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Abstract 8 

Hyperspectral imaging is a trending technique in remote sensing that finds its application in many 9 

different areas, such as agriculture, mapping, target detection, food quality monitoring, etc. This 10 

technique gives the ability to remotely identify the composition of each pixel of the image. 11 

Therefore, it is a natural candidate for the purpose of landmine detection, thanks to its inherent 12 

safety and fast response time. In this paper, we will present the results of several studies that 13 

employed hyperspectral imaging for the purpose of landmine detection, discussing the different 14 

signal processing techniques used in this framework for hyperspectral image processing and target 15 

detection. Our purpose is to highlight the progresses attained in the detection of landmines using 16 

hyperspectral imaging and to identify possible perspectives for future work, in order to achieve a 17 

better detection in real-time operation mode. 18 

Keywords: Hyperspectral imaging, remote sensing, landmine detection, target detection, image 19 

processing. 20 

 21 

1. Introduction 22 

Due to the increasing number of war zones and conflicts worldwide, the menace of landmines and 23 

unexploded ordnances is becoming a very serious problem that is going to affect the interested 24 

countries for years to come. According to Landmine and Cluster Munition Monitor [1], 61 states 25 

and areas are classified as mine-affected as of November 2015. Often, landmines are triggered by 26 

children and innocent civilians after the end of the war. Moreover, besides killing and maiming 27 

innocent people, the menace of landmines also affects the socio-economic situation in some region 28 

and prevents their development.  After the end of a war, landmines remain active for a very long 29 

time. The cost and time per mine needed for demining are much more than those needed for mine 30 

manufacturing and deployment. This motivates both the governments and the scientific 31 
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community to find out demining solutions that are safer, faster and more accurate. However, this 1 

is becoming very challenging, since in the past decade funding for landmine detection has dropped 2 

significantly.  3 

Our goal in this review is to describe past projects that used infrared hyperspectral imaging for 4 

landmine detection and that have been presented in conferences proceedings and journal articles. 5 

Note that additional military research may exist in this field. Such projects, however, are not 6 

described herein due to lack of information. 7 

In the literature, several reviews deal with the problem of landmines, regarding both detection 8 

techniques and data processing algorithms. A comprehensive review about landmine detection 9 

problems, with an evaluation of the strengths and limitations of each detection technique, could be 10 

found in [2]. In [3] the authors first discuss the history of landmines, highlighting the number of 11 

victims, the ease of deployment compared to the slow demining process, the development of new 12 

landmines, and how they are more sophisticated making their detection more difficult.  After that, 13 

they present various target detection algorithms used in the demining process. A study of the 14 

applicability of different landmine detection techniques in Antioquia, Colombia, is presented in 15 

[4]. In [5], a presentation of the different types of mines is given. A detailed explanation of the 16 

detection techniques is highlighted in [6]. Similarly, the authors of [7] present various landmine 17 

detection techniques, with a particular emphasis on Ground Penetrating Radar (GPR), photons and 18 

neutrons reflectance, and thermal detectors. A review of the technologies that were used as of 1998 19 

can be found in [8]. 20 

In addition, there are several reviews in the literature specialized in a particular detection 21 

technique. For example, ground penetrating radar techniques are discussed in [9] and [10], whereas 22 

a good review on biological techniques for landmine detection can be found in [11]. The latter 23 

shows that the use of animals such as dogs, African giant rats, pigs, honeybees, bacteria, or of 24 

genetically engineered plants, antibodies and biometric sensors for landmine detection could be 25 

effective. All these techniques detect the leakage of low amounts of chemical constituents in the 26 

surrounding area. Due to their high sensitivity, even low concentrations of explosives in the soil 27 

could be detected [11]. A review of the methods that use chemical vapor sensing in order to detect 28 

landmines is given in [12]. Such methods focus on electronic sensors in order to construct devices 29 

that work more efficiently than dogs, which usually get tired after 30-120 minutes. These sensors 30 

are usually made of an array of receptors, where each receptor is sensitive to a specific chemical 31 

compound. Researchers have also developed single sensors that are able to react to specific 32 

explosives such as trinitrotoluene (TNT), the explosive component commonly used in landmines 33 

[12]. Such sensors can detect very low levels of explosive vapor. The main advantages of sensor 34 

arrays over single sensors are the sensitivity to a wide range of analytes, better selectivity, 35 

multicomponent analysis, and analyte recognition [12]. A review of different airborne and satellite 36 

sensors able to detect landmines is presented in [13]. 37 

Finally, a good review on nuclear quadrupole resonance techniques providing several technical 38 

explanations is presented in [14]. 39 



To the best of our knowledge, a survey of landmine detection techniques based on hyperspectral 1 

imaging does not exist presently, so this is the first review paper related to this subject. Our paper 2 

highlights several significant studies addressing landmine detection using hyperspectral imaging, 3 

that have appeared in conferences, in recent articles, in technical reports, and shows promising 4 

directions for future research. The paper is organized as follows. In Section 2, we will present the 5 

main projects that used hyperspectral imaging for the purpose of landmine detection. Section 3 6 

describes the most relevant mathematical methods used in hyperspectral imaging for this task. 7 

Finally, in Section 4 we discuss the main strengths and weaknesses of the different approaches, 8 

while conclusions are drawn in Section 5. 9 

 10 

2. Projects using hyperspectral imaging in landmine detection 11 

2.1. Defence Research and Development Canada projects  12 

 One of the earlier projects doing research on landmine detection using infrared wavelengths took 13 

place at Defence Research & Development Canada (DRDC). DRDC started their research, in 14 

support of the Canadian army on landmine and unexploded ordnance detection in 1978 and, in 15 

collaboration with Itres Research, on hyperspectral imaging for landmine detection in 1989. 16 

Detection of sparse targets using optical imaging was previously studied. Algorithms developed 17 

during this project could be applied to preprocessed images of hyperspectral imagers. An early 18 

project proposed a hierarchical image-processing algorithm to detect sparsely distributed bright 19 

region of several pixels wide in a monochromatic image [15]. A preprocessing operation is 20 

performed in order to remove distortions, dropouts, overlapping areas, misregistration, and any 21 

other artifacts and imperfections. Non suspected areas are discarded to reduce the data size. Then, 22 

suspected regions are segmented into homogeneous sub-regions and the morphological features of 23 

the sub-regions are extracted. Based on the extracted features, sub regions are classified. Finally, 24 

the spatial relationships between mine-like objects are determined. A supervised method analyzes 25 

these relationships and classifies the areas as a minefield providing a specific likelihood ratio. This 26 

hierarchical method can potentially achieve real-time detection of surface-laid mines. With the 27 

aim of improving the detection system, scientific research was focused on two topics: the first one 28 

dealt with the enhancement of the detection algorithms in order to achieve real-time detection, 29 

while the second one was related to the improvement of proper imaging technologies in order to 30 

obtain a higher image quality. 31 

After the development of Visible and Near Infrared (VNIR) hyperspectral imagers (400-1000 nm), 32 

several experiments showed their compatibility with the detection of surface-laid and buried 33 

landmines. While testing the possibility to detect surface-laid mines, it was found that their spectral 34 

reflectance has similar behavior under different illumination conditions with different scaling 35 

factors and offsets. More precisely, a linear correlation exists between the mine spectra under 36 

different incident illuminations if the spectral vector is confined between 500nm and 680nm [16]. 37 

For classification purposes, the authors tested two methods: Linear Cross Correlation (LCC) and 38 

linear spectral unmixing. LCC is better in the case of high spatial resolution images. The linear 39 

unmixing method has a higher Probability of detection in the case of subpixel sized mines; but has 40 

also a higher false alarm rate. 41 



Other tests led to study the possibility of detecting buried landmines using a VNIR imager. It was 1 

noticed that buried mines could not be detected by calculating the shift of the red edge of vegetative 2 

spectra. However, by using linear correlation, some mines with low vegetative cover were detected 3 

[17]. It was also noticed that Anti-Tank surrogates were more detectable than Antipersonnel 4 

surrogates, presumably due to the increased area of disturbance required to bury the former [18]. 5 

The probability of detection (PD), intended as the number of mines detected over all existing mines 6 

in the image, obtained during the experiment varies between 33% and 100% and the False Alarm 7 

