
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

LP-HLS: Automatic power-intent generation for high-level synthesis based hardware implementation flow / Qamar, Affaq;
Muslim, Fahad Bin; Iqbal, Javed; Lavagno, Luciano. - In: MICROPROCESSORS AND MICROSYSTEMS. - ISSN 0141-
9331. - 50:(2017), pp. 26-38. [10.1016/j.micpro.2017.02.002]

Original

LP-HLS: Automatic power-intent generation for high-level synthesis based hardware implementation
flow

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.micpro.2017.02.002

Terms of use:

Publisher copyright

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.micpro.2017.02.002

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2666625 since: 2018-05-24T13:28:55Z

Elsevier

LP-HLS: Automatic Power-Intent Generation for High-Level
Synthesis Based Hardware Implementation Flow

AFFAQ QAMAR, Politecnico di Torino
FAHAD BIN MUSLIM, Politecnico di Torino
JAVED IQBAL, Politecnico di Torino
LUCIANO LAVAGNO, Politecnico di Torino

The abstraction level for digital designs is rising from Register Transfer Level (RTL) to algorithmic
untimed or transaction-based, followed by an automated high level synthesis (HLS) flow. However, it is
still a significant challenge for chip architects and designers to describe low-power design decisions at the
system level. Nowadays, low power design techniques for digital blocks are applied at RTL and there exists
no commercial tool or methodology that can automatically derive the power intent from the system level
description. The process requires considerable amount of human intervention and various lower-level
details that are needed to implement low power schemes at RTL. This research aims to integrate low
power techniques, specifically Power Shut-Off (PSO), within a model based hardware flow and to derive an
automated Low Power-High Level Synthesis (LP-HLS) methodology. The methodology aims at minimizing
the design effort for low power design by deriving low-level power intent automatically for model-based
designs, while using high level synthesis to achieve a broad set of target system implementations. All the
information that is needed to implement low power techniques is automatically derived from the system-
level design using a set of pragmas and a directives file. To illustrate the methodology, three model
designs, ranging from simple designs to medium complexity hardware accelerators, are considered.
Finally, the power saving results for the design scenarios validate the effectiveness of our LP-HLS
methodology.
• Hardware~Best practices for EDA • Hardware~Software tools for EDA • Hardware~Hardware description
languages and compilation • Hardware~Modeling and parameter extraction

Additional Key Words and Phrases: Hardware accelerators, HLS, RTL, design space exploration, common
power format, low power designs, design automation.

1. INTRODUCTION
System-on-chip (SoC) designs are becoming increasingly heterogeneous as they
combine multicore architectures with a variety of hardware accelerators to carry out
dedicated computational tasks. These hardware accelerators offer several orders-of-
magnitude higher power and timing efficiency than a corresponding software
implementation [Horowitz 2014]. However, the presence of accelerators aggravates
the complexity of SoC design. Moreover, digital designers aim at developing designs
that optimize both timing and power, which generally are two conflicting
performance objectives. Pareto-optimality can be comfortably achieved only if power
specification is considered at the system-level. This is because major architectural
decisions related to cost (area), performance and energy utilization can be made only
at higher abstraction levels [Muslim et al. 2015]. For example, parallelism versus
voltage and clock frequency is much easier to trade off at system-level. Early
consideration of effective power management helps relieve the power bottlenecks of
today’s VLSI design, enabling sustained high-performance operation with desired
power consumption levels.

1.1 Model-based designs
As far as behavioral description for the hardware design is concerned, the abstraction
level is rising from RTL to algorithmic untimed or transaction-based, followed by an
automated high level synthesis (HLS) flow [Liu and Carloni 2013]. HLS takes as
input the model-based description of the design, specified in some high level language
such as C, C++, SystemC or Simulink, and synthesizes it to generate RTL. By
elaborating different sets of constraints, HLS tools allow designers to evaluate
multiple implementation alternatives, a process known as Design Space Exploration

(DSE) [Ravi et al. 2014; Cong 2014]. DSE with HLS is already a major leap from DSE
with Logic Synthesis, since the former can be achieved by simply changing HLS tool
directives, while the latter usually requires one to manually change a detailed
hardware description expressed in the form of Verilog or VHDL. Such hardware
descriptions at a lower abstraction level are often tried only for one or two
architectural options, due to the much slower design and verification cycle [Daoud et
al. 2014]. Also, high design productivity requires that complex SoCs consist of 90%
reused components [Liu et al. 2012]. This in turn requires soft IP components, which
are designed once using high-level languages and implemented into various instances
to meet the changing design requirements [Cesário et al. 2002].

1.2 Low power design flow
As far as functional description of hardware is concerned, it has evolved to the extent
that model-based design approaches using automated HLS flows have gained
popularity within the design community [Qamar et al. 2015]. However, it is still a
significant challenge for chip architects and designers to describe low-power design
decisions at the system level. This is because; system architects have little or no
visibility of the lower-level details that are needed to implement low power schemes
at RTL [Zhang 2015]. Similarly, a digital backend designer needs to interact
intensively with the system architect as well as with the verification team to
formulate an appropriate hardware platform and a low power scheme in order to
meet the requirements. This process still involves a considerable amount of human
intervention, because nowadays the low power techniques for a digital system are
applied at register transfer level (RTL). These techniques include supply voltage and
clock control technologies, such as power shut-down, clock gating, dynamic voltage
and frequency scaling, and adaptive voltage scaling [Kurimoto et al. 2013]. The
power shut-down technology is especially vital to leakage power reduction for
battery-driven devices.

