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Introduction

Mathematical models of physical phenomena are very often based on
nonlinear differential equations of the form

ẋ = f(x).

The study of these phenomena is primarily performed looking for qualitative
properties of solutions, as asymptotic behaviour and stability of equilibrium
positions.
If we suppose that we can act on the system, for example by applying
external forces, we have to modify the model by introducing a parameter,
called control. One of the main aim of control theory is to find strategies so
that solutions of the new system have desired properties.

We consider a nonlinear control system of the form

ẋ = f(x, u) (1)

where x ∈ IRn, the parameter u ∈ IRm is the control and f : IRn+m → IRn is
a function that, for the moment, we assume to be at least continuous and
such that the origin is an equilibrium point for the system, i.e. f(0, 0) = 0.

We are interested in stabilizing the system. This means that we want
to find a function u = k(x), called feedback law, such that the implemented
system

ẋ = f(x, k(x)) (2)

is asymptotically stable, i.e. the origin is stable in the sense of Lyapunov
(see Chapter 3) and its solutions tend to the equilibrium point.

Let us take a step back to linear systems. For these systems stabilizabil-
ity is a very well studied property. Two facts are particularly relevant: the
first is the existence of a linear feedback when the system is stabilizable; the
second is that the asymptotic controllability of the system is equivalent to
its stabilizability. Roughly speaking, the system is asymptotic controllable
to zero if any initial state can be driven to the equilibrium point by means of
an open loop control u = u(t) (see Chapter 4 for a more precise definition).

For nonlinear systems the first issue is false, while the second one has
been proven true only very recently. More precisely, for nonlinear stabiliz-
able systems, not only a linear feedback does not exist in general, but even



the assumption on the feedback to be continuous is restrictive. This can be
shown by various examples and by the well known Brockett’s condition (see
Chapter 4, Section 1).

Alternatively to the only consideration of continuous feedback laws, two
approaches can be followed.

In the first one the feedback is taken to be time-varying. This approach
began with Sussman and Sontag and with Samson (see [SS1, Sam]) and has
produced very good results (see [C1, C2, CR]).

In the second one discontinuous (static) feedback laws are allowed. We
focus on this point of view.

We have already mentioned an important result obtained by means of
this approach: the proof that asymptotic controllability to zero implies
asymptotic stabilizability. This result has been obtained first by Clarke,
Ledyaev, Sontag and Subbotin ([CLSS]) and then, in a different way, by
Ancona and Bressan ([AB]).

The introduction of discontinuous feedback laws leads to the theoretical
problem of defining solutions of systems with discontinuous righthand side.
We survey some of the feasible definitions of solution in Chapter 1. In par-
ticular we examine Carathéodory, Euler, generalized sampling, Krasovskii
and Filippov solutions and we show, with several examples, that the rela-
tionships among them are quite weak.

Since in control systems discontinuities essentially come from the imple-
mentation of the feedback, either definition of solution can be considered de-
pending on which kinds of discontinuities of the feedback are admitted. For
example, in [CLSS], the only assumption on the feedback is local bounded-
ness and (not generalized) sampling solutions are considered, while in [AB],
the feedback laws are assumed piecewise smooth and are such that the im-
plemented system have Carathéodory solutions. When different kinds of so-
lutions exist at the same time, the right one to be used should be suggested
by the physical model (but this topic is not developed in most papers). We
briefly illustrate the effect of considering different kinds of solutions in two
examples in Section 2 of Chapter 4.

Still in Chapter 4, Section 3, we analyse discontinuous feedback laws of
a particular form which stabilize a large class of systems. More precisely we
consider an affine input system of the form

ẋ = f(x) +G(x)u (3)



and the associated unforced system

ẋ = f(x) (4)

If the unforced system is stable, a regular Lyapunov function V is known
and some geometric conditions involving the vector fields f and the matrix
G are satisfied, then stabilization of the affine system can be achieved by
means of the following feedback law (often called damping feedback):

u(x) = −α(∇V (x)G(x))T (5)

It is important to remark that, if the unforced system is simply Lyapunov
stable, converse Lyapunov theorems do not guarantee the existence of a
regular Lyapunov function.