Rate (FAR), measured as the number of falsely detected mines per unit area, varies between 0.1 8 

and 0.52/m2. According to the authors of [18], improving the classification algorithms and 9 

optimizing the spectral vectors, involving a systematic pattern classification study and 10 

emphasizing discriminant analysis and feature analysis, are possible steps to achieve better PD and 11 

lower FAR. 12 

The spatial resolution of the image affects the performance of the detection algorithm [19]. As the 13 

pixel size gets closer to the size of the mine, the possibility to isolate landmines increases. This 14 

has been proven by the research team of DRDC in [20]. The authors acquired two types of images 15 

using a VNIR imager: Medium resolution images at the altitude of 300m and high-resolution 16 

images at the altitude of 6m in a different place. In the medium resolution experiment, they 17 

obtained a 100% PD and 0.00034/m2 FAR. In the high-resolution experiment, all mines were 18 

detected with a false alarm rate of 0.0043/m2. Linear Cross Correlation (LCC) and Orthogonal 19 

subspace projection (OSP) were used in classification. The best detection is achieved when taking 20 

the result of the combination of the two techniques. 21 

In order to have quasi real-time detection of surface-laid mines using a VNIR imager, the authors 22 

in [21] proposed a system consisting of two modes: in the first mode, the system learns the target 23 

spectra. In the second mode, the system looks for the targets by acquiring spectral data for each 24 

pixel and then applying comparative algorithms to the candidate pixels, using the stored reference 25 

spectra. The processing platform involves a system that generates the results of data acquisition 26 

and target analysis to an operator by displaying probability information alongside the base 27 

imagery. The entire process (data acquisition - radiometric correction - data fusion from different 28 

systems) finishes within few time frames of acquisition (a time frame is approximately 15-35 ms). 29 

The radiometric and target identification processes can be applied independently to each frame, so 30 

the processing of a frame will not affect the results related to the processing of other frames [21]. 31 

In [25], which is a continuation of the research in [21], we find the first experiment that aims at 32 

detecting landmines from an airborne hyperspectral imaging system in real time. The above paper 33 

describes how software and hardware improvements can achieve real time detection from an 34 

airborne platform. First, radiometric correction is applied on raw data, then custom classification 35 

algorithms are applied to the corrected data. A spectral signature library provides reference spectral 36 

vectors. The classification results are stored and displayed in real time. The first real time landmine 37 

detection system was mounted on a slow vehicle (1-2 km/h) [21].  A display system shows selected 38 

bands including corrected spectral bands, partial data results or final target bands. The second real-39 

time detection system was an improvement of the first system to be compatible with airborne 40 

imaging data rates. A hardware/software system was implemented measuring the change in slit 41 



contamination (filings, dust, paint flecks) relative to the slit performance during calibration and 1 

modifying the correction matrix accordingly during radiometric conversion. Detection rates were 2 

not the prime concern of the test. The authors wanted to test the ability to detect landmines from 3 

an airborne platform in real time. There are no indications regarding the algorithms used for data 4 

correction, band selection, and classification. 5 

Short wave infrared (SWIR) bands (1000-2500nm) have also been considered to detect landmines. 6 

As the spectrum is wider with the inclusion of SWIR bands, the possibility to distinguish 7 

landmines is higher. A simple classification boundary should be able to distinguish surface-laid 8 

mines from many human-made artifacts and natural materials. However, old buried landmines are 9 

hard to be detected using SWIR. [22] 10 

A project studying Long Wavelength Infrared (LWIR) hyperspectral imaging of landmines led to 11 

the development of a commercially available LWIR hyperspectral imager suitable for airborne 12 

landmine detection [23]. The instrument was used to collect imagery of surface and buried mines 13 

and improvised explosive devices over full diurnal cycles in arid, desert-like conditions and was 14 

found to provide some advantages over broad-band imaging in the detection of buried threat 15 

objects [24]. 16 

The team of DRDC started in 1997 a project testing the combination of various detection 17 

technologies called Improved Landmine Detector Project ILDP. Since a single detection technique 18 

will not be able to detect all types of landmines in all conditions, the fusion of various techniques 19 

can be more effective [27,29]. The authors tested a small teleoperated vehicle carrying four types 20 

of detectors: Forward Looking Infrared imager, down looking electromagnetic induction detector, 21 

down-looking Ground Penetrating Radar (GPR) and finally a thermal neutron activation detector 22 

used as confirmatory detector of suspected targets. In order to apply sensor data fusion, several 23 

methodologies were used, including spatial correspondence and custom designed navigation. The 24 

above system was intended for anti-vehicle landmines, but not for anti-personnel mines. In order 25 

to address the latter, a smaller system with different sensors was proposed. Therefore, using a high 26 

mobility robotic platform, the authors proposed a system that contains five separate technologies: 27 

2 hyperspectral cameras (thermal infrared (TIR) and VNIR), a scanning sensor imaging system 28 

which is mounted on a custom built articulated robotic scanner, and a nuclear confirmation sensor 29 

[28]. The role of each technique is as follows:  30 

 Forward looking SWIR or TIR cameras should detect thermal contrast between a landmine 31 

and its surroundings. 32 

 VNIR camera should detect spectral reflectance differences between disturbed and 33 

undisturbed soil and the presence of a trip wire.  34 

 Articulated Robotic Scanner affords the mechanical precision to provide images from scans 35 

of a lightweight non imaging sensor. 36 

 Nuclear imaging is used for confirmation. 37 

 High mobility platform helps in moving the sensor payload. 38 

In order to handle the enormous volume of data generated by hyperspectral imaging, the authors 39 

proposed to use real-time techniques and algorithms described in [21,25] to compress the 40 



hyperspectral images into single band images,  which could  then be processed by the minefield  1 

detection algorithms described in [15]. The results of these projects were encouraging and show 2 

that a teleoperated replacement of a human operator may be possible in the future. 3 

A discussion of the results obtained after landmine detection tests using VNIR, SWIR, and TIR 4 

imagers by DRDC and Itres was presented in [30]. Reliable surface-laid mine detection in various 5 

weather conditions was achieved using VNIR and SWIR spectra, even if not in real time. Reliable 6 

buried landmine detection was not achieved. There is no huge difference in the VNIR range 7 

between the signatures of buried landmines and background materials, however they could be 8 

indirectly detected by observing differences in reflectance between compact soil over mines and 9 

background. 10 

DRDC and Itres presented a review of the research on infrared and hyperspectral technologies for 11 

landmine detection in [31]. Besides providing the theoretical background for the detection of 12 

surface-laid and buried mines and the results of their experiments, the authors also described 13 

examples of Hyperspectral Imagery (HSI) images of trace amounts trinitrotoluene (TNT) and 14 

Cyclotrimethylenetrinitramine (RDX) distributed on the ground surface. The mechanism of the 15 

distribution of the trace explosives by ants is further discussed in [32], [33]. 16 

The Canadian research and development conducted a project between 2004 and 2008 called Shield 17 

ARP 12rl in order to develop and exploit optical imaging sensors for mine detection. Airborne 18 

tests of real time hyperspectral imaging and a SWIR HSI imaging phenomenology study were 19 

completed in October 2006. Tests on vehicle mounted optical tripwire imager and development of 20 

Thermal infrared hyperspectral imager were completed on March 2008 [34]. After the realization 21 

of simultaneous imaging in VNIR and SWIR bands, the ability of classifiers to separate 22 

camouflage coatings from background improves when the VNIR and SWIR spectra are combined. 23 

Simultaneous collection of SWIR and TIR images from an airborne platform in an environment 24 

with minimal infrastructure has also been done. In vehicle-mounted trip wire detector tests, the 25 

SWIR provided better wire/background contrast than the VNIR band. The above report describes 26 

the tests and the results obtained during the project without mentioning the algorithms used or the 27 

way the real time airborne detection is performed. 28 

DRDC and Itres proposed in [35] a new design of hyperspectral camera with a range-gated 29 

intensifier and combined the camera with selected pulsed lasers. The authors showed that it is 30 

possible to relate the reflected signal to specific light matter interactions, like induced fluorescence. 31 

This approach is independent of the ambient light conditions and can be customized to specific 32 

wavelengths. In addition, it could help in surveying a specific area in order to increase the SNR. 33 

The preliminary results indicate that the false alarm rate associated with this scenario might be too 34 

high for ground area scanning speeds of practical interest. 35 

DRDC also began a project in 2005 to demonstrate the military utility of space-based reflective 36 

hyperspectral imagery (0.4-2.5 microns), especially in the domain of target detection and 37 

identification for land and marine mapping applications. The results achieved are encouraging and 38 

show that target abundance can be retrieved with high accuracy at the subpixel level using the 39 

Constrained Energy Minimization (CEM) algorithm. The fact that the estimated abundances are 40 



generally lower than the true abundances is consistent with an error introduced during the manual 1 

delineation of targets area, by assigning to targets larger areas than their true area [26]. 2 

