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Multi-Function Logic Synthesis of Silicon and Beyond-Silicon

Ultra-Low Power Pass-Gates Circuits

Valerio Tenace, Andrea Calimera, Enrico Macii, Massimo Poncino

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

Abstract

Pass-gates logic is known to be intrinsically more energy efficient than static CMOS.
This feature attracted the research interest over the years and many working implemen-
tations have been demonstrated. Recent works, in particular, have shown that pass-
gates logic is well suited for ultra-low power adiabatic circuits mapped on emerging
technologies.

Despite the progress made, several design issues still prevent pass-gates logic circuits
reaching large scale integration.

In this work we deal with the lack of synthesis tools and methodologies. We propose a
multi-function decomposition engine that yields (i) an efficient abstract circuit modeling
through a more compact data-structure, the Multi-Function Pass Diagram (MFPD) and
(ii) an effective multi-gate area/delay-driven low-power synthesis&optimization flow.

Simulation results conducted on different technologies, i.e., silicon and graphene,
demonstrate that logic circuits synthesized with the proposed tool are smaller in size
and depth, hence less power consuming and faster than circuits obtained through con-
ventional synthesis flows based on Binary Decision Diagrams.

1 Introduction

1.1 Motivation

Static CMOS has been taken as a reference style for mainstream VLSI circuits due to high
noise immunity and high performance. However, other logic families have shown to be
less power consuming and intrinsically more energy efficient. The pass-gates logic, a.k.a.
pass-transistor logic (PTL), is the most representative one [1].
PTL circuits can implement logic functions with a lower transistor count, smaller parasitic
capacitance and hence better performance [2]. Even modern CMOS libraries make use of
PTL for some logic gates, e.g., flip-flops and multiplexers, because of the gain it offers.
Moreover, PTL circuits offer an opportunity to work “adiabatically”, namely, mimicking
the adiabatic (i.e., without energy exchange) charging process [3]. For this reason as well,
PTL might find space in the growing segment of ubiquitous computing, where always-on and
ceaselessly connected ICs are in charge of processing huge amount of “slow” physical-data
(e.g., biometric signals) with a very limited energy budget [4].
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The interest in PTL and, more precisely, in adiabatic PTL, recently increased with the
raising of emerging devices, such as nanoelectromechanical switches (NEMs), carbon nan-
otubes (CNTs), and graphene p-n junctions. For such devices, which naturally implement
passive resistors, the PTL style enables the design of logic circuits with improved energy
efficiency if compared to CMOS [5, 6, 7].
It might finally be the time to keep pace with PTL, but the roadmap to close the gap
between PTL and CMOS still misses an important stage, that is, the implementation of
logic synthesis algorithms.

1.2 Limitations of Existing Tools

While logic synthesis evolved following the growth of semi-custom CMOS libraries, synthesis
for PTL have been improved only marginally. This is why, even today, PTL remains under-
utilized [2]. It’s not a coincidence that most of the previous works do focus on circuits for
very specific arithmetic functions [8, 9] or handcrafted basic Boolean logic gates [1, 10]. In-
deed, when the target design turns into random logic, standard multi-level synthesis engines
can’t exploit the structural properties of PTL. That brings to sub-optimal implementations
that typically require ad-hoc actions at the post-synthesis stage.
This problem is not new to the research community and several solutions have been in-
troduced in the last years. Most of them, if not all, are closely related to the concept of
Binary Decision Diagrams (BDDs) or some of its variant [11, 2, 12]. There are two main
reasons behind the use of BDDs. First, there exists a one-to-one matching between the BDD
representation of the logic function and the final circuit implementation; this enables the
concept of one-pass logic synthesis [13] where logic optimization and technology mapping
are carried out concurrently on the same data structure thereby saving CPU and memory
usage. Second, BDDs [14] are a very mature data-structure with lots of available optimiza-
tion algorithms for redundancy removal.
Despite the efficiency of BDDs as data-structure is unquestionable, BDD-based synthesis
tools show many limitations. First, the tree-like structure of BDDs reflects into a “pyra-
midal” circuit topology with long depth, and hence large propagation delays. Second,
state-of-the-art decomposition methods for BDDs construction all operate using a pre-fixed
variable-order (V O), namely, the order used for variable expansion is fixed during the en-
tire decomposition procedure, no matter what the logic function is. Since V O affects the
vertex-set cardinality of BDDs, a wrong V O might result into dramatic area increase of
the resulting circuit. Third, decomposition methods are constrained to a “single-function”
decomposition. Such a function, here referred as g(X), differs depending on the type of
BDD variant in use, e.g., MUX for standard BDDs [14], XOR for Biconditional-BDDs [12].
Logic circuits dominated by g(X), e.g., XOR-rich arithmetic circuits, take advantage of this
characteristic, others, like random logic circuits, may suffer from sub-optimal minimization.
While the first two issues have been addressed in [15] with the introduction of the Pass
Diagram (PD) data-structure and the non-fixed V O decomposition, this work elaborates
on the third issue, i.e., how to overcome “single-function” decomposition.
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1.3 Contribution

