POLITECNICO DI TORINO
Repository ISTITUZIONALE

Defining a generic OR-VNFM interface for configuring network functions

Original

Defining a generic OR-VNFM interface for configuring network functions / Pezzolla, Davide; Cerrato, Ilvano; Risso,
FULVIO GIOVANNI OTTAVIO; Castellano, Gabriele. - STAMPA. - (2017), pp. 55-56. (Intervento presentato al convegno
Fifth European Workshop on Software Defined Networks tenutosi a The Hague, Netherlands nel October 2016)
[10.1109/EWSDN.2016.18].

Availability:
This version is available at: 11583/2665365 since: 2017-07-21T09:15:57Z

Publisher:
IEEE

Published
DOI:10.1109/EWSDN.2016.18

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Defining a Generic OR-VNFM Interface for
Configuring Network Functions

Davide Pezzolla, Ivano Cerrato, Fulvio Risso, Gabriele Castellano
Dept. of Computer and Control Engineering, Politecnico di Torino, Torino, Italy

Abstract—The ETSI model defines a generic architecture to
deploy and configure virtual network functions. While many
efforts from both academia and industry focus on the problem
of deploying those virtual network functions, little attention has
been given to the interface needed to configure such applications.
This paper explores the problem of dynamically configuring
virtual network functions and proposes an implementation for the
ETSI MANO OR-VNFM interface that supports generic network
functions by exploiting a message bus and YANG models.

I. INTRODUCTION

The network function virtualization (NFV) paradigm is
gaining momentum because it allows agile services provision-
ing as well as the reduction of the management and deployment
cost of such services.

The deployment of virtual network functions (VNFs) on the
infrastructure nodes requires the execution of two tasks. The
first one consists in actually instantiating the VNF in some
execution environment such as a virtual machine or a Docker
container, while the second tasks includes the configuration of
the deployed VNF, so that it can operate as required by the
VNF owner (or tenant, in the following). Notably, a VNF must
be configured at the boot, but its configuration can be further
changed/updated during the VNF lifecycle.

The European Telecommunications Standards Institute
(ETSI) has proposed a reference model for the NFV architec-
ture that defines the main functional blocks, their associated
reference points, and descriptors; particularly, such an archi-
tecture supports both the tasks introduced above and required
to make a virtual network function working. While proposals
such as OpenMANO [1f] and Open Baton [2f, which provides
implementations of the ETSI infrastructure, mainly focus on
the VNF deployment, it is not completely clear yet how to
implement the dynamic service configuration, which should
be achieved through the OR-VNFM interface [3|.

This paper proposes an implementation of the ETSI OR-
VNFM interface which is based on YANG models and a
publisher/subscriber communication mechanism between the
involved entities. YANG models, which allows each VNF to
describe its configuration parameters, are increasingly used to
configure physical network equipments, often coupled with
the NetCONF protocol. Therefore, different from the several
languages (and the associated tools such as Chef, Puppet or
Ansible) widely deployed in virtualized environments to con-
figure VNFs, a YANG-based configuration method facilitates
the support for both VNFs running as virtual machines in data
centers, and physical network functions, i.e., network functions
implemented as dedicated appliances. Finally, the pub/sub
model enables the VNF to send a request for configuration

Configuration Configuration
service Orchestrator _repository

< Message bus (OR-VNFM interface) >
=

VNFM1 VNF1] VNFM2 VNF2

Fig. 1. Overall view of the configuration architecture.

without knowing the entities to contact, whose advantages will
be more detailed in the next section.

II. CONFIGURATION ARCHITECTURE

In the ETSI MANO model, the task of configuring VNFs
is assigned both to the Orchestrator and to the Virtual Network
Functions Manager (VNFM), which communicate through the
OR-VNFM interface.

In order to configure virtual and physical network func-
tions, in our architecture we introduced a new configuration
service module in the Orchestrator (Figure , whose main
purpose is to handle the lifecycle of the VNF configurations,
such as receiving configuration requests from the VNFM,
retrieving the proper data from the configuration repository,
and sending it to the proper VNFM; in addition, real-time
configuration changes coming directly from the tenant itself
should be handled as well. The configuration service receives
configuration requests from the orchestrator, which is con-
nected to a pub/sub message bus that carries on both control
information (e.g., configuration requests) and data messages
(i.e., the actual configuration).

According to our architecture in Figure [1| the OR-VNFM
interface is actually implemented by a message busﬂ on which
multiple entities are attached, namely the orchestrator (and,
consequently, the configuration service), the configuration
repository, and the VNFM agents. In fact, as shown in the pic-
ture, each VNFM includes an agent that is the component that
actually communicates with the configuration service through
the OR-VNFM interface in order to receive the configuration.
Moreover, such an agent is also in charge of translating,
through a proper backend, the received configuration from an
high level formalism into a set of commands to be actually
used to configure the VNFs (e.g., Openconfig messages, Chef
commands). Finally, the agent pushes these commands to the
VNFs under the control of the specific VNFM, which is
compliant with the ETSI MANO model that assigns to the

We use the Double Decker bus: https:/github.com/Acreo/DoubleDecker.