1.3 Contribution
This research aims to integrate the aforementioned low power techniques within a
model based hardware flow and to derive an automated Low Power High-Level
Synthesis (LP_HLS) methodology. This methodology enables the specification of both
the behavioral functionality and the power intent at a level of abstraction higher
than RTL and the use of high-level synthesis (HLS) tools at the front-end of the
ensuing design flow. The behavioral description of the design can be captured using
SystemC or C/C++, although in this paper we use SystemC for the sake of
illustration. In our proposed flow, the power intent, i.e. the set of power-saving
techniques to be used and all the information that is needed to implement them, is
automatically derived from the system-level design using a set of pragmas and a
directives file. Combining this information with technology dependent parameters, a
tool that we developed derives low power intent written in the Common Power
Format (CPF), or Unified Power Format (UPF), which are widely used standards
supported by several commercial EDA tool vendors.

In this work, we use CPF for the sake of illustration, and consider power shut-off
(PSO) along with clock gating (CG) to achieve power saving [Benini et al. 2001;
Verma et al. 2015]. To illustrate the methodology, we use three examples ranging
from simple designs to medium complexity hardware accelerators. These include a 32
bit Ripple-Carry Adder (RCA), a general purpose ALU performing arithmetic and
logical operations, and an IDCT block often used in image and video processing. Our
methodology aims at minimizing the design effort for low power design by deriving
low-level power intent automatically for model-based designs, while using high level

synthesis to achieve a broad set of target system implementations. In particular, we
propose:
• A generic power management module description at the system-level, to specify

the design context of a hardware block;
• A tool that, for a given system design context automatically generates the low

power design directives needed to implement the PSO technique in the back-end
flow.

2. RELATED WORK
Most work on low power techniques using CPF and UPF focuses on the RTL, rarely
considering system-level implications. An example is [Mathur and Wang 2009;
Varma 2015], which focuses on the manual description of the power intent using CPF
for RTL implementations generated using HLS. In this work, on the other hand, we
propose a methodology to automatically generate the CPF power specification from a
high-level model just like an HLS tool generates the RTL from a behavioral
description.

Benini et al. [2001] and Lin et al. [2015] suggest various energy optimizations
starting from software down to circuit-level for electronic systems. Their strategy
starts from power optimizations at system-level including energy-aware task
scheduling, hardware/software partitioning, power aware architectures using
dynamic power management (DPM) policies and code morphing. Similarly, they
emphasize adopting low power schemes such as MSV, PSO, CG, and DVFS at the
RTL, while using gates with varying transistor widths to achieve additional energy
saving at the gate-level.

Schirrmeister [2009], and Benini & Micheli [2000] provide a review of the different
abstraction levels for energy measurement and estimation as well as common
techniques to optimize a design for low power above RTL. They use a typical JPEG
decoder as a test case. The authors advocate the use of a system-level solution early
in the design cycle for data-flow dominated blocks and their associated memories.

Zhang et al. [2015] argues that in order to meet strict power requirements, modern
day designers may still have to perform manual optimizations on an RTL design
described using Verilog or VHDL by applying numerous low power techniques
considering functional, structural, temporal and spatial information together. It is
extremely difficult to achieve these goals manually in such a complex multi-
dimensional space within a limited time. In addition, power scaling requires
designers to evaluate and optimize the system architecture as early as possible in the
design flow. Certainly, the solution is to raise the level of abstraction beyond RTL to
achieve faster power optimization and use automated RTL synthesis tools.

Thus, there exists a general agreement among the designers regarding the
significance of system-level power optimization techniques [Ahmed et al. 2014; Bezati
et al. 2014]. Commercial efforts in producing pre-RTL power optimization tools have
resulted in tools such as Vista Architect from Mentor Graphics and Chip vision’s
PowerOptTM,. Two new working groups were formed by IEEE at the end of 2014 to
standardize system-level power modeling for SoC devices [Shuang 2015]. The
prospect of considering power intent at the system-level and applying it in
combination with HLS thus is an important but rather sparsely explored area and
hence a theme of this work.

3. LP-HLS METHODOLOGY
The earlier energy savings are considered in the design cycle, the more savings can
be achieved, as shown in Fig. 1. This is because architectural decisions related to cost
(area), performance and energy utilization are made at this level [Sinha and

Srikanthan 2014]. The prospect of a completely automated low power flow, where
both the logic and power intent can be incorporated into the design at the system-
level, seems very promising. In this section, we present a complete description of our
LP-HLS methodology, which comprises an HLS flow, a CPF generator to
automatically produce CPF power intent, and the final integration into the backend
flow.