The objective of this work is to improve the quality of pass-gates logic synthesis by means
of concurrent “multi-function” decomposition. We generalize/extend the concept of the PD
data structure and pass-XNOR logic (PXL) [15] to multi-function pass-diagrams (MFPDs)
and multi-gate pass logic (MGPL) respectively. The MGPL circuits show a power-delay-
product (PDP) which is 3 orders of magnitude smaller than that of standard PTL circuits
synthesized using BDDs.
We introduce an automatic tool, called Kanon, which serves as a low-power synthesis and
optimization engine. It consists of two main stages: (i) multi-function decomposition for a
user-defined Boolean operators library (e.g., AND, OR, XOR and their complement), and
(ii) redundancy removal by means of new minimization rules. Moving from single- to multi-
function decomposition can be conceptually seen as the shift from two-level to multi-level
synthesis in CMOS.
In order to quantify the efficiency of (i) the proposed multi-function decomposition, (ii)
the MFPD model and (iii) the resulting MGPL style, we apply our tool to a sub-set of
generic benchmarks mapped onto three different technologies, i.e., Silicon MOS transistors,
Ambipolar Silicon Nanowires and Graphene p-n Junctions. While the use of generic bench-
marks avoids biased results due to the presence of circuits dominated by a specific function,
the use of different technologies demonstrates that the proposed technology-independent
solution well fits both silicon and beyond-silicon devices. Indeed, each technology comes
with its own preferential primitive, i.e., the one with higher expressive power; having the
chance to exploit different Boolean operators improves the quality of the resulting circuits.
Experimental results show that MFPDs obtained with our tool are smaller in size and lower
in depth if compared to state-of-the-art abstract models based on BDDs (93% smaller, 95%
shallower) and multi-level Boolean networks used in commercial tools (77% shallower). This
reflects into MGPL circuits that are more energy efficient, smaller in area and faster in delay,
regardless of the adopted technology.

2 Building MFPDs

2.1 Multi-Function Decomposition

The key step of any logic synthesis algorithm is the decomposition of a logic function through
the logic primitives made available by the technology in use. Since most techniques are fine-
tuned for multi-level logic representations, we propose an ad-hoc decomposition that is fully
compliant with the requirements of pass-gates logic.
The multi-function decomposition proposed in this work relies on the basic assumption
that any Boolean equation given in the form of sum-of-products (SOPs), or product-of-sums
(POSs), can be decomposed by means of a user-defined set of logic connectives G = {g :
B2 → B}. Let’s take a function f(S) with support-set S = {x1, x2, x3} described by the
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following SOP:

f(S) = (x1 ∧ ¬x4) ∨ (¬x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) (1)

Using the distributive property and the identity rule, f(S) can be easily expanded as a
sequence of cubes with cardinality of two literals:

f(S) = (x1 ∧ ¬x4) ∨ (¬x1 ∧ ¬x2)

∧ (x3 ∧ 1) ∨ (x1 ∧ x2) ∧ (x3 ∧ 1)
(2)