VNFM the duty of pushing the configuration into the VNFs
under its responsibility.

Our implementation of the OR-VNFM interface exploits
a communication model based on the publisher/subscriber
paradigm; in other words, messages are sent on the bus as
belonging to a specific topic, and all the entities subscribed to
that topic will receive the message. The bus provides flexibility
to our architecture, as it allows the agent inside the VNFM
to be generic and ask for configuration without knowing the
real recipient of the message; in fact, the IP address of the
configuration service can change from one infrastructure node
to another. Even, the bus may allow the agent to receive
configurations also directly from other VNFs, and not only
from the configuration service. For example, the agent running
along with a DHCP VNF may announce the IP addresses
assigned to clients; the agent associated with a firewall may
then use this information as a configuration input, and forbid
Internet connection to all the address not assigned by the
DHCP server.

Configuration messages exchanged trough the OR-VNFM
interface are defined according to a specific OpenConfig-
derived YANG model associated with the VNF; this approach
provides the possibility to configure any type of network
function, as well as it allows to exploit models already defined
by the OpenConfig industry group. Particularly, the YANG
model describes the VNF in a way that is independent from
the specific implementation of the function itself; this indepen-
dence allows, e.g., the tenant, to configure the VNF without
knowing its implementation details, which are only know by
the agent on the VNFM.

We based our OR-VNFM interface on OpenConfig-like
messages and a pub/sub communication model, instead of
using tools such as Ansible, Chef or Puppet, for the following
reasons. First, those tools require that the agent knows the
configuration service, while our approach is more generic and
allows the agent to be agnostic with respect to the identity of
the entity that configures the VNFs (the configuration service
or even other VNFs). Second, in case we have to configure
a function already supporting OpenConfig models, the same
model can be used both for the OR-VNFM interface and
on the VNFM-VNF interface. However, our architecture can
exploit the above mentioned tools to implement the VNFM-
VNF interface, e.g., to configure network functions running in
virtual machines (they cannot be used for physical functions,
which usually do not include, e.g., a Puppet agent).

III. VALIDATION

To validate our proposal we deployed, on the Universal
NodeP} a service whose VNFs must be configured in order to
allow the user to connect to the Internet, as shown in Figure
(since this work focuses on the OR-VNFM interface, we
deploy both the VNF and the VNFM on the same virtual ma-
chine). To this purpose, either the system administrator or the
user itself (through some out-of-band configuration method)
can access to a web page, which is dynamically created by the
configuration service based on the YANG models associated
with the deployed VNFs. The web page allows to modify the
configuration of each VNF, as shown by the screenshot in

Zhttps://github.com/netgroup-polito/un-orchestrator

DHCP service conflg “{ Configuration service
Ineace:

Orchestrator
10 ac

4
i < DoubleDecker message bus >

niversal Ndoe

:

Example of a real deployment on the Universal Node.

Configure the instance
The configuration will be sent to the Virtual Machine through the Double Decker bus.

server
globallpPool
defaultLeaseTime:

Description:
DHCP Server configuration

100
maxLeaseTime:
1000
domainNameServer:
88.8.8
domainName:
polito.it

gatewaylp
gatewaylp:

192.168.4.1
gatewayMask:
255.256.255.0 L3
sections

section
sectionStartip:

192.168.4.120
sectionEndlp:

192.168.4.130

Cancel Configure

Fig. 3. Screenshot of the DHCP configuration panel, auto-generated from
the YANG model.

Figure [3] that refers to the DHCP configuration panel. When
the form is completed, the web page is translated into a JSON
message coherent with the VNF YANG model and pushed to
the VNFM by means of the OR-VNFM interface described in
Section [

In this scenario, the bootstrapping of both VNFs, which
terminates when the VNFM retrieves, from the configuration
service, a configuration previously stored in the configuration
repository and applies it the the VNF, is approximatively 2s.

Acknowledgements - This work was conducted as part of
the CC4BA project, which is partially funded by EIT Digital
(Call 2016). The authors wish also to thank Fabio Mignini,
Pontus Skoldstrom, Bertrand Pechenot and Antonio Manzalini
for their help in the early stages of the work.

REFERENCES
[1] D. Lopez, “Openmano: The dataplane ready open source nfv mano
stack,” in IETF Meeting Proceedings, Dallas, Texas, USA, 2015.
[2] “Open baton:,” http://openbaton.org.

[3] “Network functions virtualisation (nfv); management and orchestra-
tion,” http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.
01_60/gs_nfv-man001v010101p.pdf.

http://openbaton.org
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf

