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Abstract

High Ef�ciency Video Coding (HEVC) is state-of-the-art video coding standard.
Emerging applications like free-viewpoint video, 360degree video, augmented reality,
3D movies etc. require standardized extensions of HEVC. The standardized exten-
sions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview
Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen
Content Coding. 3D-HEVC is used for applications like view synthesis generation,
free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used
for the virtual view synthesis by the algorithms like Depth Image Based Rendering
(DIBR). As �rst step, we performed the pro�ling of the 3D-HEVC standard. Com-
putational intensive parts of the standard are identi�ed for the ef�cient hardware
implementation. One of the computational intensive part of the 3D-HEVC, HEVC
and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation
(FME). The hardware implementation of the interpolation �ltering is carried out
using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for
the HLS implementation of the interpolation �lters of HEVC and H.264/AVC. The
complexity of the digital systems is greatly increased. High-Level Synthesis is the
methodology which offers great bene�ts such as late architectural or functional
changes without time consuming in rewriting of RTL-code, algorithms can be tested
and evaluated early in the design cycle and development of accurate models against
which the �nal hardware can be veri�ed.
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Chapter 1

Introduction

This chapter starts with an introduction to the fundamentals of video coding through
an historical perspective. Following this, the chapter surveys High-Level Synthesis
(HLS) based video coding. Subsequently, we propose an alternative methodology for
VLSI implementation of video coding algorithms and introduce its main components,
i.e., the HLS based simulation, veri�cation, optimization and synthesis. We conclude
with an overview of the individual chapters, indicating the relevant contributions.

1.1 Introduction to Video Coding

The process of compressing and decompressing video is called video coding or video
compression. Moving digital images are digitally compressed by video compression
algorithms. There is a long list of the video coding applications, some applications
of the video compression include TV, phones, laptops, cameras etc. Where there
is a digital video content, there should be video compression behind that content.
For the digital video large amount of the storage capacity is required if the video is
in its original form i.e. uncompressed. As an example, uncompressed 1080p high
de�nition (HD) video at 24 frames/second requires 806 GB of storage for a video of
1.5 hours duration with bit-rate requirement of 1.2 Gbits/second. That is why, for
storage and transmission purposes of the digital video, video compression is a must,
otherwise it will be impossible to store and process the uncompressed video contents
for applications of today’s era. Decompression of compressed video is required for
displaying the video contents to the consumers.
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Sending visual images to a remote location has captured the human imagination
for more than a century Figure 1.1. The invention of television in 1926 by the
Scotsman John Logie Baird [1] led to the realisation of this concept over analogue
communication channels. Even analogue TV systems made use of compression or
information reduction to �t higher resolution visual images into limited transmission
bandwidths [2].

Fig. 1.1 "in the year 2000", postcard from 1910

The emergence of mass market digital video in the 1990s was made possible
by compression techniques that had been developed during the preceding decades.
Even though the earliest videophones [3] and consumer digital video formats were
limited to very low resolution images (352x288 pixels or smaller), the amount
of information required to store and transmit moving video was too great for the
available transmission channels and storage media. Video coding or compression
was an integral part of these early digital applications and it has remained central to
each further development in video technology since 1990 [4].

By the early 1990s, many of the key concepts required for ef�cient video com-
pression had been developed. During the 1970s, industry experts recognised that
video compression had the potential to revolutionise the television industry. Ef�cient
compression would make it possible to transmit many more digital channels in the
bandwidth occupied by the older analogue TV channels.

Present-day video coding standards [5]�[6] and products share the following
features:
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1. Motion compensated prediction [7].

2. Subtraction of a motion compensated prediction for residual unit creation (e.g.
a residual MB).

3. Block transform and quantization to form blocks of quantized coef�cients.

1.2 High Level Synthesis Based Video Coding

Video compression technology can be seen in a variety of applications ranging
from mobile phones to autonomous vehicles. Many video compression applications
such as drones and autonomous vehicles requires real-time processing capability
in order to communicate with the control unit for sending commands in real time.
Besides real-time processing capability, it is crucial to keep the power consumption
low in order to extend the battery life of not only mobile devices, but also drones
and autonomous vehicles. Field Programmable Gate Arrays (FPGAs) are desired
platforms that can provide high-performance and low-power solutions for real-time
video processing. Increasing demands of multimedia applications and services
has make up the need for embedded systems aiding ever-accelerating functionality
and �exibility [8]. Evolution of video coding supporting new advanced coding
tools and increased demand of multimedia contents make the embedded media
processing systems dif�cult to design and implement, under shorter time-to-market
restriction. Sate-of-the-art video coding standards i.e. HEVC [9] and H.264/AVC
are good examples of complex multimedia system with low-power and typical
performance embedded implementation requirements. Several works [10]�[11]
has been proposed for the performance enhancement and complexity reduction of
HEVC and H.264/AVC multimedia systems. As hardware designs typically are
more time consuming than equivalent software designs. Due to dif�cult and time
hungry process of manual RTL design, an alternative methodology for hardware
implementations of complex system is High-Level Synthesis (HLS) based hardware
implementation. Increased complexity of the digital systems [12], energy-ef�cient
heterogeneous systems [13] for high-performance and shortening time-to-market,
are the key factors for the popularity of the High-Level Synthesis (HLS) [14]. In
HLS, hardware functionality is speci�ed by using the software i.e. at a higher-level
of abstraction. Moreover, �eld-programmable gate array (FPGA) design by HLS
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becomes interesting and has two fold advantage i.e. the hardware implementations
in the target device can be easily replaced and re�ned at higher abstraction level.

Nowadays, heterogeneous-systems are being adopted as the energy-ef�cient,
high-performance and high-throughput systems. The reason behind this is the
impossibility of further clock frequency scaling. These systems consist mainly
of two parts i.e., the application-speci�c integrated circuits (ASICs) [15] and the
software processor [16]. Each part of the system is dedicated for a speci�c task.
The design of these types of systems become very complex due to increase in
the complexity of the systems. ASICs are the dedicated hardware components
for the accelerated implementation of the computational complex parts for the
system. As stated above, due to increase in the complexity of the systems, the
design of these dedicated hardware also become complex and time-consuming.
Hardware description languages (HDLs) [17] are used for the register transfer level
(RTL) [18] implementation of these components. Cycle-by-cycle activity for RTL
implementation of these components is speci�ed, which is a low abstraction level.
For such a low level of implementation, advanced expertise in hardware design are
required, alongside being unmanageable to develop. The impact of these low-level
implementation of complex systems increase the time-to-market by taking more
design and development time.

High-level synthesis (HLS) and FPGAs in combination, is an intriguing solution
to these problems of longer time-to-market and to realize these heterogeneous sys-
tems [19]. FPGAs are used for the con�gurable implementation of digital integrated
circuits. Manufacturing cost is an important factor in the implementation of digital
ICs. The use of FPGAs as recon�gurable hardware, help us the fast implementation
and optimization by providing ability to recon�gure the integrated circuits, hence,
removing the extra manufacturing cost. It allows the designer to re-implement modi-
�cations made to the design, by changing the HDL code description, re-synthesize
and implement the design using same FPGA fabric by the help of implementation
tools. Thus HLS based FPGA implementation of digital systems can be helpful in
functional veri�cation, possible hardware implementation and large design-space
exploration of the systems. FPGA based implementation of user applications can be
used an intermediate implementation before the ASICs and SoC implementation.

C, SystemC and C++ etc. are the High-level languages (HLLs) being used for
the software programming and development. HLS tools take HLL as input and HDL
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description (circuit speci�cation) is generated automatically. This automatically gen-
erated circuit speci�cation performs the same functionality as software speci�cation.
Since, the bene�ts of HLS i.e. to have a new fast hardware implementation just by
changing the code in software, help software engineers with very little requirement
of the hardware expertise. The bene�ts of the HLS to hardware engineers are the fast,
rapid and high-level abstraction implementation of complex systems design, thus
increasing the possibility in design space exploration. For the fast and optimized
implementation of the complex systems and designs having FPGAs as the imple-
mentation technology, HLS based implementation provides signi�cant suitability in
terms of alternative design-space explorations by facilitating implementations of the
modi�cations made to the design [20].

The prominent developments in the applications of FPGA industry include the
use of FPGAs in the acceleration of the Bing search by the Microsoft and the Altera
acquisition by Intel [21]. These developments enhance the possibility of usability of
FPGAs in computing platforms with the help of high-level design methodologies.
Further recent applications of HLS include in the areas of machine learning, medical
imaging, neural networks etc. The primary reason behind the application of HLS in
above speci�ed areas is energy and performance bene�ts [22].

As hardware designs typically are more time consuming than equivalent soft-
ware designs, this thesis proposes a rapid prototyping �ow for FPGA-based video
processing system design. High-level synthesis tools translate a software design
into hardware descriptive language, which can be used for con�guring hardware
devices such as FPGAs. The video processing algorithm design of this thesis takes
advantage of a high-level synthesis tool from one of the major FPGA vendors, Xilinx.
However, high-level synthesis tools are far from being perfect. Users still need
embedded hardware knowledge and experience in order to accomplish a successful
design. This thesis focuses on interpolation �lter architecture design and imple-
mentation for high-performance video processing system designs using a high-level
synthesis. The consequent design results in a frame processing speed of 41 QFHD,
i.e. 3840x2160@41fps for H.264/AVC sub-pixel Luma interpolation, 46 QFHD for
HEVC luma sub-pixel and 48 QFHD for HEVC chroma interpolation. This thesis
shows the possibility of realizing a high-performance hardware speci�c application
using software. By comparing our approach with the approaches in other works,
the optimized interpolation �lter architecture proves to offer better performance and
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lower resource usage over what other works could offer. Its recon�gurability also
provides better adaptability of many video coding interpolation algorithms.

1.3 Problem Statement

In recent years, FPGA development has been moved towards higher abstraction levels.
The move not only helps improve productivity, but also lowers the barrier for more
algorithm designers to get access to the tempting FPGA platform. There is a wide
selection of tools available in the market that can be used for high-level synthesis.
Conventionally algorithm designers prefer using high-level languages such as C/C++
for algorithm developments, and Vivado HLS is one of the tools that is capable for
synthesis C/C++ code into RTL for hardware implementation. Nevertheless, most
high-level synthesis tools could not translate a high level implementation to a RTL
implementation directly, and users must restructure the high level implementations in
order to make them synthesizable and suitable for the speci�c hardware architecture.
Therefore, it becomes important to adapt to the high-level synthesis tool and to
discover approaches for achieving an ef�cient design with high performance and low
resource usage. The high-level synthesis tool used in this work is Vivado HLS from
Xilinx.

This thesis addresses the following issues:

1. How can engineers with limited FPGA experience quickly prototype an FPGA-
based SoC design for high performance video processing system?

2. How productive is Vivado HLS? What changes need to be made in order for a
software implementation to be synthesized to a hardware implementation?

3. How are the performance and area of video processing algorithms modelled
by Vivado HLS compared to that of RTL modelling from related works?

4. How are the performance and power consumption of a FPGA-based video
processing system compared to that of an Intel CPU based video processing
system?
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1.4 Contribution

This thesis work presents an FPGA-based video processing system rapid prototyping
�ow that aims to lower the boundary between software and hardware development.
The rapid prototyping �ow consists of two major parts: 1) the video processing
system architecture design, and 2) the video processing algorithms design. By un-
derstanding the underlying architecture of Xilinx’s Zynq platform, I can quickly
assemble a video processing system on the block level with minimum RTL modi�ca-
tions. The development period can be reduced from months to weeks. In addition,
since Vivado HLS does not provide a common structure for domain-speci�c algo-
rithm designs, this thesis proposed HLS based hardware architecture for interpolation
�lters of video coding algorithm designs in Vivado HLS. Several optimizations are
also done to the proposed interpolation �lter architecture so that it not only improves
the video processing rate, but also reduces the �ip-�op utilization and saves the LUT
utilization when comparing with similar works done in the literature. This work
demonstrates the possibility of rapid prototyping of a computation-intensive video
processing system with more than enough of the real-time processing performance.

1.5 Organization of the Thesis

This thesis is organized as the following: Chapter 2 discusses and compares the
sate-of-the-art video coding standards i.e. High Ef�ciency Video Coding (HEVC),
H.264/AVC and standardized extensions of HEVC. Also included in Chapter 2
are several related works that were done by others as well as some background
information related to the coding tools that have been added in 3D-HEVC. Moreover,
Chapter 3 describes the coding complexity analysis of 3D-HEVC. It identi�es the
computational intensive tools of 3D-HEVC encoder and decoder. Chapter 3 also
discusses the class-wise coding and decoding time distribution of different classes
(tools). In addition, Chapter 4 presents the High-level synthesis, available High-level
synthesis tools and Xilinx Vivado Design Suite. Chapter 5 describes the HLS based
implementation of interpolation �lters of HEVC and H.264/AVC, which is one of
the computational intensive part of the video coding algorithms. It includes the
performance and resource utilization comparison between my work and other works.
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Last but not least, Chapter 6 will conclude this thesis with discussion about the
contributions, challenges and future work.



Chapter 2

State-of-the-art Video Coding
Standards

For effective communication, standard de�ne a common language to be used between
different parties. The same holds equally valid for the video coding standards.
The common language that the video encoding and decoding components use for
communication and syntax of the bitstream, is de�ned by the video compression
standards. For the video compression standards, it is very important to support
ef�cient compression algorithms and allow ef�cient implementation of the encoder
and decoder.