Each product can then be rewritten using the Boolean connectives g ∈ G by means of duality.
For instance, let’s assume the availability of two connectives G = {{x ¬ ∨ y}, {x ¬⊕ y}},
where the first one, the NOR (¬∨ symbol), has higher priority (i.e., is processed first). Then
f(S) is NOR-decomposed as shown in 3:

f(S) = (¬x1¬∨x4) ∨ (x1¬∨x2) ∧ (¬x3¬∨¬x3)

∨ (¬x1¬∨¬x2) ∧ (¬x3¬∨¬x3)
(3)

since (¬x3¬∨¬x3) is a common term, it can be factorized as shown in (4).

f(S) = (¬x1¬∨¬x4)

∨ (¬x3¬∨¬x3) ∧ [(x1¬∨x2) ∨ (¬x1¬∨¬x2)]
(4)

The second operator in G, the XNOR (¬⊕ symbol), can now come into play. Indeed, the
term (x1¬∨x2)∨ (¬x1¬∨¬x2) can be represented as the XNOR between x1 and x2. We call
this operation Boolean substitution. As a final result of the multi-function decomposition,
the original function (1) is decomposed as described in (5).

f(S) = (¬x1¬∨x4) ∨ (x1¬⊕x2) ∧ (¬x3¬∨¬x3) (5)

It is easy to check that (5) is Boolean equivalent to (1) with 25% of literal savings.
The efficiency of the proposed multi-function decomposition is closely related to (i) the
set of Boolean operators and (ii) their order in G. Although several options do exist, we
propose a technology-instructed strategy: available operators in G are sorted in terms of
their expressive power1 (EP) for the target technology, largest EP first. This contributes to
making our tool more flexible and, therefore, orthogonal to different technologies.
As will be shown later in the text, different primitives are used during different stages of
the multi-function decomposition. For the sake of clarity we define the first operator in G,
the one with the highest EP, as the primary primitive, the remaining ones as the secondary
primitives.

1Ratio between the complexity of the logic operator and the number of devices needed to implement the corre-
sponding logic gate
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Figure 1: MFPD of function of Equation (3) before optimization (a), after merging of
common sub-graphs (b), and after Boolean substitution (c).

2.2 Multi-Function Pass Diagrams (MFPDs)

Representation of logic circuits during optimization needs an abstract model. We introduce
the MFPD, a simple, yet efficient abstract model for one-pass synthesis of pass-gates logic
circuits.
Given a generic multi-input/single-output Boolean function f with support-set S =
{x1, ..., xN}, its MFPD (Figure 1) representation is a polarized, directed acyclic graph
defined as G = (Φ∪V ∪Θ∪A). The set of internal nodes v ∈ V are labeled as g(x, y), with
g ∈ G a two-input primitive Boolean connective and x, y ∈ S. Each internal node v has one
outgoing edge a ∈ A representing the logical conjunction (AND) with the successor node.
The terminal node with indegree 0 represents the root of the MFPD, where the function
starts to be evaluated; the terminal node with outdegree 0 is the leaf of the MFPD, the
output of the function f . Multiple output functions are represented by many MFPDs as
the number of outputs. As an example, Figure 1-(a) shows the MFPD structure for the
function (3) with g0 = (xi¬ ∨ xj) and g1 = (xi¬⊕xj).
The strength of MFPDs is the capability of supporting multi-function decomposition. This
degree of freedom comes at the cost of canonicity, that is, MFPDs do not have an unique
representation of Boolean formulae. However, relaxing the canonicity constraint is a well-
accepted concept in the EDA community; for instance, And-Inverter Graphs (AIGs) inte-
grated into commercial multi-level logic synthesis tools are non-canonical representations,
but nonetheless they are likely used because more compact and manageable.

