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Fast Hierarchical Key Management Scheme with
Transitory Master Key for Wireless Sensor

Networks

Filippo Gandino, Member, IEEE, Renato Ferrero, Member, IEEE, Bartolomeo Montrucchio, Member, IEEE,

and Maurizio Rebaudengo, Senior Member, IEEE,

Abstract—Symmetric encryption is the most widely adopted security solution for wireless sensor networks. The main open issue in

this context is represented by the establishment of symmetric keys. Although many key management schemes have been proposed in

order to guarantee a high security level, a solution without weaknesses does not yet exist. An important class of key management

schemes is based on a transitory master key. In this approach, a global secret is used during the initialization phase to generate

pair-wise keys, and it is deleted during the working phase. However, if an adversary compromises a node before the deletion of the

master key, the security of the whole network is compromised. In this paper, a new key negotiation routine is proposed. The new

routine is integrated with a well-known key computation mechanism based on a transitory master secret. The goal of the proposed

approach is to reduce the time required for the initialization phase, thus reducing the probability that the master secret is compromised.

This goal is achieved by splitting the initialization phase in hierarchical sub-phases with an increasing level of security. An experimental

analysis demonstrates that the proposed scheme provides a significant reduction in the time required before deleting the transitory

secret material, thus increasing the overall security level. Moreover, the proposed scheme allows to add new nodes after the first

deployment with a suited routine able to complete the key establishment in the same time as for the initial deployment.

Index Terms—Symmetric encryption, WSN, Key management, Transitory master key

✦

1 INTRODUCTION

W IRELESS sensor networks (WSNs) are a well-known
enabling technology for Internet of Things (IoT). IoT

solutions that eploit WSNs are present in several application
fields, such as intelligent transportation systems [1], surveil-
lance [2] and health-care [3]. Since WSNs are composed
by low-cost and low-power devices, they involve several
issues (e.g., MAC [4], error correction [5] and energy con-
sumption [6]). Moreover, WSNs have relevant differences
according to their application, so they require specific so-
lutions (e.g., event-driven applications [7] and real time
applications [8]).

A strict requirement for many IoT solutions is repre-
sented by data security. A strict requirement for many IoT
solutions is represented by data security. Many specific so-
lutions are needed due to the heterogeneity of IoT systems,
from smart grid [9], [10] to smart home [11]. Solutions
designed for WSNs should consider that this technology is
exposed to many threats such as eavesdropping, hardware
tampering and false messages. The majority of WSNs use
symmetric cryptography to protect security [12]. However,
this strategy requires that two nodes in the reciprocal com-
munication range share a common key that will be used
for the encryption and decryption of the messages and/or
for their authentication. The establishment of symmetric
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keys is called key management [13], [14]. Although there are
some systems to detect compromised nodes and recover
security [15], [16], it is fundamental to limit the effects of
possible attacks.

Many schemes have been proposed in order to establish
keys in WSNs. Two elementary key management schemes
are:

• Plain global key (PGK), with only one key used by
all the nodes;

• Full pairwise keys (FPWK) [17], in which each node
shares a specific key with each other node, so any
possible link has its own key.

In these approaches all the keys are predistributed, so they
do not require neither the execution of any operation nor
any additional information such as deployment knowledge.
PGK limits the memory overhead, but it guarantees a low
level of security, since an adversary that compromised a
key can eavesdrop on all the links and can introduce fake
nodes in the network. FPWK provides a higher level of
security, since an adversary that compromised a key can
only eavesdrop on one link. However, it requires a large
amount of memory, since each node must store a key for
every other node in the network. Therefore, FPWK can only
be used for small networks while PGK provides a low level
of security.

Many key management schemes with more advanced
features have been proposed in the literature. They can
be divided into different families, according to their main
characteristics. Some schemes are specifically designed for
static networks. A well-known family of key management
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schemes for static networks is based on the transitory master
key [18], [19]. In these schemes the master key (MK) is a
common secret, which is known by all the nodes. Each pair
of nodes use MK to protect the generation of their pairwise
key. MK is deleted at the end of the initialization phase, but if
MK has been compromised, all the keys in the network are
compromised. The main scheme based on transitory master
key is LEAP+ [18]. An important characteristic of WSNs is
the possibility to add new nodes after the initial deployment
(feature called node adding). In LEAP+, it is possible to add
new nodes, since for the key establishment it is required that
at least one of the involved nodes is within the initialization
phase (i.e., just deployed), but the other node can also be
within the following phase, i.e. the working phase.

