
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ICONA: a peer-to-peer approach for Software Defined Wide Area Networks using ONOS / Matteo, Gerola; Lucrezia,
Francesco; Michele, Santuari; Elio, Salvadori; Pier Luigi, Ventre; Stefano, Salsano; Mauro, Campanella. - (2016).
(Intervento presentato al convegno 2016 European Workshop on Software Defined Networks (EWSDN) tenutosi a The
Hague, Netherlands nel 10th and 11th October 2016).

Original

ICONA: a peer-to-peer approach for Software Defined Wide Area Networks using ONOS

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2666404 since: 2017-03-04T19:00:26Z

IEEE

ICONA: a peer-to-peer approach for Software
Defined Wide Area Networks using ONOS

Matteo Gerola∗, Francesco Lucrezia†, Michele Santuari∗, Elio Salvadori∗

Pier Luigi Ventre‡, Stefano Salsano‡, Mauro Campanella§
∗CREATE-NET, †Polytechnic University of Turin,‡CNIT / Univ. of Rome Tor Vergata, §Consortium GARR

Abstract—Several Internet Service Providers (ISP) are plan-
ning to innovate their infrastructures through a process of
network softwarisation and programmability. The Software-
Defined-Network (SDN) paradigm aims at improving the design,
configuration, maintenance and service provisioning agility of the
network through a centralised software control plane which is in
charge of managing the entire system. This is easily achievable
for local area networks, typical of data centres, where the
benefits of having programmable access to the entire network
is not restricted by latency. However, in Wide Area Networks,
a centralised control plane limits the speed of responsiveness in
reaction to time-constrained network events due to unavoidable
latencies caused by physical distances. A logical step towards
robustness in SDN is to distribute the load of the control
plane between entities, each taking care of a portion of the
entire geographical network and each providing an east-west
communication interface to enable programmability of the entire
network. Moreover, a key objective of an SDN control plane
targeting an ISP networks is the east-west interface with external
domains under the control of other providers. In this article
we present ICONA (Inter Cluster Onos Network Application), a
tool that has the objective of enabling programmable networks
to span multiple clusters of controllers within either a single
or multiple administrative domains. In particular, the paper
describes the architecture behind ICONA and provides an initial
evaluation obtained on a preliminary version of the tool, built on
top of the cutting-edge network controller ONOS, Hummingbird
release.

Index Terms—Software Defined Networking, Open Networking
Operating System (ONOS), WAN, multi administrative domains,
east-west interface, BGP

I. INTRODUCTION

The SDN control plane reliability, scalability and availabil-
ity were among the major elements of attention expressed by
Service and Cloud Providers. Existing deployments show that
standard IP/MPLS networks natively offer fast recovery in
case of failures. Their main limitation lies in the complexity
of the distributed control plane, implemented in the forward-
ing devices. IP/MPLS networks fall short when it comes
to designing and implementing new services that require
changes to the distributed control protocols and service logic.
The SDN architecture, that splits data and control planes,
simplifies and speeds up the introduction of new services, by
moving the intelligence and most of network state from the
physical devices to a logically centralised Network Operating
System (NOS), also known as controller, in charge of all the
forwarding decisions. It is also clear, as described in the work
of Heller et al. [5], that even if a single controller may suffice
to guarantee round-trip latencies on the scale of a typical