2.2. Equinox Corporation fusion test  3 

The fusion of visible and SWIR bands could give better detection results. A basic fusion of two 4 

spectrum bands produces acceptable segmentation of objects against background, irrespective of 5 

illumination conditions.  In other words, selecting a set of two or three spectral image bands has 6 

been found to be just as effective in differentiating man-made objects from background as using 7 

all spectral bands at once [36]. Such fusion has the potential to detect mine-like objects in an image 8 

using an integrated camera with visible and SWIR sensors and more sophisticated and specialized 9 

detection algorithms.  10 

 11 

2.3. Hyperspectral mine detection program HMD 12 

In [37], a Defense Advanced Research Project Agency (DARPA) sponsored experiment testing 13 

the potential to detect buried landmines using hyperspectral Mid-wave Infrared (MWIR) (3 to 5 14 

µm) and Long-wave Infrared (LWIR) (8 - 12 µm) bands is described. The project emphasizes the 15 

detection of surface disturbances due to landmine burying. Previous experiments showed the 16 

capability of VNIR and SWIR imagers to detect surface disturbances [17, 18, 22]. However, the 17 

problem was the high false alarm rate induced by surrounding vegetation and rocks. According to 18 

the authors, the main rationale behind the detection of buried landmines using the spectral 19 

properties is that the surface proprieties are in some way different from the properties of subsurface 20 

soil. The soil exposure at the surface changes some of its physical and chemical properties. These 21 

experiments showed that spectral information are necessary for landmine detection. 22 

In addition, the researchers of the Hyperspectral mine detection program HMD tried to detect 23 

buried landmines by evaluating the contrast in thermal reflectivity between the mine and the soil 24 

in just two bands of the thermal IR region [38]. They noticed that recently buried landmines could 25 

be seen in thermal infrared imaging as bright spots because the disturbed soil has an apparent 26 

temperature different from that of the surrounding undisturbed soil. In addition, they claimed that 27 

even mines buried for a very long time could be detected in some types of soil as the subsurface 28 

mine will have different thermal properties. 29 

2.4. Hyperspectral mine detection phenomenology program 30 

The American army also started the project “Hyperspectral mine detection phenomenology 31 

program” (HMDP). Their main objective was to determine the existence of spectral characteristics 32 

that are useful for landmine detection [39]. Therefore, they collected high quality hyperspectral 33 

signatures of background materials and mines, measured temporal effects on buried landmines and 34 

measured a statistically significant set of hyperspectral signatures of surface and buried mines in 35 

natural soils, under variations of controlled variables. The spectral analysis results obtained during 36 

the HMDP project recordings are presented in [40]. The authors concluded that uncontrolled 37 

variables, mainly wind and rainfall, usually affect the results. The mines affected by more rainfall 38 

continue to produce a signature distribution that is different from the background. Also, it is 39 

remarkable that the temporal evolution of vegetation around landmines is too complex and makes 40 



the characterization of temporal signature evolution extremely difficult. The following general 1 

observations were made: 1) A light shower won't significantly reduce the signature; 2) The 2 

signature is reduced by one-half inch of rain, 3) One-inch of rain further reduces the signature, but 3 

does not eliminate it, and 4) For some conditions, several inches of rain may not eliminate the 4 

signature. Overall, the VNIR and LWIR spectral regions show the most consistent and highest 5 

performance. SWIR and LWIR show good performance for some conditions. MWIR showed the 6 

least consistent and lowest performance. 7 

2.5. Joint Multispectral Sensor Program (JMSP) 8 

The goal of the research presented in [41] is to test the design of multispectral and hyperspectral 9 

imagers that are able to obtain better detection performance by respecting the requirements and 10 

conditions of target detection. For target detection, it is necessary to detect targets both in daylight 11 

and nighttime conditions. Panchromatic or multispectral images in VNIR and SWIR ranges give 12 

this capability during daylight. However, for military use, the MWIR and LWIR ranges are 13 

necessary for nighttime operation. Due to high correlation of spectral bands of background 14 

materials in all background conditions, the possibility to detect targets is high using MWIR and 15 

LWIR ranges.  After testing dual bands in MWIR and LWIR ranges, the authors concluded that 16 

thermal multispectral images would give a better target detection and false alarm rate than a single 17 

band infrared sensor.  Tests showed that appropriately chosen small bands could provide good 18 

detection, the optimal bands range being between 8 and 10.5 micrometers. There is a significant 19 

increased utility of using LWIR with MWIR compared to the use of MWIR alone. Thanks to the 20 

obtained results, the authors manufactured a new hyperspectral imager called SEBASS that works 21 

in the ranges 2.9 to 5.2 micron and 7.8 to 13.4 micron. The Aerospace Corporation is still using 22 

this sensor to take remote hyperspectral images in MWIR and LWIR ranges.  23 

2.6. Night Vision and Electronics Systems Directorate (NVESD) 24 

Night Vision and Electronics Systems Directorate (NVESD) has conducted during the fall of 2002 25 

and spring of 2003 a wide variety of tests to examine airborne sensors for landmine detection [42]. 26 

The examined hyperspectral sensors were the Airborne Hyperspectral Imager (AHI) of the 27 

University of Hawaii, which is a Long-wave Infrared (LWIR) imager, and the Compact airborne 28 

hyperspectral sensor (COMPASS) which is an NVESD VNIR/SWIR sensor. In addition, a high 29 

frequency Synthetic Aperture Radar (SAR) and GPR have been used. The authors tested two 30 

methods for classification: Signature based and anomaly detection. Further, for anomaly detection 31 

two approaches were considered: Local like Reed-Xioli method and Global like NFINDR. The 32 

latter is an unmixing model method and alone is not sufficient for classification since it produces 33 

only abundance fractions as output. For that purpose, the authors proposed to use it with a 34 

Stochastic Target Detector (STD). The output of STD is a detection stochastic map that can be 35 

thresholded. The tests showed the capability of LWIR and reflection bands to detect landmines 36 

with the use of proper algorithms. The detection of landmines at subpixel level is challenging, but 37 

indeed possible with the use of high quality hyperspectral instruments and algorithms. 38 

Using the LWIR hyperspectral images acquired by AHI, another test has been conducted by 39 

researchers at the Georgia Institute of Technology to detect a grid pattern of landmines and to use 40 

this information to improve the detection performance. First, an anomaly detector is applied to the 41 



hyperspectral data; in this case, the authors used the Dual Window-based Eigen Separation 1 

Transform (DWEST). Then, pattern parameters are extracted and used to form a pattern projection 2 

image. Finally, a pattern-based false alarm reduction is performed [43]. Using this process, higher 3 

probability of detection at lower false alarm rate is obtained. Therefore, the results prove that the 4 

inclusion of spatial pattern information in anomaly detection improves the detection of landmines 5 

in minefields [43]. 6 

2.7. Defense Science and Technology Laboratory DSTL countermine project 7 

A project similar to those of DRDC and DARPA was started in Britain with the goal to detect 8 

landmines using a VNIR imager [44]. The program was called DSTL countermine project. Using 9 

the VNIR hyperspectral camera SOC 700 mounted on a tripod, the team took high spatial 10 

resolution images of landmines. However, the data is mainly used to investigate different 11 

processing methods and not to evaluate the PD and the FAR of the sensor. For data processing, 12 

the authors used Principal Component Analysis (PCA) for dimensionality reduction and anomaly 13 

detection method for classification. The authors avoid the use of spectral comparisons between the 14 

target and each pixel of the image, as it will be very time consuming due to the low 15 

target/background ratio. The results were still preliminary, however the authors concluded that 16 