Fig. 1. Power reduction as a function of various stages of design cycle

3.1 Model-based hardware design
The overview of the proposed design flow is shown in Fig. 2. The power intent is
derived by extracting the design related information from the system-level
description. This information is read together with the power rules specifications for
the PSO, and the technology related parameters to automatically generate the CFP
file. The hardware description for low power design is then integrated with the RTL
during the later stages of backend flow.

Luckily, even when the RTL is generated automatically from the system-level code
written in SystemC, the naming convention of the design hierarchy, i.e. instances,
signals and ports is preserved while the design undergoes high-level synthesis, or
names for new objects (e.g. fields of SystemC struct-typed I/O signals) can be easily
derived automatically from the high level model.

In our flow, the power intent is also derived from annotations in the SystemC code
and a design configuration file that refers only to high-level information. This makes
it easier for the design architect to select among the underlying power optimization
choices, thanks to the higher level of abstraction.

0

System design (10-20x)

Hardware architecture (2-5x)

Register transfer level (25-
40%)

Gate-level (10-25%)

Physical
implementation

Power reduction percentage

Fig. 2. Overview of the low power design model

3.2 CPF generation tool
Our automated CPF generation tool relies upon the use of #pragma directives in the
system-level design file/s as well as a designer-written intent specification file, to
identify power related information. Figure 3 shows the general structure of the tool.

Fig. 3. Basic structure of CPF generation tool

The technology specification (tech. spec. in the Fig. 3) file, as the name implies,
contains technology related information using directly the corresponding CPF syntax.

System-
level model

Power
intent

RTL
model

Gate-level
netlist

Physical
implementa

tion

HLS

Design objects

Power automation

Backend flow

Data structure

System-
level

model

Tech. spec.
file

 Extract Design
Information

Intent
Spec. file

Extract Power Intent

Output Generation

Output
CPF file

In particular, it contains; (i) the set of libraries (typically the worst, best and nominal
cases), (ii) the information about the power nets that will be created during physical
design, and (iii) the nominal conditions (e.g. voltage levels for various power nets)
which will be used by the various power modes afterwards.

************ INPUT File 1: system_level_model.cc *******************
#PRAGMA default-domain
SC_MODULE (topmodule)
{
 sc_in< bool > clk, reset;
 sc_signal <bool> pse_sig, iso_sig;
 …………………………
#PRAGMA power-domain-instance MY_DOMAIN
 idct_module XLXI_3;
 …………………………
 …………………………
 Power_control XLXI_2; // POWER MANAGEMENT UNIT
 SC_CTOR (topmodule)
 {
 …………………………
#PRAGMA shutoff-condition
 XLXI_2.pse(pse_sig);
 …………………………
#PRAGMA isolation-condition
 XLXI_2.iso(iso_sig);
 …………………………
 }};

************ INPUT File 2: spec_file *******************************
#PRAGMA isolation-cells
cells ISO_FENCE0N_X* EN
isolation_rule MY_DOMAIN always_ON low

************* OUTPUT File: automate.cpf ****************************
set_design topmodule

Specify power domain ##
create_power_domain -name PD_default -default
create_power_domain -name MY_DOMAIN -instances {XLXI_3} -
shutoff_condition {!XLXI_2/pse}

Isolation Cells ##
define_isolation_cell -cells "ISO_FENCE0N_X*" -enable EN /
-valid_location to

Isolation rule ##
create_isolation_rule -name iso_1 -from MY_DOMAIN /
-to always_ON -isolation_condition {XLXI_2/iso_en} /
-isolation_output low -isolation_target from

Fig. 4. A simple example of input pragmas and corresponding CPF output

The specification (spec.) file contains pragma directives for the power rules that

are needed to successfully implement PSO strategy. These rules depend upon design
related parameters. This includes rules such as operating corners for multi-mode-
multi-corner (mmmc) analysis, analysis views for power domains and the definition
of power rules such as isolation, state-retention and power switch rules.

The CPF generator needs to extract from the system-level model file information
such as, the module name of the switchable power domain(s), and the instance name
of the signal that defines the shut-off condition, and that will be used to drive the
power switches. This is done by inserting a #pragma directive before the respective
instance name. The tool searches for those unique pragmas, creates token strings for
the instances and stores the information for later processing. The name of the power
domain can either be assigned by the designer (e.g. MY_DOMAIN), or be generated by
the parser (e.g. switchable_domain_<n>).

Once all the information from the input files is gathered into custom data
structures, the tool generates power rules in CPF format corresponding to each
pragma directive, using the information from the configuration files.
Figure 4 shows an example of how two pragma directives in the SystemC source and
some information in the specification file are combined to generate a simple CPF
output file.

3.3 LP-HLS flow
After discussing the model-based design approach using HLS and describing our tool
that automates the power intent generation, we now discuss the complete LP-HLS
flow.

