
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A High-Level Approach Towards End User Development in the IoT / Corno, Fulvio; DE RUSSIS, Luigi; MONGE
ROFFARELLO, Alberto. - STAMPA. - (2017), pp. 1546-1552. (Intervento presentato al convegno CHI 2017: The 35th
Annual CHI Conference on Human Factors in Computing Systems tenutosi a Denver, CO (USA) nel May 6–11, 2017)
[10.1145/3027063.3053157].

Original

A High-Level Approach Towards End User Development in the IoT

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3027063.3053157

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2665147 since: 2017-05-03T11:03:42Z

ACM

A High-Level Approach Towards End
User Development in the IoT

Fulvio Corno
Politecnico di Torino
Corso Duca degli Abruzzi, 24
Torino, Italy 10129
fulvio.corno@polito.it

Luigi De Russis
Politecnico di Torino
Corso Duca degli Abruzzi, 24
Torino, Italy 10129
luigi.derussis@polito.it

Alberto Monge Roffarello
Politecnico di Torino
Corso Duca degli Abruzzi, 24
Torino, Italy 10129
alberto.monge@polito.it

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CHI’17 Extended Abstracts, May 6–11, 2017, Denver, CO, USA.
ACM ISBN 978-1-4503-4656-6/17/05.
http://dx.doi.org/10.1145/3027063.3053157

Abstract
Programming environments for end-user personalization
in the Internet of Things (IoT) are becoming increasingly
common. They allow users to define simple IoT applica-
tions, i.e., connections between different IoT devices and
services. Unfortunately, the adopted representation models
are highly technology-dependent, e.g., they often catego-
rize devices and services by manufacturer or brand. Such
an approach is not suitable to face the expected growth of
the IoT, nor it allows to adapt to yet undiscovered IoT ser-
vices. In this paper, we present a generic and technology-
independent representation for IoT end-user programming
environments. The aim of this “high-level” representation is
to allow end-users to create abstract IoT applications that
adapt to different contextual situations. We preliminary eval-
uated the representation by comparing it with the one used
by existing programming environments in a user study with
10 participants. Results show that the representation is un-
derstandable, and it allows users to create IoT applications
more correctly and quickly.

Author Keywords
End User Development; Internet of Things; Trigger-Action

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,HCI)]:
Miscellaneous

Introduction and Motivations

Figure 1: A small portion of
devices and services modeled by
IFTTT. Each technology has its
own different element, with different
triggers and actions inside. With
the spread of new smart “things”,
the amount of information may
become too high and the interface
cluttered.

The Internet of Things (IoT) is a recognized paradigm that
may help society in many different ways, i.e., with applica-
tions for the individual, the planet, and industries as well [2].
However, given the rapid growth of the number of “smart”
objects [6], the increasing complexity of the IoT ecosystem
raises new challenges, especially in the interaction with end
users. Since IoT solutions often adopt different standards
and technologies, the question of interoperability between
smart devices and services still remains open, as already
reported by Munjin [9]. In this context, End User Devel-
opment (EUD) environments enable end-users with and
without programming skills to customize their own IoT ob-
jects on the basis of their personal needs. By following this
trend, third-party services for end-user personalization such
as IFTTT1, Atooma2, and Tasker3 are becoming increas-
ingly common. Such programming environments typically
employ the trigger-action programming paradigm (e.g., “if
something happens, then perform an action”) to allow the
definition of IoT applications (often named rules), i.e., con-
nections between pairs of IoT devices and/or services. Un-
fortunately, they present some limits, that John has widely
experienced:

John, a manager of an important company, is always hot,
especially in summer. He loves air conditioning, and he
would like to set a low temperature wherever it is possi-
ble. At home, John has an intelligent Nest thermostat that
he controls through his Android smartphone. John goes to
work by car. There, all the offices are equipped with a Sam-
sung smart air conditioner.