mesh restoration delays (200 msec), this is not enough for
all network topologies. Furthermore, ensuring an adequate
level of fault tolerance (i.e., avoiding excessive packet loss
and session termination) can be guaranteed only if controllers
are spaced apart in different locations of the network. To
guarantee the proper level of redundancy in the control plane,
several distributed NOS architectures have been proposed in
the last years: ONIX [1], Kandoo [2], HyperFlow [3] to name
a few. Mainly, these architectures fall into two categories: (i)
hierarchy of controllers and (ii) peer-to-peer interconnections
between controllers. While the former gives adequate scal-
ability for resources under the control of the same domain,
the latter offers more benefits in case of a multi adminis-
trative domain solution, removing a top-level entity, possibly
managed by a third party, controlling the interconnections
between networks belonging to different providers. One of the
most promising solutions to properly deal with control plane
robustness in SDN is ONOS (Open Networking Operating
System) [4]. ONOS is a distributed NOS and it is supported
by an active community of vendors and operators. In the
ONOS architecture, a cluster of controllers shares a logically
centralised network view: network resources are partitioned
and controlled by different ONOS instances in the cluster.
Resilience to faults is guaranteed by design, with automatic
traffic rerouting in case of node or link failure. However,
despite the distributed architecture, ONOS is designed to be
placed in a single geographical location, because its distributed
architecture requires negligible communication delays between
instances.
Given this consideration, the authors engineered an open-
source ONOS application called ICONA (Inter Cluster Onos
Network Application). ICONA is designed to work in a
single administrative WAN network scenario, increasing the
robustness to network faults by redounding ONOS clusters
in several geographical locations and decreasing event-to-
response delays, as well as in a multi administrative domain
scenario. To better support the latter use-case, ICONA is based
on a peer-to-peer architecture, and implements configuration
policies between clusters (i.e., domains belonging to different
owners), that ensure the full control of services and events
between domains.

The structure of the paper is as follows. Sect. II provides
an overview of ONOS, while Sect. III presents the ICONA
architecture. Some preliminary results are then discussed in
Sect. IV and Sect. V discusses the state-of-the-art in the field.

OpenFlow OVSDBNetConf

Southbound
(discover, observe, program, configure)

Distributed Core
(scalability, persistence, availability)

Northbound - Intent Framework
(policy enforcement, conflict resolution)

Applications

Fig. 1: ONOS distributed architecture

Finally, Sect. VI draws conclusions and indicates future works.

II. AN OVERVIEW OF ONOS

The Open Network Operating System (ONOS) is a software
defined networking (SDN) OS for Service Providers, that is
targeting scalability, high availability, high performance and
abstractions to make it easy to create apps and services.
Created by ON.Lab it is an open-source joint community effort
with substantial contribution from various partners including
AT&T, NEC and Ericsson [5].

ONOS implements a distributed architecture in which mul-
tiple controller instances share multiple distributed data stores
with different level of consistency. The entire data plane
is managed simultaneously by the whole cluster. However,
for each device a single controller acts as a master, while
the others are ready to step in if a failure occurs. With
these mechanisms in place, ONOS achieves scalability and
resiliency. Figure 1 shows the ONOS internal architecture
within a cluster of four instances. ONOS is based on software
modules managed by the Apache Karaf suite [6], a set of java
OSGi based runtime and applications. It provides a container
into which various component can be deployed, installed,
upgraded, started and stopped at runtime, without interfering
other components. The southbound modules manage the phys-
ical topology, react to network events and program/configure
the devices leveraging on different protocols. The distributed
core is responsible to maintain coherent information, to elect
the master controller for each network portion and to share
information with the adjacent layers. In case of a failure in
the data path (switch, link or port down), an ONOS instance
becomes aware of the event through the southbound modules,
computes alternative paths for all the traffic crossing the
failed element, and notifies them to the distributed core; then,
each master controller configures accordingly its portion of
the network. The northbound subsystem offers an abstraction
of the network and the interface for applications to interact
and program the NOS. Finally, the Application layer offers a
container in which third-party applications can be deployed.

Applications on top of ONOS can benefit of the Intent
Framework. An intent is an abstraction used by applications
to specify their high-level desires in form of policies. The
ONOS core accepts the intent specifications and translates
them into actionable operations on the network environment.
These actions are carried out by the intent installation process,
such flow rules being installed on a switch, or optical lambdas
(wavelengths) being reserved.

III. ICONA ARCHITECTURE

ICONA is a new southbound ONOS provider, that offers
an east-west interface and a powerful abstraction layer to
allow a single ONOS cluster to be interconnected with several
other clusters, both in the same and in different administrative
domains. ICONA is completely transparent to the ONOS core
systems and to other applications, thus offering the same
functionalities of ONOS, but extended to a geographically
distributed environment, including multiple administrative do-
mains. From an application perspective, all the features offered
by ONOS are then available in an multi administrative domain
composed of several ICONA clusters.