2.3 Algorithms

2.3.1 Building MFPD

Algorithm 1 shows the pseudo-code of the Build routine we implemented for multi-function
decomposition and MFPD construction.
The main input parameters are (i) a tabular description T of the Boolean function and (ii)
the primary connective (the first operator in the list of primitives G). Table T can be a
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Algorithm 1: MFPD build
Input: PLA Table T , Primary connective g0 ∈ G
Output: Multi-Function PD MFPD

1 MFPD = ∅
2 foreach row R ∈ T do

3 CUBESR = ∅
4 DontCareSet = DetermineDCS(R)
5 foreach primary input PI ∈ R do

6 if PI /∈ DontCareSet then
7 CUBESR.append(PI)
8 end

9 end

10 foreach vi,k ∈ CUBESR do

11 NewNode← SetPolarity(vi,k, g)
12 PTR.append(NewNode)

13 end

14 MFPD.append(PTR)

15 end

non-minimized implicant table ( i.e., not prime) and can be obtained through any Verilog
compiler, e.g., ABC [16]; obtaining T is not a computational intensive task. We refer to T

as the PLA table. As an example, Table 1 shows the PLA table for the Boolean function
(2); the character ’-’ identifies a dont’care.

Table 1: PLA table of function (2)

x1 x2 x3 x4 f

1 - - 0 1
0 0 1 - 1
1 1 1 - 1

The MFPD is generated branch-wise, that is, for each row of the PLA table, i.e., for
each product term of the function, nodes are appended in series by iterating the following
sequence of operations:
Cube sequence generation (line 3-9) – variables not belonging to the don’t-care set are in-
cluded in the cube list CUBESR in order of appearance; those belonging to the dont-
care set are dropped. For odd sequences, the last variable is paired with ’1’ logic so
as to maintain Boolean equivalence. For instance, considering Table 1, for the first row
CUBES1 = {(x1,¬x4)}, for the second row CUBES2 = {(¬x1,¬x2), (x3, 1)}, for the third
row CUBES3 = {(x1, x2), (x3, 1)}.
Node generation (line 10-14) – for each pair of cubes stored in CUBESR, the polarity of
the variables are fixed according to the primary Boolean connective g and the resulting
nodes are appended on the current branch. Let us consider CUBES2 which contains two
cubes, (¬x1,¬x2) and (x3, 1); with g the NOR operator (like the example in Section 2.1),
variables are complemented (by De-Morgan) as (x1, x2) and (¬x3,¬x3) respectively.
Given a table T with N implicants and M literals, the proposed build routine has a com-
plexity of O(N ·M)

6



Algorithm 2: MFPD optimization algorithm
Input: MFPD, Secondary connectives G = (g1, . . . gm) ∈ G
Output: Optimized Multi-Function PD OMFPD

1 OMFPD = ∅
2 foreach path P ∈MFPD do

3 CM ← ∅
4 CE ← ∅
5 foreach path Q ∈MFPD, with Q 6= P do

6 if SameSupport(P , Q) then

7 if CheckBoolSub(P , Q, G) then

8 CE .append(Q, gk ∈ G)
9 end

10 else

11 if SharedNodes(P , Q) then

12 CM .append(Q)
13 end

14 end

15 end

16 if |CE | > 0 then

17 M ← ApplyBoolSub(P , CE , G)
18 else if |CM | > 0 then

19 M ← MergeIsomorphic(P,CM )
20 OMFPD.append(M)

21 end

2.3.2 Optimization

Algorithm 2 describes the pseudo-code of the optimization stage for redundancy removal.
It implements two different optimization techniques: (i) node elimination by Boolean sub-
stitution; (ii) merging of isomorphic sub-graphs. While the latter is reminiscent of standard
reduction rules from BDDs [14], the former one is an ad-hoc strategy for MFPDs. Its pur-
pose is to find suitable equivalent logic connectives, among the list of secondary connectives
in G, that can be eventually substituted in order to enable node elimination and reduce the
MFPD cardinality; as illustrated in the examples of Section 2.1. Please note that secondary
connectives are selected with a greedy approach, that is, the first one that satisfies the
Boolean equivalence is instantiated in the network.
Input parameters of Algorithm 2 are the MFPD obtained through the MFPD Build routine,
and the list of secondary connectives G ∈ G.
Candidate selection (line 3-15) – Each root-to-leaf path P of the MFPD is compared with
any other path Q (P 6= Q). If (line 6) P and Q share the same support set (i.e., nodes in P

