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The abstraction level for digital designs is rising from Register Transfer Level (RTL) to algorithmic 
untimed or transaction-based, followed by an automated high level synthesis (HLS) flow. However, it is 
still a significant challenge for chip architects and designers to describe low-power design decisions at the 
system level. Nowadays, low power design techniques for digital blocks are applied at RTL and there exists 
no commercial tool or methodology that can automatically derive the power intent from the system level 
description. The process requires considerable amount of human intervention and various lower-level 
details that are needed to implement low power schemes at RTL. This research aims to integrate low 
power techniques, specifically Power Shut-Off (PSO), within a model based hardware flow and to derive an 
automated Low Power-High Level Synthesis (LP-HLS) methodology. The methodology aims at minimizing 
the design effort for low power design by deriving low-level power intent automatically for model-based 
designs, while using high level synthesis to achieve a broad set of target system implementations. All the 
information that is needed to implement low power techniques is automatically derived from the system-
level design using a set of pragmas and a directives file. To illustrate the methodology, three model 
designs, ranging from simple designs to medium complexity hardware accelerators, are considered. 
Finally, the power saving results for the design scenarios validate the effectiveness of our LP-HLS 
methodology.  
• Hardware~Best practices for EDA   • Hardware~Software tools for EDA   • Hardware~Hardware description 
languages and compilation   • Hardware~Modeling and parameter extraction 

Additional Key Words and Phrases: Hardware accelerators, HLS, RTL, design space exploration, common 
power format, low power designs, design automation. 

1. INTRODUCTION 
System-on-chip (SoC) designs are becoming increasingly heterogeneous as they 
combine multicore architectures with a variety of hardware accelerators to carry out 
dedicated computational tasks. These hardware accelerators offer several orders-of-
magnitude higher power and timing efficiency than a corresponding software 
implementation [Horowitz 2014]. However, the presence of accelerators aggravates 
the complexity of SoC design. Moreover, digital designers aim at developing designs 
that optimize both timing and power, which generally are two conflicting 
performance objectives. Pareto-optimality can be comfortably achieved only if power 
specification is considered at the system-level. This is because major architectural 
decisions related to cost (area), performance and energy utilization can be made only 
at higher abstraction levels [Muslim et al. 2015]. For example, parallelism versus 
voltage and clock frequency is much easier to trade off at system-level. Early 
consideration of effective power management helps relieve the power bottlenecks of 
today’s VLSI design, enabling sustained high-performance operation with desired 
power consumption levels. 

1.1 Model-based designs 
As far as behavioral description for the hardware design is concerned, the abstraction 
level is rising from RTL to algorithmic untimed or transaction-based, followed by an 
automated high level synthesis (HLS) flow [Liu and Carloni 2013]. HLS takes as 
input the model-based description of the design, specified in some high level language 
such as C, C++, SystemC or Simulink, and synthesizes it to generate RTL. By 
elaborating different sets of constraints, HLS tools allow designers to evaluate 
multiple implementation alternatives, a process known as Design Space Exploration 

 
 



(DSE) [Ravi et al. 2014; Cong 2014]. DSE with HLS is already a major leap from DSE 
with Logic Synthesis, since the former can be achieved by simply changing HLS tool 
directives, while the latter usually requires one to manually change a detailed 
hardware description expressed in the form of Verilog or VHDL. Such hardware 
descriptions at a lower abstraction level are often tried only for one or two 
architectural options, due to the much slower design and verification cycle [Daoud et 
al. 2014]. Also, high design productivity requires that complex SoCs consist of 90% 
reused components [Liu et al. 2012]. This in turn requires soft IP components, which 
are designed once using high-level languages and implemented into various instances 
to meet the changing design requirements [Cesário et al. 2002].  