The main architectural goals of ICONA are to:
• Enable east-west communication between ONOS clus-

ters. In a single-domain, this implies partitioning the
Service Providers network into several geographical re-
gions, each one managed by a different cluster of ONOS
instances. The network architect can select the number
of clusters and their geographical dimension depending
on requirements (e.g., leveraging on some of the tools
being suggested within the aforementioned work [5]),
without losing any features offered by ONOS, neither
worsening the system performance. In a multi-domain
scenario, several ONOS clusters, belonging to different
administrative domains, can exchange network services
based on respective policies and network abstractions.

• Provide an abstraction to ONOS, able to: (i) abstract
and communicate external topologies (i.e., devices, links
and ports not directly managed by the local cluster), (ii)
configure these external devices from local applications,
leveraging on the Intent Framework and (iii) enforcing
policies between clusters.

Clusters, policies and topology abstractions can be easily
injected in ICONA through the ONOS configuration service.
ICONA extrapolates the local topology from the ONOS core,
abstracts it based on the configuration and finally exposes it
to remote clusters; likewise, it receives the external topologies
from the remote clusters and notifies them to ONOS. In case
of a multi domains, this external topology is exposed as a
single big switch. Moreover, it takes care of reporting relevant
updates to the remote clusters about changes affecting the
abstracted topology by listening to events reported by the
ONOS subsystems (e.g., devices, links, ports and edge hosts).
The east-west communication between clusters is not bounded
to a single peer-to-peer mechanism, but it allows different im-
plementations, leveraging on the ICONA Southbound Interface
(ISBI).

CoreCore

Apps

NB API

SB API

Providers

Protocols

Network Elements

ICONA

Apps

NB API

SB API

Providers

Protocols

Network Elements

ICONA

CLUSTER A CLUSTER B

INTERLINK

CLUSTER A
COMPLETE TOPOLOGY

CLUSTER B
BIG SWITCH
TOPOLOGY

CLUSTER A
BIG SWITCH
TOPOLOGY

CLUSTER B
COMPLETE TOPOLOGY

EAST-WEST INTERFACE

(a) ICONA as a peering provider

Apps

NB API

Core

SB API

Providers

Protocols

Network Elements

ICONA

CLUSTER B

CLUSTER A TOPOLOGY

REMOTE TOPOLOGY
ELEMENTS

(CLUSTER A TOPOLOGY)
LOCAL TOPOLOGY

ELEMENTS
(CLUSTER B TOPOLOGY)

(b) Topology exchange

Fig. 2: ICONA topology abstraction.

Figure 2(a) depicts two clusters, A and B, sharing their
topologies through ICONA. In Figure 2(b), cluster A exposes
its 4 switches topology as a single big switch, that is abstracted
and communicated to the local ONOS core by the ICONA
provider of cluster B.

The communication between clusters relies on the ISBI
interface, that can be implemented by different mechanisms.
To make ICONA as flexible as possible, its structure is
vertically split in two logical layers:

• the ICONA Provider which contains the main logic and
lays between the ONOS core and the ISBIs.

• multiple ISBI drivers, each one tied to a specific for a
communication mechanism. For each remote cluster, it’s
possible to specify a different mechanism, thus allowing
several ISBI implementations to be used simultaneously.

This architecture allows to integrate several communication
mechanisms, just by implementing the ISBI logic, without any
modifications in the ICONA provider.

A. ICONA Provider

The provider contains the main logic behind ICONA, and
performs various functionalities. As a Topology Manager (see

III-A1), it builds an abstraction of the local topology to be
exposed to remote clusters. Currently ICONA supports two
topology abstractions: BigSwitch (single switch representing
the entire network with edge ports) and FullMesh (network
topology in which there is a direct link between all pairs of
edge nodes). While the former shrinks the entire topology in
a single switch, the latter builds a full virtual mesh topology
between all the edge switches (e.g. the ones with edge ports) of
the network. The provider, after receiveing remote topologies
from the southbound mechanisms, abstracts them to the local
ONOS core, and reacts to network events which could reflect
a change in the topology exposed to/from the remotes. As
a Service Manager (see III-A2), it manages service requests
coming from the local applications to remote clusters and vice
versa. Finally, as a Policy Manager (see III-A3), it enforces
configuration policies between clusters. The next sections
detail the features offered by the three provider modules,
depicted in Figure 3.

