. 
Figure 9 shows also interesting results when considering the 
“fast analysis” (FITFBN). Interestingly, obtained results even if 
not accurate as the one provided by FITBN are still able to give 
a rough estimation of the reliability of the system, confirming 
the value of this fast analysis. A bigger library of characterized 
systems could be a good base for further improvements of this 
type of analysis. 

Configurations

Tech. 
Library

HwD
characterization 
(GeFIN IRS) 

SwD
characterization 

(LLVM FI)

Reliability analysis 
(BN Model) 

FITBN

HwD
characterization 
(GeFIN IRE) 

FITFIFITFBN

AVG HwD
data

Reliability analysis 
(BN Model) 



8 
 
 
 

 
(A) Technology T1 and x86 microprocessor model 

 
(B) Technology T1 and ARM microprocessor model. 

Figure 9: FIT estimation for the 7 selected benchmarks: (1) 
FITBN computed with the proposed model, (2) FITFBN computed 
with the proposed model with fast analysis, (3) FITFI computed 
using full fault injection campaigns. 

The analysis of the proposed framework would not be fair 
without a comparison with ACE-based AVF calculation 
methods. Unfortunately, available ACE-based AVF reports are 
related to different benchmarks, different ISAs and different 
microarchitectures and simulators. George et. al [9] report 
(among others) the AVF of the integer register file for the 
closest system configuration to the one we adopt, making it 
suitable for a fair comparison. The authors employ MiBench 
benchmarks in an x86 Out-Of-Order microprocessor with a 
1MB L2 cache, 64KB L1 data cache, 64KB L1 instruction 
cache and 256-entries integer register file (same register file 
size as in our case). The integer register file’s AVF computed 
with ACE analysis is equal to 15% for the string search 
benchmark. 

 

Figure 10: Comparison with AVF computed through ACE analysis for 
the string search benchmark computed with technology T1. 

Figure 10 uses this result and compares it with results from 
our model assuming that all hardware components are fully 
protected apart from the integer register file. It is evident from 
the figure that ACE analysis is much less accurate w.r.t. our 
model, whose FIT is very close to the one computed by the 
fault injection. This represents an important step forward in the 
realization of a framework for cross-layer reliability evaluation. 

Apart from the accuracy our experiments also focus on 
demonstrating the use of our model when performing design 
exploration. Figure 11 reports the FIT of the susan smooth x86 
benchmark estimated for the three considered technologies T1, 
T2, T3. Since technology related information is recomputed 
and stored in our technology library, performing this analysis 
only requires to change the CPT of the technology nodes and to 
analyze again the BN. This operation is very fast even for very 
big networks. 

 
Figure 11: FIT rate of the susan smooth on x86 for 3 technologies (T1: 
22nm Bulk Planar, T2 22nm, Bulk FinFET, 22nm SOI Planar) 

Figure 12 shows the power of the diagnostic reasoning 
provided by the framework for the x86 fft configuration with 
technology T1. By setting the evidence of a failure on all the 
output nodes of the model we have updated our belief of the 
causes of this failure. Figure 12 reports the 5 top critical 
hardware components (orange bars) and the 5 top critical 
software components (green bars). The reported probability 
indicates the belief that the component is in an error state given 
that we observed a failure at the output of the system. These 
components are preferred targets to improve the reliability of 
the system. 

 
Figure 12: Example of diagnostic analysis for the x86 fft configuration.  

Results obtained in Figure 12 have been employed in 
Figure 13 to perform design exploration. This figure reports the 
FIT rate computed by our model for the six variants of the x86 
fft system reported in Table 4.  

BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI

6

8

10

12

14

16

18

FI
T

susan
 smooth

susan
 edges

susan
 corners

qsort string
 search sha fft

FIT-BN

FIT-FBN

FIT-FI

BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI BN FB
N FI

4

6

8

10

12

14

16

FI
T

susan
 smooth

susan
 edges

susan
 corners

qsort string
 search sha fft

FIT-BN

FIT-FBN

FIT-FI

3.03E-003 4.04E-003

4.79E-002

0.00

0.01

0.02

0.03

0.04

0.05

0.06

FIT-FI FIT-BN FIT-ACE

T1
 B

N

T1
 F

B
N

T1
 F

I

T2
 B

N

T2
 F

B
N

T2
 F

I

T3
 B

N

T3
 F

B
N

T3
 F

I

0

2

4

6

8

10

FI
T

L2 L1D L1I RF LSQ fft_float Reverse 
Bits

Number 
Of Bits 
Needed

Check 
Pointer

Is Power 
Of Two

Hardware Software
P(err) 0.8886 0.0637 0.0472 0.00043 0.00009 0.78654 0.13605 0.000017 0.000002 0.000002

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Er
ro

r P
ro

ba
bi

lit
y



9 
 
 
 

Table 4: Design variants for reliability design exploration 

Variant Reverse Bits fff_float L2 
v1 U U U 
v2 FT U U 
v3 U FT U 
v4 U U FT 
v5 U FT FT 
v6 FT FT FT 
 FT: fault tolerant (100% masked faults), U: unreliable 

In the different variants, by working on the CPT of some of 
the critical nodes identified in Figure 12 we emulated the 
introduction of fault tolerance mechanisms able to fully mask 
single errors in the node and we evaluated their effect on the 
FIT rate of the system.  

 
Figure 13: Comparison of the FIT rate for different variants of the x86 fft 
benchmark with protection mechanisms applied to critical components. 

The orange bar refers to the unprotected system. It is 
interesting to note that acting on individual hardware or 
software components does not significantly improve the system 
FIT rate. However, by protecting just two critical components 
(v5) the FIT rate drops by more than one order of magnitude. 
Protecting additional components does not produce further 
significant improvements. This type of analysis can be 
performed easily by modeling the effect of a protection 
mechanism at the CPT level and does not require long 
simulation time. Results such as the one provided in Figure 13 
are a valuable instrument to reduce the overhead introduced by 
reliability oriented design solutions. 

To complete our analysis Figure 14 compares the 
simulation time between the full fault injection, and the BN 
model on a high-end workstation (Intel(R) Core(TM) i7-4771 
CPU @ 3.50GHz, RAM 16 GB) running Linux Slackware. 

 
Figure 14: Performance comparisons (hours of simulation).  

On average, the BN models of the considered benchmarks 
are composed of about 20 nodes. For each benchmark we 
report the full simulation time required to analyze the two CPU 
architectures. Simulation time to analyze the technology is not 
included here since data in the technology library are pre-
compiled. On average we observe a very significant 65% 

simulation time reduction for the BN results compared to the 
FI results, reaching a maximum of ~78% for the qsort 
configuration. The reader can also observe that, when 
considering the fast analysis the computation time is negligible. 

It is important to remind that, differently from full fault 
injection, when multiple architectures are analyzed only those 
components that change from one architecture to another must 
be characterized more than once. This is the case of our 
experimental setup where two CPU architectures have been 
considered. When moving from the x86 CPU to the ARM 
CPU, the SwD nodes are not influenced and do not need to be 
characterized twice.  

VI. CONCLUSIONS  
In this paper we proposed a scalable, cross-layer 

methodology and supporting tools ecosystem for accurate and 
fast estimations of computing systems reliability based on a 
component-based Bayesian network model. The model and 
related tools address all layers of a complex system from the 
technology up to the application software. The model 
efficiently calculates the system reliability (FIT rate) driven by 
the masking probabilities of individual hardware and software 
components and considering their complex interactions.  
Through an extensive set of experiments we demonstrated the 
features and the accuracy of the proposed framework. Besides 
its accuracy in reliability assessments, one of the key 
capabilities of the framework is the possibility to perform early 
diagnostic analysis to identify reliability-critical components of 
the system and to perform design exploration to quickly 
evaluate the effect that different cross-layer protection 
mechanisms at the technology, hardware and software layer 
will have on the system’s reliability.  

This paper has been fully supported by the 7th Framework 
Program of the 14 European Union through the CLERECO 
Project, under Grant Agreement 15 611404.  

REFERENCES 
[1] T. Nigam, "Scaling to the final frontier: Reliability challenges in sub 20 nm 

technologies," in 2011 IEEE International Integrated Reliability Workshop Final 
Report (IRW), 16-20 Oct. 2011. 

