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Hidden Markov model for discrete circular-linear wind data

time series

Gianluca Mastrantonio1 and Gianfranco Calise2

1 Roma Tre University, Via Silvio D’Amico 77, Rome, 00145, Italy
2Department of Earth Science, University of Rome“Sapienza”

Abstract

In this work, we deal with a bivariate time series of wind speed and direction. Our observed
data have peculiar features, such as informative missing values, non-reliable measures under a
specific condition and interval-censored data, that we take into account in the model specification.

We analyze the time series with a non-parametric Bayesian hidden Markov model, introducing
a new emission distribution based on the invariant wrapped Poisson, the Poisson and the hurdle
density, suitable to model our data. The model is estimated on simulated datasets and on the real
data example that motivated this work.

Keywords: Invariant wrapped Poisson; hurdle model; discrete circular variable; non-parametric
Bayesian; Dirichlet process.

1 Introduction

The analysis of time series of meteorological data has an increasing interest in many fields. Their
analysis is interesting in order to have a better understanding of the atmospheric phenomena, to
determine the climate of a geographical data or to predict the occurrence of extreme events. In this
work, motivated by our real data example, we are interested in the modelling of a bivariate time series
of wind speed and direction.

The analysis of wind time series have been carried out by means of different approaches, for ex-
ample mixture type models ([1]), harmonic analyses ([2]), ARMA-GARCH models ([3]) or stochastic
differential equations ([4]). Among the others, the hidden Markov model (HMM), a class of mixture
model for time series, proved to be well suited to model wind data, see for example [5], [6], [1], [7], [8]
or [9]. In the HMM, the data-generative distribution is expressed as a mixture, with components that
belong, generally, to an “easy tractable” distribution (called emission distribution or regime-specific
density). The belonging to a component of the mixture, called also regime or state, depends on an
underlying and unobservable discrete valued Markov process.

The wind direction is a circular variable, i.e. a variable that represents an angle or a point over the
unit circle, while the speed is a linear (or inline) one. Hence, if a time series of wind direction and speed
is modelled through an HMM, the emission distribution must be defined over a mixed circular-linear
domain. Generally conditional independence between the circular and linear variables is assumed, but
exceptions exist (see for example [7, 9]).

Although HMMs for wind data have been proposed in the literature, here, due to particular features
of our data, a direct application of the models previously proposed is not possible. The measured
linear and circular variables are interval-censored ([10]) and they are recorded as discrete variables;
more precisely the wind speed is recorded as integer knots and the direction is measured on a discrete
scale with 36 equally spaced values over the unit circle. Furthermore, the direction is strictly related
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to the wind speed as when the latter is too small, the direction is not recorded and, due to the low
instrument sensitivity, a recorded value of 0 or 1 wind speed is not reliable.

To take into account all these features, we introduce a new bivariate distribution to be used as
the regime-specific density in the HMM. The model is estimated under a non-parametric Bayesian
framework, using the hierarchical Dirichlet process-HMM (HDP-HMM) of [11] and the modification
introduced by [12], namely the sticky HDP-HMM (sHPD-HMM). The sHPD-HMM allows us to esti-
mate, as a model parameter, the number of regimes occupied by the time series. The model is applied
to simulated and real data examples.

The paper is organized as follows. In Section 2 we describe the motivating example while in
Section 3 we introduce the circular-linear distribution by first formalizing the marginal distribution
of the linear component, Section 3.1, and then the one of the circular, conditioned to the linear one,
Section 3.2. Section 3.3 is devoted to the model specification while Section 3.4 gives implementation
details. Section 4 contains the simulated examples (Section 4.1) and the real data one (Section 4.2).
The paper ends with a discussion (Section 5).

2 Motivating example

In last decades the Italian cost suffers an intensification of erosion, in particular in South Italy, along
the coastline on the Tyrrhenian side, with manmade coastal structures. This is obviously a result of
both natural and anthropogenic causes. The study of wind time series, recorded along the cost, is of
a great importance since the wind generates waves, a significant factor of coastal geomorphology.