1) Topology Manager: The Topology Manager (TM) is
responsible to (i) analyse the remote topologies and install
them in ONOS with the relevant metric and annotations, and
(ii) reacts to network events, both local and remote. Each
TM shares with the other clusters an abstraction of the local
topology, that may vary from cluster to cluster, based on the
configuration. The topology is composed of:

• Inter-links (IL): links belonging to different ONOS clus-
ters. Each IL is provided trough the ONOS configuration
subsystem and it’s tagged by some metrics, such as the
link delay, available bandwidth and number of flows
crossing the link.

• Virtual devices and intra-links: links within the local
cluster/domain.

• End-points (EP): interconnection ports between the cus-
tomer’s gateway router/switch and the ONOS network.

2) Service Manager: The Service Manager (SM) is the
ICONA component, that provides inter-cluster path compu-
tation whenever a northbound application, on-top of ONOS,
requires connectivity between two or more EPs crossing mul-
tiple clusters. The SM intercepts an intent requests from the
ONOS core targeting one or more virtual devices of the remote
topology and sends it to the target remote cluster. The recipient
translates the remote intent request into a local intent request
and submits it to the ONOS Core. The translation consists in
resolving the mapping between the abstract ingress and egress
points of the original request into local ingress and egress
points of the underlying network. The check of the feasibility
of the intent installation is also performed, both in terms of
policy and capabilities. If the request is accepted, the SM waits
for the ONOS core to accomplish the task of installing the
intent and then notifies the requester of the outcome.

3) Policy Manager: A multi administrative domain scenario
is characterized by the presence of networks under control of
different authorities. Usually, the mutual trust between these
domains is limited to specific agreements, which identify a
list of constraints to be applied at the edge of the network. To

PROVIDER

Southbound Mechanisms

REST CHANNEL

BGP CHANNEL

Topology Manager

Service Manager

Policy Manager

BGP REST …

Southbound Interface

CLUSTER A

PROVIDER

Southbound Mechanisms

Topology Manager

Service Manager

Policy Manager

BGP REST …

Southbound Interface

PROVIDER

Southbound Mechanisms

Topology Manager

Service Manager

Policy Manager

BGP REST …

Southbound Interface

CLUSTER B CLUSTER C

Fig. 3: High level view of the ICONA components.

support such use-case, ICONA is policy-oriented and enforces,
through configuration, the compliance to those agreements.
Currently ICONA allows to set at runtime several parameters,
such as (i) the external peering clusters information, (ii) the
topology abstraction exposed to each domain, (iii) the list of
EPs, (iv) the type and number of intents installable by a remote
cluster, (v) the ILs and their metrics (i.e., bandwidth, delay
and type), (vi) the preferred path for specific classes of traffic
(based on L2 and L3 fields). However, the authors are currently
analysing the common design patterns of BGP policies, that
are typically used by ISPs [7], to implement innovative policy
mechanisms in the future releases.

B. ICONA Southbound Mechanisms

A southbound mechanism is an implementation of the
communication system between clusters (Fig. 3). Basically, it’s
a software component in charge of translating the provider’s
requests into protocol-specific, network operations and the
remote clusters messages into abstracted notifications via the
ISBI. This component performs the exchange of the infor-
mation with message encoding and decoding, and does not
retain any system state except the status of the remote clusters.
Currently ICONA supports two different mechanisms:

• BGP: an extension of the BGP protocol with a new Type-
Length-Value (TLV) field to offload the communication
system to an external router (e.g. Quagga based) and to
use BGP as a pure transport protocol for data exchange.

• REST: a REST client/server peer-to-peer architecture has
been implemented between clusters. The client is in
charge of sending local topology elements and to request
service installation, while the server is responsible to re-
ceive remote topology elements and service requests from
the other clusters. We implemented a distributed archi-
tecture, in which every ICONA instance is responsible to
interconnect the local cluster with a set of remote clusters
and the communication is balanced among multiple end-
points providing resiliency.