and Q are driven by the same literals) the algorithm checks (line 7) whether it is possible to
perform a Boolean substitution, namely, it checks whether some of the operators associated
with the nodes in Q can be substituted with some other operator gk ∈ G s.t. Boolean
equivalence is satisfied. If so, P and Q share a common node expressed by means of gk,
that allows to merge P and Q in a single path. Therefore, Q is stored in the candidates list
CE together with the connective gk that enables its elimination. If P and Q do not have
common support set (line 10), the algorithm checks whether a path Q shares at least one
node with P ; if so, Q is a potential candidate for node merging and it is temporarily stored
in the list of candidates CM .

7



2 !5 " 1 (

2 !5 " 1 )

B

*

6

66 666

6:

:

*

+,-

+.-

+/- +;-

6 2
#
+!)5 !8-

66 2+!95)-

666 2+!95 !7-

6: 2+!75)-

: 2+!95 !<-

6

66 666

6:

:

=C('?(7$&64.$96('
*

*

D

D

Figure 2: MGLP circuit example, where f = (x1¬∨x2)∧ [(x3¬∨1)∨((x3¬∨x4)∧(x4¬∨1))]∨
(x3¬∨x5)

Merge and Eliminate (line 16-20) – once candidates have been selected, the algorithm first
evaluates whether there exists at least one candidate for node elimination by Boolean sub-
stitution (|CE | > 0). If so, the common node between P and CE is replaced with the new
connective gk, and redundand paths in CE are removed (ApplyBoolSub function). If not
and the list CM is not empty, then common nodes between CM and P are evaluated for
merging through the MergeIsomorphic function.
Figure 1-(b) and 1-(c) show the results of the optimization procedures described above
applied on the MFPD obtained through the build function (Figure 1-(a)).
For what concerns complexity, since each path P is compared with any other path Q, the
total number of loops is N ·(N−1)

2 , with N the number of paths in the starting MFPD.
The complexity of the optimization routine is O(N2). Notice that all other sub-routines
have a O(1) complexity (operations are completed in constant time) except for functions
SameSupport and SharedNodes which show a complexity of O(M), with M the number
of nodes in the path Q.

3 Multi-Gate Pass Logic

The Multi-Gate Pass Logic (MGPL) style can be seen as a generalization of the existing
PXL style. The physical primitives of a MGPL network are the pass-gates (PGs), that,
from a functional point of view, can be seen as function-controlled switches. They consist
of two logic-terminals fed by the input logic signals (x and y in Figure 2-(a)), and two
transmission terminals, one playing as the source of an evaluation signal and the other as
the collector (S and D in Figure 2-(a)). The control function is a two-input Boolean operator
g(x, y) between the x and y logic inputs; when g(x, y) = 1 the PG is ON (low-resistance),
Figure 2-(a), when g(x, y) = 0 the PG is turned OFF (high-impedance), Figure 2-(b). PGs
with different control functions can be designed depending on the technology in use. An
MGPL circuit (Figure 2-(d)) has a 1-to-1 mapping with its MFPD (Figure 2-(c)) It consists
of logic paths connected in parallel between a clocked-power supply (the root) and the main
output (the leaf). Each path consists of a cascade of independent PGs driven by primary
inputs. When activated (all PGs turned-ON), a logic path creates a low-resistive gateway
through which the clocked-power signal can flow from the root to the leaf. Under this
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condition the circuit’s output is evaluated as 1-logic2. Logic paths are in mutual exclusion
by construction, that is, for a given input pattern one and only one path can be eventually
activated. In case none path is activated the circuit’s output is evaluated as 0-logic3.
As for other dynamic logic families, MGPL circuits work in two phases. In the configuration
phase the input signals are evaluated by the PGs and the resistive paths of the network
are set up. In the evaluation phase the clocked power signal is pre-charged and propagated
through the network4.
It is worth emphasizing that although the MGPL resembles the PTL structure, the difference
is substantial. In PTL circuits, transistors are used as switches that deviate the current
flow to different paths; on the contrary PGs are used as switches to open/close a logic path.
This is reflected by the model used to represent the circuit. Indeed, BDDs are not the most
intuitive representation as PG gates do not implement any deviation of the signal. Second,
while in PTL an output is always connected to a static power supply terminal, Vdd if ’1’ or
Gnd if ’0’, output evaluation in MGPL logic is dynamic: current is flowing if ’1’, not flowing
if ’0’. Alternatively, one can see MGPL circuits as a half way between CMOS and PTL. As
in CMOS series/parallel connections between gates are available, as in PTL, information is
carried out by means of root-to-leaf current flow.