[2] J.Yoshida. “Toyota Case: Single Bit Flip That killed.” EETimes, Oct. 2013. 
[3] T.Austin, V.Bertacco, S.Mahlke, and Y.Cao. “Reliable Systems on Unreliable 

Fabrics” IEEE Design & Test of Computers, 25(4): 322-333, July 2008. 
[4] H.M. Quinn, A. De Hon, and N. Carter. “CCC visioning study: system-level cross-

layer cooperation to achieve predictable systems for unpredictable components”, 
Technical report, Los Alamos National Laboratory (LANL), 2011. 

[5] S. Mitra, K. Brelsford, and P.N. Sanda. “Cross-layer resilience challenges: Metrics 
and optimization”. In Conference on Design Automation & Test in Europe 
(DATE), 2010. 

[6] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli, A. Savino, G. 
Politano, A. Bosio, G. Di Natale, D. Gizopoulos, S. Di Carlo, “Cross-layer 
reliability evaluation, moving from the hardware architecture to the system level: 
A CLERECO EU project overview”, Microprocessors and Microsystems, Vol 39, 
No. 8 Nov 2015, pp. 1204–1214. 

[7] D.W. Coit, J. Tongdan, N. Wattanapongsakorn, "System optimization with 
component reliability estimation uncertainty: a multi-criteria approach," in 
Reliability, IEEE Transactions on Reliability, vol.53, no.3, pp.369-380, Sept. 2004  

[8] S. Distefano, A. Puliafito, "Dependability Evaluation with Dynamic Reliability 
Block Diagrams and Dynamic Fault Trees," in IEEE Transactions on Dependable 
and Secure Computing, vol.6, no.1, pp.4-17, Jan.-March 2009 

v1 v2 v3 v4 v5 v6
FIT 13.912 12.075 4.846 2.937 0.041 0.026

0.010

0.100

1.000

10.000

100.000

FI
T

0

50

100

150

200

BN FI FBN BN FI FBN BN FI FBN BN FI FBN BN FI FBN

susan	
smooth

susan	
edges

susan	
corners

qsort string	
search

sha jpeg	
decode

jpeg	
encode

aes	
encript

fft

Full	FI HwD	Characterization SwD	Characterization BN	Reliability	Analyzer



10 
 
 
 

[9] N.J. George, C.R. Elks, B.W. Johnson, J. Lach, "Transient fault models and AVF 
estimation revisited," in IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), 2010, pp.477-486, June 28 2010-July 1 2010 

[10] N. J. Wang, A. Mahesri, and S. J. Patel. 2007. “Examining ACE analysis reliability 
estimates using fault-injection”. In Proceedings of the 34th annual international 
symposium on Computer architecture (ISCA '07). New York, NY, USA, 460-469  

[11] S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin, "A Systematic 
Methodology to Compute the Architectural Vulnerability Factors for a High-
Performance Microprocessor," in Proceedings of International Symposium on 
Microarchitecture (MICRO), 2003. 

[12] X. Li, S. Adve, P. Bose, and J. Rivers, "SoftArch: An Architecture-Level Tool for 
Modeling and Analyzing Soft-Errors," in Proceedings of International Conference 
on Dependable Systems and Networks (DSN), 2005. 

[13] N. Wang, A. Mahesri, and S.J. Patel, "Examining ACE Analysis Reliability 
Estimates Using Fault-Injection," in Proceedings of International Symposium on 
Computer Architecture (ISCA), 2007. 

[14] N. Soundararajan, A. Parashar, and A. Sivasubramaniam, "Mechanisms for 
Bounding Vulnerabilities of Processor Structures," in Proceedings of International 
Symposium on Computer Architecture (ISCA), 2007. 

[15] K. Walcott, G. Humphreys, and S. Gurumurthi, "Dynamic Prediction of 
Architectural Vulnerability from Microarchitectural State," in Proceedings of 
International Symposium on Computer Architecture (ISCA), 2007 

[16] L. Duan, B. Li, and L. Peng, "Versatile Prediction and Fast Estimation of 
Architectural Vulnerability Factor from Processor Performance Metrics," in 
Proceedings of International Symposium on High Performance Computer 
Architecture (HPCA), 2009. 