Figure 5 summarizes the flow of operations that are required to go from a system-
level specification to a power-optimized gate-level implementation, using the
proposed Low Power High-Level Synthesis (LP-HLS) methodology and a standard
RTL-to-gates flow. Depending on the application, different constraints (e.g.,
performance, area cost, and power) must be satisfied during the various phases of the
flow. Macii et al. [1998] suggests that, “when the target is a low-power application,
the search for the optimal solution must include, at each level of abstraction, a design
improvement loop”. In such a loop, a power analyzer/estimator (shown in gray in Fig.
5) ranks the various design, synthesis, and optimization options, and thus helps in
selecting the one that is potentially more effective from the power standpoint.
However, this methodology requires the availability of power estimators, as well as
synthesis and optimization tools, which provide accurate and reliable results at
various levels of abstraction.

While adapting a purely algorithmic model to be the input of HLS, the designer
must instantiate a Power Management Block (PMB) that decides exactly when the
power can be switched ON or OFF, and if necessary keeps the design waiting (e.g. by
gating the clock) while the power stabilizes. Of course, this PMB must be part of the
always ON domain. Thereafter, the RTL is generated through HLS by performing the
necessary steps i.e. by specifying the target technology, the micro-architecture
choices and the scheduling constraints. In parallel to HLS, our tool processes the
system-level power intent and generates the CPF file, as described above.

The switching activity information for accurate power analysis is extracted by
simulating the RTL with the original SystemC test-bench, by using the automatically
generated SystemC wrapper. Power aware logic synthesis is then performed by first
reading the target libraries, as specified in the CPF file, and by enabling the
application of coarse-grained clock gating logic (both in HLS and logic synthesis).

As in the standard power-aware flow, the RTL design is then read and elaborated,
followed by technology mapping of the cells to be used as clock-gated integrated cells

(CGIC). The power intent is then read, followed by setting the timing constraints and
synthesizing the design. The switching activities are annotated and the power intent
is applied, followed by the verification of the power structure to check if the low
power cells have been correctly inserted in the design according to the rules specified
in the power intent file. Incremental optimization is performed and finally the gate-
level netlist is obtained and checked for logic equivalence against the input RTL.

Fig. 5. Low Power High-Level Synthesis LP-HLS methodology flow

4. DESIGN SCENARIOS AND TEST CASES
The example cases that are adopted are simple, yet interesting enough to illustrate
the proposed methodology. We start with a simple design of a hierarchical 32 bit
ripple-carry adder (RCA) structure to better understand and apply the investigated
methodology. The module processing the 16 most significant bits (MSB_RCA16-31) is
selected to be placed in a switchable power domain, to enable low-power processing of
16-bit numbers. Then we move to a larger design, namely an ALU processor
comprising eight modules to perform arithmetic as well as logical operations. Here,

To physical
implementation

System-Level
Power Analysis

Behavioral
Power Analysis

High-Level
Synthesis and
Optimization

System-Level
Specifications

Function
Partitioning and

HW/SW
Allocation

Model-based
HW Description

Automatic Power
Intent Generation

Low Power
Architecture

Choices

Power-Driven
Behavioral

Transformations

RT-Level
Description

Power
Intent

Description

Low Power
Logic synthesis

and Optimization

Power
Conscious
Gate-Level
Description

Logic
Equivalence

Check

Gate-Level
Power Analysis

RT-Level Power
Analysis

we choose to power down the division and multiplication modules when they are not
needed. Finally, we consider a more complex design, an inverse discrete cosine
transform (IDCT) module, which finds its application in JPEG decoders.

Since our target is to test and validate the flow, we formulate synthetic
application scenarios for our example designs. In this section we discuss very briefly,
the test bench setup as well as the PMB design for each.

Fig. 6. General structure of test bench for design cases

4.1 Test bench structure
The test bench setup includes a stimulus generator that drives the input control and
data signals to the design under test (DUT). A monitor block logs the outputs and
checks their validity, as depicted in Fig. 6.

In the case of the RCA and the ALU, the stimulus generator uses pseudo-random
number generators (PRNGs) to generate input streams as well as random values of
control logic to select between the power ON and OFF conditions for the switchable
power domains. Of course, the probabilistic models should reflect the behavior of the
real application scenarios. However, this is a well-studied problem that is outside the
scope of this paper [Li et al. 2009; Tschanz et al. 2003; Brooks et al. 2000].

For the RCA and the ALU, we use both a synthetic switching activity profile in
which the switchable domain stays ON for 10% of the time, one in which it is ON for
90% of the time, and one in which it is on for 50% of the time. For the IDCT design,
on the other hand, we consider its real-life usage inside a JPEG decoder.

Please note that the PMB could be made more complex, in order to require some
minimum number of idle cycles before shutting off the power, but again these
considerations are outside the scope of the paper [Bartolini et al. 2014; Ahmed et al.
2015]. We will see later that each transition between power states requires at least
four clock cycles, which would suggest considering a threshold to trigger the
transition to be at least four cycles.

4.2 Design under test (DUT)
An important issue worth considering while employing power gating is to prevent
floating states from propagating from the Power Switchable Domain (PSD) to the
default domain. It is also necessary to save the state of some flip-flops in the design
before switching off a part of the design. Isolation cells (ISO) are responsible for
isolating the always-on units from the floating values of outputs from the power-
gated units. They are typically placed on the outputs of the shut-off power domain
during the physical placement stage [Chadha and Bhasker 2013], as shown in Fig. 7.