3.1 Pass-Gate Devices

New logic primitives introduced by emerging technologies represent a perfect fit to the
structure of PGs. Figure 3 pictorially describes some of them. In particular, Figure 3-(a)
shows four PG embodiments using Ambipolar Silicon-NanoWires (Si-NW) [17]. The first
two (left) are composed of a single Si-NW transistor and implement the AND and NOR
logic gates. The remaining two (center and right) consist of a pair Si-NW transistors and
implement the XNOR or XOR logic gates.
Figure 3-(b) shows two possible pass-gates using standard MOSFET transmission-gates.
The first one (left) implements the AND, whereas the second one (right) implements the
NOR. Since both configurations require four MOSFETs, silicon devices have less expressive
power.
Finally, Figure 3-(c) shows pass-gates mapped on graphene p-n junctions [18]. A graphene
p-n junction consists of two metal back-gates (blue and green triangles) driven by logic
signals (x and y). Logic signals with same polarity turn the junction ON. The first PG (top
left) implements the NOR gate; the outer input connections x and y are both compared to
a logical-0 reference. It works as follows: when both x and y are set to 0-logic, the input
evaluation signal (red ramp) is allowed to propagate; in all the remaining cases at least one
p-n junction is OFF and the evaluation signal is stopped. Similarly, the second pass-gate
(bottom left) implements the AND; the evaluation signal propagates iff both x and y are
fed wit 1-logic. Notice that for NOR and NAND SiNWs need less devices (1 vs. 2). The last

2A Sense Amplifier can be used at the main output in order to quickly identify the 1-logic and reshape the
clock-supply signal.

3We assume the output node is regularly sampled through a standard clock synchronized with the clocked-power
4A synchronization between input signals and clocked-power is needed; this aspect is a circuit level detail which

is out of the scope of this work.
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Figure 3: Possible PGs for different logic primitives.
two pass-gates (top and bottom right) implement the the XNOR and XOR gates. In this
case graphene shows higher expressive power than SiNW. It is therefore clear how different
technologies can be better exploited using different logic primitives.

4 Simulation Results

The experimental results reported in this section provide a fair comparison against state-
of-the-art solutions. The objective is threefold: (i) quantify the higher expressive power
obtained through “multi-function” decomposition, (ii) demonstrate the flexibility of MFPDs
and the efficiency of the synthesis tool we implemented (iii) show that the MGPL style
allows large gains w.r.t. PTL and, most importantly, it is well suited for ultra-low power
digital circuits.
We set up five different synthesis flows, the first four are for pass-gates logic circuits, the
target of this work, the fifth one is for standard cells-based circuits.
1. MFPDs (the solution proposed in this work): circuits described using the PLA format
[16] are processed with our tool Kanon for multi-function decomposition using the connec-
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Table 2: Binary MFPDs efficiency w.r.t. PDs, BDDs, BBDDs and AIGs

PI PO I
MFPD PD BBDD BDD AIG

Nodes
Levels Nodes Levels Nodes Levels Nodes Levels Nodes Levels

w/o opt w/ opt Savings [%]
sao2 10 4 58 229 152 21.40 5 267 10 92 10 170 10 269 19