1http://ifttt.com (last visited on November 11, 2016)
2http://www.atooma.com (last visited on November 11, 2016)
3http://tasker.dinglisch.net (last visited on November 11, 2016)

John has to define several rules to reach his comfort goal,
at least one for his home, one for his office, and one for his
car, even if they perform the same logical operations (i.e.,
set a specific temperature when he enters a place). Fur-
thermore, he has to be aware of every single technology
he may encounter before creating his rules (e.g., Nest,
Samsung, etc.), to choose the right one for each rule. Fi-
nally, even with an authorization, John will not be able to
define similar rules for unknown places or “things” (e.g.,
his friend’s car). Such three major issues (high number of
rules required, no technology awareness, and no discov-
ery) are due to the intrinsic technology-dependency of the
representation models adopted by many existing end-user
programming environments in the IoT. In the case of IFTTT,
for example, devices and services are simply grouped by
manufacturer or brand (Figure 1). To overcome the issues,
a new breed of programming environments should be de-
signed to support a “higher level” representation of IoT de-
vices and services.

To take a step towards this direction, the contribution of
this work is a high-level representation, named EupONT
for IoT EUD environments. Such a representation allows
John to define a single rule for his need, e.g., “if I enter a
closed space, then set the temperature to 20 Celsius de-
gree”. The representation abstracts the IoT ecosystem by
modeling devices and services on the basis of their func-
tionality and capabilities. It allows the definition of generic
and technology-independent trigger-action rules which can
be adapted to different contextual situations, independently
of manufacturers, brands, and other technology-related de-
tails. EupONT has been defined as an ontological frame-
work, thus providing semantic and reasoning capabilities for
supporting the run-time execution of the definable end-user
rules. For a preliminary evaluation, we focused on rules
composition and we compared the EupONT representa-

http://ifttt.com
http://www.atooma.com
http://tasker.dinglisch.net

tion with the one adopted by IFTTT. In the in-lab study with
10 participants, we investigated whether and how EupONT
helps users in the composition of trigger-action rules. Re-
sults show that, with the new representation, users can cre-
ate IoT applications with fewer errors and in less time.

Background and Related Work
Lieberman et al. [8] defines End User Developement as “a
set of methods, techniques, and tools that allow users of
software systems, who are acting as non-professional soft-
ware developers, at some point to create, modify or extend
a software artifact”. Starting from iCAP [5], there has been
a long history of interest in EUD and mashup technologies.
EUD is, nowadays, a promising approach even for the IoT.
The spread of interconnected devices and services allow
users to effectively participate in the IoT [3], and people
are increasingly moving from passive consumers to active
producers of both information, data, and software [9]. Sev-
eral commercial tools (e.g., IFTTT, Atooma, and Tasker)
allow users to customize the joint behavior of their IoT de-
vices and services. The concepts used by such tools have
also been extended for smart homes [10, 4], and for cross-
device interfaces [7].

Past and recent solutions in End User Development mainly
use the same programming paradigm, i.e., trigger-action
programming, that offers a very simple solution to create
IoT applications. Furthermore, trigger-action rules provide
a good match with users mental model [5]. However, recent
studies [1, 10] show that the trigger-action approach should
be further investigated to cope with the evolving IoT world.
As reported by Barricelli and Valtolina [1], the widespread
growth of IoT devices and services influences the most well
established definitions of EUD. They extended the trigger-
action paradigm in the IoT by incorporating new concepts
to those already modeled (e.g., other IoT users, space and

time, and recommendation systems). Furthermore, Ur et
al. [10] discovered that users would like to express triggers
with a higher level of abstraction than the one offered by
contemporary IoT end-user programming environments.
Starting from these evidences, our work tries to abstract the
end-user development in the IoT with a new representation
of devices and services, the EupONT high-level representa-
tion.

High-Level Representation for EUD
EupONT is a model representation for EUD that allows the
composition of generic and technology-independent IoT
applications, which can be adapted to different contextual
situations, independently of manufacturers, brands, and
other technology related details. We designed EupONT as
a semantic model, thus exploiting the capabilities offered by
ontologies. With a semantic model, we can easily perform
queries on the representation such as “which IoT devices
or services can perform a particular action?” or “which IoT
devices or services can generate a particular event?”. We
firstly defined the main concepts to be inserted in the ontol-
ogy4 (e.g., Trigger, Action) and their relationships. Then, in
order to define a taxonomy for each main general concepts,
we asked two expert HCI researchers in the field of EUD
and IoT to analyze the entire ecosystem modeled by IFTTT.
The primary reasons for selecting IFTTT include its popu-
larity, the fact that it is freely available, and the availability
of a large repository of rules [11]. Thanks to the analysis,
an initial set of relevant terms was extracted. Such terms
were then hierarchical organized, for example, to group to-
gether devices and services with the same final capabilities.
The coding process was performed independently by the
two HCI researchers. They compared their results until they
reached a 80% agreement.