The data are recorded with an anemometer, located on the rocky cape of Capo Palinuro, in the
town of Centola, province of Salerno, South Italy. The meteorological station of Capo Palinuro is
one of the coastal stations managed by the Meteorological Service of the Military Italian Air Force.
The instrument is placed away from obstacles, 10 meters above ground. The data are provided by
the National Center of Aeronautical Meteorology and Climatology (C.N.M.C.A.), special office of the
Meteorological Service of the Italian Air Force.

In this work we focus on the year 2010, that is a particular one. While the station, for decades, has
recorded winds blowing between North and North-West or South and South-East octants, in 2010 the
prevailing winds (the directions with the higher frequency) are the ones blowing from North-East and
South-West, which is almost the opposite of the general trend. Then, it is important to understand
and characterize in a greater details, i.e. through an HMM, the wind distribution of this year.

2.1 Data description

The linear variable is interval-censored, i.e. it is recorded with an error of 1 knot, and let Y ∗ be the
recorded wind speed, if Y ∗ = c, with c ∈ Z+, the real (continuous) variable has value ≥ min{c−0.5, 0}
but < c+ 0.5. Further uncertainty is added to the values below 2 knots as the instrument sensitivity
does not allow reliable recordings.

Also the wind direction is interval-censored and it is measured in degrees on a discrete scale with
36 distinct values. If the recorded circular variable, X, assumes value c, with c ∈ {2π36 j}

35
j=0

1, the real

direction has value ≥ c− 1
2
2π
36 but < c + 1

2
2π
36 . If the (continuous) wind speed is too low, i.e. close to

0, the instrument could not be able to record X and we have a missing recording. This missing gives
information about the non-reliable linear recording, i.e. they are informative and non-ignorable, ([13])
and then the process that generates the missing observation must be taken into account in the model
specification.

Due to the instrument malfunction, we have 2920 observations with, respectively, 3 and 2 non-
informative missing in the circular and linear variables. y∗t assumes value 0 494 times while xt is equal
to {∅} 328 times. Figure 1 shows barplots of the circular and linear data.

1The direction recorded by the instrument assumes values in (0, 10, 20, . . . , 350) but we rescale it to [0, 2π).
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(b) Wind direction

Figure 1: Linear (a) and circular (b) barplot of the variable used in the real data example.

3 The model

Before the formalization of the HMM (Section 3.3), we introduce the circular-linear distribution we
use in the model specification.

3.1 The linear distribution

We code the information carried by the recorded linear variable (Y ∗) into two new variables. One
representing the “true” discrete wind speed with support Z+, Y , and a Bernoulli variable W , that
assumes value 0 when Y ∗ < 2 and 1 otherwise. The marginal distribution of Y is setted to be Poisson
with parameter λy: Y ∼ P (λ). Between Y and Y ∗ the following relation exists:{

Y = Y ∗ if Y ∗ ≥ 2,
Y ∈ {0, 1} if Y ∗ < 2.

Let W be a binary random variable such that

W = 1 if Y ∗ ≥ 2,

W = 0 if Y ∗ < 2,

with
W ∼ Bern(1− e−λy (1 + λy)), (1)

where Bern(·) indicates the Bernoulli distribution. We define the distribution of Y |W,λy as follows:

P (y|w = 1, λy) =
λyye
−λy

y!

1

1− e−λy (1 + λy)
I(y ∈ Z+\{0, 1}) (2)

and

P (y|w = 0, λy) =

(
λye
−λy

e−λy (1 + λy)

)y (
1− λye

−λy

e−λy (1 + λy)

)1−y

I(y ∈ {0, 1}) (3)

where I(y ∈ A) is the indicator function.
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3.2 The circular distribution

To model properly the non-ignorable missing value of X, we specify the domain of the circular variable
as a mixed one, composed of a discrete circle D = { 2π36 j}

l−1
j=0, with 36 equally spaced values, and the

empty set, {∅}. The direction assumes value {∅} if the measure is a missing non-ignorable and then
the distribution of the circular variable is an hurdle one. The hurdle distribution, first introduced by
[14], assumes that the observation, in this case the wind direction, comes from two data-generative
processes. With probability ν∗ the observation belongs to the hurdle, i.e. the empty set, otherwise it
belongs to the other portion of the mixed domain, i.e. D, and a distribution over D must be chosen.