1.2 Low power design flow 
As far as functional description of hardware is concerned, it has evolved to the extent 
that model-based design approaches using automated HLS flows have gained 
popularity within the design community [Qamar et al. 2015]. However, it is still a 
significant challenge for chip architects and designers to describe low-power design 
decisions at the system level. This is because; system architects have little or no 
visibility of the lower-level details that are needed to implement low power schemes 
at RTL [Zhang 2015]. Similarly, a digital backend designer needs to interact 
intensively with the system architect as well as with the verification team to 
formulate an appropriate hardware platform and a low power scheme in order to 
meet the requirements. This process still involves a considerable amount of human 
intervention, because nowadays the low power techniques for a digital system are 
applied at register transfer level (RTL). These techniques include supply voltage and 
clock control technologies, such as power shut-down, clock gating, dynamic voltage 
and frequency scaling, and adaptive voltage scaling [Kurimoto et al. 2013]. The 
power shut-down technology is especially vital to leakage power reduction for 
battery-driven devices. 

1.3 Contribution 
This research aims to integrate the aforementioned low power techniques within a 
model based hardware flow and to derive an automated Low Power High-Level 
Synthesis (LP_HLS) methodology. This methodology enables the specification of both 
the behavioral functionality and the power intent at a level of abstraction higher 
than RTL and the use of high-level synthesis (HLS) tools at the front-end of the 
ensuing design flow. The behavioral description of the design can be captured using 
SystemC or C/C++, although in this paper we use SystemC for the sake of 
illustration. In our proposed flow, the power intent, i.e. the set of power-saving 
techniques to be used and all the information that is needed to implement them, is 
automatically derived from the system-level design using a set of pragmas and a 
directives file. Combining this information with technology dependent parameters, a 
tool that we developed derives low power intent written in the Common Power 
Format (CPF), or Unified Power Format (UPF), which are widely used standards 
supported by several commercial EDA tool vendors.  

In this work, we use CPF for the sake of illustration, and consider power shut-off 
(PSO) along with clock gating (CG) to achieve power saving [Benini et al. 2001; 
Verma et al. 2015]. To illustrate the methodology, we use three examples ranging 
from simple designs to medium complexity hardware accelerators. These include a 32 
bit Ripple-Carry Adder (RCA), a general purpose ALU performing arithmetic and 
logical operations, and an IDCT block often used in image and video processing. Our 
methodology aims at minimizing the design effort for low power design by deriving 
low-level power intent automatically for model-based designs, while using high level 



                                                                                                                                   
synthesis to achieve a broad set of target system implementations. In particular, we 
propose: 
• A generic power management module description at the system-level, to specify 

the design context of a hardware block; 
• A tool that, for a given system design context automatically generates the low 

power design directives needed to implement the PSO technique in the back-end 
flow. 

2. RELATED WORK 
Most work on low power techniques using CPF and UPF focuses on the RTL, rarely 
considering system-level implications. An example is [Mathur and Wang 2009; 
Varma 2015], which focuses on the manual description of the power intent using CPF 
for RTL implementations generated using HLS. In this work, on the other hand, we 
propose a methodology to automatically generate the CPF power specification from a 
high-level model just like an HLS tool generates the RTL from a behavioral 
description. 

Benini et al. [2001] and Lin et al. [2015] suggest various energy optimizations 
starting from software down to circuit-level for electronic systems. Their strategy 
starts from power optimizations at system-level including energy-aware task 
scheduling, hardware/software partitioning, power aware architectures using 
dynamic power management (DPM) policies and code morphing. Similarly, they 
emphasize adopting low power schemes such as MSV, PSO, CG, and DVFS at the 
RTL, while using gates with varying transistor widths to achieve additional energy 
saving at the gate-level.  

Schirrmeister [2009], and Benini & Micheli [2000] provide a review of the different 
abstraction levels for energy measurement and estimation as well as common 
techniques to optimize a design for low power above RTL. They use a typical JPEG 
decoder as a test case. The authors advocate the use of a system-level solution early 
in the design cycle for data-flow dominated blocks and their associated memories.  