4The ontology is available at http://elite.polito.it/ontologies/eupont.
owl

http://elite.polito.it/ontologies/eupont.owl
http://elite.polito.it/ontologies/eupont.owl

Description

Figure 2: The structure of the
high-level representation. The two
main layers of the representation
(i.e., trigger-action programming
and IoT ecosystem) refer to the
same contextual information.

The general structure of EupONT is shown in Figure 2. The
two main layers of the representation are the trigger-action
programming and the IoT ecosystem. They refer to the
same contextual information layer, which describes loca-
tions and users of the modeled IoT ecosystem.

The trigger-action programming layer describes our
trigger-action programming approach. It extends the ap-
proaches adopted by existing IoT programming environ-
ments since it allows the definition of more generic and
technology-independent rules. Triggers and actions are
classified in 9 categories: Transportation, Place, Tempera-
ture, Physical Exercise, Lighting, Communication, People
Availability, Humidity, and News. In this way, if a user is in-
terested in controlling the temperature of an environment,
she can use the triggers and the actions of the Temperature
category. Similarly, the Communication category offers ab-
stract actions and triggers (e.g., “send a message”) to allow
the communication with other users. Triggers and actions
are hierarchical organized in such a way the user could de-
cide her preferred level of abstraction. For example, Fig-
ure 3 shows some definable actions related of the Lighting
category. The action to increase the lighting in a place (Illu-
minate) may include, for instance, turning the lights on, or
opening the blinds. For each trigger and action, we include
the possibility of defining three optional restrictions:

• Who: the user(s) involved by the trigger or the action.
User(s) can be generic (e.g., “any person”) or specific
(e.g., “my friend Mark”).

• Where: the place where the trigger has to be regis-
tered, or where the action has to be performed. Loca-
tions can be generic (e.g., “any building”) or specific
(e.g., “my home”).

Figure 3: A partial view of the hierarchical tree that characterizes
lighting-related actions.

• Value: a series of one or more values related to the
action or the trigger (e.g., a temperature threshold to
monitor, or the brightness level to set).

The IoT ecosystem model layer models IoT devices and
services on the basis of their categories (e.g., lighting sys-
tems, user devices, smart appliances) and their final capa-
bilities (e.g., switching, sensing, actuating, communication).
In particular, devices and web services are often composite
or complex, thus offering several capabilities. With a smart-
phone, for example, you can trace your position through the
GPS, send messages, connect to a Bluetooth device, etc.
To take into account this complexity, we modeled devices
and services as a set of objects able to expose one or more
functionality. Each functionality describes a capability of an
object, and may have commands to perform some actions,
or notifications to register event listeners. Commands and
notifications include the features needed to interact with the
specific technology (e.g., specific commands with required
parameters to be sent to devices and services). Through an
automatic mechanism based on a set of predefined SWRL
rules5, each IoT device or service is linked with actions and
triggers it can serve. For example, a lighting system (e.g.,

5https://www.w3.org/Submission/SWRL/ (last visited on Decem-
ber 27, 2016)

https://www.w3.org/Submission/SWRL/

a lamp) that offers a switching-on capability is able to re-
produce a “turn lights on” action. Furthermore, thanks to
the hierarchical organization of triggers and actions, a sys-
tem able to turn lights on is also able to reproduce the more
generic behavior of the hierarchy, i.e., illuminate a place.

The contextual information describes locations and users
that act as attributes for triggers and actions (Where and
Who), and define the context information of the IoT ecosys-
tem. Thanks to this layer, IoT applications can be adapted
in run-time to different users and (even unknown) locations.
In this way, the ontological representation provides a strong
support for executing the defined end-user rules.

Preliminary Evaluation
Since IoT applications are intended to be composed by
end-users, the model of EupONT should be highly com-
prehensible, at least for what concerns the trigger-action
programming layer. For this reason, in the evaluation we
focused on the rule composition, leaving for future works
their actual execution. In particular, we compared our high-
level representation with the representation model used
by IFTTT. We were interested in evaluating a) whether the
high-level representation is understandable at least as the
model employed by IFTTT, and b) whether the high-level
representation allows to create IoT applications more effi-
ciently (i.e., in less time) than IFTTT.