This paper presents the Hierarchical scheme with transitory
master key (HSTMK), a new key management scheme based
on the transitory master key approach. The new approach
is designed for static wireless sensor networks with node
adding property and without deployment knowledge. The
goal of HSTMK is to reduce the time window in which an
adversary can achieve important secret material from the
memory of the nodes of the network. The main novelty of
this scheme is an efficient organization of the handshake
routine, which is subdivided into separate phases. This solu-
tion reduces the number of packets exchanged during each
phase. The lower number of packets produces a reduction
in the number of collisions and allows a shorter key setup
time. Moreover, the transitory secrets are organized in a
hierarchical way, and each node can delete a part of the
most dangerous transitory secrets at the end of each phase.
The main benefit of HSTMK corresponds to a higher level
of security than LEAP+, due to the reduction in the delay
before deleting the transitory secret material. The relevance
of this reduction is supported by comparing the achieved
experimental delay results with data provided by an exper-
imental analysis on node compromising [20]. The proposed
analysis shows how node compromising attacks, feasible in
LEAP+, are unfeasible with the proposed approach. Another
benefit of HSTMK corresponds to the lower communication
and computation overheads. A preliminary version of the
proposed approach was presented in [21]. With respect to
it the scheme has been modified and improved, in par-
ticular to allow node adding after the initial deployment.
The description of the scheme has been totally modified
in order to present it with more details. New theoretical
and experimental analyses has been conducted and the
proposed scheme has been implemented and tested on a
real WSN.

The organization of the rest of the paper is as follows:
in Sect. 2 related work is described. In Sect. 3 the proposed
scheme is presented. In Sect. 4, the proposed approach is
evaluated and compared with state-of-the-art schemes, and
in Sect. 5 some conclusions are drawn.

2 RELATED WORK

Many techniques for the establishment of the common secret
in WSNs have been proposed [14], [17], [22]. This section
divides the key management schemes into families and
describes the most relevant ones.

2.1 Random Key Distribution

Random key distribution consists in the random distribu-
tion to each node of some secrets selected from a large pool.
Two nodes can establish a link only if they share a common
secret. If two neighboring nodes do not share at least a
secret, they cannot communicate, so this approach reduces
the connectivity. However, if a node is compromised, an
adversary reaches only a limited quantity of secret material.

A well-known approach based on Random key distri-
bution, hereinafter called EG, has been presented by Es-
chenauer and Gligor [23]. Before the deployment, a large
pool composed by p keys is generated and a ring, composed
by r keys randomly picked up from the pool, is assigned to
each node. After the deployment, each node checks if its
neighboring nodes share at least a common key with it. The
values of p and r strongly affect the scheme performance. If
r is close to p, each node has the majority of the keys and it
is probably able to establish a link with all its neighboring
nodes. However, if a node is compromised, the adversary
achieves the majority of the keys in the pool and almost the
whole network is compromised. If r is too small with respect
to p, a node probably cannot establish a link per neighboring
node, but an adversary with r keys can compromise only a
small portion of the network.

A second protocol based on Random key distribution is
q-composite random key predistribution [24], hereinafter called
QC. In QC, two nodes have to share at least q keys in order
to establish a link. They generate a new key by executing
a hash function on the concatenation of the shared keys.
QC is more robust than EG if a small quantity of nodes
is compromised. However, it is more vulnerable if several
nodes are compromised.

2.2 Global Master Key

The Global master key techniques exploit a MK shared by all
the nodes and used as a common secret in order to generate
pairwise keys.

The Symmetric-key key establishment (SKKE), adopted by
ZigBee1 uses a MK common to all the nodes. As a first step,
node A sends a challenge (CA), which is a random number.
Node B sends back a message that includes its identifier
IDB , a new random challenge (CB) and the Message au-
thentication code (MAC), which is calculated according to
IDB , IDA, CB , CA and to a constant number called k1. The
nodes execute a keyed hash function with MK as a key on
the two IDs concatenated to the two random numbers as an
input string. The result represents a common secret. Finally,
two keys (the first one for authentication and the other one
for encryption) are generated by executing a hash function
on the common secret.

In SKKE, the required pre-deployment storage is small.
However, also the level of security is low, since if MK is
compromised an opponent can generate all the keys in the
network and potentially eavesdrop on all the links.