RET in Fig. 7 represents the state retention cells, which have the ability to retain
their states even if the primary power is shut-off. The retention cells are optional and
are needed only if the state of some sequential logic in the power switchable domain

Monitor

DUT

Hardware
Accelerator

Stimulus
Generator

must be preserved. The header power switches which are inserted during the
physical implementation phase provide the ability to cut-off the supply voltage to the
switchable domain. The rules for the insertion of these low power cells are stated in
the power intent file provided to the logic synthesis tool.

Fig. 7. General structure of DUT

In order to ensure no loss of data during the power-up process, we chose to add a
first-in-first-out (FIFO) module at the input of the DUT, as depicted in Fig. 7. This
buffers the input values while the module is still in the sleep mode and the data
input is coming in during the power-up process. Moreover, clock gating is introduced
by using the SystemC clock gating capability provided by the HLS tool [Cadence
2013].

4.3 Power management block (PMB)
Figure 7 also shows the PMB in the default domain. This is added as a SystemC
module to produce the control signals in the correct sequence to power gate the
module instances of the power switchable domain(s), as indicated in the Fig. 8. The
power control flag in Fig. 8 represents the signal in the functional model that
activates the power up/down process. This signal must be identified manually by the
designer, e.g. by using activity profiling as discussed in section 4.2, and it captures
the inactivity intervals of the design. During the power down process, isolation must
happen before state retention, followed by power shut-off, while the reverse sequence
must be followed during the power up process. The signals for isolation, state
retention and power shut-off as provided by the power control module are iso_en,
ret_en and pse respectively, as shown in Fig. 8.

In this case the power up/down sequences consume four clock cycles, plus the
number of cycles that are required to bring the power rails to the required supply
voltage. Many surveys [Benini and Micheli 2000; Verma et al. 2015] suggest
combining PSO with CG in order to maximize power savings. When the switchable
domain is powered down, we gate its clock nets at the time of power down. The
SystemC pseudo code of our (purely illustrative) PMB block is presented as
algorithm1.

Default domain (Always-ON)

CG
EN

CLK

FIFO
Buffer

iso_en

ret_en
Power

Management
Block
(PMB)

I
n
p
u
t

P
o
r
t
s

ISO

RET

Power switchable domain

Hardware modules

Hardware module
O
u
t
p
u
t

P
o
r
t
s

Fig. 8. Low Power High-Level Synthesis LP-HLS methodology flow

Algorithm 1. PMB algorithm

// *********** Initialization phase

1: Initialize signals (isolation, retention, power switch,
clock gating);
2: wait(); // wait for one clock cycle
// *********** PMB logic

3: while (true){
4: if (Powershut-off == Enable){
5: isolation = ON;
6: wait();
7: retention = ON;
8: wait();
9: power_switch = ON;
10: clk_gating = ON;
11: }
12: else{
13: clk_gating = OFF;
14: power_switch = OFF;
15: wait();
16: retention = OFF;
17: wait();
18: isolation = OFF;
19: }
20: }
9: end //infinite while loop

iso_en
ret_en
ps

pwr_ctrl flag

Active Power
Down Power Off Power Up Active

clk

4.4 Hardware accelerators – Test cases
This section briefly overviews the example cases used to validate the proposed
methodology.

4.4.1 32 bit ripple carry adder (RCA)
In order to apply the PSO technique to the RCA, it is modeled in SystemC as a
hierarchical module, comprising of two 16 bit RCAs, called MSB_RCA16-31 and
LSB_RCA0-1 in Fig. 9. Both modules are functionally identical, but the MSB_RCA is
assigned to the switchable power domain, and hence it has a few additional ports to
drive power management operations. The output multiplexers also use Pshut-off as a
select signal to choose between the valid outputs.

Fig. 9. 32 bit ripple-carry adder (RCA)

4.4.2 ALU processor
The ALU processor, also modeled in SystemC, is capable of performing arithmetic as
well as logical operations. The encoder is driven by the control logic (SEL), from the
stimulus generator and selects between unique opcodes assigned to each function.
Since the multiplication and division blocks consume most of the hardware resources,
they are also the most power hungry blocks [Hoang et al. 2013]. Thus, they become
ideal candidates to be assigned to two separate switchable power domains as shown
in Fig. 10. The power ON/OFF sequence for the respective domain is triggered based
on the SEL signal.

Cin LSB_RCA0-15

Sout

MSB_RCA16-31

PMB

Cout

Pshut-off

Pshut-off Pshut-off

A16-31 B16-31 A0-15 B0-15

MUX MUX

Fig. 10. Arithemetic logic unit (ALU) processor

4.4.3 IDCT

IDCT is a well-known algorithm used in data compression standards (e.g. JPEG). A
JPEG decoder performs various operations like variable length decoding (VLD),
zigzag scanning (ZZ), de-quantization (DQ), inverse discrete cosine transform (IDCT),
color conversion, and reordering on the compressed image. A typical JPEG decoder
architecture depicting all these operations is shown in Fig. 11.