VNIR has the potential to distinguish surface-laid landmines from background. 17 

2.8. Indian Test to detect landmines using infrared images 18 

In India, researchers proposed a hierarchical algorithm to detect landmines from infrared images 19 

that consist of preprocessing (contrast enhancement- filtering- smoothing), segmentation, feature 20 

extraction, and ANN based classification [45]. The authors tested the algorithm on surface-laid 21 

mines in two types of soil: black cotton and sand. During the preprocessing, the image is converted 22 

to gray level. The two most important preprocessing stages are the contrast enhancement and noise 23 

removal. Segmentation is the process of grouping homogenous pixels sharing some common 24 

attributes such as color, intensity or texture in an image. The aim is to separate the image into 25 

regions of interest and background, in order to make further analysis easier. Clustering, edge 26 

detection, and threshold based region growing are the main three categories encompassing the 27 

various existing image segmentation techniques [45]. Therefore, feature extraction and further 28 

processes are applied on the clusters that are deemed mine like. A Neural Network (NN) based 29 

algorithm is used to classify the mine from the surrounding. During the tests, the authors used a 30 

small NN of 1 hidden layer and 4 neurons. The results provided on a simple dataset are good, 31 

however the algorithm is not expected to work well on another field or type of soil as the data used 32 

during the phase of learning are not rich enough. 33 

2.9. NATO project 34 

In the Netherlands, a project took place in cooperation with NATO to make a remote detector of 35 

landmines. The main objective was to obtain near real time minefield detection during a conflict 36 

using an Unmanned Aerial Vehicle (UAV) at a typical altitude of 100 m.  First, the authors 37 

presented the imaging technologies available at that time: Radar, Microwave radiometers, visible 38 

wavelengths, near, middle and far infrared. After that, the authors showed the principal signal 39 

processing techniques used for mine detection at that time. The main steps involved can be 40 

categorized as: 41 



 1 

* image enhancement 2 

* edge detection 3 

* segmentation 4 

* feature extraction and classification 5 

* morphology 6 

At the end of the report, the authors gave the following main recommendations based on various 7 

experimental results [46] 8 

1. Conventional medium-resolution imaging radars are less suitable for remote mine 9 

detection. 10 

2.  Microwave radiometry detection principle is promising for remote mine detection.  11 

3. The characteristics of visible and near infrared imaging are often requested. This is because 12 

imaging systems in these bands are often low cost, compact, have a high spatial resolution 13 

and can be used in real time detection.  14 

4. The mid- or long-wave infrared wavelength band is a promising band for remote mine 15 

detection.  16 

5. As Meteorological conditions (such as rain showers) can make mine and minefield 17 

detection in mid- and longwave infrared wavelength bands difficult, it is better to combine 18 

several wavelength bands. 19 

6.  A study on the best processing techniques and a reliable and accurate interpretation of the 20 

images of a remote mine detection system has to run in parallel with the development of a 21 

mine (field) detection system. 22 

2.10. Humanitarian DEMining (HUDEM) and Belgian Mine Action Technology (BEMAT)  23 

In Belgium, a research project focused on using the fusion of data from multiple sensors (Ground 24 

penetrating radar, metal detector and infrared sensor) [47]. In the above paper, the authors 25 

presented their views regarding multi-sensor data fusion potentials in improving the close-in 26 

detection of landmines and reduction of mined area. Modelling and fusion of the extracted features 27 

are based on belief function theory and possibility theory. After modelling, the fusion part is 28 

performed in two steps: the first step consists in analyzing all data measured by one sensor. The 29 

second step combines the results of the three sensors. The final part of the fusion approach is the 30 

decision. According to the authors, the final decision about the identity of the object should be left 31 

to a human observer with field experience. Therefore, the fusion output is an informative decision. 32 

The experience showed that the fusion gives better detection than any input sensor used alone.  33 

2.11. FOI Multiple-Optical Mine detection System (MOMS) project 34 

FOI, A Swedish defense research agency, worked on a project for the Swedish armed forces called 35 

Multi-Optical Mine detection System (MOMS). The objective of the project was to provide 36 

knowledge and competence for fast detection of surface-laid mines using multiple optical sensors 37 

[48]. The authors conducted research to test the feasibility of detecting landmines using optical 38 

sensors and the possibility to combine multiple sensors. According to the authors, hyperspectral 39 

imaging is an encouraging candidate for automatic detection and recognition of exposed and semi-40 

hidden mines, when a priori knowledge of the target spectral signature is available. However, the 41 



detection performance is limited when the targets are camouflaged by natural vegetation or hidden 1 

under other objects. In addition, the authors claim that no single detection architecture is able to 2 

meet the performance needed under all operating conditions; the choice of the particular sensors 3 

and algorithms will depend on environmental and operations conditions [48]. 4 

2.12. TELOPS test to detect buried object using airborne thermal hyperspectral images 5 

In 2015, a Canadian research company specialized in infrared and hyperspectral imaging named 6 

TELOPS proved the possibility to detect buried objects using an airborne LWIR hyperspectral 7 

imager [49]. From an aircraft platform, they acquired thermal hyperspectral images of areas that 8 

contain man-made objects previously buried. They found that the disturbed soil right above a 9 

buried target is warmer than the undisturbed soil area next to it [49]. By comparing the emissivity 10 

data obtained through the Temperature-Emissivity separation, the buried target sites show up as 11 

part of the hottest ground area within the scene but further classification or additional information 12 

are needed to discriminate the buried objects from other naturally hot areas. 13 

A summary of the above projects and of the results obtained is given in Table 1.  14 

3. Mathematical methods used in hyperspectral data treatment 15 

In this section, we present the main processing algorithms that can be used when dealing with 16 

hyperspectral images. Most of these methods were developed during research on general problems 17 

regarding the processing of hyperspectral images and are not specific for the landmine detection 18 

problem. However, advances in that research will directly impact the success of landmine detection 19 

using hyperspectral imaging. A review of different processing techniques used for data fusion, 20 

spectral unmixing, classification and target detection could be found in [50]. 21 

After the acquisition of a hyperspectral image, the data pass through several steps. First, the image 22 

is preprocessed to remove impurities, noise, and to reduce the image size. The main pre-processing 23 

steps are contrast enhancement, filtering and smoothing. Then, segmentation is done to separate 24 

useful data from background. After that, feature extraction is applied to extract the most 25 

appropriate features for classification. Finally, classification or clustering methods are applied to 26 

locate a target. In the following, we present the main algorithms used for target detection using 27 

hyperspectral images. There are many other methods that may be used in each phase. However, in 28 

this paper we detail the most commonly used ones. 29 

3.1. Contrast enhancement 30 

The image enhancement process consists of a collection of techniques that try to improve the visual 31 

appearance of an image or to convert the image into a better form suited for analysis by a human 32 

or a machine [51]. Image enhancement methods are divided into two main categories: spatial 33 

domain methods and frequency domain methods. Spatial domain methods are applied directly on 34 

the pixels of the image. In frequency domain methods, the image is processed in the frequency 35 

domain after applying the Fourier transform on the original data. Contrast enhancement is one of 36 

the most commonly used image enhancement methods. For the mine detection case, the role of 37 

contrast enhancement is to enhance the difference between the landmine and the background 38 

materials [52]. The main contrast enhancement methods used are: 39 



3.1.1. Histogram equalization  1 

Histogram Equalization (HE) is the most widely used contrast enhancement technique due to its 2 

simplicity and effectiveness. The aim of HE is to make the probability distribution of gray levels 3 

approximately uniform in the output image. It is a global method that flattens the histogram and 4 

stretches the dynamic range using the cumulative density function of the image [52]. 5 

The probability of the kth gray level in an image f can be described as  𝑝𝑓(𝑓𝑘) =  
𝑛𝑘

𝑛
 6 

where k ∈ [0, L-1], L is the number of gray levels in an image, nk is the number of times the kth 7 

level appears in the image, and n is the total number of pixels in the image. The histogram is the 8 

plot of 𝑝𝑓(𝑓𝑘) versus k, and the goal of the histogram equalization is to obtain an image with a 9 

uniform histogram. The uniform histogram can be achieved by  10 

𝑔𝑘 = 𝑇(𝑓𝑘) = ∑
𝑛𝑗

𝑛

𝑘

𝑗=0

= ∑𝑝𝑓 (𝑓
𝑗
)

𝑘

𝑗=0

 11 

Keeping two conditions, 12 

(a) T(fk) is single valued and monotonically increasing in the range k ∈ [0, L-1]. 13 

(b) T(fk) should be T(fk)∈ [0,L-1] for k ∈ [0,L-1]. 14 

The drawback of HE is that the brightness of the image is changed. To overcome this drawback 15 

and improve the performance, many derivations of this method were proposed. Among them, we 16 

list the following: 17 

Brightness Bi-Histogram Equalization (BBHE)[53], Dualistic Sub Image Histogram Equalization 18 

(DSIHE) [54], Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE)[55], 19 

Recursive Mean Separate Histogram Equalization (RMSHE)[56], Multi Histogram Equalization 20 

(MHE)[57], Brightness Preserving Dynamic Histogram Equalization (BPDHE)[58], Recursive 21 

Separated and Weighted Histogram Equalization (RSWHE)[59], Global Transformation 22 

Histogram Equalization (GHE)[60] and Local Transformation Histogram Equalization (LHE)[60]. 23 

 24 

3.1.2. Morphological Contrast Enhancement 25 

Morphological theory has been introduced in image processing to overcome a number of problems 26 

like image distortion due to noise. The first step in morphological contrast enhancement is to find 27 

peaks and valleys in the original image. Peaks are light shades of gray tone image, while valleys 28 

are dark ones. Peaks are obtained by subtracting the opening from the original image, and valleys 29 

are obtained by subtracting the original image from the closing as 30 

 p(f) = f −γ ( f ),  31 

v(f) = ϕ( f )− f , 32 

 33 

where p(f) denotes the peaks, v (f) denotes the valleys, γ(f) denotes the opening, and ϕ(f) denotes 34 



the closing of an image function f. Basic definitions of morphological methods and operators 1 