2.3 Transitory Master Key

The Transitory master key technique consists in the use of
a global secret, MK, that each node has to delete after a

1. ZigBee Specification 1.0, June 2005, ZigBee Alliance
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timeout. This approach is based on the assumption that a
node cannot be compromised before a specific time interval.
Therefore, MK should be erased before this time.

Before the deletion of MK, a node is in the initialization
phase, while after the deletion, it is in the working phase.
According to the basic approach a node would not be
able to establish new pairwise keys after the deletion of
MK. However, some schemes implement a mechanism that
allows the establishment of keys between a node within
the working phase and another one within the initialization
phase. Without such a mechanism it would not be possible
to add new nodes into the network after the first deploy-
ment.

If an opponent compromises MK, he/she would be
able to decode every message that has been eavesdropped
during the initialization phase and to find all the pairwise
keys that have been established by that messages. Moreover,
if the specific key management scheme is compliant with
nodes added to the network after the initial deployment, an
adversary would be able to establish a new link with all the
new nodes.

The length of the timeout affects the level of security and
connectivity of the network. A long timeout increases the
risk that an adversary is able to compromise MK. However,
with a short timeout the nodes could not have enough time
to complete the key establishment with all the neighboring
nodes. Therefore, the length of the timeout must be carefully
selected, especially if the node density is unknown. The
time required by an adversary to compromise a node de-
pends on many factors, such as the hardware and software
characteristics of the WSN and the computational power of
the opponent. An example of attack is described in [20], in
which the 128 Kbytes program flash of a Mica22 node is
dumped in 30 seconds, while all the memories of the node
are dumped in less than 1 minute.

The most important scheme based on the transitory
master key technique is called LEAP+ [18]. LEAP+ requires
the adoption of different kinds of key depending on the
type of messages. However, the pairwise key establishment
represents the core of the approach and the base for the
generation of the other kinds of key.

A setup task is executed before the initial deployment of
the network. In this task, the administrator of the network
generates and loads on each node the global master key,
here called initial key KIN . Each node u generates its own
master key Ku = fKIN

(u), where fK(·) is a pseudorandom
function indexed by the key K .

At the deployment, each node triggers a timer which
measures the duration of the initialization phase. Within
the initialization phase, a node exchanges messages with its
neighboring nodes in order to negotiate the pairwise keys.
Each node u periodically broadcasts a message called Hello,
that contains its identification code IDu . The Hello packets
are sent with a period equal to Tr. Given the duration of
the initialization phase, the quantity of sent Hello messages
depends on Tr, i.e., to a high value of Tr corresponds a low
number of Hello messages. If each node sends many Hello
messages, the probability that the neighboring nodes receive

2. Mica2, https://www.eol.ucar.edu/isf/facilities/isa/internal/
CrossBow/DataSheets/mica2.pdf

Fig. 1. Example of deployment.

one of them may increase, but the number of collisions
among messages becomes higher. A proper value for Tr

must be determined taking into account the network config-
uration parameters like the node density and the duration
of the timeout.

When a node v receives a Hello packet, it replies with
an acknowledgment message Ack. This message, which
contains IDv, is unicast and is sent back to the sender of
the received Hello. In order to authenticate the packet, its
sender attaches a MAC computed by using the master key
Kv. In order to reduce the probability of collisions, the Ack

packets are sent after a random time. After sending the Ack
message, node v generates the pairwise key by computing
Kuv = fKv

(u) . When node u receives the Ack message,
it verifies the integrity and authenticity of the message by
computing the MAC. If it is correct, node u computes the
master key of node v, Kv = fKIN

(v), and then the pairwise
key, Kuv = fKv

(u). After this phase, the handshake is
completed and both nodes share the same pairwise key Kuv.

When the timer of the initialization phase elapses, the
node deletes KIN . Without KIN , the nodes are not able to
start a new handshake procedure for the negotiation of a
pairwise key, since they cannot compute the master keys of
the other nodes. However, the nodes that deleted the initial
key can still answer to the Hello messages, since only the
initiator of the handshake, which sends the Hello, has to
use the initial key. Therefore, in LEAP+ it is possible to add
new nodes to the network after the initial deployment.

3 HIERARCHIC SCHEME WITH TRANSITORY MAS-

TER KEY (HSTMK)

The Hierarchic scheme with transitory master key (HSTMK) is a
key management scheme based on a transitory global secret.
The pairwise keys are computed using the same formulas
used in LEAP+. All the nodes know a global secret (i.e.,
the initial key kIN ) that an adversary could try to steal
in order to compromise the security of the whole network.
Moreover, in order to allow node adding, each node i knows
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Fig. 2. Initialization phase.

a specific secret (i.e., the master key ki) that may be used by
an adversary to clone that specific node.