This work deals with a synthesizable SystemC implementation of a JPEG IDCT
decoder. A 2D-IDCT is performed by first performing 1D-IDCT on each of the
columns in the matrix followed by 1D-IDCT on each row. The design architecture
consists of concurrent processes with the communication between them taking place
at transaction level.

IDCT is the major contributor to the overall complexity of a JPEG decoder [Sona
et al. 2014]. This gives us a strong reason to power gate the IDCT unit of the JPEG
decoder which will also serve in validating our LP-HLS methodology. To employ
power gating, activity profiling of the IDCT design is performed first to identify the
idle periods in the design so as to correctly apply the power optimization strategies
[Muslim et al. 2015]. This is done by simulating the design with a dedicated SystemC
test-bench. This enables us to identify the idle periods in the design as well as the
signal in the design that can be used to trigger the power control mechanism. Thus,
the power control signals in this design, unlike the previous design examples (refer to
sec. 4.4.1 and 4.4.2), that use synthetic data to produce the power control signals,
come from real-time simulation of a JPEG-IDCT decoder. This provides us with a
more realistic scenario to validate the LP-HLS methodology.

AND

OR

ADD

SUBTRACT

Shift_L

Shift_R

MULTIPLY

DIVIDE

PMB

Encoder SEL

A

B

MP

DP

EN

EN

OUT

Fig. 11. JPEG decoder using IDCT module

The power control signals in the correct sequence are being provided by the PMB,
which is added as a separate SystemC module, as depicted in Fig.11. These signals
are used to power gate the IDCT module using the power intent captured in the CPF
file. The clock gating of the design is performed by adding a separate SystemC clock
gating module. This module performs coarse-grain clock gating and since it is
enabled by the same signal used to trigger power gating, it clock gates all those
instances that are being power gated as well. Without clock gating, the clock buffer
tree continues to propagate the system clock even to the power gated modules, thus
consuming dynamic power. Thus, it is a general practice to apply clock gating along
with the power gating technique.

It should be noted that the power up/down sequences take four clock cycles to
complete. We thus need to prevent a loss of data, which is being fed to the hardware
accelerator during the power-up process, by incorporating a first-in-first-out (FIFO)
buffer into the design as a separate SystemC module. In addition to the isolation cells
and the power switch cells, the state retention cells already explained in previous
sections, are also added in the power switchable domain here.

5. RESULTS
The experimental setup consists of a SystemC description of the design-under-test
(DUT) i.e. 32 bit RCA, ALU processor, and IDCT, respectively. The entire design flow
is carried out using tools provided by Cadence Design Systems. This mainly includes
Cadence C-to-Silicon Compiler [Cadence 2014] for high-level synthesis and RTL
Compiler [Cadence 2013] to implement the backend flow. Several different
implementations have been used to validate the results, namely the design without
any power optimization techniques, and the design with clock gating and power
gating. The general experimental setup uses the LP-HLS flow to automatically derive
RTL for design behavior and CPF for power intent description.

The power computation is obtained from the power model included in the
standard cell libraries. In this work, where we are interested in validating our
proposed LP-HLS methodology, we used the 45nm NanGate Open Cell Library which
supports low power cells for ASIC implementation. The power analysis using library
power models relies upon the expected state of the signals at the standard cells
boundary and their transition activity.

PMB

IDCT Clock
Gating

FIFO
Module

Power Conscious IDCT Block

Compressed
i d

VLD

DQ

ZZ

Re-
order

Color
conversi

on

Reconstructed
i

In order to verify our LP-HLS methodology, we sweep the values of both static

probability and toggle rate of the power control pins of the PMB. The static
probability, which dictates leakage power, accounts for the total operation workload.
The toggle rate, which is associated with the dynamic power, determines the number
of transitions per unit time for the power control signals.

For the RCA and ALU examples, where we are relying on synthetic input vectors,
we control the utilization (static probability) of the PSD by specifying a usage
percentage w.r.t the rest of the design. The transition rate for the ON/OFF states of
the power control signals is based on the utilization factor. On the other hand, the
IDCT uses real-time input vectors from the JPEG decoder, so we keep the utilization
fixed while we sweep the toggle rate to observe changes in dynamic power.

The power optimization result for the RCA example is presented in Table. I. The
MSB_RCA comprises of 31% of the total size of the design, hence it is a good
candidate for the power gating. The rest of the design includes the PMB, LSB_RCA
and two multiplexers to compute sum, as mentioned in Fig. 9. The power analysis is
performed for RCA without power optimization at 50% usage (i.e. the MSB_RCA is
used in 50% of the clock cycles). From the graph in Fig. 12a, it is clear that the total
power consumption is almost double than the power consumption with power
optimization even when MSB_RCA is active for 90% of the time, mainly because of
clock gating.