o64 130 1 65 65 65 0.00 1 130 2 322 130 70 65 195 10

5xp1 7 10 75 161 111 29.81 3 201 6 67 7 92 7 241 20

c8 28 18 79 156 108 23.72 5 209 10 624 28 183 28 232 13

duke2 22 29 87 401 287 20.70 8 582 15 1281 22 1025 22 950 35

apex1 45 45 206 921 677 24.32 8 1217 16 16085 45 28427 45 3998 41

misex1 8 7 32 67 31 47.76 3 51 5 71 8 57 8 122 13

misex2 25 18 29 101 75 27.72 6 133 12 356 25 180 25 153 12

b12 15 9 431 1007 579 36.64 3 1242 6 142 15 112 15 156 14

k2 45 45 936 3791 2103 42.44 8 3870 15 6353 45 28427 45 3822 32

bigkey 486 421 6151 19054 10771 35.95 4 24772 8 221630 486 7044 486 12095 23

s13207.1 700 790 10987 53868 33005 20.87 9 71675 17 1450670 700 678161 700 8025 42

Total 79821
47964

39.91
104349 1697693 743948 30258

(1x) (2.17x) (35.39x) (15.51x) (0.63x)

Average
6 11 127 122 23

(1x) (1.83x) (21.12x) (20.33x) (3.83x)

tive set G = {{x¬ ∨ y}, {x¬⊕y}, {x⊕ y}}5; the resulting MFPDs are mapped onto MGPL
circuits using different technologies.
2. PDs (introduced in [15]): circuits described using the PLA format [16] are processed
using Gemini, a single-function XNOR decomposition tool; resulting PDs are mapped onto
PXL circuits using different technologies.
3. Biconditional-BDDs (described in [12]): circuits are first synthesized using a stan-
dard multi-level synthesis tool and then translated into BDDDs using single-function XOR
decomposition scheme; the resulting BBDDs are mapped onto a PTL-like (i.e., tree-based)
structure using different technologies.
4. BDDs: circuits are processed with the CUDD package [14]; BDD structures, obtained
with a single-function MUX-based decomposition, are mapped on PTL-like circuit using
different technologies.
5. AIGs: obtained with the ABC synthesis tool [16]; AIGs are mapped on a CMOS library
containing only AND and INV gates.
It is worth emphasizing that AIGs can’t be directly used for pass-gates logic circuit; we
included AIGs as a reference point to better evaluate MFPDs.
The experiments were run on a set of open-source benchmarks from the LGSynth91
suite [19], and accurate SPICE simulations were used for the characterization of the ob-
tained netlists. Please note that the size of such benchmarks is comparable to that of those
used in other synthesis-related works, e.g., [12]. Without loss of generality, only combina-
tional logic cones have been considered for synthesis, i.e., in-to-out and register-to-register
logic cones. Table 2 gives a summary of the results. Columns PI, PO and I represent
the total number of primary inputs, primary outputs and implicants of each benchmark.
Under the labels MFPD, PD, BBDD, BDD and AIG we report the figures of merit of
each data-structure. Regarding MFPDs, the column w/o opt refers to MFPDs after the
build process, while column w/ opt refers to MFPDs after optimization (column Savings
reports optimization gain); for BBDD and BDD numbers refer to optimized structures.

5Even though more Boolean operators can be used, here we force our tool working in a worst-case conditions where
only three primitives are allowed.
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Let us first consider the MFPD structure. The proposed reduction rules allow to save on
average about 40%. Noticeably, large savings have been recorder for all the benchmarks,
except for o64. For this case we observed the PLA table is a diagonal matrix of ’1s’ which
prevents MFPD optimization.
Regarding the expressive power, MFPDs clearly outperform BBDDs (which are 35.39x
larger), BDDs (15.51x larger) and PDs (2.1x larger). Only AIGs are more compact
(0.63x); indeed, their main strength is the possibility of reusing cascades of common sub-
expressions and local don’t-care conditions, which is not allowed on pass-gates logic.
Another important aspect concerns the depth of the data- structures. Also in this case
MFPDs are more efficient, not just w.r.t. BBDDs (which are 21.12x deeper), BDDs