Since the circular variable can assume value {∅} only if the discrete wind speed is 0, the probability
ν∗ must depend on Y . Indeed (X = {∅})⇒ (Y = 0) but it is not true that (Y = 0)⇒ (X = {∅}), as
X may be measured when a light wind is blowing (below 1 knot). We specify the hurdle probability
as ν∗ = νI(y = 0) and, as required, ν∗ 6= 0 only if Y = 0.
In the literature several distributions for discrete circular variables have been proposed, see for example
the wrapped Binomial ([15]) or the wrapped Weibull ([16]). [17] proved that for most of them, the
inference they allow strongly depends on the choice of the reference system origin and orientation, while
a “proper” distribution must be independent on these choices, for details see [17]. As distribution over
D, we choose the invariant wrapped Poisson (IWP), proposed by [17], since it is a proper and flexible
distribution for discrete circular data that is easy to implement in a Bayesian framework.

The density of X is

P (x|y, λx, η, ξ) = (ν∗)
I(x=∅)

((1− ν∗)P (x|x ∈ D, λx, η, ξ))I(x∈D) .

where P (x|x ∈ D, λx, η, ξ) is the pmf of the IWP:

P (x|x ∈ D, λx, η, ξ) =

∞∑
k=0

λ(ηθ−ξ) mod (2π)36/(2π)+k36e−λ

((ηθ − ξ) mod (2π)36/(2π) + k36)!
, ξ ∈ D, η ∈ {−1, 1}. (4)

(4) is obtained by wrapping the density of a linear transformation of a Poisson distributed variable.
More in details, we first obtain the density of Q∗ = η

(
Q 2π

36 + ξ
)
, where Q ∼ P (λx), that is

λ(ηq
∗−ξ)36/(2π)e−λ

((ηq∗ − ξ)36/(2π))!
, (5)

then we find the distribution of the associated wrapped variable X = Q∗ mod 2π, that is (4). Note
that the transformation X = Q∗ mod 2π wraps the linear variable Q∗, and its density, around the
discrete circle D. k, i.e. winding number, identify in (4) the kth portion of the domain of Q∗ that is
wrapped around the circle.

We can compute in closed form the directional mean and concentration of the IWP ([17]), i.e. the
circular counterparts of linear mean and concentration:

µ =ηξ + λ sin

(
η

2π

36

)
, (6)

c =e−λ(1−cos(
2π
36 )). (7)

Equations (6) and (7), as the mean and concentration for the inline variables, are useful statistics to
describe the circular variable behaviour.

It is not easy to work directly with equation (4), since it involves an infinite sum. When a wrapped
distribution is used ([18, 19, 20]), a standard approach is to introduce the latent random variable K,
and to work with the joint density of (X,K) that is the summand in (4) and does not require the
infinite sum evaluation:

P (x, k|x ∈ D, λx, η, ξ) =
λ(ηθ−ξ) mod (2π)36/(2π)+kle−λ

((ηθ − ξ) mod (2π)36/(2π) + kl)!
.
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The winding number is needed also to define an efficient sampling scheme for the IWP parameters,
see [17] and Section 3.4.
The augmented hurdle type density is

P (x, k|y, λx, η, ξ) = (ν∗)
I(x=∅)

((1− ν∗)P (x, k|x ∈ D, λx, η, ξ))I(x∈D) . (8)

We write X,K, Y,W |λx, η, ξ, ν, λy ∼ HiwpPD(λx, η, ξ, ν, λy) if W |λy is distributed as (1), Y |W,λy
as in (2) and (3) and X,K|Y, λx, η, ξ as in (8).

3.3 The HMM specification

Following the formalization introduced in Sections 3.1 and 3.2, we proceed by modeling the four-variate
time series {x,k,y,w}, where x = {xt}Tt=1, k = {kt}Tt=1, y = {yt}Tt=1 and w = {wt}Tt=1. We time-
cluster the data with a non-parametric Bayesian HMM, namely the sHDP-HMM, that allows us to
group the time series in homogeneous regimes, as the standard HMM, but it does not need to assume
known the number of regimes R that can be estimated along with the other model parameters.
The belonging to a regime is coded via a discrete random variable zt; if zt = r, at time t the system is
in regime r. In the sHDP-HMM is assumed that zt ∈ Z+\{0}, i.e. the number of regimes is potentially
infinite. Indeed since T is finite, the elements of the time series z = {zt ∈ Z+\{0}}Tt=1 will assume
only a finite number of states (R), i.e. the number of non-empty regimes.