Coding ef�ciency optimization is the most important and primary goal of majority
of the video coding standards. For speci�c video quality, coding ef�ciency can be
de�ned as, minimization of the bit-rate required for representing the speci�ed video
quality. Other way around, for a speci�c bit-rate, the increase in the video quality
can be termed as coding ef�ciency.

The goal of this chapter is to describe the state-of-the-art video coding stan-
dards being used i.e. High Ef�ciency Video Coding (HEVC) standard [5][23] and
H.264/AVC [24][6] comparative to their major forerunner including H.262/MPEG-2
Video [25][26], H.263 [27] and MPEG-4 Visual [28].
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2.1 History of The Standardization Process

An enabling technology for digital television systems worldwide was, the MPEG-2
video coding standard [25], which was an extension of MPEG-1. MPEG-2 was
widely used for transmission of TV signals of High de�nition (HD) and Standard
De�nition (SD) over a variety of transmission media such as terrestrial emission,
cable, satellite and for storage onto DVDs.

The popular growth of HDTV and its services increase the need for higher
coding ef�ciency. Coding ef�ciency enhancement allows the transmission of high
quality and higher number of video channels over already available digital media
transmission infrastructures e.g. UMTS, xDSL, Cable Modem etc. These mediums
allow less data rates as compared to the broadcast channels.

The evolution of video coding in applications of telecommunication include
the development of H.261 [29], H.262 [25][26], H.263 [27], H.264/AVC [24][6]
and H.265 (HEVC) [5] video coding standards. The prominent telecommunication
applications are wireless mobile networks, ISDN, LAN and T1/E1. To maximize the
coding ef�ciency, signi�cant efforts dealing with the loss/error optimization, network
types and formatting of the characteristic have been made. This evolution of the
video coding standards expanded the capabilities like video shaping and broadened
the application areas of the digital video.

Fig. 2.1 Video coding standardization scope [6].

The scope of the video coding standard is shown in Fig.2.1. The transportation
and storage media for video signal is not present in the scope of the video coding
standard. The standardization of the decoder is central to video coding standard in
all ISO/IEC and ITU-T standards. The standardization is about the syntax, bitstream
structure and procedure for decoding the syntax elements. This makes for all the
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decoders to produce the same type of output when an encoded input bitstream
conforming to the constraints of a speci�c standard is given. This limitation in
standard’s scope, allows the �exibility and freedom for optimized implementations
e.g. time-to-market, quality of compression, cost of implementation etc. But there
is no guarantee of reproduction quality as any crude coding technology can be
conforming to the standard.

2.2 H.264/AVC Video Coding

H.264/AVC macroblock basic coding structure is shown in Fig. 2.2. By splitting
the input video frame results in macroblocks, each macroblock is associated with a
speci�c slice, slice consists of several macroblocks. As shown, processing on each
macroblock of every slice is performed. Usually, one picture consists of various
slices, in that case parallel processing is possible by processing more than one
macroblocks in parallel.

Fig. 2.2 H.264/AVC macroblock basic coding structure.

The prominent applications areas of H.264/AVC for which the technical solutions
are designed include the following
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� DSL, cable, terrestrial, satellite etc.

� Storage on DVD, optical and magnetic disks etc.

� Services over mobile networks, LAN, modems, Ethernet etc.

� Multimedia services like Video-on-demand, MMS over ISDN, DSL, wireless
networks etc.

Some prominent features of the H.264/AVC are as follows [6].

� Supports motion compensation of small block sizes as 4 x 4 luma, hence, more
�exible.

� More accurate motion vector by supporting quarter-sample motion compensa-
tion.

� Supports picture boundary extrapolation technique.

� For ef�cient coding supports enhanced reference picture selection.

� More �exible selection of pictures ordering for display and referencing pur-
poses.

� Flexible picture referencing and representation methods.

� Supports weighted motion prediction.

� Supports "Skipped" motion inference in improved form and in addition to that
supports "direct" motion inference method.

� Intra coding based on directional spatial prediction.

� Supports In-the-loop deblocking �ltering.

For improvement in the coding ef�ciency, the following parts of the standard were
also enhanced:

� Supports block size of 4x4 transform.

� Supports block transform in hierarchical manner.
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� Supports 16-bit transform i.e. short, as comparative to 32-bit processing of the
previous standards.

� Inverse transform is more ef�cient in terms of video content equality after
decoding from all decoders.

� Includes CABAC (context-adaptive binary arithmetic coding) and CAVLC
(context-adaptive variable-length coding) , more powerful and advanced en-
tropy coding methods.

For the more robust and �exible operations, the new design features included in
H.264/AVC standard are as follows:

� For the ef�cient and robust header information conveyance the Parameter set
structure is provided.

� The logical data packet is used for every syntax structure, this is called NAL
unit. This structure provides more �exibility in terms of customization for
transmission of the video content over speci�c networks.

� Supports more �exible slice sizes.

� Supports Flexible macroblock ordering (FMO).

� Supports Arbitrary slice ordering (ASO), in real-time applications which can
improve delay e.g., internet protocol networks.

� Supports Redundant pictures, which improves robustness to data losses.

� Supports Data Partitioning, allows the partitioning of the slice syntax up-to
three different parts, for purpose of transmission, it depends on syntax elements
categorization.

� Supports SP/SI synchronization/switching pictures, picture types speci�cation
enables synchronization of the decoder in decoding process of an ongoing
video content stream produced by other decoders, hence improving the ef�-
ciency. This allows decoder switching between video content representations
for different data rates, losses or errors recovery, enabling trick modes such as
fast-reverse and fast-forward etc.
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2.3 High Ef�ciency Video Coding (HEVC)

Growth in the popularity of HD video, increase in diversi�cation of services, ap-
pearance of UHD and QFHD formats of video e.g. 4K or 8K resolution, demands
the higher coding ef�ciency as compared to H.264/AVC’s abilities. In addition to
that, the demand for higher coding ef�ciency becomes more strong while consider-
ing the multiview or stereo applications of higher resolution. Furthermore, tablet
PCs and mobile devices become the source of higher video contents consumption,
application like video-on-demand needs ef�cient network infrastructure. Accumula-
tively, all these factors are imposing big challenges on the current networks. Mobile
applications require higher resolutions and quality.

To address all existing H.264/AVC applications, need for a more ef�cient video
standard becomes obvious. The most recent video project of the ITU-T Video Coding
Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG)
standardization organizations is the High Ef�ciency Video Coding (HEVC). These
organizations are collaborating as Joint Collaborative Team on Video Coding (JCT-
VC) [23]. In 2013, HEVC’s �rst edition was �nalized in the form of an aligned draft
published by both ISO/IEC and ITU-T. For extending the applications areas of HEVC
standard more work was planned to support scalable, extended-range, 3D, multiview
and stereo video coding. HEVC has been designed for this purpose and speci�cally
to focus on two hot issues: increased applications of parallel architectures and higher
resolution for video processing. Like all previous video compression standards of
ITU-T and ISO/IEC, only the bitstream structure and syntax is standardized, and
also the procedure for decoding.

2.3.1 HEVC Feature Highlights and Coding Design

HEVC has been designed to accomplish many goals, including integration of trans-
port system, coding ef�ciency, resilience to data losses and architectures implemen-
tation using parallel processing.

Main features of the HEVC design are described brie�y in the following para-
graphs.



2.3 High Ef�ciency Video Coding (HEVC) 15

Video Coding Layer

Video coding layer utilize the hybrid approach for intraprediction, interprediciton
and 2-D transform coding, the same approach was used in all previous video coding
algorithms since H.261. Hybrid video encoder’s block diagram is shown in Fig. 2.3,
which could make a HEVC conformed bitstream.

Fig. 2.3 HEVC video encoder (Light gray elements show decoder).

Highlighted features of HEVC are given in the following text. A more detailed
version of these properties can be found in [9].

� Coding tree block (CTB) and Coding tree units (CTUs ): One luma CTB,
related chroma CTBs comprise the CTU. The size of the luma CTB can be
LxL, where L= 16, 32, or 64 pixels. The larger the size the better the compres-
sion. CTBs are partitioned into smaller blocks of quadtree-like structure and
signalling [30].

� Coding blocks (CBs) and Coding units (CUs) : One luma CB and two cor-
responding chroma CBs and the related syntax comprise a coding unit (CU).
CUs are partitioned into prediction units (PUs) and transform units (TUs) tree.
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� Prediction blocks (PBs) and Prediction units : Luma and chroma CBs can be
further partition in size and predicted from luma and chroma PBs depending
on the decision of the prediction-type. 64×64 down to 4×4 samples variable
PB sizes are supported in HEVC.

� Transform blocks (TBs) and Transform units (TUs): Transforms blocks are
used for the coding of prediction residual. Supported TB size are 32x32, 16x16
and 4x4.

� Motion vector signalling: In Advanced motion vector prediction (AMVP),
most probable candidates are derived from reference picture and the adjacent
PBs. For MV coding, a merge mode can be used. In merge mode, MVs
are inherited from the spatially or temporally neighbouring PBs. Direct and
improved skipped motion can also be used.

� Motion compensation: For the motion vectors (MVs), quarter-pixel precision
is used. 7-tap and 8-tap �lters are designed for the sub-pixel interpolation as
compared to the H.264/AVC six-tap �lters.

� Intrapicture prediction: 33 directional, DC (�at) and planar (surface �tting)
prediction modes are supported in HEVC. The encoding of the selected pre-
diction mode is performed based on neighbouring blocks previously decoded.

� Quantization control: HEVC supports uniform reconstruction quantization
(URQ). For different transform block sizes the scaling matrices for quantization
are used.

� Entropy coding: Context adaptive binary arithmetic coding (CABAC) method
is used. The improvements made to the entropy coding method includes
better coding performance, higher speed of throughput and reduction in the
requirements of the context memory.

� In-loop deblocking �ltering: More simpli�ed deblocking �lter in terms of
�ltering and decision-making, friendly in terms of parallel processing.

� Sample adaptive offset (SAO): Post deblocking in the interpicture prediction
loop, a new type of non-linear amplitude mapping is used, for the better
original signal reconstruction.
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Modi�ed Slice Structuring and Parallel Decoding Syntax

For slice data structure modi�cation and parallel processing enhancement for the
purpose of packetization, new features are added in the HEVC. In the context of a
particular application, these features have speci�c bene�ts.

� Tiles: Partitioning a picture into rectangular area (Tiles) is supported in HEVC.
Parallel processing capability can be increased by application of the concept
of tiles. Tiles can be decoded independently with some common header
information. Tiles support parallelism in terms of subpicture/picture i.e. coarse
level of granularity.

� Wavefront parallel processing: WPP supports parallelism in terms of slice
i.e. at a �ne level of granularity. It gives better performance of compression as
compared to tiles and removes the visual artefacts which may be present in
case of tiles.

� Dependent slice segments: Dependent slice segment structure enables the
fragmented packetization (separate NAL unit) of the data of a speci�c tile
or wavefront entry. It improves the performance by reducing the latency.
Low-level encoding may takes advantage of the dependent slice segments.

2.4 Standardized Extensions of HEVC

HEVC extensions can be divided into three types:

1. Range extensions

2. Scalability extensions

3. 3D video extensions

All of these extensions are brie�y described in the following paragraphs:

2.4.1 Range Extensions

The structures of enhanced chroma sampling 4:2:2 and 4:4:4 and pixel bit depths
more than 10 bits are supported in the range extensions of the HEVC. Range ex-
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tensions are applicable to the areas of screen content coding, direct source content
coding of the RGB, auxiliary pictures coding and lossless and high bit-rate coding.
The draft range extensions can be found in [31].

2.4.2 Scalability Extensions

The coarse grain SNR and spatial scalability are possible through scalability exten-
sions of the HEVC also termed as "SHVC". [32] provides the draft text of scalability
extensions. SNR and spatial scalability in SHVC can combined with already avail-
able temporal scalability [33]�[34]. Resampling of the decoded reference layer
picture is performed when spatial scalability is used. This resampling is performed
by the use of upsampling �lter de�ned speci�cally for the spatial scalability scenario.

2.4.3 3D Video Extensions

Depth for a visual scene can perceived by the multiview and 3D video formats
in combination with the proper 3D display system. There are two type of the 3D
displays available in the market:

1. Stereoscopic displays: Special glasses are required to perceive the depth of
the view.

2. Auto-stereoscopic displays: No requirement of the glasses to perceive the
depth of the scene, instead, view-dependent pixels are emitted. Auto-stereoscopic
displays perform depth-image based rendering (DIBR). For DIBR systems,
depth is part of the input coded bitstream. 3D formats in form of video plus
depth is an important category of 3D formats.

Multiview HEVC

Mutiview HEVC is the most simple and straightforward architectural extension of
HEVC, also termed as MV-HEVC, based on H.264/AVC MVC design principles
[35], [36]. The draft text can be found in [37].
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Fig. 2.4 3-view case: Prediction structure of Multiview HEVC.

The 3-view case prediction structure of the multiview is shown in Fig. 2.4.
HEVC is capable of �exible management of the reference pictures. This capability
of the HEVC enables the inter-view sample prediction.

Fig. 2.5 HEVC Inter-view motion prediction.
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Multiview HEVC With Modi�cation in Block-Level Tools

The correlation between views exploited through residual and motion data. Block-
level changes make possible the exploitation of this correlation as shown in 2.5

2.5 3D High Ef�ciency Video Coding (3D-HEVC)

3D-HEVC is the HEVC extension for which the working draft and the reference
test model are speci�ed in [38], [39]. The advanced coding tools for multiple views
are included in this extension. [40] becomes the basis for the 3D-HEVC. Prominent
3D-HEVC tools are presented in the following paragraphs.