The two objectives of HSTMK are:

• to reduce the time spent before completing the dele-
tion of the whole transitory secret material;

• to anticipate the elimination of the most critical part
of the secret material.

In order to reach these goals, the initialization phase is
divided into hierarchical subphases, so that each subphase
has a level of security higher than or equal to the previous

one. Fig. 1 shows an example of deployment with three
nodes. Node 1 is within the communication range of Node
0 and Node 2, but the distance between Node 0 and Node 2
is too long to establish a link.

The subphases that compose the initialization are:

• Neighbor discovery: the nodes exchange Hello packets
in order to identify their neighboring nodes;

• Master keys computation: the nodes compute the se-
crets of their neighboring nodes in order to compute
the common pairwise keys;
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• Pairwise keys computation: the nodes compute the final
pairwise keys;

• Acknowledgment: the nodes send Ack messages in
order to authenticate the key establishment.

A part of the transitory secrets is deleted at the end of the
second subphase, while the rest of them is deleted at the end
of the third subphase. Therefore, the fourth subphase has a
security level higher than the third subphase, and the third
one has a security level higher than the second one.

Before the deployment of the nodes that compose the
WSN, each node is initialized with the following data:

• the identification number of the node, IDi;
• the shared transitory global secret, kIN ;
• and the master key of the node, ki.

Fig. 2 shows an example of initialization with the network
proposed in Fig. 1. The information held by each node are
written between parenthesis in the rectangle corresponding
to that node.

3.1 First initialization subphase: neighbor discovery

The first subphase is used by the nodes in order to identify
their neighboring nodes. The nodes broadcast Hello mes-
sages which simply contain their own identification num-
ber. Each node stores the identification numbers from the
received Hello messages. The first subphase is composed by
µ Hello rounds. During each round, any node sends a Hello
at a random moment selected between the beginning of the
round and its end. The duration of a round is Tr, so, the
total time of the subphase is T1 = µ · Tr. The probability of
interferences among simultaneous messages increases if Tr

is short and if the nodes are densely deployed. A high value
of µ increases the probability that a node receives at least
one Hello message per neighboring node. However, high
values for Tr and µ prolong the first subphase. Therefore,
the parameters Tr and µ must be carefully set according to
the characteristics of the network.

In Fig. 2, Node 1 broadcasts a message that contains
ID1 during every round. This message is received by the
other nodes. Node 0 and Node 2 broadcast their respective
messages, which are received by Node 1.

3.2 Second initialization subphase: master keys com-

putation

In order to establish a common pairwise key, two nodes
need a shared secret. Like in LEAP+, this secret is repre-
sented by a master key. Each node has a specific master key,
which is written in its memory during the predeployment
phase. The master key ki of node i is calculated as:

ki = fkIN
(IDi) (1)

where fkIN
is a keyed pseudorandom function initialized

by kIN and executed on the identification number of node
i. Therefore, each node is able to calculate the master key of
any other node.

The pairwise keys are computed by using one of the
two master keys owned by the involved couple of nodes.
Therefore, considering a couple of neighboring nodes, only
one node has to compute the master key of its neighboring

node. The maximum quantity of keys that a node has to
compute corresponds to the quantity of neighboring nodes,
and the minimum corresponds to 0. In order to reduce the
probability that the computational overhead due to the mas-
ter key calculation is not equally distributed among nodes,
a master key selection routine based on the identification
numbers of nodes is adopted. The details of that routine
are: (i) the identification numbers of nodes are uniformly
distributed inside the range of possible numbers; (ii) the
set of the n possible numbers is considered as a ring in
clockwise order: the lowest number follows the highest one;
(iii) considering modular arithmetic, the two subtractions
between the identification numbers of a couple of neigh-
boring nodes are considered (i.e., exchanging minuend and
subtrahend), then the subtrahend that produces the lowest
result is selected (iv) if both the subtractions produce the
same result, the highest identification number is selected;
(v) the master key of the selected node is used for the
generation of the pairwise key. The selection method can
be summarized by the following pseudo-code:

IF |(IDi-IDj)|n>|(IDj-IDi)|n OR

( |(IDi-IDj)|n=|(IDj-IDi)|n AND (IDi>IDj) )

THEN select IDi,

ELSE select IDj;

with | · |n being the modulo n operation. According to
the described system, the quantity of master keys that a
node has to compute corresponds to a random value that
follows the binomial distribution with success probability
equal to 0.5 and a number of extractions equal to the amount
of neighboring nodes. Therefore, this technique reduces the
probability of an unfair distribution of the workload.