According to Yorke ([Y]), Lyapunov stability just implies the existence
of a semi-continuous Lyapunov function. On the other hand the existence
of more regular Lyapunov functions is equivalent to strengthened concepts
of stability (see [AS, BR1]). We consider the case in which a Lipschitz
continuous Lyapunov function is known. Note that, except for dimension 1
(see [BR2]), the concept of stability equivalent to the existence of a Lipschitz
continuous Lyapunov function is still unknown.

Going back to the damping feedback, it would be desirable to implement
it in the affine system even if the Lyapunov function V is only locally Lips-
chitz continuous. Let us remark that, in this case, thanks to Rademacher’s
theorem, (5) is almost everywhere defined. Moreover it is measurable and lo-
cally essentially bounded. The implemented system’s righthand side is then
also a locally essentially bounded function. Solutions which fit better in this
context are Filippov solutions. We give a stabilization result for them. By
slightly modifying the feedback law, we also obtain an analogous result for
Krasovskii solutions (Section 3.5, Chapter 4).

In order to get these results we need some tools from nonsmooth analysis
and differential inclusions that we collect in Chapter 2 and 3 respectively.

Concerning nonsmooth analysis, though many different generalized deri-
vatives and gradients have been recently introduced and studied, we mainly
use Clarke gradient. In fact Clarke gradient is particularly helpful when
dealing with Lipschitz continuous functions. We use it, in order to define
the set-valued derivative of a Lipschitz continuous function with respect to a
differential inclusion. This kind of generalized derivative works particularly
well if the function V , besides being Lipschitz continuous, is healthy, in
the sense introduced by Valadier in [V]. Note that healthy functions form



quite a wide class which contains in particular convex and Clarke-regular
functions. In Chapter 3, by means of this set-valued derivative, we give a
stability result and a generalization of LaSalle’s principle for upper semi-
continuous compact and convex valued differential inclusions and Lipschitz
continuous and healthy Lyapunov functions.

These tools allow us to widen the class of affine systems considered to
systems in which also the drift term f is discontinuous. For these systems,
on one hand we prove by means of an example that the application of the
damping feedback can turn into a destabilizing action, on the other hand
we give some sufficient conditions for the system to be stabilized by it.

Finally, in Chapter 5, we apply the same kind of techniques used for the
stabilization of the affine input systems to get a similar result for external
stabilization (UBIBS-stabilization).



Chapter 1

Discontinuous Differential
Equations

The present chapter is motivated both by the intrinsic mathematical interest
in the study of differential equations with discontinuous righthand sides and
by the fact that such equations often occur in control theory because of the
application of discontinuous feedback laws in control systems. The survey
on different possible concepts of solution is then strongly influenced by the
requirements of applications in control theory.

We consider both time-dependent and autonomous Cauchy problems:{
ẋ = f(t, x)
x(t0) = x0

(1.1)

{
ẋ = f(x)
x(t0) = x0

(1.2)

where x ∈ IRn.
Let us recall that a classical solution of one of the previous Cauchy

problems on an interval I ⊂ IR is an everywhere differentiable function
which satisfies (1.1) (or (1.2)) at every t ∈ I.

If the function f is continuous then the Cauchy problem (1.1) is equiv-
alent to the integral equation

x(t) = x0 +
∫ t

t0
f(s, x(s))ds (1.3)

The so called Carathéodory solutions of (1.1) are solutions of (1.3), which
can exist even if f is not continuous. The classical conditions on f which
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guarantee the existence of these solutions are Carathéodory conditions, that
we specify in Section 1.1.

If the study of equations whose righthand sides do not satisfy Carathé-
odory conditions is needed, two alternative ways can be pursued. The first
one, consists in looking for the weakest hypothesis on the vector field f
which guarantee the existence of Carathéodory solutions (see [AB, BrC, P1,
P2]). The second one, followed by most authors who work in control theory,
consists in introducing generalized solutions.