Zhang et al. [2015] argues that in order to meet strict power requirements, modern 
day designers may still have to perform manual optimizations on an RTL design 
described using Verilog or VHDL by applying numerous low power techniques 
considering functional, structural, temporal and spatial information together. It is 
extremely difficult to achieve these goals manually in such a complex multi-
dimensional space within a limited time. In addition, power scaling requires 
designers to evaluate and optimize the system architecture as early as possible in the 
design flow. Certainly, the solution is to raise the level of abstraction beyond RTL to 
achieve faster power optimization and use automated RTL synthesis tools. 

Thus, there exists a general agreement among the designers regarding the 
significance of system-level power optimization techniques [Ahmed et al. 2014; Bezati 
et al. 2014]. Commercial efforts in producing pre-RTL power optimization tools have 
resulted in tools such as Vista Architect from Mentor Graphics and Chip vision’s 
PowerOptTM,. Two new working groups were formed by IEEE at the end of 2014 to 
standardize system-level power modeling for SoC devices [Shuang 2015]. The 
prospect of considering power intent at the system-level and applying it in 
combination with HLS thus is an important but rather sparsely explored area and 
hence a theme of this work. 

3. LP-HLS METHODOLOGY 
The earlier energy savings are considered in the design cycle, the more savings can 
be achieved, as shown in Fig. 1. This is because architectural decisions related to cost 
(area), performance and energy utilization are made at this level [Sinha and 



Srikanthan 2014]. The prospect of a completely automated low power flow, where 
both the logic and power intent can be incorporated into the design at the system-
level, seems very promising. In this section, we present a complete description of our 
LP-HLS methodology, which comprises an HLS flow, a CPF generator to 
automatically produce CPF power intent, and the final integration into the backend 
flow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Power reduction as a function of various stages of design cycle 

3.1 Model-based hardware design 
The overview of the proposed design flow is shown in Fig. 2. The power intent is 
derived by extracting the design related information from the system-level 
description. This information is read together with the power rules specifications for 
the PSO, and the technology related parameters to automatically generate the CFP 
file. The hardware description for low power design is then integrated with the RTL 
during the later stages of backend flow. 

Luckily, even when the RTL is generated automatically from the system-level code 
written in SystemC, the naming convention of the design hierarchy, i.e. instances, 
signals and ports is preserved while the design undergoes high-level synthesis, or 
names for new objects (e.g. fields of SystemC struct-typed I/O signals) can be easily 
derived automatically from the high level model.   

In our flow, the power intent is also derived from annotations in the SystemC code 
and a design configuration file that refers only to high-level information. This makes 
it easier for the design architect to select among the underlying power optimization 
choices, thanks to the higher level of abstraction. 
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Fig. 2. Overview of the low power design model 

3.2 CPF generation tool 
Our automated CPF generation tool relies upon the use of #pragma directives in the 
system-level design file/s as well as a designer-written intent specification file, to 
identify power related information. Figure 3 shows the general structure of the tool. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Basic structure of CPF generation tool 

The technology specification (tech. spec. in the Fig. 3) file, as the name implies, 
contains technology related information using directly the corresponding CPF syntax. 
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In particular, it contains; (i) the set of libraries (typically the worst, best and nominal 
cases), (ii) the information about the power nets that will be created during physical 
design, and (iii) the nominal conditions (e.g. voltage levels for various power nets) 
which will be used by the various power modes afterwards. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

************ INPUT File 1: system_level_model.cc ******************* 
#PRAGMA default-domain 
SC_MODULE (topmodule)  
{ 
    sc_in< bool > clk, reset; 
    sc_signal <bool> pse_sig, iso_sig; 
    …………………………   
#PRAGMA power-domain-instance MY_DOMAIN 
    idct_module XLXI_3;  
    ………………………… 
    ………………………… 
    Power_control XLXI_2; // POWER MANAGEMENT UNIT 
    SC_CTOR (topmodule) 
    { 
        ………………………… 
#PRAGMA shutoff-condition 
        XLXI_2.pse(pse_sig); 
        ………………………… 
#PRAGMA isolation-condition 
        XLXI_2.iso(iso_sig); 
        ………………………… 
    }}; 
 
 

************ INPUT File 2: spec_file ******************************* 
#PRAGMA isolation-cells 
cells ISO_FENCE0N_X* EN 
isolation_rule MY_DOMAIN always_ON low 
 