During the second subphase, each node checks all the
stored identification numbers, and if required computes and
stores the corresponding master key. After computing the
master keys, the node deletes kIN . If the node has not
computed all the required keys before a time T2, it stops the
computation and deletes kIN . This timeout is required to
avoid that an adversary sends infinite fake Hello messages
to a node with the goal of postponing the deletion of kIN .

In Fig.2, the set of possible identification numbers is from
0 to 2. Since |1 − 0|3 = 1 is lower than |0 − 1|3 = 2, node 0
computes k1 by using (1) on ID1. In the same manner Node
1 has to compute k2. At the end, all the nodes delete kIN .

3.3 Third initialization subphase: pairwise keys com-

putation

Each couple of nodes compute the pairwise key by exe-
cuting the pseudorandom function fk(·) initialized by the
master key of one node and executed on the identification
number of the other one. If node i and node j have selected
ki as the common secret, the pairwise key is:

ki−j = fki
(IDj). (2)

According to the selected master key, a couple of nodes i
and j could obtain two different pairwise keys (ki−j or
kj−i). However, the exploited selection routine, described
in Section 3.2, addresses this issue.

During the third subphase, each node computes and
stores a pairwise key per neighboring node. According to
the master key selection routine, the node will use its master
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key or the master key of the other node, which has been
computed during the second subphase. After computing all
the pairwise keys, the node deletes the master keys of all the
other nodes. If the node has not computed all the required
pairwise keys before a time T3, it stops the computation
and deletes the master keys. Also in this case, the timeout
is a protection against an adversary that sends infinite fake
Hello messages to a node with the goal of postponing the
deletion of the master keys. However, each node still stores
its master key.

In the example shown in Fig.2, node 0 computes k1−0

by using k1, which was computed during the previous
subphase. Node 1 computes k2−1 by using k2 and k1−0 by
using its master key k1. Node 2 computes k2−1 by using its
master key k2. After computing the pairwise keys, node 0
deletes k1 and Node 1 deletes k2.

3.4 Fourth initialization subphase: acknowledgment

phase

Although the nodes have computed a pairwise key per
neighboring node and deleted all the transitory secrets, the
received Hello messages have been neither authenticated
nor confirmed by Ack messages.

During the fourth and last subphase of the initialization,
a node sends an Ack message per any computed pairwise
key (i.e., per neighboring node). The content of an Ack
message is the identification number of the sender and
a Message authentication code (MAC) computed with the
pairwise key. After receiving an Ack, if the receiver stores
the corresponding pairwise key, it checks the MAC. If the
message is authentic the pairwise key is confirmed. The
nodes ignore Ack messages from nodes for which they have
not calculated the pairwise key.

After sending all the Ack messages, if some pairwise
keys have not been confirmed, the node sends a rAck
message (request of acknowledgment) per each unconfirmed
key. The rAck message has the same content of the Ack
message. After receiving a rAck message, a node checks its
authenticity and answers with a Ack message. According
to the density of the network, if no answer is obtained to
a rAck message, multiple iterations of the acknowledgment
request are possible. From a security point of view, a specific
timeout is not requested, since the whole transitory material
has been already deleted. However, a maximum number
MAXack of rAck transmissions may be set, in order to save
resources.

In the example, each node sends an Ack message to
each neighboring node: Node 0 and Node 2 send the Ack

message to Node 1, while Node 1 sends an Ack message
to Node 0 and another one to Node 2. In the example, the
Ack message sent by Node 1 to Node 2 is lost. Since Node 2
does not receive the Ack message, it sends a rAck message
to Node 1, which answers with its Ack message.

3.5 Node adding

When a new node is deployed among previously deployed
nodes (i.e., in the working phase) a different scheme is
executed.

The new node, starting its in the initialization phase,
sends a Hello message per hello round. When a node in the

Fig. 3. Adding Node 3

working phase receives a Hello message, it answers with
a working hello WHello (which contains its identification
number) and records the received identification number.

In the second subphase, the master key of the node in
the working phase is always selected. The other steps of the
initialization are not modified.