2.5.1 Neighbouring Block-Based Disparity Vector Derivation

Neighbouring block based disparity vector (NBDV) is the 3D-HEVC tool used for
the identi�cation of similar blocks in multiple different views. This tool’s design is
very similar to the merge mode and AMVP in HEVC. For inter-view pixel prediction
of spatial and temporal neighbouring blocks, NBDV is used which make use of
already available disparity vectors [41].

Fig. 2.6 shows the spatial neighbouring blocks used for the NBDV process, these
are same blocks as in merge modes/AMVP of HEVC. The order of the block’s access
is also same as in merge mode: A1, B1 , B0, A0, and B1.

2.5.2 Inter-View Motion Prediction

The merge mode modi�cation by the addition of more candidates make the realization
of the inter-view motion prediction. No modi�cation to the AMVP is made. The new
merge list has six candidates. The construction of the list is still same as in HEVC.
Additional two candidates can be put into the list as described in the following text.

NBDV provides the index of the reference picture and motion vector of block
found, as shown in Fig. 2.5. This is the �rst candidate inserted into the merge
list. NBDV also provides the disparity vector and index of the reference inter-view
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picture. This is the second candidate inserted in merge list. Disparity vector insertion
into the candidate list does not depend on existence of the inter-view candidate [42].

Fig. 2.6 Spatial Neighbouring blocks for NBDV.

Fig. 2.7 shows that the TMVP co-located block of view 1 at time 1 for current
block, have a reference index 0 and disparity vector according to the current pic-
ture’s temporal reference. That is why the TMVP candidate is usually regarded as
unavailable. The candidate is regarded as available by changing the reference target
index to 2 i.e. according to the inter-view reference picture.
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Fig. 2.7 3D-HEVC temporal motion prediction.

2.5.3 Inter-View Residual Prediction

In case of two-views residual signal motion-compensation, the advantage of the
correlation is taken by the application of advanced residual prediction (ARP) [43].



2.5 3D High Ef�ciency Video Coding (3D-HEVC) 23

Fig. 2.8 3D-HEVC Temporal motion vector prediction.

In current non-base view i.e. for the block DC, motion compensation is carried
out using the VD motion vector as shown in as shown in Fig. 2.8. The NBDV vector
identi�es the BC inter-view block. Then, by the use of VD, the motion compensation
is performed by the base view reconstructed Br and BC. Addition of this predicted
signal to the signal predicted by motion compensation of Dr is performed. The
precision of the current block’s residual signal is best as same VD vector is used. This
residual prediction can be can weighted by 1 or 0.5, with ARP enabled.

2.5.4 Illumination Compensation

The calibration of the cameras in lighting effects and colour transfer is very important.
Otherwise, the prediction of the cameras recording the same scene may fail. For
improvement in the coding ef�ciency of the blocks predicted through inter-view
pictures, new coding tool named as illumination compensation is developed [44].
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The disparity vector of the current PU is used for the identi�cation of reference view
neighbour sample as shown in Fig. 2.9.

Fig. 2.9 Illumination Compensation.

2.5.5 Multiview HEVC With Depth

In 3D-HEVC, Depth maps are used in the investigation of compression formats
such as video-plus-depth. The 3D data consists of multiple video and depth data
components. For their ef�cient implementation, many new coding tools are added in
3D-HEVC for exploiting the correlation among video and depth data components.
For coding of these types of formats, �rst video component is assumed as to be
coded by 2D HEVC. This makes the codec compatible with the 2D video service.
For the dependent video and depth maps, speci�c 3D tools are added in 3D-HEVC.
Each block can be optimally coded by the application of appropriate tools from a set
of 3D and 2D tools.
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Partition-Based Depth Intra Coding

Coding tools speci�c to the depth for ef�cient depth information representation, are
added in the 3D-HEVC design. These tools allow the non-rectangular partitioning of
the depth blocks. Depth coding modes such as depth modelling modes (DMM) [45],
simpli�ed depth coding (SDC) [46] and region boundary chain coding (RBC) [47]
are used for partition-based depth intra coding. Fig. 2.10 shows the division of depth
PU as one or two parts. DC value is used for representing each part of the depth PU.

Fig. 2.10 Partitioning of depth PU.

Two types of depth partitioning are available in case of DMM. These are contour
and wedge-shaped pattern. As shown in Fig 2.10(a), In case of the wedge-shaped
pattern the depth PU is segmented by a straight line. Connected chain in a series
fashion are used for segmenting the depth PU in case of RBC as shown in Fig.
2.10(b). Fig. 2.11 shows the partitioning of the depth PU based on contour pattern.
As shown, these are irregular partitions with separate sub-regions.
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Fig. 2.11 Contour partition of a block.

Motion Parameter Inheritance

The motion parameters of the texture block can be used for the depth block. Merge
list of current depth block is modi�ed by the addition of one more candidate, making
the inheritance of motion parameters of texture block for the corresponding depth.
The co-located block of texture helps in the generation of the extra candidate [48].

View Synthesis Prediction (VSP)

For the reduction of the inter-view redundancy, the VSP approach is used. In this
approach for texture view warping depth data information is used. By this method a
current view predictor can be generated [49].



Chapter 3

Coding Complexity Analysis of
3D-HEVC

Recent advancements in video technology increased the interest in 3D Video. Video
sequences are found in mobile, 3D cinema, internet and 3D television broadcast
channels [50]. The quality of the video sequences is rapidly increasing due to the
improvements in the video compression techniques and tools. Also, the improve-
ments in the 3D video display technologies have led to an increased demand for
3D videos. Autostereoscopic displays are the future of displaying technologies in
3D Cinemas, 3D-TV and home entertainment. Video contents in resolutions are
getting high de�nition and ultra-high de�nition for mobile and home applications
respectively. 3D video features are already being integrated in most of the video pro-
cessing devices including capturing, processing and display devices. The demand for
compression of videos is also increased. The most recent and advanced standard for
video compression is High Ef�ciency Video Coding (HEVC) [9]. After HEVC, focus
is on extensions of the standard to support broad range of applications. 3D-HEVC is
one of the extensions of High Ef�ciency Video Coding. Advanced coding algorithms
are developed for 3D video coding. To analyse and assess the complexity, pro�ling
of the reference software of 3D-HEVC is carried out using gprof and gcc compiler
of the standard video sequences mentioned in the Common Test Conditions (CTC).
Results based on pro�ling show that alongside motion estimation and interpolation
�lters, majority of the encoding time (18-26%) of total encoding time is consumed
by the Renderer model. Thus, 3D-HEVC Renderer model is identi�ed as one of the
computational intensive part of the standard alongside motion estimation and inter-
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polation �lters. While some papers in the literature are available on the complexity
evaluation of some tools of 3D-HEVC encoder/decoder, no results are currently avail-
able to speci�cally explore the complexity and hardware implementation analysis of
renderer model of 3D-HEVC used for the View Synthesis Optimization (VSO). [51]
presents time pro�ling of 3D-HTM 10.2 reference software, in which the complexity
of texture and Depth Modelling Modes (DMMs) used for depth maps encoding, is
given. Inter-prediction encoding time percentage for 3D-HTM 8.0 reference software
is given in [52], no information is presented regarding the complexity analysis of
rendering distortion estimation model for 3D-HEVC.

Renderer model is used for RDO of depth maps coding by estimation of synthe-
sized view distortion. Depth maps are used for virtual view synthesis. Depth maps
lie at the core of 3D video technologies. Distortion in depth maps coding effect the
quality of intermediate virtual views generated during the process of DIBR. Because
of these important observations and based on the pro�ling result, in Chapter 6, we
have focused on the Renderer model. Identi�cation of computational hotspots help
both in decreasing the complexity and increasing the performance by developing the
ef�cient tools and by implementing the accelerated software and hardware solutions
for real time visualization of the 3D video coding standard.

3.1 3D-HEVC Tools

3D-HEVC basic structure is shown in Fig. 3.1. 3D-HEVC is an enhanced version of
HEVC codec, for coding dependent views, the base view is coded using the HEVC
codec.

Supplementary coding tools and techniques, as shown in Fig. 3.2, take into
account the already coded data of other views, hence reducing the data redundancy.

3.1.1 Dependent View Coding

Dependent view coding in 3D-HEVC is performed by applying some supplementary
coding methods in addition to the basic tools of independent view coding. Additional
coding methods are used to decrease the data redundancy in the dependent view as
described in the following paragraphs.
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Fig. 3.1 Block Diagram of basic structure of 3D-HEVC.

Disparity-Compensated Prediction

Disparity Compensated Prediction (DCP) is used for the inter-view prediction of de-
pendent views. The incorporation of DCP affects only the reference list construction
procedure i.e. already coded pictures of other views and same access unit are added
in the reference picture lists.

Inter-view Motion Prediction

Inter-view motion prediction is used for eliminating the data redundancy of the
multiple views. The detailed description of Inter-view motion prediction is given in
[53]. The motion information of current block of dependent view is obtained from
corresponding block in the reference view.
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Fig. 3.2 Block Level Representation of 3D Tools of HEVC.

Advanced Residual Prediction

In [54] the Advanced Residual Prediction (ARP) is described in detail. The correla-
tion between the residual of already coded view and residual of current view also
exist. To compensate this correlation advanced interview prediction is used.

3.1.2 Depth Maps Coding

Depth maps represent the distance of the objects in scene from the camera. Depth
maps are used for view synthesis of intermediate views in multi-view generation
systems. Depth maps consist of constant value regions with sharp edges. For depth
maps intra-prediction, additional coding tools are used.
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Depth Modelling Modes

In [55] depth modelling modes are introduced for coding of the depth maps intra-
prediction. These tools divide the depth maps in two different non-rectangular
regions of constant values for intra coding.

Motion Parameter Inheritance

Partitioning of a block to sub-blocks and motion information of the current block of
depth map can be inherited from the corresponding block of texture as in [56].

3.1.3 Encoder Control

In 3D-HEVC, encoder mode is decided based on Lagrangian cost measure. Depth
maps added for virtual view synthesis, the distortion measure for the depth maps
can be observed only in synthesized views as described in [57]. Synthesized View
Distortion Change (SVDC) is used for ef�cient estimation of distortion in rendered
synthesized views due to distortion in depth maps coding.

3.2 Complexity Analysis

3D-HEVC is based on video plus depth format. Depth maps facilitate the synthesis of
intermediate views on the decoder side for applications like 3D-TV, Free viewpoint
TV etc. The compression errors of depth maps result in synthesis artefacts for
the intermediate views rendered through Depth Image Based Rendering (DIBR)
methods. To remove these coding artefacts in the virtual view synthesis process,
the Synthesized View Distortion Computation (SVDC) models are included in 3D-
HEVC. Encoding and decoding time Complexity analysis of 3D-HEVC standard
is presented in this section. Pro�ling of the reference software of 3D-HEVC is
carried out using gprof and gcc compiler of the standard video sequences mentioned
in the Common Test Conditions (CTC). Results based on pro�ling show that (18-
26%) of total encoding time is consumed by the Renderer model. Alongside other
compute-intensive parts i.e. Motion Estimation (ME) and Interpolation Filtering,
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3D-HEVC Renderer model is identi�ed as one of the computational intensive part of
the standard.

The 3D-HTM software provides the reference implementations of 3D-HEVC
video encoder and decoder. Our aim is to identify computational hotspots of the
standard. Implementation and complexity analysis of the standard may be assessed
based on these computational hotspots. The detailed analysis of 3D-HEVC coding
tools based on pro�ling results is given as in the following paragraphs.

3.2.1 Pro�ling of 3D-HTM Encoder

We have performed the pro�ling of latest available 3D-HTM Software Encoder
Version 15.0 based on HM Version 16.6. GNU gprof is used for pro�ling. Compu-
tationally intensive parts are identi�ed based on the pro�ling. CTC of 3DV Core
Experiments are used for encoding the video sequences, used for pro�ling of the
encoder [58]. Eight test video sequences (1024 x 768 pixels and 1920 x 1088 pixels)
of 3DV Core Experiments are used for encoding at �ve different QP values (25, 30,
35, 40, 45). Two types of Encoder con�guration i.e. Random Access (RA) and All
Intra (AI), are used for the experiments. We have used the three-view case (C3)
test scenario of the multiview/stereo video coding with depth data. Majority of the
encoding time is spent in classes and functions shown in Table 3.1. Encoding times
are obtained on an Intel Xeon-based (16 Core) Processor (E312xx clocked at 1.99
GHz) and using gcc 4.4.7.

Pro�ling Results comparison of 3D-HEVC and HEVC Encoder

Although in [51] and [52] partial pro�ling results of 3D-HEVC texture and depth
maps are presented. We cannot directly compare our pro�ling results with results
presented in [51] and [52] because our results are more detailed up-to class/function
level. Table 3.1 shows the comparison between the pro�ling results of encoder of
3D-HEVC and HEVC [59] standards for Random Access (RA) and All Intra (AI)
con�gurations, respectively. As shown in the Table 3.1, TComRdCost class consumes
majority of the time spent in encoding i.e. about 31.3-35.4% and 9.8-38.8% in both
con�guration of 3D-HEVC and HEVC, respectively. Motion Estimation (ME), Inter
view residual, Inter view motion prediction and other distortion operations takes
place in TcomRdCost class. Operations like Sum of Absolute Difference (SAD),
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Hadmard transform (HAD) and Sum of Squared Error (SSE) for Rate Distortion
Computation are performed. Depth maps estimation used in inter view motion
prediction for the calculation of disparity vector derivation in dependent views is
also calculated in this class. TRenSingleModelC class consumes about (26.8% and
18.3 %) of time. Process like VSO and SVDC estimation takes place in this class.
Process of rendering is used for Virtual View Synthesis generation. In Random
Access (RA) con�guration, the time taken by TComInterpolationFilter class is about
(19.3%) and (19.8%) , respectively, where the motion compensation Vertical and
Horizontal Filtering (VHF) occurs. Interpolation �ltering is used, whenever the
inter-view residual prediction, de-blocking and View Synthesis prediction is applied.