 

************* OUTPUT File: automate.cpf **************************** 
set_design topmodule 
 
## Specify power domain ## 
create_power_domain -name PD_default -default 
create_power_domain -name MY_DOMAIN -instances {XLXI_3} -
shutoff_condition {!XLXI_2/pse} 
 
## Isolation Cells ## 
define_isolation_cell -cells "ISO_FENCE0N_X*" -enable EN / 
-valid_location to 
 
## Isolation rule ## 
create_isolation_rule -name iso_1 -from MY_DOMAIN / 
-to always_ON -isolation_condition {XLXI_2/iso_en} / 
-isolation_output low -isolation_target from 
 

Fig. 4. A simple example of input pragmas and corresponding CPF output 

 



                                                                                                                                   
The specification (spec.) file contains pragma directives for the power rules that 

are needed to successfully implement PSO strategy. These rules depend upon design 
related parameters. This includes rules such as operating corners for multi-mode-
multi-corner (mmmc) analysis, analysis views for power domains and the definition 
of power rules such as isolation, state-retention and power switch rules. 

The CPF generator needs to extract from the system-level model file information 
such as, the module name of the switchable power domain(s), and the instance name 
of the signal that defines the shut-off condition, and that will be used to drive the 
power switches. This is done by inserting a #pragma directive before the respective 
instance name. The tool searches for those unique pragmas, creates token strings for 
the instances and stores the information for later processing. The name of the power 
domain can either be assigned by the designer (e.g. MY_DOMAIN), or be generated by 
the parser (e.g. switchable_domain_<n>).   

Once all the information from the input files is gathered into custom data 
structures, the tool generates power rules in CPF format corresponding to each 
pragma directive, using the information from the configuration files.  
Figure 4 shows an example of how two pragma directives in the SystemC source and 
some information in the specification file are combined to generate a simple CPF 
output file. 

3.3 LP-HLS flow 
After discussing the model-based design approach using HLS and describing our tool 
that automates the power intent generation, we now discuss the complete LP-HLS 
flow. 

Figure 5 summarizes the flow of operations that are required to go from a system-
level specification to a power-optimized gate-level implementation, using the 
proposed Low Power High-Level Synthesis (LP-HLS) methodology and a standard 
RTL-to-gates flow. Depending on the application, different constraints (e.g., 
performance, area cost, and power) must be satisfied during the various phases of the 
flow. Macii et al. [1998] suggests that, “when the target is a low-power application, 
the search for the optimal solution must include, at each level of abstraction, a design 
improvement loop”. In such a loop, a power analyzer/estimator (shown in gray in Fig. 
5) ranks the various design, synthesis, and optimization options, and thus helps in 
selecting the one that is potentially more effective from the power standpoint. 
However, this methodology requires the availability of power estimators, as well as 
synthesis and optimization tools, which provide accurate and reliable results at 
various levels of abstraction. 

While adapting a purely algorithmic model to be the input of HLS, the designer 
must instantiate a Power Management Block (PMB) that decides exactly when the 
power can be switched ON or OFF, and if necessary keeps the design waiting (e.g. by 
gating the clock) while the power stabilizes. Of course, this PMB must be part of the 
always ON domain. Thereafter, the RTL is generated through HLS by performing the 
necessary steps i.e. by specifying the target technology, the micro-architecture 
choices and the scheduling constraints. In parallel to HLS, our tool processes the 
system-level power intent and generates the CPF file, as described above. 

The switching activity information for accurate power analysis is extracted by 
simulating the RTL with the original SystemC test-bench, by using the automatically 
generated SystemC wrapper. Power aware logic synthesis is then performed by first 
reading the target libraries, as specified in the CPF file, and by enabling the 
application of coarse-grained clock gating logic (both in HLS and logic synthesis).  