Study Design
We carried out a controlled in-lab study with 10 participants
(4 female) with a mean age of 22.40 years (SD = 2.46). To
consider both users with and without formal programming
training, we recruited 5 participants from the Department
of Control and Computer Engineering of our university, and
5 participants from the school of psychology of the Uni-
versity of Turin. To allow the comparison between the two

Figure 4: Our prototype interface in the high-level representation,
showing the rule “If I enter any place, then set the temperature to
22 Celsius degree”

approaches, we created an interface modeled after IFTTT
in two versions. One version allowed the composition of
trigger-action rules in EupONT (Figure 4), while the other
version exploited the low-level model, cloned by IFTTT. The
experiment was a trial of 5 scenario-based tasks related
to the creation of IoT applications. Each task consisted of
two different parts: a user scenario, and a goal. The user
scenario described a generic user, her owned devices, and
some of her typical activities. The goal defined a specific
behavior that the user wanted to obtain from her devices,
and it was definable with one or more trigger-action rules.
An example of a task was:

User scenario: Mary is a researcher that works for an im-
portant university. She is interested in saving energy. How-
ever, she is often distracted, and she always forgets to turn
the lights off. For this reason, she equipped her bedroom
with home with two two Philips Hue lamps, and her living
room with a Stack Lighting lamp. Furthermore, she installed
a Samsung SmartThings Hub to remotely control the doors
and the surveillance system of her house. Also her office is
equipped with smart devices, e.g., LFIX smart lights.

Goal: Mary would like a way to automatically turn the lights
off when she leaves a rooms or her office.

Participants completed each task twice, with EupONT and
with the IFTTT-like representation. The order of the tasks
and the used representations were counterbalanced. We
manually assigned a correctness level (from 0 to 100) to
each task completed in the two representations. We as-
signed 0 points for totally wrong tasks, 50 points for par-
tially correct tasks (e.g., tasks completed with some missed
rules), and 100 points for correct tasks (i.e., tasks com-
pleted with a set of rules compliant with the scenario that
exactly reproduced the goal). Furthermore, we measured
the time needed by the participants to carry out each task.

Results
To evaluate whether EupONT is at least understandable
as the model employed by IFTTT, we performed a one-way
ANOVA in SPSS by considering the correctness level as
dependent variable, and the used representation as the
within-subject independent variable. Results show that the
used representation significantly influenced the correct-
ness level of the tasks (F (1, 9) = 7.83, p < .05). In
particular, the correctness level was higher with the high-
level representation that with the representation adopted
by IFTTT (M = 82.00, SD = 5.33 vs M = 62.00,
SD = 7.42, respectively). Post-hoc test with Bonferroni
correction revealed that this difference was statistically sig-
nificant (p < .05), thus demonstrating that EupONT allows
users to create IoT applications more correctly.

To evaluate whether EupONT allows users to create IoT
applications more efficiently than IFTTT, we performed the
same analysis by considering the average task duration in
each representation as dependent variable. Results show
that the used representation significantly influenced the
time needed by the participants to carried out the tasks

(F (1, 9) = 6.01, p < .05). In particular, the task dura-
tion was lower with the high-level representation that with
the low-level one adopted by IFTTT (M = 96s, SD = 11s
vs M = 143s, SD = 14s, respectively). Post-hoc test
with Bonferroni correction revealed that this difference was
statistically significant (p < .05), thus demonstrating that
EupONT allows users to create IoT applications more effi-
ciently.

Our first results suggest that the high-level representation is
well understood by end-users and it is suitable for creating
IoT applications. In fact, the new representation improved
the correctness of the tasks carried out by the participants,
thus facilitating users to define their rules. In addition, as
expected, the high-level representation allowed the partici-
pants to complete the tasks in less time.

Conclusion and Future Works
In this work, we introduced a new approach towards end-
end user development in the IoT, i.e., a high-level repre-
sentation to be used by IoT programming environments.
Such a representation, named EupONT, allows end-users
to define generic and technology-independent trigger-action
rules, that can be adapted to different contextual situations.
EupONT has been preliminarily evaluated for rule com-
position with end-users. Results show that the high-level
representation is understandable by end-users, and it may
allow users to create IoT applications more effectively and
efficiently than IFTTT, one of the most popular programming
environments in this domain. Future work will better investi-
gate the understandability and the usability of the high-level
representation. Furthermore, by exploiting the ontological
and reasoning capabilities of the high-level representation,
we are in the process of developing a system that allows
the execution of such trigger-action rules.