Table 3.1 Class-wise time distribution 3D-HEVC vs HEVC Encoder.

Function / Class
3D-HEVC HEVC [59]

AI% RA% AI% RA%

TComRdCost 35.4 31.3 9.8 38.8
TRenSingleModelC 26.8 18.3 Nil Nil
TComInterpolationFilter 0.0 19.3 0.0 19.8
TComTrQuant 9.0 10.0 24.4 10.7
TEncSearch 8.7 3.6 11.8 7.4
TComPrediction 5.0 0.88 10.0 1.1
partialButter�y* 2.3 4.1 8.7 4.0
TEncSbac 2.9 1.8 8.4 3.5
TRenModel 0.4 2.3 Nil Nil
TComDataCU 2.2 1.0 5.8 2.7
TComPattern 2.2 0.2 6.6 0.4
TComYuv 0.2 1.8 0.1 1.7
TEncEntropy Nil Nil 1.2 0.6
TEncBinCABAC* Nil Nil 2.2 0.9
memcpy/memset Nil Nil 11.0 7.1

Total percentage of time 95.1% 95.3% 100% 98.7%

In 3D-HEVC and HEVC, TComTrQuant class accounts for about (9% and 10%)
and (24.4% and 10.7%) of total encoding time, respectively. In TComTrQuant the
process of Rate-Distortion Optimized Quantization (RDOQ) occurs. As the name of
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class shows, in TComTrQuant, the process of rate and distortion optimized transform
and quantization takes place. TEncSearch accounts for about (8.7 % and 3.6 %) and
(11.8 % and 7.4 %) of the time in both con�gurations of HEVC encoders, respectively.
In TEncSearch , the encoder searches for the cost and rate-distortion computation of
modes for inter, intra, depth intra for DMM, for motion estimation processes and
Advanced Motion Vector Prediction (AMVP) of HEVC based standards. Similarly
for intra prediction classes like TComPrediction and TComPattern contribute about
(2% to 7%) to the total encoding time in both con�guration of 3D-HEVC. Actual
optimized Transform takes place in partialButter�y* and contribute about (2.3 %
and 4.1 %) and (2.3 % and 4.1 %) in both con�gurations of the standards. Other
classes like TEncSbac,TComDataCU and TComYuv contribute about (1%-3%) to
total encoding time in both con�gurations.

3.2.2 Pro�ling of 3D-HTM Decoder

Pro�ling of 3D-HTM Software Decoder Version 15.0 based on HM Version 16.6 is
carried out using GNU gprof. Computationally intensive critical parts of decoder are
identi�ed based on the pro�ling information.

Pro�ling Results comparison of 3D-HEVC and HEVC Decoder

Table 3.2 shows the decoding time distribution of 3D-HEVC and HEVC Decoder.
Classes contributing signi�cantly in terms of time consumption, in the decoding
process, are shown. In all intra con�guration more than quarter of total time is spent
in TComInterpolationFilter. In the process of motion compensation, interpolation
�ltering is used. TComCUMvField, TComLoopFilter, TComDataCU classes also
account for most of the decoding time. In these classes the processes internal to
CU, advance motion vector prediction and �ltering takes place. TComYuv is a
general YUV buffer class, it manages the memory related functionalities of decoder.
In random access con�guration, partialButter�yInverse, TComPattern, TDecCu
and TComLoopFilter classes are computationally intensive classes in the decoding
process. In these classes processes related to inverse transform, functions related to
coding unit, intra prediction and loop �ltering takes place. In HEVC and 3D-HEVC,
the computational complexity of classes varies from one standard to the other, as
observed from the pro�ling results.
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Table 3.2 Class-wise time distribution 3D-HEVC vs HEVC Decoder.

Function / Class
3D-HEVC HEVC [59]

AI% RA% AI% RA%

TComInterpolationFilter 0.0 26.96 0.0 24.8
TComCUMvField 7.39 16.03 Nil Nil
TDecCu 15.97 3.69 7.2 2.6
partialButter�yInverse 15.83 1.80 15.9 7.6
TComYuv 0.83 14.42 0.5 8.2
TComDataCU 7.54 13.89 7.5 7.1
TComLoopFilter 13.73 8.94 12.9 12.4
TComPattern 10.19 0.0 9.4 2.6
TComTrQuant 8.07 2.74 8.7 4.2
TComPrediction 5.22 2.06 5.1 2.3
TDecSbac 3.84 0.0 6.2 2.8
TDecBinCABAC 2.93 .42 5.3 2.3
TComSampleAdaptiveOffset 2.64 1.04 3.8 2.4
TComPicYuv 0.0 2.3 Nil Nil
writeplane 1.06 1.68 Nil Nil
TDecEntropy 1.23 .71 1.4 1.0
memcpy/memset Nil Nil 6.2 10.1

Total percentage of time 96.47% 96.68% 90.1% 90.4%

3.3 Identi�ed Computational Complex Tools

Fig. 3.3 shows the identi�cation and mapping of computationally intensive parts of
the 3D-HTM standard. The identi�cation of these parts is carried out by mapping
the pro�ling results of C++ HTM encoder and decoder classes to 3D-HEVC High
level encoder coding tools. From the pro�ling results, it is identi�ed that the major
part of the encoding time of 3D-HEVC is consumed in motion estimation including
interview motion prediction, encoder control regions consisting of the VSO, SVDC
by the use of rendering method and interpolation �lters, as shown in Fig. 3.3.
Identi�ed computational intensive parts of 3D-HEVC standard are listed as follows:
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1. Motion Estimation (ME)

2. Synthesized View Distortion Change (SVDC)

3. Interpolation Filters

Fig. 3.3 Identi�cation and mapping of Computationally Complex parts of 3D-HEVC.



Chapter 4

High-Level Synthesis

In this chapter, an analysis of HLS techniques, HLS tools, current HLS research
topics are presented. For the automatic design of customized application-speci�c
hardware accelerators, academia and industry are working together. Three academic
tools considered are Delft workbench automated recon�gurable VHDL generator
(DWARV ) [60], BAMBU [61], and LEGUP [62] alongside many other commercial
available tools. Many research challenges are still open in HLS domain.

4.1 What is High-Level Synthesis?

Nowadays, heterogeneous-systems are being adopted as the energy-ef�cient, high-
performance and high-throughput systems. The reason behind this is the impossibility
of the further scaling of the clock frequency. These systems consist mainly of two
parts i.e., the application-speci�c integrated circuits (ASICs) and the software proces-
sor [16]. Each part of the system is dedicated for a speci�c task. The design of these
types of systems become very complex due to increase in the complexity of systems.
ASICs are the dedicated hardware components for the accelerated implementation
of the computational complex parts for the system. As stated above, due to increase
in the complexity of systems, the design of these dedicated hardware also become
complex and time-consuming. Hardware Description Languages (HDLs) are used
for the register transfer level (RTL) implementation of these components. Cycle-
by-cycle activity for RTL implementation of these components is speci�ed, which
is a low abstraction level. For the such a low level of implementation, advanced
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expertise in the hardware design are required, alongside being unmanageable to
develop. The impact of these low-level implementation of complex systems increase
the time-to-market by taking more design and development time.

High-level synthesis (HLS) and FPGAs in combination, is an intriguing solution
to these problems of longer time-to-market and to realize these heterogeneous sys-
tems [19]. FPGAs are used for the con�gurable implementation of digital integrated
circuits. Manufacturing cost is an important factor in the implementation of digital
ICs. The use of FPGAs as recon�gurable hardware, help us the fast implementation
and optimization by providing the ability to recon�gure the integrated circuits, hence,
removing the extra manufacturing cost. It allows the designer to re-implement modi-
�cations made to the design, by changing the HDL code description, re-synthesize
and implement the design using the same FPGA fabric by the help of implementation
tools.

C, SystemC and C++ etc. are High-level languages (HLLs) being used for the
software programming and development. HLS tools take HLL as input and then
HDL description (circuit speci�cation) is generated automatically. This automati-
cally generated circuit speci�cation perform the same functionality as the software
speci�cation. Since, the bene�ts of HLS i.e. to have a new fast hardware implemen-
tation just by changing the code in software, help software engineers with very little
requirement of the hardware expertise needed. The bene�ts of the HLS to hardware
engineers include are the fast, rapid and high-level abstraction implementation of
complex systems design, thus increasing the possibility in design space exploration.
For the fast and optimized implementation of the complex systems and designs hav-
ing FPGAs as the implementation technology, HLS based implementation provides
signi�cant suitability in terms of alternative design-space explorations by facilitating
implementations of the modi�cations made to the design [20].

The prominent developments in the applications of the FPGA industry includes
the use of FPGAs in the acceleration of the Bing search by the Microsoft and the
Altera acquisition by Intel [21]. These developments enhance the possibility of
usability of FPGAs in computing platforms with the help of the high-level design
methodologies. Further recent applications of HLS include in the areas of machine
learning, medical imaging, neural networks etc. The primary reason behind the
application of HLS in above speci�ed areas is due to the energy and performance
bene�ts [22].
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4.2 Overview of High-Level Synthesis Tools

HLS tools overview is presented in this section. As shown in Figure 4.1, HLS tools
are presented by classifying the design input language. Two classes of the tools
are made based on input languages. First category of tools accept general-purpose
languages (GPLs) and the second category of the tools accept domain-speci�c
languages (DSLs) as input. Further splitting of the DSLs tools is made on the basis
of tools invented for GPL-based dialects and for a speci�c tool-�ow. The tools
are categorized, in each category red, blue and green fonts are used for the tools.
Where red shows the tool is obsolete, blue represents N/A i.e. no information about
the usability status of the tool and green shows the tool is still in use. The �gure
legends show the application areas of the tool. The use of SystemC or DSLs as input
language increase the chances of tools adoption by the software developers.

In the following paragraphs we presented available commercial and academic
HLS tools with brief description. Information regarding the target application domain,
automatic generation of test bench and support for �xed and �oating arithmetic can
found in [63].

4.2.1 Academic HLS Tools

� DWARV: Developed by ACE, this tool is based on commercial infrastructure
of CoSy compiler [60], it has robust and modular back-end.

� BAMBU: Developed by Politecnico di Milano, has the ability to produce
Pareto-optimal solutions to trade-off resource and latency requirements [61].

� LEGUP: Developed by University of Toronto, this tool is based on virtual
machine compiler framework (LLVM) [62]. Supports OpenMP and Pthreads
i.e. parallel hardware are synthesized automatically from parallel software
threads.
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Fig. 4.1 HLS Tools Classi�cation.

4.2.2 Other HLS Tools

� CyberWorkBench: Speci�cally developed for system-level design accepting
behavioural description language (BDL) as input [64].

� Bluespec Compiler (BSC): Design language is Bluespec System Verilog
(BSV), special expertise are required for the designers to use BSV [65].

� PipeRench: Originally developed for streaming applications for producing
recon�gurable pipelines [66].

� HercuLeS: Based on a typed-assembly language accessible through GCC
Gimple and used for only FPGA targeted applications [67].
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� CoDeveloper: Developed by Impulse accelerated technologies, C-language
based Impulse-C, only streaming and image processing applications are sup-
ported [68].

� DK Design Suite: Design language is Handel-C, an extended hardware fo-
cussed version of C language [69].

� Single-Assignment C (SA-C): Design language is based on C-language, only
one time setting of variables is supported [70].

� Garp: Main aim of this project was the loops acceleration of general-purpose
(GP) software services [71].

� Napa-C: Developed at Stanford University, this was the �rst project which
considers systems containing con�gurable logic and microprocessors compila-
tion based on high-level synthesis [72].

� eXCite: Supports manual insertion of communication channels between hard-
ware and software [73].

� ROCCC: Mainly developed for parallel implementation of computational
dense heavy applications [74]

� Catapult-C: HLS tool initially developed for ASICs but now it is used for
both ASICs and FPGA [75].

� C-to-Silicon (CtoS): Developed by Cadence used for both data�ow and con-
trol applications. SystemC is the input language [76].

� SPARK: Targets image processing and multimedia applications, generated
VHDL and can be implemented on FPGA and ASICs [77].

� C to Hardware Compiler: Application speci�c processor core based hard-
ware design with manual veri�cation [78].

� GAUT: This can produce communication, memory and accelerator hardware
units with automatic testbench generation [79].

� Trident: Produce VHDL based hardware accelerators for �oating point appli-
cations [80].
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� C2H: Technology dependent tool targeting Altera soft processor and Avalon
bus based hardware accelerator units [81].

� Synphony C: HLS tool Developed by Synopsys for DSP hardware design
supports loop pipelining and loop unrolling [82].

� MATCH: Implementation of image and signal processing heterogeneous
systems based on MATLAB code [83].

� CHiMPS compiler: Targets high performance applications by optimized
implementation of FPGA memories [84].

� DEFACTO: Supports software/hardware co-design for computational inten-
sive applications [85].

� MaxCompiler: Accepts java-based MaxJ as input language and produces
Maxeler hardware based data-�ow speci�c hardware engines [86].

� Kiwi: Generates verilog based FPGA co-processor from C# code [87].