As in the standard power-aware flow, the RTL design is then read and elaborated, 
followed by technology mapping of the cells to be used as clock-gated integrated cells 



(CGIC). The power intent is then read, followed by setting the timing constraints and 
synthesizing the design. The switching activities are annotated and the power intent 
is applied, followed by the verification of the power structure to check if the low 
power cells have been correctly inserted in the design according to the rules specified 
in the power intent file. Incremental optimization is performed and finally the gate-
level netlist is obtained and checked for logic equivalence against the input RTL. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Low Power High-Level Synthesis LP-HLS methodology flow 

4. DESIGN SCENARIOS AND TEST CASES 
The example cases that are adopted are simple, yet interesting enough to illustrate 
the proposed methodology. We start with a simple design of a hierarchical 32 bit 
ripple-carry adder (RCA) structure to better understand and apply the investigated 
methodology. The module processing the 16 most significant bits (MSB_RCA16-31) is 
selected to be placed in a switchable power domain, to enable low-power processing of 
16-bit numbers. Then we move to a larger design, namely an ALU processor 
comprising eight modules to perform arithmetic as well as logical operations. Here, 
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we choose to power down the division and multiplication modules when they are not 
needed. Finally, we consider a more complex design, an inverse discrete cosine 
transform (IDCT) module, which finds its application in JPEG decoders.     

Since our target is to test and validate the flow, we formulate synthetic 
application scenarios for our example designs. In this section we discuss very briefly, 
the test bench setup as well as the PMB design for each. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. General structure of test bench for design cases 

4.1 Test bench structure 
The test bench setup includes a stimulus generator that drives the input control and 
data signals to the design under test (DUT). A monitor block logs the outputs and 
checks their validity, as depicted in Fig. 6. 

In the case of the RCA and the ALU, the stimulus generator uses pseudo-random 
number generators (PRNGs) to generate input streams as well as random values of 
control logic to select between the power ON and OFF conditions for the switchable 
power domains. Of course, the probabilistic models should reflect the behavior of the 
real application scenarios. However, this is a well-studied problem that is outside the 
scope of this paper [Li et al. 2009; Tschanz et al. 2003; Brooks et al. 2000].  

For the RCA and the ALU, we use both a synthetic switching activity profile in 
which the switchable domain stays ON for 10% of the time, one in which it is ON for 
90% of the time, and one in which it is on for 50% of the time. For the IDCT design, 
on the other hand, we consider its real-life usage inside a JPEG decoder.  

Please note that the PMB could be made more complex, in order to require some 
minimum number of idle cycles before shutting off the power, but again these 
considerations are outside the scope of the paper [Bartolini et al. 2014; Ahmed et al. 
2015]. We will see later that each transition between power states requires at least 
four clock cycles, which would suggest considering a threshold to trigger the 
transition to be at least four cycles.         

4.2 Design under test (DUT) 
An important issue worth considering while employing power gating is to prevent 
floating states from propagating from the Power Switchable Domain (PSD) to the 
default domain. It is also necessary to save the state of some flip-flops in the design 
before switching off a part of the design. Isolation cells (ISO) are responsible for 
isolating the always-on units from the floating values of outputs from the power-
gated units. They are typically placed on the outputs of the shut-off power domain 
during the physical placement stage [Chadha and Bhasker 2013], as shown in Fig. 7.  

RET in Fig. 7 represents the state retention cells, which have the ability to retain 
their states even if the primary power is shut-off. The retention cells are optional and 
are needed only if the state of some sequential logic in the power switchable domain 
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must be preserved. The header power switches which are inserted during the 
physical implementation phase provide the ability to cut-off the supply voltage to the 
switchable domain. The rules for the insertion of these low power cells are stated in 
the power intent file provided to the logic synthesis tool. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. General structure of DUT 

In order to ensure no loss of data during the power-up process, we chose to add a 
first-in-first-out (FIFO) module at the input of the DUT, as depicted in Fig. 7. This 
buffers the input values while the module is still in the sleep mode and the data 
input is coming in during the power-up process. Moreover, clock gating is introduced 
by using the SystemC clock gating capability provided by the HLS tool [Cadence 
2013]. 