(erosion, dilation, opening and closing) could be found in [61]. To improve the contrast, the 2 

peaks and valleys are multiplied by constants as follows: 3 

p′( f ) = p(f)× c1 , v ′( f ) = v (f)× c2 where: 𝑐1 = |
max(𝑓)−max (𝐼)

max [𝑝(𝑓)]
| and 𝑐2 = |

min(𝑓)−min(𝐼)

max [𝑣(𝑓)]
| 4 

where I indicates the gray level. In the case of 8 bit gray levels, max(I)=255 and min (I)=0. 5 

The contrast-enhanced image is obtained as the summation of the original image, the peaks, and 6 

the negative valleys f ′ = f + p′( f )− v ′( f ) [52]. 7 

 8 

3.2. Filtering 9 

Filtering is an operation that allows to reduce the noise or to sharpen blurred areas in an image in 10 

order to make it clearer and more suitable for further processes. In the filtering of hyperspectral 11 

images, several techniques usually used in image processing have been upgraded to obtain 12 

multichannel restoration. For example, the well-known Wiener filter used in image processing has 13 

been extended to be used in hyperspectral images. There are two groups of filters: One is based on 14 

the assumption that the within-channel information is separable from between-channel 15 

information, i.e., spectral and spatial information are separable. These filters are called Hybrid 16 

filters. In this case, the first step is to decorrelate channels using Fourier Transform or PCA and 17 

then apply a classic 2D restoration method such as Wiener filter or Static Wavelet Transform. The 18 

other group consists of a few proposed filters that do not rely on the assumption of spectral and 19 

spatial separability. [62] 20 

 21 

3.2.1. Wiener filter  22 

The Wiener filter is a widely used filter based on minimum mean square estimation. The original 23 

image is obtained from the received image by minimizing the mean square error. It assumes that 24 

the acquired image is composed of the original image and a white noise component that has a zero-25 

mean Gaussian distribution [63]. 26 

   g (t)= f(t) + n(t)   Where f(t) is the original image, g(t) the acquired image and n(t) the noise. 27 

The estimation of f(t) is 𝑓(𝑡) =  ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1
𝑘=0 . It is estimated using L samples taken from 28 

the received signal. h(k) is a variable independent of time to be found. It is calculated by 29 

minimizing the approximation error  𝐽 = 𝐸(𝑒2(𝑡)) = 𝐸 [(𝑓(𝑡) − 𝑓(𝑡))  2] = 𝐸[{𝑓(𝑡) −30 

∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1
𝑘=0 }

2
] 31 

The minimum is achieved by 
𝜕𝐽

𝜕ℎ(𝑖)
= 𝐸 [2{𝑓(𝑡) − ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1

𝑘=0 }
𝑑𝑒(𝑡)

𝑑ℎ(𝑖)
] = 0   32 

and  
𝑑𝑒(𝑡)

𝑑ℎ(𝑖)
= −𝑔(𝑡 − 𝑖) 33 



We can reformulate it in a matrix form. H=[h0,h1, h2,…..,hL-1]
T and G(k)=[g(k) g(k-1) … g(k-1 

L+1)]T 2 

Thus  
𝜕𝐽(𝐻)

𝜕𝐻
= 2 RH-2P   => H*=R-1P. This is called Wiener-Hopf equation.  3 

Note that R is the autocorrelation of G. It is a symmetric Toeplitz matrix and therefore it is positive 4 

definite and non singular so R-1 has a solution. P is the cross-correlation between H and the input 5 

image. 6 

3.2.2. Adaptive 3D Wiener filter 7 

As most of the filters used while preprocessing hyperspectral images are based on the assumption 8 

of spectral and spatial separability, Gaucel et al [62] proposed a new filter for hyperspectral images 9 

relying on spectral and spatial information simultaneously.   10 

First the authors assume that the channel vector v(n1,n2) represents the zero-mean white Gaussian 11 

noise, uncorrelated with the original image f(n1,n2). The received image is 12 

g(n1,n2)=f(n1,n2)+v(n1,n2). Then, they apply the filter in local regions in which the signal-pixel 13 

vector f(n1,n2) is assumed homogeneous. So f could be modelled as f(n1,n2)= mf +w(n1,n2),  where 14 

mf is the local mean of f(n1,n2) and w(n1,n2) a zero mean white noise. 15 

The linear solution of Wiener filter is  𝑓 = 𝑚𝑓 + Γ𝑓𝑔Γ𝑔𝑔
−1(𝑔 − 𝑚𝑔) where Γ𝑓𝑔 is the covariance of 16 

f and g, and Γ𝑔𝑔 is the variance-covariance matrix of g. From the received image we could estimate 17 

Γ𝑔𝑔. But as the noise and the signal are uncorrelated, Γ𝑔𝑔 = Γ𝑓𝑓 + Γ𝑣𝑣 and Γ𝑓𝑔 = Γ𝑓𝑓 18 

Since the noise is zero-mean, mf=mg and the equation becomes  19 

 𝑓 = 𝑚𝑔 + 𝐻(𝑔 − 𝑚𝑔) and 𝐻 = (Γ
𝑔𝑔

− Γ𝑣𝑣) Γ𝑔𝑔
−1 20 

Using the local region model, Γ𝑔𝑔 is estimated and mg is updated at each pixel. 21 

 22 

3.2.3. Multiway filtering 23 

Multiway filtering is another reformulation of the Wiener filter based on modelling the 24 

hyperspectral image by a third order Tensor.  25 

The collected hyperspectral image R is modeled as the sum of the desired original image X and the 26 

additive white and Gaussian noise N  27 

𝑅 = 𝑋 + 𝑁 28 

The goal is to estimate the original image by applying multidimensional filtering on the received 29 

data  30 

𝑋̂ = 𝑅1𝐻12𝐻23𝐻3 31 

Where n represents the n-mode product. The n-mode product between a data tensor R and matrix 32 

Hn represents the consecutive matrix product between matrix Hn and the In-dimensional vectors 33 

obtained from R by varying index in and keeping the other indexes fixed [64]. 34 



In order to determine the optimal n-mode filters H1, H2 and H3, the criterion used is the 1 

minimization of the mean squared error between the estimated signal 𝑋̂ and the original one 𝑋. 2 

e(H1,H2,H3)= E[||X − 𝑅1𝐻12𝐻23𝐻3||2] 3 

To estimate Hn, an Alternative Least Square algorithm is used, consisting of the following steps 4 

[64]: 5 

1. Initialization k = 0: R0 = R ⇔ H0
n = IIn for all n = 1 to N (=3 in this case). 6 

2. ALS loop: while ||X − Rk||2 > thr, with thr > 0 fixed a priori. 7 

(a) for n = 1 to N: 8 

i. Rk
n = R ×1 H1

k · · · ×n−1 Hn-1
k ×n+1 Hn+1

k . . . ×N HN
k. 9 

ii. Hn
k+1=argmin ||X−Rk

n×nQn||
2 subject to 𝑄𝑛 = H1

𝑇𝐻1⨂…H𝑛−1
𝑇 𝐻n−1⨂H𝑛+1

𝑇 𝐻𝑛+1⨂. . . H𝑁
𝑇𝐻N 10 

Qn∈ R In×In. 11 

 12 

(b) Rk+1 = R ×1 H1 
k+1 · · · ×N HN k+1, k ← k + 1. 13 

3. Output: 𝑋̂ = 𝑅1𝐻12𝐻23𝐻3 14 

  15 

Step (2)(a)(ii) of the ALS algorithm can be decomposed into the following sub-steps: 16 

1.n-mode unfold Rk
n into Rn

k =Rn(H1
k⊗…Hn

k−1⊗Hn
k+1...⊗HN

k),and R 17 

into Rn; 18 

2. Compute γRR
n = E(Rn

kRn
T), perform its eigenvector decomposition (EVD) and place the 19 

eigenvalues in λγ
k, for k = 1 to In; 20 

3. Estimate Kn using Akaike Information Criterion or Minimum Description Length criterion. 21 

4. Estimate σ γ
 (n)2

  by computing 
1

𝐼𝑛−𝐾𝑛
∑ 𝜆𝑘

𝛾𝐼𝑛
𝑘=𝐾𝑛+1  and estimate βi by computing  λγ

i- σ γ
 (n)2 for i= 22 

1 to Kn; 23 

5. compute ΓRR (n) = E(Rn 
kRn 

kT ), perform its EVD, keep in matrix Vs
n the Kn eigenvectors 24 

associated with the Kn largest eigenvalues of ΓRR (n), and keep the Rn largest eigenvalues λn
Γk for 25 

 k = 1 to Kn; 26 

6. Compute the (k + 1)th iteration of n-mode Wiener filter Hn 
k+1 using the expression of n-mode 27 

Wiener filter. 28 

This method has been tested in [64] on different images and proved its efficiency by increasing 29 

the SNR by about 3dB. However, one of the main drawbacks is an increased complexity and 30 

computational time.  31 

 32 



3.3. Segmentation 1 

In the remote sensing community, segmentation is defined as the process of searching for 2 

homogenous regions in an image, that is later followed by the classification of these regions [65]. 3 