� Sea cucumber: Java-based compiler produces electronic design interchange
format netlists [88].

� Cynthesizer: Supports formal veri�cation between gates and RTL, FP opera-
tions and power analysis [89].

� Vivado HLS: AutoPilot [90] initially developed by AutoESL, later Xilinx
acquired AutoPilot in 2011 and it becomes Vivado HLS [91]. Xilinx HLS
is based on LLVM and released in early 2013. This improved product in-
cludes in it, a complete environment for the design with rich characteristics
for generation of �ne-tune HDL from HLL. Accepting C++, C and SystemC
as the input and generating hardware modules in Verilog, VHDL and Sys-
temsC. At the time of compilation it gives the possibility of applying various
optimizations such as loop unrolling, operation chaining and loop pipelining
etc. Furthermore, memory speci�c optimizations can be applied. For the
simpli�cation of accelerator integration, both, shared and streaming mem-
ory interfaces are supported. We have also adopted Vivado Design Suite for
hardware implementation of interpolation �lters.
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4.3 HLS Optimizations

For improvement of accelerators performance, HLS tools characterize many opti-
mizations. The basis for these optimizations are the compiler community and some
are hardware speci�c. Current hot area of research for the HLS community is HLS
optimizations. In this section we will discuss some of these optimizations in the
following paragraphs.

4.3.1 Operation Chaining

This optimization execute operation scheduling for the speci�ed clock period. In a
single clock cycle, by the use of this optimization, two combinational operators can
be chain together removing the false paths [92].

4.3.2 Bitwidth Optimization

By the use of bit-width optimization, the number of bits needed for the data-path
operators are reduced. All the non-functional requirements such as power, area and
performance are impacted by the application of this optimization. It does not affect
the behaviour of design.

4.3.3 Memory Space Allocation

Distributed block RAMs (BRAMs) are present in FPGAs as form of multiple memory
banks. The partitioning and mapping of the software data structures is supported
by this structure of the FPGAs. It makes the fast memory accesses implementation
at minimum cost. Other way around, the memory ports are very limited in these
elements. To con�gure and customize the memory accesses may need the making of
an ef�cient and optimized architecture based on multi-bank in order to reduce the
performance limitation [93].
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4.3.4 Loop Optimizations

Loops are the compute-intensive parts of the algorithms. Hardware acceleration for
these types of algorithms having compute-intensive loops is signi�cantly important.
Loop pipelining is major performance optimization factor for the hardware imple-
mentation of the loops. Loop-level parallelism can be exploited by this optimization,
if the data dependencies are mitigated, this optimization allows a new loop iteration
before �nishing of its predecessor. This idea of loop pipelining is related to the
software pipelining [94], very long instruction word processors (VLIW) already use
this concept. To fully exploit the advantage of parallelism, combination of the loop
pipelining and multi-bank architecture is frequently used [93].

4.3.5 Hardware Resource Library

In HLS, meeting the timing requirements for ef�cient implementation and minimiz-
ing the resources usage, it is very necessary to to have the knowledge of how to
implement each operation. The given behavioural speci�cation is �rst inspected
by the front-end phase of the HLS implementation. This inspection identi�es the
characteristics of operations e.g operand type (�oat and integer), operation type
(arithmetic or non-arithmetic), bit-width etc. Some of the operations get bene�ted
from some speci�c optimizations. For example, division and multiplications by a
constant value are transformed into operations of adds and shifts [95], [96] for the
improvement of the timing and area. The resulting timing and resources of the circuit
are heavily impacted by this methodology. So, for ef�cient HLS, the composition of
this type of library is very crucial.

4.3.6 Speculation and Code Motion

Extraction of parallelism can be done by the use of HLS scheduling techniques.
Usually, the parallelism extraction lies within the same control area (same CDFG
block), thus resulting in performance limitation of the accelerator speci�cally in
control-intensive systems. A technique known as the Speculation, is used for the
code-motion that makes the operations to be shifted with their execution traces.
Thus, this code-motion technique anticipate those operations before their conditional
constructs [97]-[98].



4.4 Xilinx Vivado Design Suite 45

4.3.7 Exploiting Spatial Parallelism

The spatial parallelism is a hardware acceleration technique. By applying this tech-
nique, the hardware may be accelerated as compared to the software implementation.
In this technique, for the concurrent execution (spatial parallelism) of the hardware
units, multiple hardware units are instantiated.

4.3.8 If-Conversion

A well-known software transformation technique is If-conversion [99]. This tech-
nique allows the predicated execution. This means that, the execution of an instruc-
tion will only be performed if its predicate evaluates to true. By application of this
technique, number of parallel operations are increased. The other advantage is the
facilitation of pipelining by the removal of control dependencies in the loop, in turn
which may result in the shortening of loop body schedule. On average, 34% im-
provement is caused by this technique in software [100]. The condition for enabling
of the if-conversion is, when branches have balanced requirement of cycles for their
execution.

4.4 Xilinx Vivado Design Suite

As stated earlier, AutoPilot [90] initially developed by AutoESL, later Xilinx ac-
quired AutoPilot in 2011 and it becomes Vivado HLS [91]. Xilinx HLS is based on
LLVM and released in early 2013. This improved product includes in it, a complete
environment for the design with rich characteristics for generation of �ne-tune HDL
from HLL. Accepting C++, C and SystemC as the input and generating hardware
modules in Verilog, VHDL and SystemsC. At the time of compilation it gives the
possibility of applying various optimizations such as loop unrolling, operation chain-
ing and loop pipelining etc. Furthermore, memory speci�c optimizations can be
applied. For the simpli�cation of accelerator integration, both, shared and streaming
memory interfaces are supported.

The transformation of C code into RTL level implementation in terms of Verilog
or VHDL, synthesis of the generated HDL code into Xilinx FPGA, is the �ow
adopted by the Vivado HLS. Input C code could be in C++, C, SystemC and Open
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Computing Language (OpenCL). FPGA supports massively parallel architectures
with advantages in cost, performance and power as compared to their counter parts
i.e. traditional processors. An overview of Xilinx Vivado high-level synthesis tools
�ow is presented in this section.

4.4.1 Bene�ts of High-Level Synthesis

Software and hardware domains can bridged through High-level synthesis. The
primary bene�ts of HLS are listed as follows:

� For hardware designers, improved productivity

� For software designers, improved performance of system

� C-level algorithms development

� C-level functional veri�cation

� C synthesis process control by optimization directives

� Multiple hardware implementations from the same C code by the help of
optimization directives

� Portable and readable C code creation

4.4.2 Basics of High-Level Synthesis

Phases of the High-level synthesis are described as follows:

Scheduling

Clock cycle-speci�c determination of operations occurrence based on:

� Clock frequency or clock cycle length

� Time required to complete the operation, it depends on the target device

� Applied Optimization directives
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Binding

Implementation of each operation in corresponding speci�c hardware is performed
by the Binding operation. In HLS, Target device information is used for the optimal
implementation of the design.

Control Logic Extraction

For the sequencing of operation in RTL design i.e. to generate �nite state machine
(FSM), control logic is extracted.

In HLS, C code is synthesized as follows:

� Arguments of top-level function into RTL I/O ports

� C function into RTL level blocks

� By default loops are kept rolled

� In �nal FPGA implementation, arrays into UltraRAM or block RAM

Information about the synthesis performance metrics is contained in synthesis
report. These performance metrics described as follows:

� Area: Information about required hardware resources needed for implementa-
tion of design e.g. bock RAMS, look-up tables (LUT), DSP48s and registers.

� Latency: Information about the required clock cycles for computation of all
values of output.

� Initiation interval (II): Information about the required clock cycles for accept-
ing new inputs.

� Loop iteration latency: Information about the required clock cycles for com-
pletion of single iteration of loop.

� Loop initiation interval: Information about the required clock cycles for before
next iteration of loop gets start.

� Loop latency: Information about the required clock cycles for all iterations of
loop.
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4.4.3 Understanding the design �ow of Vivado HLS

In Vivado HLS, a C function is synthesized into an IP block. The synthesized IP
block can be integrated into a hardware system. Xilinx Vivado HLS is tightly coupled
with other Xilinx design tools. It provides broad language support and characteristics
for optimal hardware implementation from C algorithm.

The design �ow of Vivado HLS is given as follows:

1. C algorithm Compilation, execution (simulation) and debugging.

2. RTL implementation by synthesizing the C algorithm. Here the optimization
directives are optionally applied.

3. Synthesis report generation about desgn metrics.

4. RTL veri�cation by a pushbutton �ow.

5. RTL implementation packaging into supported IP formats

Inputs and Outputs

The possible inputs of Vivado HLS are listed as follows:

� Function written in C++, C, OpenCL API C kernel or SystemC

� Directives

� Constraints

� C test bench and any associated �les

Vivado HLS ouputs are as follows:

� HDL based RTL implementation �les The following RTL formats are sup-
ported:

� Verilog (IEEE 1364-2001)

� VHDL (IEEE 1076-2000)
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� Report �les

An overview of input and output �les of Vivado HLS is shown in Fig. 4.2.

Fig. 4.2 Vivado HLS Design Flow.

Language Support, Test Bench and C Libraries

Top-level function in any C program is called main(). Any sub-function can be speci-
�ed as top-level function in Vivado HLS. main() cannot be synthesized. Additional
rules are as follows:

� Only one top-level function for synthesis is allowed.

� Sub-functions of top-level function are automatically synthesized.

� All the functions to be synthesized must be merged into a single top-level
function.
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Test Bench

To synthesize functionally correct C function, a test bench is used for functional
validation before synthesis, thus improving the productivity,

Language Support

For C simulation/compilation, the following standards are supported:

� C++ (G++ 4.6)

� ANSI-C (GCC 4.6)

� SystemC (IEEE 1666-2006, version 2.2)

� OpenCL API (1.0 embedded pro�le)

Not supported Language Constructs

The following language constructs are not supported for synthesis:

� Operating system (OS) operations

� Dynamic Memory Allocation

C Libraries

For the FPGA implementation, Vivado HLS contains optimized C libraries. High
quality of results (QoR) are achieved by using these libraries. In addition to the
standard C language libraries, Vivado HLS provides an extended support for the
following C libraries:

� Half-precision (16-bit) �oating-point data types

� Arbitrary precision data types

� Video functions

� Math operations
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� Maximized usage of shift register LUT (SRL) resources using FPGA resource
functions

� Xilinx IP functions, including FFT and FIR

Synthesis, Optimization, and Analysis

A project based on Vivado HLS can holds multiple solutions for a set of C code.
Different optimizations and constraints can be applied in each solution. The results
based on each solution can be compared in Vivado HLS GUI.

The steps involved in the Vivado HLS design process i.e synthesis, optimization
and analysis, are listed as follows:

1. Project creation with an initial solution.

2. Veri�cation of C simulation and execution without error.

3. Design synthesis.

4. Results analysis.

By the analysis of the results, if the design does not meet the requirements,
a new solution can be created and synthesized based on new optimization direc-
tives and constraints.The process can be repeated until the design performance and
requirements are met. The advantage of multiple solutions is moving forward in
development and still retaining the old results.

Optimization

Different constraints and optimization directives can be applied to the design in
Vivado HLS. Some of them are listed as follows:

� Task Pipelining.

� Latency speci�cation.

� Resources limit speci�cation.

� Override the implied and inherent code dependencies.
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� I/O protocol selection.

Analysis

In Vivado HLS, the results can be analysed using the Analysis Perspective. The
performance tab in the Analysis Perspective allows to analyse the synthesis results.

RTL Veri�cation

C/RTL co-simulation is supported in Vivado HLS. By using the C/RTL co-simulation
infrastructure, RTL veri�cation by simulating the C and RTL design is automatically
executed using supported RTL simulator listed as follows:

� ModelSim simulator

� VCS (only supported on Linux operating system)

� Vivado Simulator (XSim) (Vivado Design Suite)

� Riviera (only supported on Linux operating system)

� NCSIm (only supported on Linux operating system)

RTL Export

Final RTL output �les can be exported as an IP package in Xilinx Vivado Design
Suite. The supported IP formats are listed as follows:

� For use in Vivado Design Suite: Vivado IP Catalog

� For use in Embedded Development Kit (EDK) and for import into Xilinx
Platform Studio (XPS): Pcore

� For import directly into the Vivado Design Suite: Synthesized Checkpoint
(.dcp)



Chapter 5

HLS Based FPGA Implementation of
Interpolation Filters

Video processing systems are becoming more complex thus decreasing the produc-
tivity of the hardware designers and the software programmers, producing design
productivity gap. To �ll this productivity gap, hardware and software �elds are
bridged through High Level Synthesis (HLS), thus improving the productivity of
the hardware designers. One of the most computational intensive parts of High
Ef�ciency Video Coding (HEVC) and H.264/AVC video coding standards is the
Interpolation �ltering used for sub-pixel interpolation. In this chapter, we present a
HLS based FPGA Implementation of sub-pixel Luma and chroma Interpolation of
HEVC and sub-pixel Luma interpolation of H.264/AVC, respectively. Xilinx Vivado
Design Suite is used for the FPGA implementation of interpolation �ltering on Xilinx
xc7z020clg481-1 device. The consequent design results in a frame processing speed
of 41 QFHD, i.e. 3840x2160@41fps for H.264/AVC sub-pixel Luma interpolation,
46 QFHD for HEVC luma sub-pixel and 48 QFHD for HEVC chroma interpolation.
The development time is signi�cantly decreased by the HLS tools.