4.3 Power management block (PMB) 
Figure 7 also shows the PMB in the default domain. This is added as a SystemC 
module to produce the control signals in the correct sequence to power gate the 
module instances of the power switchable domain(s), as indicated in the Fig. 8. The 
power control flag in Fig. 8 represents the signal in the functional model that 
activates the power up/down process. This signal must be identified manually by the 
designer, e.g. by using activity profiling as discussed in section 4.2, and it captures 
the inactivity intervals of the design. During the power down process, isolation must 
happen before state retention, followed by power shut-off, while the reverse sequence 
must be followed during the power up process. The signals for isolation, state 
retention and power shut-off as provided by the power control module are iso_en, 
ret_en and pse respectively, as shown in Fig. 8.  

In this case the power up/down sequences consume four clock cycles, plus the 
number of cycles that are required to bring the power rails to the required supply 
voltage. Many surveys [Benini and Micheli 2000; Verma et al. 2015] suggest 
combining PSO with CG in order to maximize power savings. When the switchable 
domain is powered down, we gate its clock nets at the time of power down. The 
SystemC pseudo code of our (purely illustrative) PMB block is presented as 
algorithm1. 
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Fig. 8. Low Power High-Level Synthesis LP-HLS methodology flow 

Algorithm 1. PMB algorithm 
 
// *********** Initialization phase 
*************************************** 
1: Initialize signals (isolation, retention, power switch, 
clock gating); 
2: wait(); // wait for one clock cycle 
// *********** PMB logic 
********************************* 
3: while (true){ 
4:  if (Powershut-off == Enable){ 
5:  isolation = ON; 
6:  wait(); 
7:  retention = ON; 
8:  wait();  
9:  power_switch = ON; 
10:  clk_gating = ON; 
11:  }  
12:  else{ 
13:  clk_gating = OFF; 
14:  power_switch = OFF; 
15:  wait(); 
16:  retention = OFF; 
17:  wait(); 
18:  isolation = OFF; 
19:  } 
20:  } 
9: end //infinite while loop 
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4.4 Hardware accelerators – Test cases 
This section briefly overviews the example cases used to validate the proposed 
methodology. 

4.4.1 32 bit ripple carry adder (RCA) 
In order to apply the PSO technique to the RCA, it is modeled in SystemC as a 
hierarchical module, comprising of two 16 bit RCAs, called MSB_RCA16-31 and 
LSB_RCA0-1 in Fig. 9. Both modules are functionally identical, but the MSB_RCA is 
assigned to the switchable power domain, and hence it has a few additional ports to 
drive power management operations. The output multiplexers also use Pshut-off as a 
select signal to choose between the valid outputs. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 9. 32 bit ripple-carry adder (RCA) 

4.4.2 ALU processor 
The ALU processor, also modeled in SystemC, is capable of performing arithmetic as 
well as logical operations. The encoder is driven by the control logic (SEL), from the 
stimulus generator and selects between unique opcodes assigned to each function. 
Since the multiplication and division blocks consume most of the hardware resources, 
they are also the most power hungry blocks [Hoang et al. 2013]. Thus, they become 
ideal candidates to be assigned to two separate switchable power domains as shown 
in Fig. 10. The power ON/OFF sequence for the respective domain is triggered based 
on the SEL signal. 
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Fig. 10. Arithemetic logic unit (ALU) processor 

4.4.3 IDCT 

IDCT is a well-known algorithm used in data compression standards (e.g. JPEG). A 
JPEG decoder performs various operations like variable length decoding (VLD), 
zigzag scanning (ZZ), de-quantization (DQ), inverse discrete cosine transform (IDCT), 
color conversion, and reordering on the compressed image. A typical JPEG decoder 
architecture depicting all these operations is shown in Fig. 11. 

This work deals with a synthesizable SystemC implementation of a JPEG IDCT 
decoder. A 2D-IDCT is performed by first performing 1D-IDCT on each of the 
columns in the matrix followed by 1D-IDCT on each row. The design architecture 
consists of concurrent processes with the communication between them taking place 
at transaction level. 