The sHDP-HMM is a hierarchical model where, let ψr = {λx,r, ηr, ξr, νr, λy,r} be the vector of
parameters, the first stage is

P (x,k,y,w|z, {ψr}∞r=1) =

T∏
t=1

∞∏
r=1

[P (xt, kt, yt, wt|ψr)]
I(r=zt) , (9)

Xt,Kt, Yt,Wt|ψr ∼HiwpPD(λx,r, ηk, ξk, νk, λy,r), (10)

At the second level of the hierarchy, z is assumed to follow a first order Markov process, i.e. P (zt|zt−1, zt−2, . . . , z1) =
P (zt|zt−1), with

P (zt|zt−1,πzt−1
) = πzt−1zt . (11)

and πj = {πji}∞i=1 is the jth row of the transition matrix, i.e. the matrix that rules the probabilities
to move from one state to another. The initial state z0, and the associated vector of probabilities,
cannot be estimated consistently since we have no observations at time 0 (for details see [21]) and,
without loss of generality, we set z0 = 1. The equations (9), (10) and (11) define an HMM with an
infinite number of states, i.e. zt ∈ Z+\{0}, infinite number of parameters, {ψr}∞r=1, and vectors of
probabilities of infinite length, πjs.

The sHDP-HMM specification is concluded assuming the following:

πr|ρ, γ, {βj}∞j=1,ψr ∼ DP

γ, ∞∑
j=1

((1− ρ)βj + ρI(r = j))

 , ρ ∈ [0, 1], γ ∈ R+, (12)

βr = β∗r

r−1∏
j=1

(1− β∗j )

β∗r |τ ∼ B(1, τ), τ ∈ R+

ψr|H ∼ H,

where βr > 0, r = 1, 2, . . . ,∞ and
∑∞
r=1 βr = 1, i.e. {βr}∞r=1 is a vector of probabilities, B(·, ·) is the

Beta distribution, DP (·) indicates the Dirichlet process while H is a distribution over ψr that acts as
a prior for the model parameters. Without loss of generality, let suppose that the first R states are

5



the non-empty ones, and let π∗r =
(
πr1, . . . , πrR,

∑∞
j=R+1 πrj

)
. The definition of the Dirichlet process

(see for example [12]) implies that (12) can be written as

π∗r |ρ, γ, {βj}∞j=1,ψr ∼

Dir

γ((1− ρ)β1 + ρI(r = 1)), . . . , γ((1− ρ)βR + ρI(r = R)), γ(1− ρ)

∞∑
j=R+1

βj

 , (13)

where Dir(·) is the Dirichlet distribution.
From (13) it is clear that, for r, j = 1, . . . , R, E(πrj) = (1 − ρ)βr + ρI(r = j), V ar(πrj) =

((1−ρ)βj+ρI(r=j))(1−(1−ρ)βj−ρI(r=j))
γ+1 . The vector {βr}∞r=1 and ρ rules the mean value of the π∗r (and

then also the one of πr) and ρ is an additional weight added to the auto-transition probability (or
self-transition probability) πrr. ρ is needed otherwise the HMM tends to create redundant states ([22]).
γ is directly proportional to the precision (the inverse of the variance) of πrj . The parameters ρ, γ
and τ rule the number of non empty regimes, R, and as they increase, R decreases (see [12]).

For a more detailed explanation of the properties and interpretation of the sHDP-HMM we refer
the reader to [12].

3.4 Prior distributions and implementation details

To specify the prior distribution over ψr, H, we follow two standard advices. The first is to have
prior distributions that make the model parameters easy to update in the Markov chain Monte Carlo
(MCMC) algorithm, i.e. within a Gibbs step. The second advice is to use prior distributions that
allow an easy learning from the data and a robust estimation of the posterior distribution and it is
usually achieved using weakly informative priors.