(20.33x deeper) and PDs (1.83x deeper), but also when compared to AIGs (3.83x deeper).
MFPDs are indeed well suited for pass-gates logic circuits, where smaller depth translates
into shorter delays and smaller voltage noise. The huge savings achieved are the consequence
of the efficient multi-function decomposition, in particular: (i) the availability of more
Boolean operators w.r.t. BDDs, BBDDs and PDs, (ii) the fact that inputs variables
belonging to the dont-care set are dropped during decomposition (see Algorithm 1), (iii)
the regularity of the implication table that allows large minimization (see Algorithm 2).
Regarding the CPU execution time, the MFPD synthesis is, on the average, 38x faster
w.r.t. the procedures used for decision diagrms. For instance, the MFPD for the largest
benchmark (s13207.1) is built and optimized in 7.08s, whereas the equivalent BBDD takes
241.9s. This is due to the lower computational workloads of MFPD manipulation algorithms
which avoid diagram reconstruction during optimization.

Table 3: Device count after synthesis and mapping.
Graphene Ambipolar (Si-NW) PTL

MFPD BBDD MFPD BBDD MFPD BBDD

sao2 304 184 152 368 608 1472
o64 130 644 65 1288 260 5152
5xp1 216 134 117 268 516 1072
c8 215 1248 109 2496 444 9984
duke2 570 2562 291 5124 1196 20496
apex1 1341 32170 690 64340 2864 257360
misex1 56 142 37 284 196 1136
misex2 146 712 79 1424 348 5696
b12 1124 284 613 568 2724 2272
k2 4172 12706 2137 25412 8820 101648
bigkey 21535 443260 10778 886520 43168 3546080
s13207.1 65662 2901340 33353 5802680 136196 23210720

Total 95471 3395386 48421 6790772 197340 27163088
(1x) (35.56x) (1x) (140.24x) (1x) (137.64x)

To demonstrate the “orthogonality” of both MFPDs and the MGPL style over different tech-
nologies, we mapped the benchmarks under analysis using three different types of devices:
graphene p-n junctions (Graphene), Silicon NanoWires Pass-Transistors (Si-NW PT), and
traditional MOSFET-based Pass-Transistors (Si-MOS PT). As briefly described in Section
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3.1, each of these technologies has different ”optimal” (i.e., with highest expressive power)
primitives. Table 3 reports the post-synthesis results obtained using our tool. Since MFPDs
are a superclass of Pass Diagrams, we only provide comparison to BBDD-based synthesis.
BBDDs represent the most recent solution proposed for emerging technologies [12] and
their superiority w.r.t. other solutions have been already demonstrated. Notice that MF-
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Figure 4: Normalized PDP vs transition time.

PDs nodes can be mapped with NOR, XOR and XNOR, while BBDDs only allow XOR
mapping. Each of this pass-gates count different devices depending on technology (Fig-
ure 3). As a result of the multi-function decomposition, circuits synthesized using MFPDs
are smaller in size, hence more area and power efficient. The more compact structure of
MGPL circuits allows very high power/energy reduction. We underline the energy efficiency
of the MGPL style for emerging technologies, Graphene in particular. Figure 4 provides a
technological comparison between Graphene-based MGPL circuits and Silicon-MOS PTL
circuits. The plot shows the power-delay product (PDP) averaged over all the benchmarks
as function of the transition time Tr of the input signals. The plot highlights the “adiabatic”
nature of both implementations, i.e., PDP reduces as Tr increases. However, and this is
the most important aspect, graphene circuits are more energy efficient, not just in terms of
absolute numbers (mainly due to the intrinsic characteristics of the material, e.g., very low
voltage drop [15]), but also in terms of “scalability”. For a range of transition times of 3
orders of magnitude (1 to 1000 ps), the PDP of graphene reduces by more than 5 orders of
magnitude, whereas that of silicon reduces only by 3 orders of magnitude.
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5 Conclusions

In this work we introduced a novel abstract representation for Boolean switching functions:
the MFPD. Such structure is obtained with a multi-function logic decomposition that al-
lows very compact circuit representations, the MGPL style. The proposed logic synthesis
algorithms integrated within our tool (Kanon) demonstrate that MFPD synthesis show su-
perior characteristics w.r.t. state of the art solutions, in particular (i) higher area efficiency
(almost 15.51x better than BDDs) and (ii) shallower logical circuits (77% w.r.t. AIGs).
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