Table I. Power optimization of RCA w.r.t. MSB_RCA (power switchable domain)
Operations Workload

(MSB_RCA) Pstatic(µW) Pdynamic(µW) Cell Area (µm2)

Without power optimization @ 50% 70 255

Total  3362
MSB_RCA  1051 (31%)

90% 35 104
70% 31 97
50% 28 93
30% 25 90

Similarly for the ALU, we assign the division (DIV) and multiplication (MULT)

operations to two separate PSDs. Together they contribute 48% of the total design
area as mentioned in Table. II. We then analyze the power consumption by assigning
different utilization to DIV and MULT. The choice of 1% usage for DIV and 10% for
MULT corresponds to a hypothetical integer workload, while the sweep between 30-
10% for DIV and 60-40% of MULT can be regarded as a DSP workload. Fig. 12b
shows the leakage as well as dynamic power results for the ALU. Since the cell area
of the power switchable logic is almost half of the total logic, the power saving is even
greater than in the previous example.

Table II. Power optimization of ALU w.r.t. DIV and MULT (power switchable domains) operations

Operations Workload
(DIV – MULT) Pstatic(µW) Pdynamic(µW) Cell Area (µm2)

Without power optimization @ 10% – 40% 190 1072
Total  27361
DIV  8219 (30%)
MULT  4790 (18%)

30% – 60% 140 341
20% – 50% 133 283
10% – 40% 129 237
1% – 10% 86 160

The IDCT design scenario uses vectors from the JPEG decoder to obtain power

results with and without power optimization, as indicated by the first two rows of
Table. III, respectively. The next three rows were obtained by increasing the toggle
rate of the power shut-off signals to 4 times, 8 times and 32 times of the original
toggle rates that were obtained by simulating the RTL with a realistic usage
scenario. More toggling would result in the IDCT module being powered on and off

more frequently and this would result in an increase in the dynamic power
consumption of the design while the static power remains the same. The reason for
no change in the static power is that the static probabilities of these pins remain the
same for all the cases. The study of this behavior with multiple toggle rates is helpful
in estimating the extent of switching beyond which any power savings would be over-
shadowed by the resulting dynamic power consumption. A visual comparison of the
effect of power optimization for the IDCT is provided in Fig. 12c.

Table III. Power optimization of IDCT (power switchable domain)

Operations Workload
(IDCT) Pstatic(µW) Pdynamic(µW) Cell Area (µm2)

Without power optimization 572 12570

Total  44124
IDCT  42271 (96%)

32x Toggling of enable 240 849
8x Toggling of enable 240 726
4x Toggling of enable 240 680
JPEG usage 240 655

b. Power consumption for RCA a. Power consumption for ALU

c. Power consumption for IDCT

Fig. 12. Static and dynamic power consumptions for design scenarios

6. CONCLUSIONS

This work proposes an LP-HLS methodology that derives power intent from the
system-level description of the digital design. The framework is based on (1) a generic
power management module description at the system-level, to specify the design
context of a hardware block, and (2) a tool that, for a given design context
automatically generates the low power design directives needed to implement the
PSO technique in the back-end flow. To illustrate the methodology, three example
hardware accelerators ranging from simple designs to medium complexity were
developed in SystemC. These include a 32 bit Ripple-Carry Adder (RCA), a general
purpose ALU performing arithmetic and logical operations, and an IDCT design often
used in image and video processing. The methodology aims at minimizing the design
effort for low power design by deriving low-level power intent automatically for
model-based designs, while using high level synthesis to achieve a broad set of target
system implementations. Power analysis was carried out for the design scenarios by
varying the usage of the designs. The power optimization results at the end validate
the accurate derivation of power intent by using our LP-HLS methodology.

REFERENCES
Horowitz, M. 2014. Computing's energy problem (and what we can do about it). In IEEE Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 10-14.
Muslim, F. B., Qamar, A., and Lavagno, L. 2015. Low power methodology for an ASIC design flow based on

High-Level Synthesis. In IEEE 23rd International Conference on Software, Telecommunications and
Computer Networks (SoftCOM).

Liu, H. Y., and Carloni, L. P. 2013. On learning-based methods for design-space exploration with high-
level synthesis. In Proceedings of the 50th Annual Design Automation Conference, ACM, 50.

Liu, H. Y., Petracca, M., and Carloni, L. P. 2012. Compositional system-level design exploration with
planning of high-level synthesis. In Proceedings of the Conference on Design, Automation and Test in
Europe, 641-646.

Cesário, W. et al. 2002. Component-based design approach for multicore SoCs. In Proceedings of the 39th
annual Design Automation Conference DAC, 789–794.

Qamar, A., Muslim, F. B., and Lavagno, L. 2015. Analysis and implementation of the Semi-Global
Matching 3D vision algorithm using code transformations and High-Level Synthesis. In Proceedings of
the 81st IEEE Vehicular Technology Conference (VTC Spring), 1-5.

Kurimoto, M. et al. 2013. Verification work reduction methodology in low-power chip implementation. In
ACM Transactions on Design Automation of Electronic Systems (TODAES), 18(1), 12.

Mathur, A., and Wang, Q. 2009. Power Reduction Techniques and Flows at RTL and System Level.
In Proceedings of the 22nd IEEE conference on VLSI Design, 28-29.

Benini, L., Micheli, G. D., and Macii, E. 2001. Designing low-power circuits: practical recipes. In
IEEE Circuits and Systems Magazine, 1(1), 6-25.