In the simulated and real data examples (Section 4), we will use the same set of priors. Specifically
λy,r ∼ G(ay, by)I(0, cy), where G(·, ·)I(0, ·) indicates the truncated gamma distribution expressed in
terms of shape and rate that, under specific set of parameters, can resemble the uniform distribution
over [0, cy]. Due to the standard conjugacy between the Poisson and the gamma, the prior on λy,r leads
to a truncated gamma full conditional. We use a uniform distribution for νr that leads to a beta full
conditional. For the IWP parameters we follows the work of [17]. They show that an efficient MCMC
algorithm can be defined if we set an upper bound on the range of λx,r, i.e. λx,r ∈ [0, λx,max], we use a
truncated gamma distribution for λx,r and we fix the maximum value that kts can assume. The value
λx,max is chosen such that the IWP evaluated with λx,r = λx,max is indistinguishable from a circular
discrete uniform. [17] propose to find the value λx,max by using the wrapped normal approximation
of the IWP and the truncation strategy of [19]. Once we have the maximum value of λ, we find
the maximum value of the kts that is needed to obtain a reasonable approximation of the IWP, i.e.

kmax = d 3
√
λmax
l + λmax

l − 1
2e, where d·e is the ceiling operator. Then following [17], regardless on

the prior distributions for ηr and ξr, we can define and efficient Gibbs sampler. For ηr and ξr we use
uniform distributions in their respective domains.
R depends on ρ, γ and τ and then we choose to threat them as random quantities, with non informative
prior for each of them, so to be non informative on the distribution of R. Following [12], the following
priors, ρ ∈ U(0, 1), γ ∼ G(aρ, bρ) and τ ∼ G(aτ , bτ ), lead to full conditionals easy to simulate. The
MCMC update of the regime indicator variables is done with the beam sampler ([23]).
With regard to the time series y, we can have two types of missing observations; when y∗t = 0, 1, i.e.
an informative missing since we know that the value of yt is either 0 or 1, and when y∗t is missing
due to the malfunction of the anemometer, i.e. a non informative missing. In both cases the missing
observations are estimated during the model fitting. If yt is missing and y∗t = 0 then wt = 0 and the

full conditional of yt is Bern
(

λy,re
−λy,r

e−λy,r (1+λy,r)

)
if xt ∈ D, see equation (5), while yt = 0 if x = {∅}. If

both yt and y∗t are missing, then wt is missing as well and, if x = {∅} we have that yt = 0 and wt = 0,
otherwise if x ∈ D, we can simulate from the joint full conditional of (yt, wt) by first simulate yt from
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(b) Circular densities

Figure 2: Simulate example: densities used to generate the example 1. The solid line is the first regime,
the dashed the second and the dotted the third
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(b) Circular densities

Figure 3: Simulate example: densities used to generate the example 2. The solid line is the first regime,
the dashed the second and the dotted the third

a Poisson with parameter λy,r, and then we set wt = 1 if yt ≥ 2 and 0 otherwise. The non informative
missing observation in the time series x, due to a malfunction of the station, can be easily simulated,
i.e. if yt 6= 0 we simulate a value from the IWP, while if yt = 0 we simulate wt from a Bern(νr) and,
if wt = 1 then xt = {∅} while if wt = 0 we simulate a value from the IWP.
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(b) Circular densities

Figure 4: Simulate example: densities used to generate the example 3. The solid line is the first regime,
the dashed the second and the dotted the third
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(b) Circular densities

Figure 5: Simulate example: densities used to generate the example 4. The solid line is the first regime,
the dashed the second and the dotted the third

4 Application

In this Section, the HMM is applied to simulated and real data examples.
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Regime 1 Regime 2 Regime 3

λ̂y,r 1.056 10.059 30.103
CI (0.981 1.138) (9.860 10.266) (29.771 30.467)

λ̂x,r 4.887 1.024 5.055
CI (4.740 5.049) (0.961 1.093) (4.917 5.190)
ν̂r 0.102 0.001 0.002
CI (0.078 0.124) (0.000 0.004) (0.000 0.005)

Table 1: Simulated example: posterior estimates (̂) and 95% credible intervals (CI) for λy,r, λx,r and
νr: example 1.