References
[1] Barbara Rita Barricelli and Stefano Valtolina. 2015.

End-User Development: 5th International Sympo-
sium, IS-EUD 2015, Madrid, Spain, May 26-29, 2015.
Proceedings. Springer International Publishing,
Cham, Germany, Chapter Designing for End-User
Development in the Internet of Things, 9–24. DOI:
http://dx.doi.org/10.1007/978-3-319-18425-8_2

[2] Vint Cerf and Max Senges. 2016. Taking the Internet
to the Next Physical Level. IEEE Computer 49, 2 (Feb
2016), 80–86. DOI:http://dx.doi.org/10.1109/MC.2016.51

[3] Jose Danado and Fabio Paternò. 2014. Puzzle: A
mobile application development environment using
a jigsaw metaphor. Journal of Visual Languages &
Computing 25, 4 (2014), 297–315. DOI:http://dx.doi.
org/10.1016/j.jvlc.2014.03.005

[4] Luigi De Russis and Fulvio Corno. 2015. Home-
Rules: A Tangible End-User Programming Inter-
face for Smart Homes. In Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on
Human Factors in Computing Systems (CHI EA
’15). ACM, New York, NY, USA, 2109–2114. DOI:
http://dx.doi.org/10.1145/2702613.2732795

[5] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin
Kodama. 2006. iCAP: Interactive Prototyping of
Context-aware Applications. In Proceedings of the
4th International Conference on Pervasive Computing
(PERVASIVE’06). Springer-Verlag, Berlin, Heidelberg,
254–271. DOI:http://dx.doi.org/10.1007/11748625_16

[6] Dave Evans. 2011. The Internet of Things: How the
Next Evolution of the Internet Is Changing Everything.

Technical Report. Cisco Internet Business Solutions
Group.

[7] Giuseppe Ghiani, Marco Manca, and Fabio Paternò.
2015. Authoring Context-dependent Cross-device
User Interfaces Based on Trigger/Action Rules.
In Proceedings of the 14th International Confer-
ence on Mobile and Ubiquitous Multimedia (MUM
’15). ACM, New York, NY, USA, 313–322. DOI:
http://dx.doi.org/10.1145/2836041.2836073

[8] Henry Lieberman, Fabio Paternò, Markus Klann, and
Volker Wulf. 2006. End User Development. Springer
Netherlands, Dordrecht, Netherlands, Chapter End-
User Development: An Emerging Paradigm, 1–8.
DOI:http://dx.doi.org/10.1007/1-4020-5386-X_1

[9] Dejan Munjin. 2013. User Empowerment in the In-
ternet of Things. Ph.D. Dissertation. Université de
Genève. http://archive-ouverte.unige.ch/unige:28951

[10] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. 2014. Practical Trigger-action Pro-
gramming in the Smart Home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14). ACM, New York, NY, USA, 803–
812. DOI:http://dx.doi.org/10.1145/2556288.2557420

[11] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner,
Jiyun Lee, Sarah Mennicken, Noah Picard, Diane
Schulze, and Michael L. Littman. 2016. Trigger-Action
Programming in the Wild: An Analysis of 200,000
IFTTT Recipes. In Proceedings of the 34rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA, 3227–
3231. DOI:http://dx.doi.org/10.1145/2858036.2858556

http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1109/MC.2016.51
http://dx.doi.org/10.1016/j.jvlc.2014.03.005
http://dx.doi.org/10.1016/j.jvlc.2014.03.005
http://dx.doi.org/10.1145/2702613.2732795
http://dx.doi.org/10.1007/11748625_16
http://dx.doi.org/10.1145/2836041.2836073
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://archive-ouverte.unige.ch/unige:28951
http://dx.doi.org/10.1145/2556288.2557420
http://dx.doi.org/10.1145/2858036.2858556

	Introduction and Motivations
	Background and Related Work
	High-Level Representation for EUD
	Description

	Preliminary Evaluation
	Study Design
	Results

	Conclusion and Future Works
	References