An example of node adding is shown in Fig. 3 and Fig. 4.
Fig. 3 shows the deployment with a new node, i.e., Node 3.
The new node is within the communication range of Node
1 and Node 2. Fig. 4 shows the initialization of Node 3.
In the first subphase, Node 3 broadcasts Hello messages
that are received by its neighboring nodes, i.e., Node 1 and
Node 2. Node 1 and Node 2 answer to Node 3 with a
WHello message that provides the identification number of
the sender and the information of being within the working
phase. During the second subphase, since Node 3 knows
that Node 1 and Node 2 are within the working phase, it
computes their master keys, i.e., k1 and k2. Then, Node 3
deletes kIN . During the third subphase, Node 1 and Node 2
compute the pairwise key with Node 3 by using their master
key on the identification number of Node 3. Node 3 executes
the same computation, in order to generate k1−3 and k2−3,
then it deletes k1 and k2. During the acknowledgment
subphase, each node sends an Ack message per established
pairwise key.

4 EVALUATION AND COMPARISON

In this section, the proposed scheme is analyzed and com-
pared to LEAP+. An analytical study considers network and
security properties, while an experimental study presents an
implementation of the proposed approach and compares its
time performance with an implementation of LEAP+.

4.1 Connectivity

Some key management schemes do not allow the estab-
lishment of all the links among neighboring nodes. The
connectivity level represents the ratio between the number
of established links and the total quantity of possible links.
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Fig. 4. Node adding.

In an ideal condition, both LEAP+ and HSTMK provide
the same connectivity level. A node should be able to
establish a link with all the neighboring nodes. However,
in both the schemes, a too short timeout, due to the security
constraints, would reduce the quantity of established links.
Therefore, the time performance of the two schemes would
affect the trade off between connectivity and security.

4.2 Resilience

An adversary that has compromised some nodes could try
to use the achieved secret information to eavesdrop on links
of the network or to pass authenticity checks. The resilience
corresponds to the ability of resisting to an adversary that
has compromised one or more nodes and that knows all
their secret material.

If some nodes are compromised after the end of the
initialization phase, HSTMK and LEAP+ provide the same
level of resilience. In both the schemes, nodes store only
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Fig. 5. Effects of a compromised node during the working phase with
HSTMK and LEAP+.

their master key and the shared pairwise keys. Therefore,
an adversary that has compromised some nodes does not
achieve any advantage, apart from the opportunity to im-
personate the compromised nodes while interacting with
their original neighboring nodes. Fig.5 shows an exam-
ple of an adversary that compromises one node during
the working phase. Circles with dashed borders represent
compromised nodes, while circles with continuous borders
represent safe nodes. Dashed lines represent links with a
compromised node, while continuous lines represent safe
links. The adversary has the control of Node x. The links
of Node x are controlled by the adversary, but he/she can
neither eavesdrop on other links, nor introduce new nodes
able to pass any authenticity check.

If some nodes are compromised before the deletion of
all the transitory secret material, in both the schemes the
adversary can eavesdrop on all the links and be authen-
ticated as a new original node by any authentic node.
Fig.6 shows an example of an adversary that compromises
one node before deleting kIN . Circles with dashed borders
represent compromised nodes, while circles with dotted
borders represent nodes that are not able to recognize fake

Fig. 6. Effects of a compromised node before deleting kIN with HSTMK
and LEAP+.

nodes introduced by the adversary. Dashed lines represent
links with a compromised node, while dotted lines represent
links that the adversary can eavesdrop on. The adversary
has the control of Node x, which still stores kIN . The four
links of Node x are controlled by the adversary, and he/she
can eavesdrop on all the other links, and introduce new
nodes able to pass all the authenticity checks.

In HSTMK, there is also an intermediate state in which
the adversary compromises nodes after the deletion of kIN ,
but before the deletion of the master keys of neighboring
nodes. Compromised nodes have computed the master
keys of approximately half of their neighboring nodes, as
described in Section 3.2, so these master keys are compro-
mised. Since the adversary knows their master keys, he/she
can introduce new nodes that will be authenticated only
by those nodes. Moreover, approximately half of the links
of each node are based on its master key. Therefore, the
adversary will be approximately able to eavesdrop only
on half of the links of the nodes of which he/she knows
the master key. Fig. 7 shows an example of an adversary
that compromises one node during the third initialization
subphase. Circles with dashed borders represent compro-
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Fig. 7. Effects of a compromised node during the third initialization
subphase with HSTMK.

