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AP-Session 4, 1445, Tuesday, May 16, Room 0105

SLOPE DIFFRACTION COEFFICIENT FOR THE HALF PLANE WITH TWO FACE IMPEDANCES

V.Daniele,I.Montrosset and R.Zich - CESPA (CNR) ~ Istituto Elettronica Telecomuni
cazioni - Politecnice di Torine - 1012€ Torino - Italy .

Slope diffraction correction is known for conventional reflectors,i.z2. re-
flectors with edges having both face perfzctly conducting. In this paper the ca-
nonical prablam of the scattering from an half plane with two different face im-
pedances in presence of an arbitrary illuminating field has been phrased in terms
of a Wiener-Hopf matrix equation. This one has been solved and analytical expres-
sions both for the first order diffraction coefficient and for the slope diffrac-
tion coefficient are deduced.

The problem of the scattering from an half plane with two face impedances
has been widsly studied (see for sxample (1-4) ) and the first order diffraction
coefficient has already been obtained.In order to obtain a slope diffraction cor-
rection the problem has been rephrased in term of line representation and Wiener-
Hopf matrix equation.

Fig,l shows the geometry of the problem;on the left and on the right side
of the scatterer the following boundary conditions are assumed:

ET=1 Zl.r ﬂT x 2 , for x0 and z =U+‘_ (1)

Having used twice the equivalence theorem,first for z<0 with Z=Z1 over the all
plane z=0_ and then for z0 with Z=Z  over the all plane z=0_,the &quivalent line
representation of fig.l can be adopted. Considering only mag Eetlc Tl?}a polarized

along the y-axis,the line parameters are Zg= t/we and T= [K while the
unknown genera§955 and v, are:
TANER NI T }E (@ 37z H @) u0f (2

where 5{§1ndlcates the Fourler transform with kernel exp(j g£x) and u(x) is the
unit step function,
From this line representation, a Wiener-Hopf matrix formulation of the pro-

blem canabe deduceg in the FoEm:
Gleg)l v lgl= 9.0e) + ¢v'(gl, (3)
where suffices + and - indicate quantities which are regular in the upper and laower
half plane,respectively and y_ 1is an unknownvector related to the previously intro
duced generator via :
Y v, 17 (4

s r 771 ?
¥, 1s an unknow vector,which is related to the fields through

5 _ . -1/2 _ _ T
o =3 @mTEE | CE(0)-E,(03) L (HI0) - H (0,1 ) ua}  .(5)
wp[g ) is a known vecior given by
¥ = Ptz o107, N (6

he

where Ip are the modal currents consistent withhprimary field , that is the Tield
radiated by the sources in the geometry obtained by removing the scatterer and

assuming Z=Z_  over the all plane z=0_, The essential point is that the matrix G
has the form?

~Z1 -z, 1 L%
G 1 Z, v I
7 v 7, 1 1 7, -2 L , (7)
L Z_+ 1
r
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from which we deduce that G can be factorized (5]} in the form
GL E) = G,(§) G_(8) .

It follows that ?? can Qg‘easily evaluated as :

n ¥in s- o ew foe-al s e Pren e (8)
where Y? is yielded by the decomposition ¥P- 9P . W? and the integration is

extended over the real axis of £° ,with ImE'sDT
The evaluation of Y¥_ gives immediately the unknown generators v

and v_,which al-
low to define the scattered field everywhere, r

1

Eq.[(8) can be used to obtain both the GTD term and the slope diffraction con-
tribution . To this purpose let H (x),the primary magnetic field,have this form:
W) = (A Ap x ) exply £ XD, ()

which can be considered as radiated by a line source as shown in fig.1 and with
£ = K cos ¥, - This ieads to express 9 in the form:
g_° ° -1 -2 .
¥_ = (-JAD { &+ 50) + A1 (g + 50) ) ?0(- EO)
with ¥ (- £ ) a suitable constant not depending on & .
The evaluatiSn of currents and voltages along the line,and consgquently of the field
through a saddle point contribution,leads the scattered field H to be expressed
ig the far field contribgtimn by: i
Hy[p,qﬂ = D[p,v;pu.fbl Hy(p, formdor Ds[p,?;pn,yg] § /3v Hy veo (11

with D= F(E,E_ ) L& +§ ]_1 , where F{E.Eo) is a suiteble function evaluated for

£ =K° cos ¢ 3 ? is given by:

D5 = -[JKD po] 3/3 ¥y Dip, \¥; po.-fo) . 121

In conclusion,it turns out that even in the case of arbitrary impudances
surfaces, the slope diffraction contribution has *formally" the same structure
obtained for the perfectly conducting case (6-8) and it can be sxpressed in terms
of the derivative of the first order coefficient D. Fig.2 shows examples of dif-
fraciion coefficients O,both for E- and H- case.
Near the shadow boundaries the values of D and D_ are already computed through

a saddle point integration but a first and a second ofder pole nearby must be

taken intu account.
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Fig. 1 . Geometry of the problem and transmission line
repraesentation.
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Fig.2 . ODiffraction coefficients for 93=4S° . Z =0 and K Q@ =50
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