In image processing, there are many methods used for segmentation, however not all of them are 4 

applicable to multispectral and hyperspectral images.  Some methods like watershed algorithms 5 

have been upgraded in order to segment hyperspectral images. Globally, segmentation algorithms 6 

are divided into two categories: Boundary-based and Region-based. Boundary based methods 7 

detect the boundary using the discontinuity property. In region-based algorithm, pixels in a region 8 

are grouped using the similarity property. In the following, we present the main methods used in 9 

hyperspectral image segmentation. 10 

3.3.1. Watershed Algorithm 11 

The watershed algorithm is a powerful tool usually used for mathematical morphology 12 

segmentation. In [66] the authors proposed to use spatial gradients and spectral markers for 13 

segmentation. The algorithm works as follows: 14 

First, to avoid obtaining a large number of minima while flooding the watershed using the gradient 15 

function (over-segmentation), they determine markers for each region of interest using Clara 16 

Clustering algorithm [67]. Then, the Factor Correspondence Analysis FCA [68] data reduction 17 

method is applied to remove the redundancy of channels and filter the image. Next, a chi-squared 18 

distance based gradient is performed on the filtered image, then watershed segmentation is 19 

computed. This approach works well and proves that an adapted data reduction is necessary for 20 

multivariate gradient segmentation. 21 

3.3.2. Hierarchical segmentation 22 

In 1989, Beaulieu and Goldberg [69] proposed a hierarchical process to segment images based on 23 

hierarchical step-wise optimization. Hierarchical segmentation is defined as a set of segmentations 24 

of the same image at different levels of detail in which the segmentations at coarser levels can be 25 

produced from a simple merging of regions at finer levels [69]. First, each pixel is assigned to a 26 

region label. Then, spatially adjacent regions with small dissimilarity value are merged. The 27 

dissimilarity between new spatially adjacent regions are calculated and the pairs with smallest 28 

value are merged. The process is repeated until the number of regions needed is obtained or all 29 

values of dissimilarity are below a predefined threshold. The drawback of this method is the long 30 

computational time while dealing with large data.  31 

Tilton in 1998 [70] proposed a new hierarchical segmentation method called HSEG. The main 32 

improvement of this method is that non-adjacent regions could be merged together and the 33 

dissimilarity function is selectable. Another recursive version of this algorithm called RHEG was 34 

proposed in [71] to overcome the problem of long computational time of HSEG. These algorithms 35 

are registered patents for US government.  36 

3.4. Feature extraction 37 

Feature extraction consists in transforming the data from a high dimensional space to a lower 38 

dimensional space chosen in such a way as to conserve as much as possible the information of 39 

interest in the data. Feature extraction is used in hyperspectral image analysis to overcome the 40 



problem of a low number of data training samples in comparison to the high spectral resolution of 1 

the image and to reduce the computational time. There are many feature extraction algorithms that 2 

are introduced; some are linear while others are nonlinear. While working on landmine or target 3 

detection, not all feature extraction algorithms are useful, because the targets of interest are 4 

generally sparse and the feature extraction may remove the key features of the target. In the 5 

following, we are going to list some of these algorithms, their implementation and their 6 

advantages. 7 

3.4.1. Principal Component Transformation (PCT) 8 

Principal Component Transformation, also called principal component analysis, Hotelling 9 

transformation or Karhunen-Loeve transformation is a dimensionality reduction method based on 10 

the minimization of the representation error. The idea is to choose the most representing bands 11 

with the help of the eigenvalue decomposition of the covariance matrix of the hyperspectral image 12 

[72]. The first step of PCT is the calculation of the covariance matrix of the image matrix. Then, 13 

the eigenvalues of the covariance matrix are calculated and the eigenvectors are extracted. Finally, 14 

the image matrix is projected onto the new subspace formed by the k orthogonal eigenvectors 15 

corresponding to the highest eigenvalues.  Y=WT x where x is a d x1 -dimensional vector 16 

representing one image pixel,  y is the transformed k x1-dimensional sample in the new subspace 17 

and W is the transformation matrix of k orthogonal eigenvectors. 18 

Note that while computing the PCT algorithm, the variance of the projections along the principal 19 

components is equal to the eigenvalues of the principal components. In theory, PCT transformation 20 

affects the classification of hyperspectral images. However, the overall effect on classification 21 

does not  change  the general  class  patterns  and,  therefore, the  dominating  classification  result  22 

remains correct. 23 

3.4.2. Linear Discriminant Analysis (LDA)  24 

Linear discriminant analysis is a statistical based method often used for feature extraction and 25 

dimensionality reduction. It is also named Discriminant Analysis Feature Extraction (DAFE). It is 26 

an extension of the well-known Fisher discriminant analysis, which is limited to binary class 27 

decomposition. LDA computes an optimal transformation by minimizing the within-class distance 28 

and maximizing the between-class distance simultaneously, thus achieving maximum class 29 

discrimination [73]. Therefore, the first step is to calculate the within-class, between-class and total 30 

scatter matrices. A transformation matrix is then defined and computed by applying the 31 

eigenvector decomposition on the scatter matrix [74]. The main disadvantage of this method is 32 

that it requires that the scatter matrix of the data be nonsingular. This method has also other 33 

drawbacks: the maximum number of features extracted is equal to the number of classes minus 34 

one. The number of training samples should be large enough to estimate the between-class and 35 

within-class scatter matrix reliably. The between-class will be biased toward the class that has very 36 

different mean value. Also, it is very time consuming compared to other methods. In addition, it 37 

requires more training samples for hyperspectral images to calculate the class statistical parameters 38 

at full dimension. [75]. Many LDA extensions have been proposed to deal with the singularity 39 

problem like PCA+LDA, regularized LDA (RLDA) , null space LDA (NLDA) , orthogonal 40 



centroid method (OCM) , uncorrelated LDA (ULDA) , orthogonal LDA (OLDA), LDA/GSVD, 1 

etc. [76].  2 

 3 

In addition to the main methods we described above for feature extraction of hyperspectral 4 

images, many other techniques exist like matched pursuit [75], neighborhood embedding [77], 5 

Sammon’s mapping [78] and nonparametric weighted feature extraction [79].   6 

3.5. Classification 7 

It is the most important step in landmine and target detection. The performance of the algorithms 8 

used in each of the previous steps and in the classification phase are evaluated by the study of the 9 

classification results. The classification phase in an image based target detection process could be 10 

defined as the step in which the pixels are discerned between target and non-target. Globally, the 11 

classification algorithms are divided into two main classes: Supervised and unsupervised. 12 

Supervised classification methods are based on the knowledge of the target and the use of training 13 

samples. Unsupervised classification methods consist of grouping pixels that have similar 14 

properties without the knowledge of target properties.  Considering the way the classifier computes 15 

the information in the pixels, classification algorithms are divided into per pixel classifiers, 16 

subpixel classifiers, per-field classifiers, knowledge based classifiers, contextual and multiple 17 

classifiers [80]. In landmine detection, unsupervised classification techniques are used when there 18 

is no information on the type of mine present in the field or when there is the possibility that a 19 

particular type of mine is deployed but its reflectance spectrum is not in the library of known 20 

spectra. However, unsupervised classification methods do not work well in every possible 21 

condition and suffer from high false alarm rate due to the generally low number of target pixels 22 

compared to background pixels. While the use of unsupervised methods could help in detecting 23 

unknown types of landmines, the use of supervised classification methods is necessary for the 24 

identification of mines. In the following, we are going to mention the major classification methods 25 

used in landmine detection: 26 

3.5.1. Support vector machine (SVM) 27 

Support vector machine is a powerful non-parametrical supervised classification method. Firstly, 28 

it was proposed for binary classification and regression [81]. Then, it has been used in the 29 

classification of hyperspectral images [82]. SVM consists in finding the best separation between 30 

two classes based on the separation of representative training samples called support vectors. In 31 

addition, SVM does not suffer from Hughes effect and may perform separation of classes having 32 

very close means even with a very small number of training samples [83]. First, we start with a 33 

couple of training samples (xi,yi) where yi is a class label equal to ±1 which indicates the class of 34 

the pixel and xi is a d-dimensional vector which represents the spectrum of the pixel in d 35 

wavelengths in the case of hyperspectral images. If the classes are linearly separable by a 36 

hyperplane, the SVM classifier is represented by the function f(x)=w.x+b where w is a vector ∈ 37 