mised nodes controlled by the adversary, circles with dotted
borders represent nodes that are not able to recognize fake
nodes, and circles with continuous borders represent safe
nodes. Dashed lines represent links with a compromised
node, dotted lines represent links that the adversary can
eavesdrop on, and continuous lines represent safe links.
The adversary has the control of Node x, which still store
ka and kc. He/she controls the links of Node x. Moreover,
the adversary can introduce new nodes able to pass the
authenticity checks of Node a and Node c, since Node x
stored their MKs when it was compromised. The adversary
can also eavesdrop on the link between Node a and Node
z, on the link between Node c and Node s and on the
link between Node c and Node d, since the corresponding
pairwise keys have been computed by using a compromised
MK.

4.3 Security analysis

Since HSTMK uses the same key generation mechanism as
LEAP+, the level of security is the same. The only possible
issue is represented by the delayed authentication check on
the received Hello messages.

Fig. 8. Number of successful key establishment over 20 trials with Tr =

40 ms and µ = 4, according to node density.

TABLE 1
Operations executed before deleting the secret material

Deleted Secret Effort LEAP+ HSTMK

Sent messages µ + v µ

kIN Sent data (bits) (µ + v) · lID + v · lkey µ · lID

Computation [1, 2] vf() + vMAC [0, 1] vf()

Sent messages µ + v µ

Master keys Sent data (bits) (µ + v) · lID + v · lkey µ · lID

Computation [1, 2] vf() + vMAC [1, 2] vf()

In LEAP+, according to the three-way handshake im-
plementation [18], a fake Hello is detected since either a
wrong Ack2 message or no Ack2 is received. Therefore,
this attack cannot compromise the security. However, by
sending a fake Hello the adversary increases the amount of
exchanged messages during the initialization and produces
some computational overhead for the nodes. The receiving
nodes will compute a pairwise key, maybe a master key,
and each node will send an Ack message. Moreover, the
receiving nodes have to store the pairwise key until the
false authenticity is detected. Since all these operations are
executed before the timeout, they can reduce the probability
that nodes complete the key establishment.

In HSTMK, the fake Hello produces the same computa-
tional and communication overheads. However, differently
by LEAP+, all the additional Ack messages are sent after
the deletion of the transitory secrets. Therefore, in HSTMK
the overheads that can affect the probability that the nodes
complete the key establishment are lower than in LEAP+.

4.4 Communication and Computational Effort

The time required before deleting the secret material de-
pends on the activities executed between deployment and
deletion. Table 1 shows the communication and compu-
tational effort required by LEAP+ and by the proposed
scheme. In LEAP+, when an acknowledge packet collides,
a retransmission is required. In order to provide a fair com-
parison, the best theoretical case for LEAP+ is considered
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Fig. 9. Number of successful key establishment over 20 trials with Tr =

160 ms and µ = 64, according to node density.

and no retransmission is calculated. v represents the number
of nodes in direct communication, lID the length of the
identifier of nodes, lkey the length of the adopted secret
keys, f() the computation of a pseudo-random function,
and MAC() the computation of a message authentication
code.

Let us consider the following case study: µ = 4, v = 10,
lID = 2 bytes and lkey = 16 bytes. Before deleting kIN ,
a node in LEAP+ sends 14 messages composed by 188
bytes, computes 10 MAC and between 10 and 20 pseudoran-
dom functions, while in HSTMK a node sends 4 messages
composed by 8 bytes and computes between 0 and 10
pseudorandom functions.

4.5 Experimental analysis

The WSN used for the experimentation is composed by
Mote Sky IV3. The nodes work with TinyOS4, a open
source event-driven operating system designed for low-
power wireless devices. A prototype of HSTMK and an
implementation of LEAP+ were developed by using NesC5,
the programming language developed for TinyOS. Different
WSNs were deployed and tested in order to evaluate the
proper time before deleting the secret material. While in
LEAP+ all the material is deleted simultaneously, in HSTMK
the deletion of kIN and the deletion of the master keys of
the neighboring nodes are considered separately.

The parameters of HSTMK have been described in Sec-
tion 3. In LEAP+, after receiving a Hello message, nodes
wait for a random time before answering, in order to
decrease the probability that multiple Ack messages are
simultaneously sent. Therefore, also a maximum time (Tb)
before replying to a message must be set. The values used
for the experiments are:

• µ = 4i, i ∈ N, i ≥ 1,
• Tr = 4j · 10ms, j ∈ N, j ≥ 1,
• Tb =

Tr

4 .