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

4x4 6x6 8x8 10x10

L
a
te

n
c
y
 [
m

s
]

Network size

ICONA 8 Clusters
ICONA 4 Clusters
ICONA 2 Clusters

ONOS

Fig. 4: Average, maximum and minimum latency to reroute
100 paths in case of link failure for ONOS and ICONA (2, 4
and 8 clusters)

IV. EVALUATION

The purpose of the experimental tests described in this
section is to compare ICONA with a standard ONOS setup,
and evaluate the performances of the two solutions in an
emulated environment. It is important to highlight that these
evaluation has been achieved with a preliminary version of
ICONA, working on an old ONOS version (Blackbird). For
these reasons, the results presented in this section should not
be considered as benchmark, but they can offer a comparison
between the fully centralized solution versus the peer-to-peer
architecture offered by ICONA.

The control plane is composed of several virtual machines,
each configured to use 4 Intel Core i7-2600 CPUs @ 3.40GHz
and 8GB of RAM. For the ONOS tests we used 8 instances,
while with ICONA we created 2, 4 and 8 clusters, respectively
with 8, 5 and 3 instances each. The data plane is emulated by
Mininet [8] and Netem [9]: the former creates and manages
the network based on OpenFlow 1.3, while the latter emulates
the properties of wide area networks, intriducing variable
delays, throughput and packet loss. Both solutions (ONOS and
ICONA) have been tested on top of ”grid” networks and of
the GÉANT [10] topology.

A. Reaction to Network Events

1) Grid network: The first measured performance metric
is the overall latency of the system for updating the network
state in response to events; examples include rerouting traffic
in response to link failure or moving traffic in response
to congestion. To evaluate how the system performs when
the forwarding plane scales-out, few standard grid topologies
(from 4*4 to 10*10) have been chosen, with a fixed link delay
of 5ms (one-way) and the latency needed to reroute a certain
number of installed paths when an inter-cluster link fails is
compared between ONOS and ICONA with various clustering
settings.

Fig. 5: GÉANT pan-European network

The total latency is defined as the amount of time that
ONOS or ICONA requires to react to the failure. It is com-
puted as the sum of: (i) the amount of time taken by the Open-
Flow messages (PORT_STATUS and FLOW_MOD) to traverse
the control network, (ii) the alternative path computation, (iii)
the installation of new flows in the network devices and (iv)
the deletion of the pre-existing flows. In particular, we have
been running several simulations by installing 103 paths in
the network and then causing failure of an inter-cluster link
carrying al least 102 flows.

Figure 4 shows the latency (avg, min, max) required for the
different case to execute the four tasks previously mentioned.
Each test has been repeated 103 times. Despite the same
mechanism used by ICONA to compute and install the new
paths, the difference is mainly due to the following reasons:
(i) each ICONA cluster is closer to the devices, thus reducing
the amount of time required for OpenFlow messages to cross
the control channel and (ii) the ICONA clusters are smaller,
with fewer links and devices, thus decreasing the time used for
computation and the overall numbers of flows to be installed
and removed from the data plane.

2) GEANT network: The same metrics have been evaluated
on the GÉANT topology (see Figure 5). Circuits have various
one-way delays (from 10 to 50ms) and throughputs (from 1
to 100Gbps).

Control
plane

Avg latency
[ms]

Min latency
[ms]

Max latency
[ms]

ONOS 297 284 308
ICONA2 272 261 296
ICONA4 246 232 257
ICONA8 221 199 243

TABLE I: GÉANT network: average, maximum and minimum
latency to reroute 100 paths in case of link failure for ONOS
and ICONA (2, 4 and 8 clusters)

Table I depicts similar results as the previous test. While
the GÉANT network is smaller than the grid topology, with
41 switches and 58 bi-directional links, the higher delay in

the data plane adds an additional time before convergence to
a stable state.

B. Startup Convergence Interval

This second experiment measures the overall amount of time
required for both solutions to re-converge after a complete dis-
connection between the control and data planes. The tests have
been performed over the GÉANT topology, and replicated 103

times. Table II shows the average, maximum and minimum
values in seconds.

Control
plane

Average Time
[s]

Minimum
Time [s]

Maximum
Time [s]

ONOS 6,98 6,95 7,06
ICONA 6,96 6,88 7,02

TABLE II: Amount of time required to obtain the network
convergence after disconnection for ONOS and ICONA

The result shows that ICONA and ONOS require compa-
rable time intervals to return to a stable state, in case of a
complete shutdown or a failure of the control plane.

V. RELATED WORK

The logical centralization of the control plane, proposed in
general by the SDN approach, requires a specific design to
obtain adequate performance of the control network, scalabil-
ity and fault tolerance. Most of the open source controllers
currently available are more focused on functionalities rather
than on scalability and fault tolerance. This section provides
a review about distributed architectures for the SDN control
plane, that address the scalability and fault tolerance issues.
ONIX [1] provides an environment on top of which a dis-
tributed NOS can be implemented with a logically centralized
view. The distributed Network Information Base (NIB) stores
the state of network in the form of a graph; the platform is
responsible for managing the replication and distribution of
the NIB, the applications have to detect and resolve conflicts
of network state. Scalability is provided through network
partitioning and aggregation. Regarding the fault tolerance,
the platform provides the basic functions, while the control
logic implemented on top of ONIX needs to handle the
failures. ONIX has been used in the B4 network, the private
WAN [11] that inter-connects Google’s data centers around the
world. This high level design is similar to ICONA. ICONA
however is not tailored to a specific use case, providing a
reusable framework on top of which it is possible to build
specific applications. The Kandoo [2] architecture addresses
the scalability issue by creating an architecture with multiple
controllers: the so-called root controller is logically centralized
and maintains the global network state; the bottom layer
is composed of local controllers in charge of managing a
restricted number of switches. The Kandoo architecture does
not focus on the distribution/replication of the root controller
and on fault tolerance neither in the data plane nor in the
control plane. HyperFlow [3] focuses on both scalability and
fault tolerance. Each HyperFlow instance manages a group

of devices without losing the centralized network view. A
control plane failure is managed by redirecting the switches
to another HyperFlow instance. The applicability of such
approach to WAN scenarios with large delays between the
different HyperFlow instances is not considered. DISCO [12]
architecture considers a multi-domain environment. This ap-
proach is specifically designed to control a WAN environment,
composed of different geographical controllers, that exchange
summary information about the local network topology and
events. This solution overcomes the HyperFlow limitations,
however it does not provide local redundancy: in the case
of a controller failure, a remote instance takes control of the
switches, increasing the latency between the devices and their
primary controller. ElastiCon [13] and Pratyaastha [14] aim
to provide an elastic and efficient distributed SDN control
plane to address the load imbalances due to static mapping
between switches and controllers and spatial/temporal vari-
ations in the traffic patterns. SMaRtLight [15] considers a
distributed SDN controller aiming at a fault-tolerant control
plane. It only focuses on control plane failures, assuming
that data plane failures are dealt with by SDN applications
on top of the control platform. Service Provider-SDN (SP-
SDN) [16] envisages for an extended SDN architecture with
the introduction of a service orchestration layer which spans
several administrative domains supporting both network and
cloud services. The multi-domain applications run on top of
the service layer. Similarly, Lifecycle Service Orchestration
(LSO) [17] proposes an orchestration layer on top of the SDN
control layer. Compared to SP-SDN, LSO envisages for a
hierarchical orchestration layer. The lower layer has narrow
scope, in fact the LSO components run on top of the single
SDN controllers in the different domains. On top of this layer
there is a global LSO that orchestrates the intra-domain LSOs.
In OpenDaylight [18], an initial work on clustering has been
provided in the Helium release using the Akka framework [19]
and the RAFT consensus algorithm [20]. Finally, hierarchical
SDN Orchestration solutions for WANs are presented in [21]
and [22]; [22] discusses general design considerations and
alternatives when considering multiple controllers in a parent-
child relationship, while [21] focuses on the orchestration
of heterogeneous technologies, referred as domains, of the
underlying network.