Regime 1 Regime 2 Regime 3

λ̂y,r 1.010 5.130 10.249
CI (0.930 1.093) (4.954 5.307) (9.993 10.518)

λ̂x,r 4.931 2.075 4.941
CI (4.765 5.100) (1.978 2.173) (4.767 5.106)
ν̂r 0.094 0.001 0.001
CI (0.083 0 0.106) (0.000 0.004) (0.000 0.004)

Table 2: Simulated example: posterior estimates (̂) and 95% credible intervals (CI) for λy,r, λx,r and
νr: example 2.

Regime 1 Regime 2 Regime 3

λ̂y,r 1.015 10.029 30.419
CI (0.940 1.089) (9.817 10.244) (30.075 30.776)

λ̂x,r 243.205 1.016 5.041
CI (170.534 303.098) (0.949 1.083) (4.896 5.189)
ν̂r 0.094 0.001 0.001
CI (0.083 0.105) (0.000 0.004) (0.000 0.004)

Table 3: Simulated example: posterior estimates (̂) and 95% credible intervals (CI) for λy,r, λx,r and
νr: example 3.

Regime 1 Regime 2 Regime 3

λ̂y,r 0.954 4.907 10.117
CI (0.881 1.030) (4.701 5.111) (9.868 10.379)

λ̂x,r 256.186 2.927 4.919
CI (183.894 301.445) (2.811 3.050) (4.759 5.080)
ν̂r 0.094 0.001 0.001
CI (0.083 0.107) (0.000 0.004) (0.000 0.004)

Table 4: Simulated example: posterior estimates (̂) and 95% credible intervals (CI) for λy,r, λx,r and
νr: example 4.

4.1 Simulated examples

We simulate 4 datasets with 3 regimes (R = 3), from the model described in Section 3.3. The
parameters are chosen so that in two examples (examples 1 and 3) the marginal circular distributions
are slightly overlapping (Figures 2 (b) and 4 (b)) as well as the linear ones (Figures 2 (a) and 4 (a)),
and in two examples (examples 2 and 4) the overlapping involves larger portions of the distributions
(Figures 3 and 5). In the examples 3 and 4, one of the marginal circular distribution is a discrete
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Destination
Regime 1 Regime 2 Regime 3

Regime 1 0.771 0.101 0.128
(0.743 0.812) (0.083 0.121) (0.098 0.150)

Origin Regime 2 0.108 0.788 0.104
(0.090 0.128) (0.763 0.813) (0.085 0.122)

Regime 3 0.095 0.107 0.798
(0.079 0.113) (0.090 0.126) (0.774 0.820)

Table 5: Simulated example: posterior mean estimates and 95 % credible intervals for the transition
probability matrix: example 1.

Destination
Regime 1 Regime 2 Regime 3

Regime 1 0.772 0.121 0.107
(0.742 0.809) (0.097 0.147) (0.086 0.132)

Origin Regime 2 0.099 0.790 0.110
(0.081 0.119) (0.762 0.817) (0.090 0.135)

Regime 3 0.097 0.132 0.791
(0.077 0.120) (0.094 0.164) (0.746 0.820)

Table 6: Simulated example: posterior mean estimates and 95 % credible intervals for the transition
probability matrix: example 2.

Destination
Regime 1 Regime 2 Regime 3

Regime 1 0.777 0.108 0.114
(0.752 0.802) (0.090 0.128) (0.095 0.134)

Origin Regime 2 0.122 0.774 0.104
(0.092 0.142) (0.749 0.800) (0.085 0.123)

Regime 3 0.107 0.102 0.791
(0.090 0.126) (0.085 0.121) (0.766 0.813)

Table 7: Simulated example: posterior mean estimates and 95 % credible intervals for the transition
probability matrix: example 3.