Rd and b is a real bias ∈ R that could separate the classes without errors. The decision is made 38 

according to the sign of f. The SVM approach consists in finding the separating hyperplane that 39 

has the largest distance from the closest training samples.  This distance is expressed as 1/||w||. The 40 

margin is defined as 2/||w||. So to calculate W and b, the following optimization must be calculated: 41 



min{1/2 ||w||2} with yi(w.x+b)≥1, for all samples. By introducing the Lagrangian formalism, the 1 

problem is transformed to the dual problem:  2 

Max of: ∑ 𝛼 𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖. 𝑥𝑗)

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑖=1  with the condition ∑ 𝛼𝑖𝑦𝑖 = 0𝑁

𝑖=1  𝑎𝑛𝑑 𝛼𝑖 ≥ 0.  3 

Where 𝛼𝑖 are Lagrange multiplier that can be estimated using quadratic programming. 4 

If the samples are not linearly separable, suitable kernel functions are used to project the data into 5 

a higher dimensional feature space in which the data could be linearly classified. Profiting from 6 

this transformation, the inner product in the maximization (𝑥𝑖 . 𝑥𝑗)is replaced with the function 7 

𝑘(𝑥𝑖. 𝑥𝑗).  8 

There are many types of kernel functions, including: polynomial: K(xi, xj) = (1 + xi.xj)q ;Gaussian 9 

radial basis K(xi, xj) = exp(−||xi−xj||2/(2σ2)) ; Laplacian radial basis K(xi, xj) = exp(−||xi−xj||/(2σ2)) 10 

; Sigmoidal K(xi, xj) = tanh(α0(xi.xj) + σ2). In the case of multiclass classification, two approaches 11 

could be used: One against all, where each class is discriminated using the samples of all classes. 12 

One against one, where a larger number of classifiers are computed using each time the training 13 

samples of two different classes. 14 

3.5.2. K means clustering 15 

K means clustering is one of the most used clustering methods for hyperspectral images. In k 16 

means clustering, the pixels of the image are grouped into classes based on spectral similarity. 17 

First, k random centroids are assigned. Then each pixel is assigned to the closest centroid. The 18 

norm used to calculate the distance between the pixel and the centroid could be the Euclidian 19 

distance, Manhattan distance, max distance, or linear combination of the above distances. After 20 

that, new centroids are found by calculating the mean value of each cluster. Then, the clusters are 21 

reformulated. This process is repeated until the total number of iterations is achieved or the total 22 

distance between classes is minimized [84]. 23 

3.5.3. Orthogonal subspace projection (OSP) 24 

Orthogonal subspace projection is a supervised classification method used to detect targets in 25 

hyperspectral images at subpixel level. This method is based on the theory of spectral unmixing 26 

which consists in subdividing the reflectance spectra of each pixel into endmembers spectra. This 27 

method was proposed by Harsanyi and Chang in 1994 [85] in order to exploit a priori knowledge 28 

of the target and facilitate the target detection. Suppose the image pixel is modeled by the equation: 29 

x=ta +Bα+ξ where: 30 

x = spectral vector characterizing the pixel 31 

t = spectral vector associated with the target 32 

a = unknown fractional abundance of the target within the pixel 33 

B = matrix of vectors of the scene endmembers (materials found in the scene background) 34 

α = unknown fractional abundance of each basis vector 35 

ξ = residual error associated with this model. 36 



After the background suppression, OSP uses the matched filter to determine if the target spectrum 1 

is a part of the pixel spectra by calculating its abundance. This is done using the OSP operator 2 

δOSP(x)= tTPB
┴x   where PB

┴=I-BB# is the orthogonal background operator, and I is the identity 3 

matrix. The fractional abundance of the target within the pixel can be computed as follows: 4 

𝑎̂=Tosp(x)= (tTPB
┴t)-1 δOSP(x).[85] 5 

3.5.4. Linear Cross-Correlation 6 

Cross-correlation is a mathematical tool used in signal processing to evaluate the similarity 7 

between two functions or vectors [86]. In case of target detection using hyperspectral imaging, 8 

Cross-correlation is used to compare an a priori known reflectance spectrum of the target with the 9 

reflectance spectrum of the pixel under test. As much as the reflectances are similar, the probability 10 

of target existence at the pixel location is higher. Therefore, this method treats the pixel value and 11 

target spectra as vectors and computes the spectral angle between them. The first step is to 12 

normalize the image pixels to remove brightness differences by subtracting the mean and dividing 13 

by the standard deviation. Then, the cosine of the angle between the pixel 𝑃 ⃗⃗  ⃗and target 𝑇 ⃗⃗  ⃗is 14 

computed to evaluate the similarity between the target and the pixel, where cos(𝜙) =
𝑃⃗ .𝑇⃗ 

‖𝑃‖‖𝑇‖
 . 15 

3.6. Recent developments in target detection using hyperspectral images. 16 

In recent years, researchers proposed various new algorithms to detect targets in a hyperspectral 17 

image. Although the different approaches are devoted to generic target detection, they represent 18 

promising candidates for improving the performance of current landmine detection techniques. As 19 

a matter of fact, landmines constitute a special type of targets, since they are usually rare and sparse 20 

in the scene, and they have different shapes, colors and reflectance spectra. For example, various 21 

approaches to model a hyperspectral image, in addition to a comparison between supervised 22 

Matched filter and unsupervised Reed-Xioli target detection algorithms, are presented in [87]. A 23 

nonlinear version of the algorithm Target Constrained Interference Minimized Filter based on 24 

kernels is recently proposed in [88]. In [89], the authors propose a new endmember extraction 25 

process to detect anomalies in a hyperspectral image. Some researchers proposed new models to 26 

interpret the hyperspectral data in order to simplify the target detection process. Here we mention: 27 

Forward modelling working in radiance space [90], Sparse Representation Based Binary 28 

Hypothesis Model (SRBBH) [91], Sparsity and Compressed sensing based models [92] and spatio-29 

spectral Gaussian random field modeling [93]. 30 

 31 

4. Discussion 32 

Since the introduction of hyperspectral imaging in 1985, applications of this technique have 33 

increased in several fields. As this technique gives the ability to distinguish different materials 34 

remotely, it has been applied to landmine detection research. Every material has its special spectral 35 

signature. Therefore, knowing the mine spectral curve, by a simple comparison between the mine 36 

spectrum and the pixel spectrum, we can decide on the presence or the absence of the mine at that 37 

specific position. It was found that spectral reflectance of each type of surface-laid mines has a 38 

constant shape between 500-680 nm but varies in offset and scale according to the illuminance of 39 



the scene [16]. So, the detection of this particular shape in the pixel spectrum proves the presence 1 

of the landmine.  2 

Using VNIR band, recently buried landmines could be detected. Also, the fusion of VNIR and 3 

SWIR could give better results. Landmine burying changes the thermal properties of the upper 4 

level of some type of soils. It also changes its surface reflectivity and stresses vegetation. Hence, 5 

buried landmines can be detected by measuring the change of reflectivity both between 6 

manipulated soil and background and between stressed and unstressed vegetation. Consequently, 7 

as anti-tank mine deployment is done by digging up a larger area of surface (soil and/or vegetation) 8 

and a larger volume of soil is disturbed, the possibility of detecting them is higher than with anti-9 

personnel mines. MWIR and LWIR bands are also used to detect buried landmines. Even if SWIR 10 

and VNIR alone could detect soil disturbances due to buried mines, MWIR and LWIR can reduce 11 

the false alarm rate. However, the use of SWIR bands is more common since the majority of 12 

manufactured imagers operates in the VNIR and SWIR bands.  After testing several hyperspectral 13 

imagers of different bands, it was found that imagers in LWIR bands have the potential to detect 14 

buried landmines with the use of proper algorithms. The algorithms could be supervised or 15 

unsupervised based on the data availability. Note that this does not eliminate the possibility to 16 

detect landmines with the use of other bands. However, proper algorithms and thresholds should 17 

be used for each case.  18 

If we consider high spatial resolution images, which means the image has ground sample distance 19 

close to the size of landmine, the possibility to detect a landmine is higher as the reflectance 20 

spectrum of the pixel will result only from the reflectance of the mine, or at least the reflectance 21 

of the landmine will be present with a high abundance. In addition, military target detection could 22 

be achieved at subpixel level using hyperspectral images. This means that by acquiring images 23 

from high altitude, using UAV or aircrafts, fast target detection is possible even if the target 24 

constitutes a small part of the pixel. 25 

In order to attain quasi real-time detection, all the processes involved, starting from geocorrection 26 

until classification, must be studied and organized so as to reduce the computational time. Since 27 

the detection performance will be possibly affected by some optimizations, a tradeoff between 28 

computational time and detection performance has to be achieved.   29 

Several factors affect the reflectance signature obtained by the imager. Wind and rain are the main 30 

factors, but the effect of rain is the dominant one. In the case of buried landmines, rainfall decreases 31 

the reflected portion of the thermal energy and therefore the reflectance signal received. However, 32 

the shape of the signature remains the same. More rainfall will result in more reduction and 33 

therefore the reflected signal will be more and more similar to the background. 34 