[17] A. Biswas, N. Soundararajan, S. Mukherjee, and S. Gurumurthi, "Quantized AVF: 
A Means of Capturing Vulnerability Variations over Small Windows of Time," in 
Proceedings of Workshop on Silicon Errors in Logic-System Effects (SELSE), 
2009. 

[18] X. Fu, J. Poe, T. Li, and J. Fortes, "Characterizing Microarchitecture Soft Error 
Vulnerability Phase Behavior," in Proceedings of International Symposium on 
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems 
(MASCOTS), 2006 

[19] V. Sridharan and D.R. Kaeli, "Eliminating microarchitectural dependency from 
Architectural Vulnerability," in IEEE 15th International Symposium on High 
Performance Computer Architecture, 2009, pp. 117-128. 

[20] S. Di Carlo, G. Di Natale, and P. Prinetto A. Benso, "Static analysis of seu effects 
on software applications ," in Proceedings of the International Test Conference, 
2002, pp. 500-508. 

[21] V. Sridharan and D. R. Kaeli, "Using pvf traces to accelerate avf modeling ," in 
Proceedings of the IEEE Workshop on Silicon Errors in Logic System Effects, 
2010 

[22] V. Sridharan and D. R. Kaeli. 2010. “Using hardware vulnerability factors to 
enhance AVF analysis”. In Proceedings of the 37th annual international 
symposium on Computer architecture (ISCA '10). ACM, New York, NY, USA, 
461-472 

[23] A. Savino, S.Di Carlo,, G. Politano, A. Benso, G. Di Natale, A. Bosio “Statistical 
Reliability Estimation of Microprocessor-Based Systems”. In IEEE Transactions 
on Computers, vol. 61 n. 11, (2012), pp. 1521-1534. - ISSN 0018-9340 

[24] P. Weber, G. Medina-Oliva, C. Simon, B. Iung, “Overview on Bayesian networks 
applications for dependability, risk analysis and maintenance areas”, Engineering 
Applications of Artificial Intelligence, Volume 25, Issue 4, June 2012, Pages 671-
682 

[25] R. Roshanak, N. Medvidovic, and L. Golubchik. "A Bayesian model for predicting 
reliability of software systems at the architectural level." Software architectures, 
components, and applications. Springer Berlin Heidelberg, 2007. 108-126. 

[26] S. Yang, M. Lu and L. Ge, "Bayesian Network Based Software Reliability 
Prediction by Dynamic Simulation," in IEEE 7th International Conference 
Software Security and Reliability (SERE), 2013 pp.13-20, 18-20 June 2013 

[27] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, E.; V. Bharadwaj, "A Bayesian 
approach to reliability prediction and assessment of component based systems," in 
Proceedings. 12th International Symposium on Software Reliability Engineering, 
2001. pp.12-21, 27-30 Nov. 2001 

[28] H. Okamura, M. Grottke, T. Dohi, K.S. Trivedi, "Variational Bayesian Approach 
for Interval Estimation of NHPP-Based Software Reliability Models," in 37th 
Annual IEEE/IFIP International Conference on Dependable Systems and 
Networks, 2007. DSN '07. pp.698-707, 25-28 June 2007 

[29] A.L. Goel, "Software Reliability Models: Assumptions, Limitations, and 
Applicability," in IEEE Transactions on Software Engineering , vol.SE-11, no.12, 
pp.1411-1423, Dec. 1985 

[30] M.R. Choudhury, K. Mohanram, "Accurate and scalable reliability analysis of 
logic circuits," in Design, Automation & Test in Europe Conference & Exhibition, 
2007. DATE '07 , vol., no., pp.1-6, 16-20 April 2007 

[31] J. Yu, Z. Hehua, S. Xiaoyu, J. Xun and W.N.N Hung, G. Ming, S. Jiaguang, 
"Bayesian-Network-Based Reliability Analysis of PLC Systems," in IEEE 
Transactions on Industrial Electronics, vol.60, no.11, pp.5325-5336, Nov. 2013 

[32] Y. Wu, Z. Ren, "Mission reliability analysis of multiple-phased systems based on 
Bayesian network," in Prognostics and System Health Management Conference 
(PHM-2014 Hunan), 2014 , vol., no., pp.504-508, 24-27 Aug. 2014 