Besides Carathéodory solutions, we focus on Euler, generalized sampling,
Krasovskii and Filippov solutions.

Among the authors who have introduced other kinds of generalized solu-
tions, let us mention Hermes ([H]), Ambrosio ([A1, A2]) and Sentis ([Se, JS]).

Concerning bibliography, let us stress that a very important article is
the one by Hájek ([H]), dated 1979, where Hermes, Krasovskii and Filippov
solutions are compared. To the best knowledge of the author there is no
recent work in which something similar has been done.

1.1 Carathéodory Solutions

Definition 1 An absolutely continuous function ϕ : [t0, t0+a] → IRn is said
to be a Carathéodory solution of (1.1) if it satisfies (1.3) for all t ∈ [t0, t0+a]
or, equivalently, if it satisfies (1.1) for almost every t ∈ [t0, t0 + a].

We denote the set of Carathéodory solutions of (1.1) by C.
We say that there exists a local solution of (1.1) if there exists δ > 0 such
that there exists a Carathéodory solution of (1.1) on [t0, t0 + δ].

Definition 2 Let I be any interval of IR, D any subset of IRn, f : I×D →
IR. The function f : I × D → IRn is said to satisfy the Carathéodory
conditions on I ×D if:

(i) f is defined and continuous with respect to x for a.e. t ∈ I,

(ii) f is measurable with respect to t for each x ∈ D,

(iii) there exists a nonnegative summable function m : I → IR such that
‖f(t, x)‖ ≤ m(t) for all t ∈ I.

Theorem 1 Let f be defined on R = {(t, x) : t0 ≤ t ≤ t0+a, ‖x−x0‖ ≤ b} .
If f satisfies the Carathéodory conditions on R, then there exists a Carathé-
odory solution of (1.1) on [t0, t0 + δ], where δ is such that

∫ t0+δ
t0

m(t)dt ≤ b.



Moreover if there exists a summable function l : [t0, t0+δ] → IR such that
for all t ∈ [t0, t0 + δ] and for all x, y such that ‖x− x0‖ ≤ b, ‖y − y0‖ ≤ b,
one has

‖f(t, x)− f(t, y)‖ ≤ l(t)‖x− y‖ (1.4)

then the solution on [t0, t0 + δ] is unique.

In [BrC, AB, P1, P2], the authors consider the autonomous Cauchy prob-
lem (1.2) in order to get weaker conditions which guarantee the existence of
Carathéodory solutions. Let us introduce these conditions.

Definition 3 The vector field f : IRn → IRn is said to be directionally
continuous if there exists δ > 0 such that, for every x ∈ IRn, if f(x) 6= 0 and
xn → x with ∣∣∣∣ xn − x

|xn − x|
− f(x)
|f(x)|

∣∣∣∣ < δ ∀n ≥ 1,

then f(xn) → f(x).

Directional continuity asks f(xn) → f(x) only for sequences converging
to x contained inside a cone with vertex at x and opening δ around an axis
having the direction of f(x).

Definition 4 The vector field f : IRn → IRn is said to be self tangent if, for
every x ∈ IRn, there exist two sequences xn → x and tn > 0 such that

lim
n→∞

xn − x

tn
= lim

n→∞
f(xn) = f(x).

Let us remark that directional continuity implies self tangency. In [P1,
P2] it is proved that directional continuity of f implies the existence of
local Carathéodory solution of (1.2). The same is proved in [BrC] under the
assumption that f is self tangent and has locally closed graph.
We now define patchy vector fields, which have been introduced in [AB].
They are the superposition of inward-pointing vector fields. They also guar-
antee the existence of local Carathéodory solutions of (1.2).

Definition 5 Let Ω ⊂ IRn be an open domain with smooth boundary ∂Ω.
A smooth vector field f defined on a neighbourhood of Ω is said to be an
inward pointing vector field on Ω if at every boundary point x ∈ ∂Ω the
inner product of f with the outer normal n satisfies f(x) · n < 0. The pair
(Ω, f) is said to be a patch.



Definition 6 f : Ω → IRn is said to be a patchy vector field if there exists
a family of patches {(Ωα, fα) : α ∈ A} such that:
- A is a totally ordered index set,
- the open sets Ωα form a locally finite covering of Ω,
- the vector field f can be written in the form

f(x) = fα(x) if x ∈ Ω\
⋃

β>α

Ωβ.

1.2 Euler Solutions

In order to define generalized solutions mainly two approaches can be pur-
sued. The first one consists in defining approximate solutions by means of
an algorithm and taking as generalized solutions the uniform limits of such
approximate solutions. Euler and generalized sampling solutions are con-
structed in this way. In the second approach one associates a differential
inclusion to the differential equation and defines generalized solutions as so-
lutions of the associated differential inclusion. We discuss this approach in
Section 1.4.

Definition 7 An Euler polygonal ε-approximate solution associated to the
Cauchy problem (1.1) and to the partition π = {t0, t1, ..., tN} of [t0, t0 + a],
with tN = t0 + a and µπ = max{ti+1 − ti, 0 ≤ i ≤ N − 1} < ε, is the
piecewise affine function defined by{

ϕπ(t0) = x0 t ∈ [t0, t1]
ϕπ(t) = ϕπ(ti) + (ei + f(ti, xi(ti) + e′i))(t− ti) t ∈ [ti, ti+1]

where i = 1, ..., N − 1, ‖x0 − x0‖ < ε, ei, e′i ∈ IRn with |ei| < ε, |e′i| < ε.

ei and e′i can be seen as respectively inner and outer perturbations.
Let us remark that Euler polygonal ε-approximate solutions are abso-

lutely continuous functions.

Definition 8 A function ϕ : [t0, t0 + a] → IRn is said to be
- an Euler solution of (1.1) if it is the uniform limit as ε → 0 of a

sequence of Euler polygonal ε-approximate solutions with x0 = x0, ei ≡ e′i ≡
0 for all i;

- an Euler externally disturbed solution of (1.1) if it is the uniform limit
as ε→ 0 of a sequence of Euler polygonal ε-approximate solutions with e′i ≡ 0
for all i;

- an Euler disturbed solution of (1.1) if it is the uniform limit as ε→ 0
of a sequence of Euler polygonal ε-approximate solutions.



We denote the set of Euler solutions of (1.1) by E , the set of Euler
externally disturbed solutions by EE and the set of Euler disturbed solutions
with ED. Note that Euler disturbed solutions are sometimes addressed as
weak generalized solutions (see [P]).
Obviously we have that E ⊆ EE ⊆ ED. We mainly focus on Euler solutions.
Let us remark that Euler solutions are interesting from a mathemathical
point of view, while they don’t seem to have a physical meaning. Then
let us point out their mathematical interest. One possible proof of Peano
existence theorem of classical solutions of (1.1) is based on the construction
of a sequence of Euler ε-approximate solutions. By means of Ascoli and
Arzelà theorem, this sequence is proved to admit a subsequence convergent
to a continuous function, which is a solution of the Cauchy problem (see
[Sa], page 36). If f is not continuous, the limit function does not necessarly
verifies the equation, but it is taken as a (Euler) solution by definition.
Going on this way, we prove the following theorem.

Theorem 2 If f is bounded on the set R = {(t, x) : t0 ≤ t ≤ t0 + a, ‖x−
x0‖ ≤ b}, then a local Euler solution of (1.1) exists. Moreover it is absolutely
continuous.