Destination
Regime 1 Regime 2 Regime 3

Regime 1 0.786 0.112 0.101
(0.760 0.812) (0.091 0.136) (0.082 0.123)

Origin Regime 2 0.112 0.799 0.090
(0.091 0.133) (0.770 0.826) (0.069 0.113)

Regime 3 0.104 0.095 0.800
(0.084 0.126) (0.073 0.121) (0.771 0.828)

Table 8: Simulated example: posterior mean estimates and 95 % credible intervals for the transition
probability matrix: example 4.

uniform. In all the examples we set T = 3000 and D =
{

2π
36 j
}35
j=0

. The transition matrix has diagonal

elements equal to 0.8 while the off-diagonal ones are 0.1.
We use the following set of parameters:
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• Example 1:

λy =

 1
10
30

 , λx =

 5
1
5

 , η =

 −1
1
1

 , ξ =

 5 2π
36

15 2π
36

0

 , ν =

 0.1
0
0

 .
• Example 2:

λy =

 1
5
10

 , λx =

 5
1
5

 , η =

 −1
1
1

 , ξ =

 10 2π
36

15 2π
36

10 2π
36

 , ν =

 0.1
0
0

 .
• Example 3:

λy =

 1
10
30

 , λx =

 300
1
5

 , η =

 −1
1
1

 , ξ =

 5 2π
36

15 2π
36

0

 , ν =

 0.1
0
0

 .
• Example 4;

λy =

 1
5
10

 , λx =

 300
1
5

 , η =

 −1
1
1

 , ξ =

 10 2π
36

15 2π
36

10 2π
36

 , ν =

 0.1
0
0

 .
The example 4 is particularly challenging since there is a strong overlap between the circular distribu-
tions (see Figure 5).
Here, and in the real data example of Section 4.2, we run models estimations using a MCMCs with
100000 iterations, a burnin of 50000 and keep for inference one observation every 10 samples, i.e.
for posterior estimates we use 5000 samples. Since in the simulated examples and in the real data
one, we never observed a value of the linear variable greater than 50, then as prior for λy,r, the
mean of the linear variable, we use G(1, 0.00005)I(0, 50). Following [17], as priors for λx,r we use
G(1, 0.00005)I(0, 500). To conclude the priors specification we choose γ ∼ G(1, 0.1), τ ∼ G(1, 0.1),
that are standard weak informative distributions, and discrete uniform for νk and ξk.
In all four examples the posterior distribution of R is concentrated over 3 (regimes). The parameters
λy,rs, νrs and the transition matrices are correctly estimated2, see Tables from 1 to 8, and the marginal
posterior distributions of the ηrs are concentrated on the “true” values used to simulate each dataset.
In the examples 1 and 3 both λx,r and ξr are always correctly estimated, except in the first regime of
the third example where the posterior distribution of ξ1 has non-zero probability on 22 2π

36 , 23 2π
36 and

24 2π
36 . Note that when the density of the discrete circular variable is really close to the uniform, the

parameters of the IWP becomes weakly identifiable and then we are not surprised that in the third
example, the CI of λx,1 has length ≈ 133 and the true value of ξ1 is not inside the associated CI.
In the examples 2 and 4, the λx,rs are right estimated in the first and third regimes while in the second
regime is overestimated. The posterior distributions of the ξrs are concentrated over the values used
to simulate the data in the first and third regime of the example 2 and the first regime of the example
4. In the second regimes of the example 2 and 4, the posteriors of ξk are concentrated over 142π

36 and
13 2π

36 respectively, while in the third regime, example 4, is concentrated over 0.
The model we propose is able to recover the parameters used to simulate the data in all identifiable
situations.

4.2 Real data application

After the model fitting we observed that the posterior distribution of R is concentrated over 3. The
three estimated regimes are numbered in increasing order, based on the value of mean wind speeds,

2 A parameter is considered correctly estimated if the 95% credible interval (CI) contains the value used to simulate
the data.
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Regime 1 Regime 2 Regime 3

λ̂y,r 3.908 8.646 13.112
CI (3.794 4.017) (8.222 9.061) (12.633 13.590)

λ̂x,r 93.374 16.486 59.344
CI (92.571 94.145) (13.304 20.676 ) (52.494 60.536)
ν̂r 0.156 0.002 0.002
CI (0.141 0.172) (0.000 0.009) (0.000 0.011)
µ̂r 5.951 0.983 4.161
CI (5.817 6.091 ) (0.885 1.077) (3.971 4.347)
ĉr 0.242 0.778 0.406
CI (0.239 0.245) (0.730 0.817) (0.399 0.450)

Table 9: Real data example: posterior estimates (̂) and 95% credible intervals (CI) for λy,r, λx,r and
νr.