5.1 Fractional Motion Estimation

Signi�cant storage is needed for uncompressed digital videos. Digital video is
handled by high compression and ef�cient video coding standards, such as HEVC
and H.264/AVC. The temporal redundancy present in the video signal is exploited



54 HLS Based FPGA Implementation of Interpolation Filters

by the process of Motion Compensated Prediction(MCP). MCP reduces the amount
of data to be sent to the decoder [101]. We can get rid from large amount of video
data by temporal motion prediction. Current block/object location is compared with
the previous frame to measure if there exist the same block/object. Hence, reducing
the amount of data required to transmit to the video decoder. In MCP, to process
the current frame, the similar data/object of the current frame and the previous
frame are measured �rst by the video encoder. For this purpose the frame is divided
into blocks of pixels. MCP sends the motion vector as side information to tell the
decoder about the similarity between the current frame and the previous frame for
prediction. Prediction error is also sent along with the motion vector, for new frame
reconstruction. The objects in the consecutive video frames may differ by fractional
position i.e. these displacements are continuous. These objects are independent of
the sampling grid of the digital video sequence. Fractional motion vector accuracy
makes the video encoder ef�cient and reduce the prediction error [102].

Interpolation �lters are used for fractional value motion vector. The design of the
interpolation is carried out by keeping in view the important factors such as visual
quality, coding ef�ciency and implementation complexity [103]. H.264/AVC and
HEVC video coding standards, support half and quarter pixel accuracy. Interpolation
�ltering used for sub-pixel interpolation is one of the most computational intensive
parts of H.264/AVC and HEVC. Computational complexity of the interpolation �lters
is about 20% and 25% of total time in 3D-HEVC encoder and decoder, respectively,
as reported in our previous work [104]. In industry and academia, HLS is being
studied for many years and there exist many operational projects [105]. In this chap-
ter, HLS based FPGA implementation of sub-pixel luma interpolation is presented.
Xilinx Vivado HLS tools are used for FPGA implementation of H.264/AVC and
HEVC sub-pixel interpolation. HLS has some speci�c bene�ts over the conventional
RTL based VLSI design. One key bene�t is its power to render micro-architectures
with speci�c area vs. performance trade-off for the same behavioural description
by surroundings different synthesis choice [106]. A comparison between the HLS
based FPGA implementation of sub-pixel interpolation of H.264/AVC and HEVC is
also carried out in this chapter.
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5.2 H.264/AVC Sub-pixel Interpolation

For 4:2:0 colour format video in H.264/AVC, luma sampling supports the quarter-
pel accuracy and chroma sampling support one-eight pixel accuracy of the motion
vectors [6]. Motion vector may points to an integer and/or fractional samples position.
In the latter case, fractional pixel are generated by interpolation. A one-dimensional
6-tap FIR �lter is used for prediction signals at the half-sample value, in vertical and
horizontal directions. Average of the sample values at full and half-pixel are used for
the quarter sample values generation of the prediction signal.

The luma sub-pixel interpolation process in H.264/AVC is shown in Fig. 5.1.
The half pixel values b0;0 and h0;0 are obtained by applying the 6-tap �lter in the
horizontal and vertical directions, respectively, as follows:

b0;0 = ( A�2;0�5�A�1;0 + 20�A0;0 + 20�A1;0�5�A2;0 + A3;0 + 16) >> 5 (5.1)

h0;0 = ( A0;�2�5�A0;�1 + 20�A0;0 + 20�A0;1�5�A0;2 + A0;3 + 16) >> 5 (5.2)

where An;0;A0;n with values of n = �2;�1;0;1;2;3, are integer pixels in hori-
zontal and vertical directions, respectively. Intermediate half-pel samples b0n or h0n
are used for the calculation of half pixel value j0;0 , by applying the 6-tap �lter in
the vertical or horizontal directions, as follows:

b0n = b0n;�2�5�b0n;�1 + 20�b0n;0 + 20�b0n;1
�5�b0n;2 + b0n;3

(5.3)

j0;0 = ( b0n + 512) >> 10 (5.4)

where n = �2;�1;0;1;2;3 and b0 = b << 5�16, i.e. we can use the values of b.
We can obtain the values of j0;0 alternatively, as given by equations 5.5 and 5.6.

h
0
n = A�2;0�5�A�1;0 + 20�A0;0 + 20�A1;1�5�A2;0 + A3;0 (5.5)
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j0;0 = ( h
0
n;�2�5�h

0
n;�1 + 20�h

0
n;0 + 20�h

0
n;1�5�h

0
n;2 + h

0
n;3 + 512) >> 10 (5.6)

Nearest, half pixel and/or integer pixel averaging is used for the calculation of
the quarter-pixel sample. The samples used in the averaging could be both half-pel
and a combination of the half-pel and integer-pel samples.

As an example, the following equations shows the method to calculate quarter-
pixel samples for some of the quarter-pixel positions i.e. a0;0; f0;0 and e0;0 out of
a0;0;c0;0;d0;0;n0;0; f0;0; i0;0;k0;0;q0;0;e0;0;g0;0; p0;0 and r0;0:

a0;0 = ( A0;0 + b0;0 + 1) >> 1 (5.7)

f0;0 = ( b0;0 + j0;0 + 1) >> 1 (5.8)

e0;0 = ( b0;0 + h0;0 + 1) >> 1 (5.9)
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Fig. 5.1 Pixel positions for Integer, Luma half and Luma quarter pixels.

5.2.1 HLS based FPGA Implementation

In our proposed design, 13x13 integer pixels are used for the half and quarter pixel
interpolation of the 8x8 PU as shown in Fig. 5.2. In Fig. 5.3, the proposed HLS
implementation of H.264/AVC luma sub-pixel interpolation is shown. For the larger
PU sizes, half and quarter pixel can be interpolated using each 8x8 PU part of the
larger block i.e. dividing the larger block in PU sizes of 8x8. 13 integer pixels are
given as input to the �rst half pixel interpolator array hpi1 in each clock cycle.
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Fig. 5.2 13x13 Pixel Grid for H.264/AVC Luma Interpolation of 8x8 block (where green
colour represents the integer pixels block to be interpolated and yellow colour represents the
required integer pixels padded to the block to support interpolation).

8 half pixels b0;0 are computed in parallel in each clock cycle, so in total it will
interpolate 13x8 half pixels in 13 clock cycles. These half pixels are stored into
registers for interpolation of the half pixels j0;0 or quarter pixels a0;0 and c0;0. During
the interpolation of b0;0 half pixels interpolation, 13x13 integer pixels are stored for
the half pixel interpolation of the h0;0. Then the h0;0 half pixels are interpolated using
these stored 13x13 integer pixels using hpi1, meanwhile, in parallel the j0;0 half
pixel are interpolated using hpi2 from the already available intermediate b0;0 half
pixels. The half pixels h0;0 and j0;0 are also stored in the registers for the quarter pixel
interpolation. Finally all the a0;0;c0;0;d0;0;n0;0; f0;0; i0;0;k0;0, q0;0;e0;0;g0;0; p0;0 and



5.2 H.264/AVC Sub-pixel Interpolation 59

Fig. 5.3 HLS implementation of H.264/AVC Luma Sub-pixel.
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r0;0 quarter pixels are generated using the already computed registered half pixels
b0;0;h0;0; j0;0 and the 13x13 integer pixels.

Vivado Design Suite is used for HLS based the FPGA implementation of the
design. The HLS based design is synthesized to verilog RTL. Vivado HLS tools take
C;C + + or SystemC codes as input. In our case the C code is applied as input to
the vivado HLS tool. The C code is written according to the H.264/AVC reference
software video encoder. Vivado HLS provides various optimization techniques called
as optimization directives or pragmas. Many variants of the HLS implementation
of H.264/AVC luma sub-pixel interpolation are possible depending on the area
vs performance trade-off requirements. Design Space Exploration (DSE) of the
H.264/AVC luma sub-pixel interpolation is carried out using these optimization
directives.

Discussion on Results

Vivado HLS kept the loops as rolled by default. Loops are considered and operated
as single sequence of operations de�ned within the body of the loop. All operations
of the loops de�ned in the body of the loops are synthesized as hardware. So, all
iterations of the loops use the same common hardware. Loop UNROLL directive
available in the Vivado HLS, unrolls the loops partially or fully, depending on the
application requirements. If the application is performance critical, then the loop
UNROLL directive can be used to unroll the loops for better optimized hardware
in terms of performance by parallel processing, but it will increase the area e.g. if
the loops are fully unrolled then the multiple copies of the same hardware will be
synthesized. The other directive which we used in our design is PIPELINE. Pipeline
directive can be applied to function or loop, it is basically the pipelining. The new
inputs can be processed after every N clock cycles. Here N is Initiation Interval (II)
i.e. the number of clock cycles after which the new inputs will be processed by the
design.

When the pipeline directive is applied, it automatically unrolls all the loops
within the scope of the pipeline region i.e. you do not need to apply loop UNROLL
directive separately if the pipeline directive is already applied to the scope containing
loop. For the parallel processing the data requirement must be satis�ed. In our design
the arrays are used as input to the HLS tools. Arrays are by default mapped to block
RAMs in the Vivado HLS i.e. you can only read or write or both read write at the
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same time if the block RAM is dual port. So, ARRAY PARTITION directive is used
to partition the arrays into individual registers. It makes the data available for the
parallel processing.

Two different implementations of the H.264/AVC luma sub-pixel interpolation is
carried out using two different techniques for constant multiplication i.e. multiplica-
tion using multipliers, multiplication using add and shift operations.

Table 5.1 Resources required for HLS implementation of H.264/AVC Luma Sub-pixel
Interpolation using multipliers for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 706 1188 430 128 1489 0.5

LOOP UNROLL 0 0 3011 5084 1670 110 577 1.5
LOOP UNROLL + ARRAY PARTITION 0 0 3451 8653 2655 112 473 2

PIPELINE + ARRAY PARTITION 0 0 10224 27995 8817 102 19 41

Table 5.2 Resources required for HLS implementation of H.264/AVC Luma Sub-pixel
Interpolation using add and shift operations for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 302 413 110 129 1432 1

LOOP UNROLL 0 0 2304 3033 422 212 577 3
LOOP UNROLL + ARRAY PARTITION 0 0 2843 4056 748 210 449 3

PIPELINE + ARRAY PARTITION 0 0 11001 12774 2606 102 19 41

Table 5.1 and 5.2 enlist the optimization directives used and the corresponding
hardware resources required for HLS implementation using the multipliers as con-
stant multiplication and multiplication by shift and add operations. Mainly three
directives are used for the ef�cient implementation of H.264/AVC Luma interpola-
tion designs. As shown in Table 5.1 and 5.2 , when there is NO OPTIMIZATION
directive applied, the latency is much higher i.e. to process 8x8 PU it takes higher
clock cycles as compared to the optimized ones. For the optimized design we use
the combination of optimization directives such as LOOP UNROLL + ARRAY
PARTITION and PIPELINE + ARRAY PARTITION. In both designs the application
of optimizations shows signi�cant area vs performance trade-off. In case of constant
multiplication using add and shift operations, we have better optimized design in
terms of area and performance.

Comparison with Manual RTL implementation

Table 5.3 gives the comparison between HLS and manual RTL implementations of
H.264/AVC luma sub-pixel interpolation. It evident that the HLS implementation is
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more ef�cient in terms of performance. Even though the other two implementations
are VLSI based, we expect the same performance for the FPGA implementations of
the corresponding implementations.

Table 5.3 H.264/AVC Luma Sub-pixel HLS vs Manual RTL Implementations.

Comparison Parameter [107] [11] Proposed
Tech. SMIC 130 nm 130 nm Xilinx Virtex 7

Slice/Gate Count 75 K 67 K 2606
Freq. (MHz) 340 200 102

Fps 30 QFHD 2160p@30fps 41 QFHD
Design ME ME ME + MC

Comparison with HLS implementation of HEVC

Table 5.4 gives the comparison between HLS implementations of H.264/AVC and
HEVC luma sub-pixel interpolation. The proposed implementation takes less area
as compared to the HLS implementation of HEVC because the HEVC uses larger
interpolation �lters and hence larger area. The throughput of the HEVC luma
interpolation is also higher because the quarter pixel interpolation is independent of
the half pixel interpolation e.g. a0;0;b0;0;d0;0 and h0;0.

Table 5.4 H.264/AVC vs HEVC Luma Sub-pixel HLS implementation.

Comparison Parameter Proposed [108]

Tech. Xilinx Virtex 7 Xilinx Virtex 6
Slice/Gate Count 2606 4426

Freq. (MHz) 102 168
Fps 41 QFHD 45 QFHD

Design ME + MC ME + MC

5.3 HEVC Sub-pixel Interpolation

Ai; j upper-case letters within the yellow blocks in Fig. 5.1 represent luma sample
positions at full-pixel locations. For the prediction of fractional luma sample values,
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these integer pixel at ful-pixel locations can be used. White blocks with lower-case
letters e.g. a0;0, b0;0 represent the luma sample positions at quarter-pixel locations.