IDCT is the major contributor to the overall complexity of a JPEG decoder [Sona 
et al. 2014]. This gives us a strong reason to power gate the IDCT unit of the JPEG 
decoder which will also serve in validating our LP-HLS methodology. To employ 
power gating, activity profiling of the IDCT design is performed first to identify the 
idle periods in the design so as to correctly apply the power optimization strategies 
[Muslim et al. 2015]. This is done by simulating the design with a dedicated SystemC 
test-bench. This enables us to identify the idle periods in the design as well as the 
signal in the design that can be used to trigger the power control mechanism. Thus, 
the power control signals in this design, unlike the previous design examples (refer to 
sec. 4.4.1 and 4.4.2), that use synthetic data to produce the power control signals, 
come from real-time simulation of a JPEG-IDCT decoder. This provides us with a 
more realistic scenario to validate the LP-HLS methodology. 
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Fig. 11. JPEG decoder using IDCT module 

The power control signals in the correct sequence are being provided by the PMB, 
which is added as a separate SystemC module, as depicted in Fig.11. These signals 
are used to power gate the IDCT module using the power intent captured in the CPF 
file. The clock gating of the design is performed by adding a separate SystemC clock 
gating module. This module performs coarse-grain clock gating and since it is 
enabled by the same signal used to trigger power gating, it clock gates all those 
instances that are being power gated as well. Without clock gating, the clock buffer 
tree continues to propagate the system clock even to the power gated modules, thus 
consuming dynamic power. Thus, it is a general practice to apply clock gating along 
with the power gating technique.    

It should be noted that the power up/down sequences take four clock cycles to 
complete. We thus need to prevent a loss of data, which is being fed to the hardware 
accelerator during the power-up process, by incorporating a first-in-first-out (FIFO) 
buffer into the design as a separate SystemC module. In addition to the isolation cells 
and the power switch cells, the state retention cells already explained in previous 
sections, are also added in the power switchable domain here. 

5. RESULTS 
The experimental setup consists of a SystemC description of the design-under-test 
(DUT) i.e. 32 bit RCA, ALU processor, and IDCT, respectively. The entire design flow 
is carried out using tools provided by Cadence Design Systems. This mainly includes 
Cadence C-to-Silicon Compiler [Cadence 2014] for high-level synthesis and RTL 
Compiler [Cadence 2013] to implement the backend flow. Several different 
implementations have been used to validate the results, namely the design without 
any power optimization techniques, and the design with clock gating and power 
gating. The general experimental setup uses the LP-HLS flow to automatically derive 
RTL for design behavior and CPF for power intent description.  

The power computation is obtained from the power model included in the 
standard cell libraries. In this work, where we are interested in validating our 
proposed LP-HLS methodology, we used the 45nm NanGate Open Cell Library which 
supports low power cells for ASIC implementation. The power analysis using library 
power models relies upon the expected state of the signals at the standard cells 
boundary and their transition activity.  
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In order to verify our LP-HLS methodology, we sweep the values of both static 

probability and toggle rate of the power control pins of the PMB. The static 
probability, which dictates leakage power, accounts for the total operation workload. 
The toggle rate, which is associated with the dynamic power, determines the number 
of transitions per unit time for the power control signals.  

For the RCA and ALU examples, where we are relying on synthetic input vectors, 
we control the utilization (static probability) of the PSD by specifying a usage 
percentage w.r.t the rest of the design. The transition rate for the ON/OFF states of 
the power control signals is based on the utilization factor. On the other hand, the 
IDCT uses real-time input vectors from the JPEG decoder, so we keep the utilization 
fixed while we sweep the toggle rate to observe changes in dynamic power. 

The power optimization result for the RCA example is presented in Table. I. The 
MSB_RCA comprises of 31% of the total size of the design, hence it is a good 
candidate for the power gating. The rest of the design includes the PMB, LSB_RCA 
and two multiplexers to compute sum, as mentioned in Fig. 9. The power analysis is 
performed for RCA without power optimization at 50% usage (i.e. the MSB_RCA is 
used in 50% of the clock cycles). From the graph in Fig. 12a, it is clear that the total 
power consumption is almost double than the power consumption with power 
optimization even when MSB_RCA is active for 90% of the time, mainly because of 
clock gating. 