Destination
Regime 1 Regime 2 Regime 3

Regime 1 0.946 0.037 0.017
(0.934 0.957) (0.028 0.047) (0.011 0.025)

Origin Regime 2 0.127 0.808 0.064
(0.091 0.167) (0.763 0.850) (0.039 0.095)

Regime 3 0.155 0.020 0.824
(0.115 0.200) (0.005 0.043) (0.780 0.867)

Table 10: Real data example: Posterior mean estimates and 95 % credible intervals for the transition
probability matrix.
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(b) Circular densities

Figure 6: Real data example: predictive densities. The solid line is the first regime, the dashed the
second and the dotted the third

λy,r, that can be seen in Table 9 along with the posterior estimates of λx,r, νr, and the circular mean
and concentration. The predictive posterior densities are depicted in Figure 6.
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With probability 1 the parameter ηr is -1 in the first regime and 1 in the second, while in the
third is equal to -1 with probability 0.989 and 1 with probability 0.011. The posterior distribution of
ξr is concentrated over 18 2π

36 in the first regime, in the second regime it has probability greater than
0 between the values 19 2π

36 and 31 2π
36 and its mode, 27 2π

36 , has probability 0.223. In the third regime
the posterior distribution of ξr assumes positive values between 26 2π

36 and 6 2π
36

3 and the modal value,
26 2π

36 , has probability 0.845.
In the first regime we have a mean wind speed of 3.908, while the mean wind direction is 5.951, that

corresponds to a direction between North and North-West. The circular concentration is 0.242 and the
distribution is close to the discrete uniform, see Figure 6. The posterior mean value of νr, the hurdle
probability, is 0.156. According to the empirical Beaufort scale ([24]), the first regime represents the
light breeze state, where there are ripples without crests or small wavelets and then there is not cost
erosion.

In the second regime, that can be considered as a transition state between the calm (first regime)
and the storm (third) regime, the mean wind speed is 8.646 and the mean wind direction is 0.983,
roughly North-East, while the circular concentration is 0.778, i.e. the second regime has a directional
distribution more concentrated. The hurdle probability is 0.002, really close to zero.

In the third regime the mean wind speed is 13.112 and the mean direction is about South-West,
µ̂3 = 4.161. The circular concentration is 0.406 and again the mean hurdle probability is 0.002. In this
regime, the distribution of the wind speed is fully concentrated between 5 and 23 knots, resulting in
an extreme wave height of almost 4 meters in open water. It is interesting to note that, in this year,
the winds with the higher speed are the ones blowing from the sea, more precisely from South West
quadrant, resulting in a year with waves with more energy, intensification of erosion and changes in
the longshore drift.
The posterior distribution of the transition probability matrix, Table 10, shows a strong self transition,
i.e. the left side interval of the CIs of the self transition are always higher than 0.75.

5 Discussion

Motivated by our real data example, we introduced a new HMM for discrete circular-linear variables.
Our data have some peculiar features: i) the linear and circular observations are interval-censored, ii)
measurements of wind speed equal to 0 and 1 are not reliable, iii) some of the missing observations
of the circular variables are informative on the values of the non reliable wind speed measurements.
All these features was taken into account when the regime-specific density of the HMM was specified.
We introduced a new circular-linear distribution that is suited to model our data. We estimated
the model in a non-parametric Bayesian framework and we have shown how specific choices of prior
distributions lead to a MCMC algorithm based only on Gibbs steps. We estimated the model on 4
simulated examples and then on the real one.

Future work will find us enriching the model in at least two directions. First we want to introduce
a time-dependent transition matrix. Second, since the Poisson, due to the unit variance-to-mean ratio,
can not model over-dispersed data, we are going to change the regime-specific marginal linear density
to increase flexibility.
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