5.3.1 HEVC Luma Sub-pixel Interpolation

Fractional luma sample positions are computed by Equations (5.10 � 5.24). Fractional
luma sample values a0;0, b0;0, c0;0, d0;0, h0;0 and n0;0 are computed by by applying
7 and 8-tap interpolation �lters to the integer pixel values speci�ed by Equations
(5.10�5.15) as follows:

a0;0 = ( �A�3;0 + 4�A�2;0�10�A�1;0 + 58�A0;0 + 17�A1;0

�5�A2;0 + A3;0) >> shi f t1
(5.10)

b0;0 = ( �A�3;0 + 4�A�2;0�11�A�1;0 + 40�A0;0 + 40�A1;0

�11�A2;0 + 4�A3;0�A4;0) >> shi f t1
(5.11)

c0;0 = ( A�2;0�15�A�1;0 + 17�A0;0 + 58�A1;0�10�A2;0

+ 4�A3;0�A4;0) >> shi f t1
(5.12)

d0;0 = ( �A0;�3 + 4�A0;�2�10�A0;�1 + 58�A0;0 + 17�A0;1

�5�A0;2 + A0;3) >> shi f t1
(5.13)

h0;0 = ( �A0;�3 + 4�A0;�2�11�A0;�1 + 40�A0;0 + 40�A0;1

�11�A0;2 + 4�A0;3�A0;4) >> shi f t1
(5.14)

n0;0 = ( A0;�2�15�A0;�1 + 17�A0;0 + 58�A0;1�10�A0;2

+ 4�A0;3�A0;4) >> shi f t1
(5.15)

The quarter-pixel values denoted as e0;0, i0;0, p0;0, f0;0, j0;0, q0;0, g0;0, k0;0 and
r0;0 are computed by applying 7 and 8-tap �lters in vertical direction to the already
computed values of a0;i, b0;i and c0;i where i = -3 .. 4, as shown by the Equations
(5.16 � 5.24)

e0;0 = ( �a�3;0 + 4�a�2;0�10�a�1;0 + 58�a0;0 + 17�a1;0

�5�a2;0 + a3;0) >> shi f t2
(5.16)
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i0;0 = ( �a�3;0 + 4�a�2;0�11�a�1;0 + 40�a0;0 + 40�a1;0

�11�a2;0 + 4�a3;0�a4;0) >> shi f t2
(5.17)

p0;0 = ( a�2;0�15�a�1;0 + 17�a0;0 + 58�a1;0�10�a2;0

+ 4�a3;0�a4;0) >> shi f t2
(5.18)

f0;0 = ( �a�3;0 + 4�a�2;0�10�a�1;0 + 58�a0;0 + 17�a1;0

�5�a2;0 + a3;0) >> shi f t2
(5.19)

j0;0 = ( �a�3;0 + 4�a�2;0�11�a�1;0 + 40�a0;0 + 40�a1;0

�11�a2;0 + 4�a3;0�a4;0) >> shi f t2
(5.20)

q0;0 = ( a�2;0�15�a�1;0 + 17�a0;0 + 58�a1;0�10�a2;0

+ 4�a3;0�a4;0) >> shi f t2
(5.21)

g0;0 = ( �a�3;0 + 4�a�2;0�10�a�1;0 + 58�a0;0 + 17�a1;0

�5�a2;0 + a3;0) >> shi f t2
(5.22)

k0;0 = ( �a�3;0 + 4�a�2;0�11�a�1;0 + 40�a0;0 + 40�a1;0

�11�a2;0 + 4�a3;0�a4;0) >> shi f t2
(5.23)

r0;0 = ( a�2;0�15�a�1;0 + 17�a0;0 + 58�a1;0�10�a2;0

+ 4�a3;0�a4;0) >> shi f t2
(5.24)

The value of variable shift1 is given by the Equation (5.25) and shift2 = 6.

shi f t1 = BitDepthY �8 (5.25)

where BitDepthY is the bit depth of luma sample.

5.3.2 HLS based FPGA Implementation of Luma Interpolation

In our proposed design, 15x15 integer pixels are used for the half and quarter pixel
interpolation of the 8x8 PU as shown in Fig. 5.4. In Fig. 5.5, the proposed HLS based
implementation of HEVC luma sub-pel interpolation is shown. For the larger PU
sizes, half and quarter pixel can be interpolated using each 8x8 PU part of the larger
block i.e. dividing the larger block in PU sizes of 8x8. 15 integer pixels are given as
input to the array of sub-pixel interpolator �lter i.e. FilterSetabc1�FilterSetabc8 in



5.3 HEVC Sub-pixel Interpolation 65

Fig. 5.4 15x15 Pixel Grid for HEVC Luma Interpolation of 8x8 block (where green colour
represents the integer pixels block to be interpolated and yellow colour represents the required
integer pixels padded to the block to support interpolation).

each clock cycle. 24 sub-pixels i.e. 8a;8b;8c are computed in parallel in each
clock cycle, so in total it will interpolate 15x24 half pixels in 15 clock cycles. These
half pixels are stored into registers for computing the half pixels e.g. e0;0, f0;0, j0;0

etc. 15x15 integer pixels are stored for the half pixel interpolation of the a0;0;b0;0;c0;0

etc. Then the d0;0;h0;0;n0;0 half pixels are interpolated using these stored 15x15
integer pixels using the same �lter set. Finally the half pixels e.g. e0;0; f0;0; j0;0 etc.
are interpolated using the already stored half pixels a0;0;b0;0;c0;0.
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Fig. 5.5 HLS implementation of HEVC Luma Sub-pixel.

Two different implementations of the HEVC luma sub-pixel interpolation is car-
ried out using two different techniques for constant multiplication i.e. multiplication
using multipliers, multiplication using add and shift operations.

Table 5.5 and 5.6 enlist the optimization directives used and the corresponding
hardware resources required for HLS implementation using the multipliers as con-
stant multiplication and multiplication by shift and add operations. Mainly three
directives are used for the ef�cient implementation of HEVC Luma interpolation de-
signs. As shown in Table 5.5 and 5.6 , when there is NO OPTIMIZATION directive
applied, the latency is much higher i.e. to process 8x8 PU it takes higher clock cycles
as compared to the optimized ones. For the optimized design we use the combination
of optimization directives such as LOOP UNROLL + ARRAY PARTITION and
PIPELINE + ARRAY PARTITION. In both designs the application of optimizations
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shows signi�cant area vs performance trade-off. In case of constant multiplication
using add and shift operations, we have better optimized design in terms of area and
performance.

Table 5.5 Resources required for HLS based HEVC luma implementation using multipliers
for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 1221 1845 718 218 1505 1

LOOP UNROLL 0 0 4132 14031 2167 150 190 6
LOOP UNROLL + ARRAY PARTITION 0 0 8201 17215 3356 165 130 10

PIPELINE + ARRAY PARTITION 0 0 11490 29534 9315 165 59 21

Table 5.6 Resources required for HLS based HEVC luma implementation using add and shift
operations for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 719 1243 325 210 966 2

LOOP UNROLL 0 0 3203 8598 1388 180 190 7
LOOP UNROLL + ARRAY PARTITION 0 0 6456 12766 1890 165 88 14

PIPELINE + ARRAY PARTITION 0 0 11122 14452 3477 165 28 46

Comparison with Manual RTL implementation

Table 5.7 gives the comparison between HLS and manual RTL implementations of
HEVC luma sub-pixel interpolation. It is evident that the HLS implementation is
more ef�cient in terms of performance. Even though the other three implementations
are VLSI based, we expect the same performance for the FPGA implementations of
the corresponding implementations.

Table 5.7 HEVC luma sub-pixel HLS vs manual RTL Implementations.

Comparison Parameter [10] [109] [110] [111] Proposed
Technology Xilinx Virtex 6 90nm 150nm 90nm Xilinx Virtex 7

Slice/Gate Count 1597 32.5 K 30.5 K 224 K 3477
Frq. (MHz) 200 171 312 333 165

Fps 30 QFHD 60 QFHD 30 QFHD 30 QFHD 46 QFHD
Design ME + MC MC ME + MC ME + MC ME + MC

5.3.3 HEVC Chroma Sub-pixel Interpolation

Bi; j upper-case letters within the shaded blocks in Fig. 5.6 represent chroma sample
positions at full-pixel locations. For the prediction of fractional chroma sample
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values, these integer pixel at full-pixel locations can be used. Un-shaded blocks
with lower-case letters e.g. ab0;0, ac0;0 represent the chroma sample positions at
eight-pixel locations.

Fractional chroma sample positions are computed by Equations (5.26 � 5.32).
Fractional chroma sample values ab0;0, ac0;0, ad0;0, ae0;0, a f0;0, ag0;0 and ah0;0

are computed by by applying 4-tap interpolation �lters to the integer pixel values
speci�ed by Equations (5.10�5.15) as follows:

ab0;0 = ( �2�B�1;0 + 58�B0;0 + 10�B1;0�2�B2;0) >> shi f t1 (5.26)

ac0;0 = ( �4�B�1;0 + 54�B0;0 + 16�B1;0�2�B2;0) >> shi f t1 (5.27)

ad0;0 = ( �6�B�1;0 + 46�B0;0 + 28�B1;0�4�B2;0) >> shi f t1 (5.28)

ae0;0 = ( �4�B�1;0 + 36�B0;0 + 36�B1;0�4�B2;0) >> shi f t1 (5.29)

a f0;0 = ( �4�B�1;0 + 28�B0;0 + 46�B1;0�6�B2;0) >> shi f t1 (5.30)

ag0;0 = ( �2�B�1;0 + 16�B0;0 + 54�B1;0�4�B2;0) >> shi f t1 (5.31)

ah0;0 = ( �2�B�1;0 + 10�B0;0 + 58�B1;0�2�B2;0) >> shi f t1 (5.32)

Fractional chroma sample values ba0;0, ca0;0, da0;0, ea0;0, f a0;0, ga0;0 and ha0;0

are computed by by applying 4-tap interpolation �lters to the integer pixel values
speci�ed by Equations (5.33�5.39) as follows:

ba0;0 = ( �2�B0;�1 + 58�B0;0 + 10�B0;1�2�B0;2) >> shi f t1 (5.33)

ca0;0 = ( �4�B0;�1 + 54�B0;0 + 16�B0;1�2�B0;2) >> shi f t1 (5.34)

da0;0 = ( �6�B0;�1 + 46�B0;0 + 28�B0;1�4�B0;2) >> shi f t1 (5.35)

ea0;0 = ( �4�B0;�1 + 36�B0;0 + 36�B0;1�4�B0;2) >> shi f t1 (5.36)

f a0;0 = ( �4�B0;�1 + 28�B0;0 + 46�B0;1�6�B0;2) >> shi f t1 (5.37)

ga0;0 = ( �2�B0;�1 + 16�B0;0 + 54�B0;1�4�B0;2) >> shi f t1 (5.38)

ha0;0 = ( �2�B0;�1 + 10�B0;0 + 58�B0;1�2�B0;2) >> shi f t1 (5.39)
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Fig. 5.6 Chroma sample grid for eight sample interpolation

Fractional chroma sample values bV0;0, cV0;0, dV0;0, eV0;0, fV0;0, gV0;0 and hV0;0

for V being replaced by b, c, d, e, f, g and h, respectively, are computed by applying
4-tap interpolation �lters to the intermediate values aV0;i with i = -1..2 in the vertical
direction as given by Equations (5.40�5.46) as follows:

bV0;0 = ( �2�aV0;�1 + 58�aV0;0 + 10�aV0;1�2�aV0;2) >> shi f t2 (5.40)

cV0;0 = ( �4�aV0;�1 + 54�aV0;0 + 16�aV0;1�2�aV0;2) >> shi f t2 (5.41)

dV0;0 = ( �6�aV0;�1 + 46�aV0;0 + 28�aV0;1�4�aV0;2) >> shi f t2 (5.42)
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eV0;0 = ( �4�aV0;�1 + 36�aV0;0 + 36�aV0;1�4�aV0;2) >> shi f t2 (5.43)

fV0;0 = ( �4�aV0;�1 + 28�aV0;0 + 46�aV0;1�6�aV0;2) >> shi f t2 (5.44)

gV0;0 = ( �2�aV0;�1 + 16�aV0;0 + 54�aV0;1�4�aV0;2) >> shi f t2 (5.45)

hV0;0 = ( �2�aV0;�1 + 10�aV0;0 + 58�aV0;1�2�aV0;2) >> shi f t2 (5.46)

The value of variable shift1 is given by the Equation (5.47) and shift2 = 6.

shi f t1 = BitDepthC�8 (5.47)

where BitDepthC is the bit depth of chroma sample.

5.3.4 HLS based FPGA Implementation of Chroma Interpola-
tion

In our proposed design, 7x7 integer pixels are used for the eight-pixel interpolation
of the 4x4 chroma PU as shown in Fig. 5.7. In Fig. 5.8, the proposed HLS based
implementation of HEVC chroma sub-pel interpolation is shown. For the larger PU
sizes, eight-pixel can be interpolated using each 4x4 PU part of the larger block i.e.
dividing the larger block in PU sizes of 4x4. 7 integer pixels are given as input to
the array of sub-pixel interpolator �lter i.e. FilterSetbcde f gh1-FilterSetbcde f gh4

in each clock cycle. 28 sub-pixels i.e. 4a;4b;4c;4d;4 f ;4g and 4h are computed
in parallel in each clock cycle, so in total it will interpolate 7x28 sub pixels in 7
clock cycles. These sub-pixels are stored into registers for computing the half pixels
e.g.bb0;0;bc0;0;bh0;0 etc. 7x7 integer pixels are stored for the sub-pixel interpolation
of the bb0;0;bc0;0;bh0;0 etc. Then the ba0;0�ha0;0 sub-pixels are interpolated using
these stored 7x7 integer pixels using the same �lter set. Finally the sub-pixels e.g.
e0;0; f0;0; j0;0 etc. are interpolated using the already stored half pixels ab0;0 � ah0;0.
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Fig. 5.7 7x7 Pixel Grid for HEVC chroma Interpolation of 4x4 block (where green colour
represents the integer pixels block to be interpolated and yellow colour represents the required
integer pixels padded to the block to support interpolation).