The design of active hyperspectral imagers by joining a laser illuminator with the light detector is 35 

beneficial to obtain images independently of light and weather conditions. However, it was found 36 

that this method has a higher false alarm rate. This may be caused by the emission of excess light 37 

that is reflected by the target and background in a similar way. Therefore, the contrast between 38 

target and background has decreased. The distance between the laser emitter and the ground must 39 

be made as small as possible, to improve the system performance. 40 



Many projects proposed the fusion of multiple sensors in order to detect landmines like the project 1 

in Belgium and in DRDC [27,29,47].  Even if the Belgian project considers the system output as 2 

an aid to a human operator who is in charge of the final decision, both projects proved that a well-3 

organized hierarchical fusion gives better results than the use of a single detection technique. 4 

5. Conclusions 5 

According to the previous results, in order to achieve a reliable detection, a comparative study 6 

between different classification algorithms in different conditions must be considered. To do this, 7 

one should take into consideration the effect of imager elevation, which affects the spatial 8 

resolution, the number of pixels in each frame, the imager holder velocity, in order to optimize the 9 

capturing time and to minimize the computational time. Various images captured in different time 10 

and weather conditions and from different angles should be compared to model the effect of 11 

sunlight and weather on the detection performance and to come out with the best conditions for a 12 

better detection. 13 

Previous tests used an airborne hyperspectral imaging system for landmine detection, mounted on 14 

a fixed wing manned aircraft or a helicopter. However, for the landmine detection purpose, a high 15 

spatial resolution is necessary for a good detection. Therefore, it is necessary to test the ability of 16 

a multirotor drone to carry the hyperspectral imager. Landmine detection with a multirotor drone 17 

could be very promising, since it allows to detect high quality images with few artifacts caused by 18 

undesired motions.  19 

In parallel with the use of new image acquisition techniques, the development of new target 20 

detection algorithms and the introduction of different approaches of hyperspectral image 21 

modeling, like the use of sparse signal models, are expected to have a great impact on landmine 22 

detection in future works. The development of such techniques helps in making new fully 23 

automated landmine detection systems that have higher probability of detection and lower false 24 

alarm rate.  25 

The fusion of multiple landmine detection techniques may improve the detection performance. For 26 

example, the fusion of lightweight techniques that can be embedded in small UAVs, has to be 27 

investigated. This may lead to test the fusion between hyperspectral imaging and the Ground 28 

penetrating Radar detector as these techniques are lightweight and can be handled with quadrotors. 29 

We neglected the fusion with metal detectors as they necessitate the proximity between the sensor 30 

and the ground. Also, the acoustic and seismic detectors are discarded because they use very heavy 31 

equipment. 32 

Table 1: summary of projects studied landmine detection using infrared and hyperspectral imaging. 33 

Research Project Type of data Techniques Used Comments 

Detection of 

surface-laid 

minefields using 

a hierarchical 

image processing 

Infrared 

monochrom

atic Image 

Hierarchical image 

processing 

Method would be useful as follow-on 

stage to process airborne hyperspectral 

imagery after preprocessing in order to 

reduce the hyperspectral image to a 

single band. 



algorithm 

(DRDC) 

Surface laid 

Landmine 

detection using 

VNIR (DRDC) 

VNIR  LCC & Linear 

Unmixing 

Surface-laid mines have consistent shape 

in VNIR bands; LCC performs well in 

case of high spatial resolution images; 

Unmixing techniques have higher PD in 

the case of subpixel target at the price of 

higher FAR 

Buried 

Landmines 

detection using 

VNIR (DRDC) 

VNIR  LCC  Using VNIR, buried mines are not 

directly detected, however the change of 

soil characteristics and vegetative stress 

due to mine burying is detectable. 

Effect of Spatial 

resolution on 

mines detection 

(DRDC) 

VNIR  LCC & OSP LCC performs better when the pixel size 

is smaller than mine size. OSP is better 

when mine size is smaller than pixel size. 

Best detection is achieved when the result 

of two methods are combined. 

Surface-laid 

Landmine 

detection using 

VNIR in real 

time (DRDC) 

VNIR  Pipeline image 

processing 

the proposed suite of algorithms proves 

the possibility to detect landmines in 

quasi real time using an airborne platform 

Landmines 

detection using 

SWIR bands 

(DRDC) 

SWIR LCC Similarly to VNIR bands, the use of 

SWIR is beneficial to detect surface-laid 

mines and recently buried landmines. 

Landmines 

detection using 

LWIR bands 

(DRDC) 

LWIR (TIR) Spectral 

comparison 

LWIR hyperspectral imaging provides 

advantages over broadband LWIR 

Multiple sensors 

mounted on a 

robot (DRDC) 

Fusion of 

VNIR, 

SWIR, 

LWIR HSI 

and other 

sensors 

Dynamic range 

detector and 

contrast 

enhancement 

A proposed system employing 

hyperspectral imagers for close-in anti-

personnel mine detection. 

Active 

hyperspectral 

imaging 

(DRDC/Itres) 

VNIR  Casi imager with 

intensifier 

With the addition of external 

illumination, the FAR increases as 

reflectivity of background increases.  

Equinox Project Fusion of 

visible and 

SWIR 

Thresholded Ratio 

vegetation index 

Here a ratio between two or three bands 

is used. More bands using other 

approaches may improve the results. 



DARPA project 

to detect buried 

landmines 

MWIR and 

LWIR  

spectral 

comparison 

LWIR and MWIR are more suitable to 

detect buried landmines. 

Hyperspectral 

mine detection 

phenomenology 

program 

VNIR,SWI

R,MWIR,L

WIR 

Data collection 

using 

spectrometers 

Weather conditions affect the intensity of 

the reflected spectra. The effect of rain is 

more important than other effects. 

Joint 

Multispectral 

Sensor Program  

VNIR,SWI

R,MWIR,L

WIR 

Fourier Transform Thermal sensor are beneficial for target 

detection at nighttime. LWIR bands are 

more effective than MWIR 

airborne sensors 

tests (NVESD) 

VNIR,SWI

R,MWIR,L

WIR 

RX and NFINDR 

with STD anomaly 

detection. Grid 

pattern detection of 

landmines 

LWIR gives a good detection with the use 

of proper algorithms. The inclusion of 

spatial pattern information in anomaly 

detection improves the detection 

performance. 

DSTL 

countermine 

project 

VNIR PCA more tests and other algorithms shall be 

tested to evaluate the effectiveness of 

VNIR bands in landmine detection 

Indian Test to 

detect landmines 

using infrared 

image 

Infrared  

Image 

Hierarchical image 

processing 

More images are needed to train the 

Neural network based classifier. A more 

complex one may be used in complex 

situations. 

 NATO project VNIR,SWI

R,MWIR, 

LWIR 

Hierarchical image 

processing 

Radars are less suitable for airborne mine 

detection. Combination of bands is 

necessary to overcome the 

meteorological effects. Improvement of 

algorithms and techniques in parallel is 

necessary. 

Humanitarian 

demining 

(HUDEM & 

BEMAT) 

GPR, metal 

detector, 

infrared 

sensor 

belief and 

possibility theory 

Fusion of sensors may give better results 

than single sensor. 

FOI (MOMS) VNIR,SWI

R,MWIR, 

LWIR, 3D 

LADAR. 

Anomaly 

detection, Support 

Vector Machines 

Hyperspectral imaging is useful for 

automatic detection of open and semi-

hidden mines. 

The choice of sensor suite and algorithms 

depends on environmental and 

operational conditions. 

TELOPS LWIR Temperature-

Emissivity 

separation, Linear 

Unmixing to study 

the mineral 

distribution 

Soil above landmines is warmer than 

surrounding undisturbed soil. 

Complementary information are needed 

to reduce the FAR. 

 1 
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