Lin, C. Y. et al. 2015. The Design and Experiments of A SID-Based Power-Aware Simulator for Embedded
Multicore Systems. ACM Transactions on Design Automation of Electronic Systems (TODAES), 20(2),
22.

Schirrmeister, F. 2009. Design for low-power at the electronic system level. White paper, Chip Vision
Design Systems, v1.1.

Benini, L., and Micheli, G. D. 2000. System-level power optimization: techniques and tools. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 5(2), 115-192.

Zhang, Z., Chen, D., Dai, S., and Campbell, K. 2015. High-level Synthesis for Low-power Design. IPSJ
Transactions on System LSI Design Methodology, 8(0), 12-25.

Shuang Yu. IEEE Standards Association. [online] 2014, retrieved on 29 May 2015,
http://standards.ieee.org/news/2014/ieee_p2415_p2416_wgs.html

Macii, E., Pedram, M., and Somenzi, F. 1998. High-level power modeling, estimation, and
optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 17(11), 1061-1079.

Chadha, R., and Bhasker, J. 2013. Architectural Techniques for Low Power. In An ASIC Low Power
Primer, Springer New York, 93-111.

Cadence design systems, user manual, 2013. Cadence C-to-Silicon Compiler User Guide Product Version
13.20.

Hoang, T. T. et al. 2011. Power gating multiplier of embedded processor datapath. In IEEE 7th Conference
on Ph. D. Research in Microelectronics and Electronics (PRIME), 41-44.

Sonka, M., Hlavac, V., and Boyle, R. 2014. Image processing, analysis, and machine vision (4th. ed.). CL
Engineering.

http://standards.ieee.org/news/2014/ieee_p2415_p2416_wgs.html

Cadence design systems, user manual, 2013. Cadence Low power in Encounter RTL compiler, product
version 10.1.

Ravi, S., and Joseph, M. 2014. High-Level Test Synthesis: A Survey from Synthesis Process Flow
Perspective. ACM Transactions on Design Automation of Electronic Systems (TODAES), 19(4), 38.

Cong, J. 2014. From design to design automation. In Proceedings of the ACM International symposium on
physical design, 121-126.

Bartolini, A., Hankendi, C., Coskun, A. K., and Benini, L. 2014. Message Passing-Aware Power
Management on Many-Core Systems. Journal of Low Power Electronics, 10(4), 531-549.

Ahmed, R., Bsoul, A., Wilton, S. J., Hallschmid, P., and Klukas, R. 2014. High-level synthesis-based design
methodology for Dynamic Power-Gated FPGAs. In 24th IEEE International Conference on Field
Programmable Logic and Applications (FPL), 1-4.

Ahmed, R., Wilton, S. J., Hallschmid, P., and Klukas, R. 2015. Hierarchical Dynamic Power-Gating in
FPGAs. In Applied Reconfigurable Computing, Springer International Publishing, 27-38.

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P. (2009). McPAT: an
integrated power, area, and timing modeling framework for multicore and manycore architectures.
In 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-42, 469-480.

Tschanz, J. W., Narendra, S. G., Ye, Y., Bloechel, B., Borkar, S., and De, V. (2003). Dynamic sleep
transistor and body bias for active leakage power control of microprocessors. IEEE Journal of Solid-
State Circuits, 38(11), 1838-1845.

Brooks, D., Tiwari, V., and Martonosi, M. (2000). Wattch: a framework for architectural-level power
analysis and optimizations, ACM, Vol. 28, No. 2, pp. 83-94.

Daoud, L., Zydek, D., and Selvaraj, H. 2014. A survey of high level synthesis languages, tools, and
compilers for reconfigurable high performance computing. In Advances in Systems Science, Springer
International Publishing, 483-492.

Verma, G., Kumar, M., and Khare, V. 2015. Low Power Techniques for Digital System Design. Indian
Journal of Science and Technology, 8(17).

Bezati, E., Brunet, S. C., Mattavelli, M., and Janneck, J. W. 2014. Coarse grain clock gating of streaming
applications in programmable logic implementations. In Proceedings of the IEEE Conference of
Electronic System Level Synthesis (ESLsyn), 1-6.

Sinha, S., and Srikanthan, T. 2014. Dataflow Graph Partitioning for Area-Efficient High-Level Synthesis
with Systems Perspective. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 20(1), 5.

	LP-HLS: Automatic Power-Intent Generation for High-Level Synthesis Based Hardware Implementation Flow0F(
	1. INTRODUCTION
	1.1 Model-based designs
	1.2 Low power design flow
	1.3 Contribution

	2. Related work
	3. LP-HLS Methodology
	3.1 Model-based hardware design
	3.2 CPF generation tool
	3.3 LP-HLS flow

	4. Design scenarios and test cases
	4.1 Test bench structure
	4.2 Design under test (DUT)
	4.3 Power management block (PMB)
	4.4 Hardware accelerators – Test cases
	4.4.1 32 bit ripple carry adder (RCA)
	4.4.2 ALU processor
	4.4.3 IDCT

	5. Results
	6. Conclusions