 
Table I. Power optimization of RCA w.r.t. MSB_RCA (power switchable domain) 
Operations Workload  

(MSB_RCA) Pstatic(µW) Pdynamic(µW) Cell Area (µm2) 

Without power optimization @ 50% 70 255 

Total  3362 
MSB_RCA  1051 (31%) 

90% 35 104 
70% 31 97 
50% 28 93 
30% 25 90 

        
Similarly for the ALU, we assign the division (DIV) and multiplication (MULT) 

operations to two separate PSDs. Together they contribute 48% of the total design 
area as mentioned in Table. II. We then analyze the power consumption by assigning 
different utilization to DIV and MULT. The choice of 1% usage for DIV and 10% for 
MULT corresponds to a hypothetical integer workload, while the sweep between 30-
10% for DIV and 60-40% of MULT can be regarded as a DSP workload. Fig. 12b 
shows the leakage as well as dynamic power results for the ALU. Since the cell area 
of the power switchable logic is almost half of the total logic, the power saving is even 
greater than in the previous example. 

 
Table II. Power optimization of ALU w.r.t. DIV and MULT (power switchable domains) operations 

Operations Workload  
(DIV – MULT) Pstatic(µW) Pdynamic(µW) Cell Area (µm2) 

Without power optimization @ 10% – 40% 190 1072 
Total  27361 
DIV  8219 (30%) 
MULT  4790 (18%) 

30% – 60% 140 341 
20% – 50% 133 283 
10% – 40% 129 237 
1% – 10% 86 160 

 
The IDCT design scenario uses vectors from the JPEG decoder to obtain power 

results with and without power optimization, as indicated by the first two rows of 
Table. III, respectively. The next three rows were obtained by increasing the toggle 
rate of the power shut-off signals to 4 times, 8 times and 32 times of the original 
toggle rates that were obtained by simulating the RTL with a realistic usage 
scenario. More toggling would result in the IDCT module being powered on and off 



more frequently and this would result in an increase in the dynamic power 
consumption of the design while the static power remains the same. The reason for 
no change in the static power is that the static probabilities of these pins remain the 
same for all the cases. The study of this behavior with multiple toggle rates is helpful 
in estimating the extent of switching beyond which any power savings would be over-
shadowed by the resulting dynamic power consumption. A visual comparison of the 
effect of power optimization for the IDCT is provided in Fig. 12c. 

  
Table III. Power optimization of IDCT (power switchable domain) 

Operations Workload  
(IDCT) Pstatic(µW) Pdynamic(µW) Cell Area (µm2) 

Without power optimization 572 12570 

Total  44124 
IDCT  42271 (96%) 

32x Toggling of enable 240 849 
8x Toggling of enable  240 726 
4x Toggling of enable 240 680 
JPEG usage 240 655 
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Fig. 12. Static and dynamic power consumptions for design scenarios 

  



                                                                                                                                   
6. CONCLUSIONS 

This work proposes an LP-HLS methodology that derives power intent from the 
system-level description of the digital design. The framework is based on (1) a generic 
power management module description at the system-level, to specify the design 
context of a hardware block, and (2) a tool that, for a given design context 
automatically generates the low power design directives needed to implement the 
PSO technique in the back-end flow. To illustrate the methodology, three example 
hardware accelerators ranging from simple designs to medium complexity were 
developed in SystemC. These include a 32 bit Ripple-Carry Adder (RCA), a general 
purpose ALU performing arithmetic and logical operations, and an IDCT design often 
used in image and video processing. The methodology aims at minimizing the design 
effort for low power design by deriving low-level power intent automatically for 
model-based designs, while using high level synthesis to achieve a broad set of target 
system implementations. Power analysis was carried out for the design scenarios by 
varying the usage of the designs. The power optimization results at the end validate 
the accurate derivation of power intent by using our LP-HLS methodology. 
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