The value of Tb strongly affects the probability that Ack
messages are received. The set up of this value is based

3. Mote Sky IV, manufactured by Moteiv Corporation,
http://www.eecs.harvard.edu/∼konrad/projects/shimmer/
references/tmote-sky-datasheet.pdf

4. TinyOS, http://www.tinyos.net/
5. nesC, http://nescc.sourceforge.net/

on many experiments with different parameters. Since sub-
phases 2 and 3 do not involve any external input, T2 and
T3 need an upper bound, but the subphases are concluded
immediately after completing the computation. The values
of µ and Tr were set up on exponential scale (i.e., 1, 4, 16,
64, etc.). All the experiments were repeated 20 times.

Fig. 8 and Fig. 9 show the results of the test executed
with Tr = 40 ms and µ = 4, and with Tr = 160 ms and
µ = 64, respectively. These parameters have been selected
in order to highlight the effects of an increasing number
of nodes. The charts show the percentage of experiments
in which phase 1 has been completed successfully (i.e., all
the nodes established a pairwise key per link before the
deletion of the secret material). It is possible to observe
that by increasing the quantity of nodes in the WSN, the
probability of completing the handshake in a fixed time
decreases. Moreover, it is possible to observe that HSTMK is
faster than LEAP+, since it is able to complete the handshake
within a shorter time Tr · µ. Moreover, the charts highlight
the importance of a proper configuration, set according to
the density of the network. In fact, in Fig. 8, the values of Tr

and µ are too small for LEAP+, so most of the pairwise
keys are not established. The same values are a suitable
choice for HSTMK if the number of neighboring nodes is
close to 10, while they do not allow the completion of
key establishment for a higher density. On the contrary,
for a lower density these values are too high, since all the
pairwise keys are established, but the deletion of the secret
material is unnecessarily postponed. Similar conclusions
can be applied to the chart in Fig. 9.

Fig. 10 compares the time required by HSTMK and
LEAP+ before deleting the secret material used during
the initialization. The experiments have been iterated with
different timeout, and the chart shows the smallest time
such that all the pairwise keys have been established in
at least 19 experiments over 20. According to the selected
parameters, the time required by LEAP+ is always equal to
10 ms multiplied by a power of 4. Therefore, it is steady for
some numbers of nodes and then it increases of 4 times. The
time required by HSTMK is not exactly equal to a power of
4, since the time for the computation of the keys must be
added.

It is possible to observe that HSTMK is always faster.
Moreover, by increasing the density, the ratio between the
time before deleting the secret material in LEAP+ and in
HSTMK increases from 3 to 230 times. This result highlights
that HSTMK guarantees good performance even for densely
deployed networks. HSTMK provides such a high level of
scalability, since the separation in subphases and the reor-
ganization of the key establishment avoid the congestion of
sent messages and cryptographic computation.

Considering that the experiments presented in [20] show
that the transitory secrets can be stolen in tens of sec-
onds, the time reduction provided by HSTMK consistently
reduces the risk for the transitory secrets, especially in
network with a large density. Moreover, it is observed that,
in HSTMK, new nodes join the network by performing the
same operations at the first deployment as at subsequent
ones. Therefore, new nodes can be added to the network by
satisfying the same time constraints and providing the same
security level.
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Fig. 10. Time before deleting the secret material according to the den-
sity.

5 CONCLUSIONS

This paper presented a new key management scheme based
on transitory master key. The main novelty of the proposed
approach is represented by a hierarchic key negotiation
technique. The proposed technique improves the security
and the performance. The key setup time, which is the
time during which an attacker may capture the initial key,
is strongly lowered in the new scheme. The results col-
lected after extensive experiment sessions with real devices
showed significant improvements of performance in terms
of reduction of the key setup time and of number of packets
exchanged for key negotiation. The proposed scheme also
improves the security of the network in terms of vulnera-
bility to clone attacks since the very first instants after the
deployment. The improvements are remarkable especially
for high density networks. The higher efficiency in the
pairwise key generation process allows the improvement of
the security through the decrease of the key setup time. The
experimental results highlight the importance of a proper
configuration for the network parameters, which must take
into account the node degree of the network. In fact, a too
short initialization phase would reduce the percentage of
established pairwise keys, while a too long initialization
phase would postpone the deletion of the secret material.
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