Two different implementations of the HEVC chroma sub-pixel interpolation is
carried out using two different techniques for constant multiplication i.e. multiplica-
tion using multipliers, multiplication using add and shift operations.
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Fig. 5.8 HLS implementation of HEVC Chroma Sub-pixel.

Table 5.8 Resources required for HLS based HEVC chroma implementation using multipliers
for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 615 1020 313 220 1424 2

LOOP UNROLL 0 0 2144 7010 1077 162 178 7
LOOP UNROLL + ARRAY PARTITION 0 0 4671 9156 1796 169 116 11

PIPELINE + ARRAY PARTITION 0 0 6723 15884 5358 169 53 24

Table 5.9 Resources required for HLS based HEVC chroma implementation using add and
shift operations for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps
NO OPTIMIZATION 0 0 321 654 325 215 622 3

LOOP UNROLL 0 0 1603 8598 745 176 145 9
LOOP UNROLL + ARRAY PARTITION 0 0 3288 12766 967 169 79 17

PIPELINE + ARRAY PARTITION 0 0 5986 14452 1752 169 27 48
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Table 5.8 and 5.9 enlist the optimization directives used and the corresponding
hardware resources required for HLS implementation using the multipliers as con-
stant multiplication and multiplication by shift and add operations. Mainly three
directives are used for the ef�cient implementation of HEVC Chroma interpolation
designs. As shown in Table 5.8 and 5.9 , when there is NO OPTIMIZATION di-
rective applied, the latency is much higher i.e. to process 4x4 PU it takes higher
clock cycles as compared to the optimized ones. For the optimized design we use
the combination of optimization directives such as LOOP UNROLL + ARRAY
PARTITION and PIPELINE + ARRAY PARTITION. In both designs the application
of optimizations shows signi�cant area vs performance trade-off. In case of constant
multiplication using add and shift operations, we have better optimized design in
terms of area and performance.

Comparison with Manual RTL implementation

Table 5.10 gives the comparison between HLS and manual RTL implementations of
HEVC chroma sub-pixel interpolation. It is evident that the HLS implementation is
more ef�cient in terms of performance. Even though the other implementation is
VLSI based, we expect the same performance for the FPGA implementations of the
corresponding implementations.

Table 5.10 HEVC Chroma sub-pixel HLS vs manual RTL Implementations.

Comparison Parameter [110] Proposed
Technology 150nm Xilinx Virtex 7

Slice/Gate Count 1132 1752
Frq. (MHz) 312 169

Fps 30 QFHD 48 QFHD
Design ME + MC ME + MC

5.3.5 Summary: HLS vs manual RTL Implementations

In this work, hardware implementation of the HEVC interpolation �lters and H.264/AVC
luma interpolation based on HLS design �ow is presented. The throughput of HLS
accelerator is 41 QFHD, i.e. 3840x2160@41fps for H.264/AVC sub-pixel Luma
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interpolation, 46 QFHD for HEVC luma sub-pixel and 48 QFHD for HEVC chroma
interpolation. It achieves almost the same performance as the manual implemen-
tation with half of development time. The comparison of the Xilinx Vivado HLS
based implementation with already available RTL-style hardware implementations
built using Xilinx System Generator is presented. Both hardware designs were
implemented using Xilinx Vivado Suite as stand-alone cores by using Xilinx Virtex
7 xc7z020clg481-1 device. By optimizing and refactoring the C algorithmic model,
we became able to implement a design that has almost the same performance as
the reference implementation. The design time required for HLS based implemen-
tation is signi�cant low about half of the design time required by the manual RTL
implementation.

Our design is semi-automated by using Vivado HLS tools. Other designs were
developed using manual RTL Verilog/VHDL typical design �ow. Design time for
Xilinx Vivado HLS was extracted from control log of source code. This time shows
the design time taken needed by a designer who has expertise in tool not a domain
expert. This means, the designer takes an unfamiliar code, use the tool to implement
it as �rst design, refactor the code to have an optimized desired architecture. Discover
the RTL improvements made in the algorithm by reverse engineering the original
RTL code and perform design-space exploration. Originally, the algorithm itself do
not have those improvements in software model. The throughput in terms of fps of
the manual design almost the same as that of the HLS design.

5.3.6 Design Time Reduction

For comparison purpose we are designing the same interpolation �lters using both
design methodologies. The breakdown of each methodology for the purpose of
evaluation and comparison of development times is shown in Fig. 5.9. For the
same hardware functionality both the design �ows have different design steps with
different development time. Vivado HLS based design allows implementing the
architecture in about 3 months. The manual design will take about 6 months to
implement the �nal hardware design. A trade-off between performance and design
time is observed in both methodologies: It is observed that the manual design �ow
takes almost double the design time than HLS design �ow.
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Fig. 5.9 Design time comparison HLS vs Manual RTL Design.

Thus we were able to draw the conclusion that High Level Synthesis (HLS) tools
provides shorter development time by automatically generating the hardware imple-
mentations still working at a higher level of software abstraction [112]. Furthermore,
HLS design �ow has large design-space exploration of different performance and
area trade-off. HLS �ow is also ef�cient in terms of simulation, documentation
design, coding, debugging and reuse. Instead, manual design needs long time to
generate a single hardware architecture that requires further redesign effort if time or
area constraints are not ful�lled.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Time-to-market is the critical factor for digital systems, thus increasing the require-
ment of FPGA platforms. FPGA platforms help to avoid manufacturing cycles and
chip design time. Design time reduction at the cost of increased power, performance
or cost is acceptable for the designers. Latest HLS tools provide option to designers
to consider HLS tools as hardware implementation due to signi�cant design time
reduction and comparable Quality-of-Results (QoR) as manual RTL design.

6.1.1 Hardware Implementation: HLS vs Manual RTL

Factors on which FPGA system design’s time-to-market depend, includes develop-
ment boards, reference designs and FPGA devices themselves. The primary aim of
the HLS design is to increase the designer productivity by implementing the archi-
tecture for new algorithms with more ease. Reduction of time-to-market depends
on many factors including design time and functional form of the design in terms of
integration into a working system. System integration, embedded software and the
veri�cation are all concerned parts of the system-level design integration [113].

A trade-off between design time and performance is presented and discussed
with respect to both methodologies: The HLS design �ow time is less than the half
of manual design �ow time.
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For veri�cation and testing steps, manual design needs more time and effort
since possibility of errors is considerable in this kind of design, unlike automated
design �ows that minimize errors prone. Generation of RTL code is automatized in
proposed HLS design. But the generation of the interface between processor and
accelerator is still manual con�gured.

Veri�cation productivity is the key factor in the adoption of high-level synthesis
methodologies for hardware implementation. Design simulation at high-level i.e. C
level is much faster than the simulation at RTL level implementation. This does not
mean that the RTL veri�cation is no more needed, instead it states that the design
time can be signi�cantly reduced by reducing the veri�cation-debug cycles. In RTL,
the veri�cation-debug cycles take a lot of design time. The HLS users can achieve
almost two times improvement in veri�cation process with almost the same design
performance.

6.2 Future Work

Synthesized View Distortion Change (SVDC) using Renderer model (TRenSingle-
ModelC Class), was identi�ed as the second most computational intensive part of
the 3D-HEVC encoder. To the best of our information, still there is no hardware
implementation available in the literature for SVDC. As a future work, for the hard-
ware implementation of this critical part, we have analysed the high-level hardware
architecture for the renderer model as given in the following paragraphs. This anal-
ysis gives the high-level detail about the possible hardware blocks of the renderer
model. In next step, we plan to have manual-RTL based hardware implementation
vs HLS implementation of the renderer model.

6.2.1 3D-HEVC Renderer Model

Depth maps are used for virtual view synthesis. Distortion in depth maps coding
affect the quality of synthesized views. SVDC due to the coding of current depth
block is given by
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SV DC = DdistCB�DorgCB

= å (x;y)2S

h
ST;distCB(x;y)�ST;Re f org(x;y)

i 2

�å (x;y)2S

h
ST;orgCB(x;y)�ST;Re f org(x;y)

i 2
(6.1)

where ST;Re f org is the reference view synthesized from original input left, right
textures ST;l , ST;r and depth maps SD;l , SD;r. ST;orgCB and ST;distCB are views synthe-
sized by using original SorgCB (indicated in yellow) and distorted SdistCB (indicated in
red) data of current depth block as shown in the Fig. 6.1. T , D, l, r, x , y and S shows
texture, depth, left, right, horizontal component, vertical component of pixel and
the set of pixels in the synthesized view, respectively. DdistCB, DorgCB are distortion
while using distorted and original current depth block, respectively. SV DC is the
difference between DdistCB, and DorgCB. As shown in the Fig. 6.1, as an example, if
the current depth frame is divided into four depth blocks B0, B1, B2 and B3, where
the B0 and B1 are already coded blocks, B3 is the current block to be coded and B4
is the original block to be coded after coding of B3 is �nished. SSD unit computes
the Sum of Squared Differences of ST;Re f org and ST;distCB, ST;orgCB.
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Fig. 6.1 Block Diagram of SVDC.

For the ef�cient computation of SVDC, Renderer model is integrated in 3D-
HEVC encoder. Block diagram of the Renderer model is shown in Fig. 6.2.

Fig. 6.2 Block Diagram of Renderer Model.
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6.2.2 Hardware complexity analysis of Renderer Model

TRenSingleModelC Class basically implements the renderer model for View Syn-
thesis Optimization. This is one of the computational complex part of the 3D-HEVC
encoder. Complexity of this class comes from rendering functionalities needed for
SVDC computation of each coded depth block. As shown in Fig. 6.2, renderer
model consists of three main processing units. Detailed algorithmic description of
the renderer model is given [114]. Functional description and hardware complexity
analysis of the each part of the renderer is described in the following paragraphs.

Fig. 6.3 High Level Hardware Architecture of Renderer Model.

Initializer

High level hardware architecture of renderer model is shown in Fig. 6.3. Buffers are
used for temporary data storage between the external memory and the processing
elements. Initializer synthesize the reference view ST;Re f org from original input
textures ST;l , ST;r and depth maps SD;l , SD;r stored in the T (texture) and depth (D)
maps memories, respectively, as shown in Fig. 6.4. Initialization is performed once
for every frame. Depth maps are stored as renderer model depth states. Reference
view and intermediate variables are stored in the ST (synthesized texture) memory
for faster re-rendering. At the time of initialization, the up-sampling of input textures
and depth maps is carried out to be used later in interpolation step. Up-sampled
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textures Sups(T;l) , Sups(T;r) and depth maps Sups(D;l) , Sups(D;r) are stored in the UpS
(Up-sampled ) memory.

Fig. 6.4 Initializer Hardware Diagram.

Partial Re-renderer

The partial re-rendering of the synthesized view need to be performed when the
coding of a depth block is �nished. The reconstructed depth block is given to
the renderer model, the renderer model updates the depth maps stored as renderer
model depth states in the initialization step. Instead of rendering the whole views
ST;distCB and ST;orgCB which is computational too complex, the partial re-rendering
algorithm is applied which re-renders only parts of synthesized view which got
affected by the depth block coding as shown in Fig. 6.5, for right view to left
view rendering, the same steps hold for the left view to right view rendering. 1 - 7
are the samples position in the reference and synthesized views and SDisp;r are the
disparity values. D1distCB - D7distCB are distortions due to samples 1 - 7, respectively.
There are basically different steps involved in the re-renderer algorithm i.e. warping,
interpolation, occlusion, dis-occlusion and blending. The hardware diagram of the
re-renderer is shown in Fig. 6.6. In the warping the depth maps are warped to the
synthesis position by disparity value calculated by

dv = ( s� v + o) >> n (6.2)
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where v, s, o and n represent the depth sample value, transmitted scale factor,
transmitted offset vector and shifting parameters, respectively. The depth blocks
are stored in the depth memory DM. The warping itself is very complex process
requiring the calculation of depth values z from depth maps by the use of camera
parameters.

Fig. 6.5 Partial re-rendering algorithm �ow diagram.

Warping may cause the original image pixel to be mapped at the fractional pixel
position, so rounding required for sub-pixel i.e. half-pel or quarter-pel position
depending upon the quality requirement of synthesized view. After the warping, one
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of the three functions will be carried out i.e. interpolation, occlusion or dis-occlusion.
The interpolation position is measured by

bx = 4

 
x
0
FP�x

0
s

x0e�x0s
+ xs

!

(6.3)

where x0FP is the integer interpolation location between samples interval boundaries x0s
and x0e of the intermediate synthesized view. bx shows the position of the sample value
in up-sampled input textures Sups(D;l) or Sups(D;r) . Occlusion and dis-occlusion are
handled by z-buffering and hole �lling algorithms. Filled positions of dis-occluded
regions are stored as �lling maps SF;l , SF;r.

Fig. 6.6 Re-renderer Hardware Diagram.

Blending of synthesized left and right view takes place like blending procedure
of view synthesis reference software. Re-rendering process requires high memory
cost in terms of z-buffers for occlusion handling, re-order buffers in warping.

SVDC Calculator

The hardware diagram of SVDC calculator is shown in Fig. 6.7. SVDC is calculated
by SSD of ST;Re f org and ST;orgCB, ST;distCB.
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Fig. 6.7 SVDC Calculator Hardware Diagram.

The view synthesized from original texture and depth maps is used as reference
view for SVDC calculation. RDO optimization for depth maps coding is carried out
i.e. to decide whether to use the applied depth coding mode or not, based on this
synthesized view distortion change value.
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