VI. CONCLUSION

In this paper we have presented ICONA (Inter Cluster
ONOS Network Application), an ONOS provider application,
which has the objective to enable clustering of ONOS in-
stances across different locations and administrative domains.
In fact, even if the current ONOS release scales and performs
well on a variety of network topologies, it may not be adequate
for all cases, especially when there are requests for latency
bounds in restoration scenarios. ICONA is based on a prag-
matic approach, that inherits ONOS features while improving
its responsiveness to network events like link/node failures
or congested links, that impose the rerouting of large set of
traffic flows. Moreover, the policies configuration available in

ICONA enables the east-west communication with clusters
belonging to different administrative domains, thus offering
a simple solution for inter-domain SDN scenarios. ICONA is
available under open-source license in the ONOS application
repository. Future improvements of ICONA will focus on
enhancing the policy mechanism with innovative techniques
and on new southbound mechanism solutions to interact with
other SDN control planes using the east-west interfaces.

REFERENCES

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale production networks. In 9th
USENIX Conference on Operating Systems Design and Implementation,
2010.

[2] H. Y. Soheil and Y.Ganjali. Kandoo: a framework for efficient and
scalable offloading of control applications. In First workshop on Hot
topics in in software defined networking, 2012.

[3] A. Tootoonchian and Y. Ganjali. Hyperflow: a distributed control plane
for openflow. In 2010 internet network management conference on
Research on enterprise networking, 2010.

[4] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar. Onos:
towards an open, distributed sdn os. In Third workshop on Hot topics
in in software defined networking, 2014.

[5] Onos website - http://onosproject.org/.
[6] Apache karaf - http://karaf.apache.org/.
[7] M. Caesar and J. Rexford. Bgp routing policies in isp networks. IEEE

Network, 19(6):5–11, Nov 2005.
[8] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid

prototyping for software-defined networks. In 9th ACM Workshop on
Hot Topics in Networks, 2010.

[9] Netem - http://www.linuxfoundation.org/collaborate/ workgroups/net-
working/netem.

[10] Geant - the core national research and education networks (nrens)
european backbone - http://www.geant.net/pages/default.aspx.

[11] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. In ACM SIGCOMM Computer Communication Review,
2013.

[12] K. Phemius, M. Bouet, and J. Leguay. Disco: Distributed sdn controllers
in a multi-domain environment. In IEEE Network Operations and
Management Symposium, 2014.

[13] A.A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, and R. Kompella.
Elasticon: an elastic distributed sdn controller. In Tenth ACM/IEEE
symposium on Architectures for networking and communications sys-
tems, 2014.

[14] A Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson.
Pratyaastha: an efficient elastic distributed sdn control plane. In Third
workshop on Hot topics in in software defined networking, 2014.

[15] F Botelho, A Bessani, F Ramos, and P Ferreira. SMaRtLight: A Practical
Fault-Tolerant SDN Controller. ArXiv e-prints, 2014.

[16] James Kempf, Martin Korling, Stephan Baucke, Samy Touati, Victa
McClelland, Ignacio Mas, and Olof Backman. Fostering rapid, cross-
domain service innovation in operator networks through service provider
SDN. In IEEE International Conference on Communications, ICC 2014,
Sydney, Australia, June 10-14, 2014, pages 3064–3069, 2014.

[17] A. Mayer and S. Mansfield. The third network: Lifecycle service
orchestration vision. Technical report, MEF, 02 2015.

[18] Opendaylight - http://www.opendaylight.org/.
[19] Akka framework - http://akka.io/.
[20] Raft consensus algorithm - https://raftconsensus.github.io/.
[21] R. Vilalta, A. Mayoral, R. Munoz, R. Casellas, and R. Martinez. Hier-

archical sdn orchestration for multi-technology multi-domain networks
with hierarchical abno. In Optical Communication (ECOC), 2015
European Conference on, pages 1–3, Sept 2015.

[22] R. Ahmed and R. Boutaba. Design considerations for managing wide
area software defined networks. IEEE Communications Magazine,
52(7):116–123, July 2014.