[33] D. Marquez, M. Neil, N. Fenton, “Improved reliability modeling using Bayesian 
networks and dynamic discretization”, Reliability Engineering & System Safety, 
Volume 95, Issue 4, April 2010, Pages 412-425, ISSN 0951-8320 

[34] A. Vallero, A. Savino, S. Tselonis, N. Foutris, M. Kaliorakis, G. Politano, D. 
Gizopoulos, S. Di Carlo, "Bayesian network early reliability evaluation analysis 
for both permanent and transient faults," in IEEE 21st International On-Line 
Testing Symposium (IOLTS), 2015, pp.7-12, 6-8 July 2015 

[35] M. Riera, R. Canal, J. Abella, A. Gonzalez “A Detailed Methodology to Compute 
Soft Error Rates in Advanced Technologies”, Proceedings of the Design, 
Automation and Test in Europe (DATE), 2016, Mar. 14-18 2016. 

[36] P. Hazucha and C. Svensson. “Impact of cmos technology scaling on the 
atmospheric neutron soft error rate”. IEEE Transactions on Nuclear Science, 
47(6):2586–2594, Dec 2000. 

[37] M. Ebrahimi, N. Sayed, M. Rashvand, and M.B. Tahoori, “Fault Injection 
Acceleration by Architectural Importance Sampling”, in IEEE/ACM International 
Conference on Hardware/Software Codesign and System Synthesis (CODES), Oct. 
2015 

[38] A. Filieri, C. Ghezzi, V. Grassi, R. Mirandola, “Reliability analysis of component-
based systems with multiple failure modes”. In Component-Based Software 
Engineering (Springer), pp. 11-20, 2010. 

[39] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, and D. Gizopoulos, “Differential 
Faut Injection on Microarchitectural Simulators”, in IEEE International 
Symposium on Workload Characterization (IISWC), Oct. 2015. 

[40] R. Leveugle, A. Calvez, P. Maistri, P. Vanhauwaert, “Statistical fault injection: 
Quantified error and confidence”, DATE 2009. 

[41] T. Anna, and K. Pattabiraman. "LLFI: An Intermediate Code Level Fault Injector 
For Soft Computing Applications." 9th Workshop on Silicon Errors in Logic 
(SELSE-09). IEEE, 2013 

[42] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, “Towards formal 
approach-es to system resilience,” in Proceedings of the 19th IEEE Pacific Rim 
International Symposium on Dependable Computing (PRDC), 2013. 

[43] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J. 
Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. 
Vaish, M.D. Hill, and D.A.Wood, “The Gem5 simulator”, in ACM SIGARCH 
Computer Arch. News, vol. 39, no. 2, May 2011. 

[44] A. Zagorecki and M. J. Druzdzel (2013) “Knowledge engineering for Bayesian 
networks: How common are noisy-MAX distributions in practice?” IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, 43 (1). pp. 186- 195. � 

[45] D. Heckerman, D. Geiger, D.M. Chickering “Learning Bayesian networks: the 
combination of knowledge and statistical data” Mach. Learn., 20 (3) (1995), pp. 
197–243 

[46] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown, 
"MiBench: A free, commercially representative embedded benchmark suite," in 
IEEE International Workshop on Workload Characterization, 2001. WWC-4. 
2001, pp.3-14, 2 Dec. 2001 

[47] Z. Zhao, D. Lee, A. Gerstlauer, and L.K.John, “Host compiled  reliability 
modeling for fast estimation of  architectural vulnerabilities”, in Workshop on 
Silicon Errors in Logic System  Effects (SELSE), MarchApril 2015.  

[48] D.M. Nicol, W.H. Sanders, K.S. Trivedi, “Model-Based Evaluation: From 
Dependability to Security”, IEEE Transactions on Dependable and Secure 
Computing, Vol. 1, No. 1, Jan.-Mar. 2004, pp. 48-65 

[49] A. Chatzidimitriou, D. Gizopoulos “Anatomy of Microarchitecture-Level 
Reliability Assessment: Throughput and Accuracy”, Proceedings of the IEEE 
International Symposium on Performance Analysis of Systems and Software, Apr. 
17-19, 2016 