Proof Let M be such that ‖f(t, x)‖ ≤ M for all (t, x) ∈ R, δ =
min

{
a, b

M

}
. Let πj be a sequence of partitions of [t0, t0 + δ] with µπj <

εj → 0, and ϕj the corresponding Euler polygonal εj-approximate solution.
Let us first remark that (t, ϕj(t)) ∈ R for every j and for every t ∈ [t0, t0+δ].
In fact ‖ϕj(t) − x0‖ ≤ Mδ ≤ b. From this inequality it also follows that
the set of continuous functions {ϕj} is equi-bounded. Let us show that it is
also equi-continuous. For all ε > 0 we have that, for all t1, t2 ∈ [t0, t0 + δ], if
|t1 − t2| < ε

M , then ‖ϕj(t1)− ϕj(t2)‖ ≤ δM < ε for all j. By the Ascoli and
Arzelà theorem it follows that there exists a subsequence of ϕj uniformly
converging to a continuous function ϕ defined on [t0, t0 +δ]. Such a function
is an Euler solution of (1.1) by definition.

Let us now show that ϕ is absolutely continuous. We have already
remarked that the sequence {ϕj} is equibounded, then for each t ∈ [t0, t0+δ]
the set {ϕj(t)} is reletively compact. Moreover ‖ϕ̇j(t)‖ ≤ M for all t ∈
[t0, t0 + δ]. By Theorem 4 page 13 in [AC], it follows that there exists
a subsequence of {ϕj} uniformly converging to an absolutely continuous
function. Since we already know that the whole sequence {ϕj} uniformly
converges to ϕ, it follows that ϕ is absolutely continuous.

Let us now compare Euler and Carathéodory solutions.



The following examples respectively show that C 6⊆ E and E 6⊆ C.

Example 1 ([Cl2]) Let us consider the Cauchy problem (1.2) with f(x) =
3
2x

1
3 , t0 = 0, a = 1 and x0 = 0. Carathéodory solutions are t

3
2 , t−

3
2 and 0,

while the only Euler solution is 0.

Example 2 Let us consider the Cauchy problem (1.2) with

f(x) =
{

1 if x ∈ IR\Q
−1 if x ∈ Q

t0 = 0, a = 1, x0 = 0 and the sequence of partitions of the interval [0, 1]
given by πN = {0, 1

N ,
2
N , ..., 1}. The corresponding Euler solution is −t,

while the unique Carathéodory solution is t.

Note that in the previous example the Euler solution −t does not satisfy
(1.1) at a.e. t ∈ [0, 1], but, at least, it satisfies it on a dense subset of [0, 1].
Exercise 1.6 (b) in [CLSW2] is an example of an Euler solution of a Cauchy
problem of the form (1.2) on an interval I that does not satisfy the equation
at any t ∈ I.

In Theorem 4.1.7 in [CLSW2], page 183, it is proved that, under the
assumptions that f is continuous with respect to (t, x), E ⊆ C. Example 1
shows that C 6⊆ E even if f is continuous.

In order to get C ≡ E , the easiest possibility is to ask f to be continuous
with respect to (t, x) and Lipschitz continuous with respect to x, in the
sense of condition (1.4). In fact, in this case, there exist both an Euler and
a Carathéodory solution, which is unique. Since the Euler solution is also a
Carathéodory solution, the two must coincide. In [AB] it is proved that if
the system is autonomous and f is patchy, then C ≡ EE . From this fact it
follows in particular that, if f is patchy, E ⊆ C.

1.3 Generalized Sampling Solutions

Sampling solutions have been introduced by Krasovskii and Subbotin (see
[KS]) in the contest of differential games, and then used in [CLSS] in order
to prove that asymptotic controllability implies feedback stabilization. Here
we consider generalized sampling solutions which are uniform limits of (not
generalized) sampling solutions. Roughly speaking, generalized sampling
solutions are obtained as limits of solutions of a sequence of systems in
which the control is piecewise constant. The aim of the present section is to



see to what extent they have sense in the general contest of discontinuous
differential equations. We introduce them for systems of the form{

ẋ(t) = f(t, x(t), k(t, x(t)))
x(t0) = x0

(1.5)

where k : IRn+1 → IRm is, in general, a discontinuous function, not necessarly
to be thought as a control.

Definition 9 An ε-trajectory associated to the Cauchy problem (1.5) and
to the partition π = {t0, t1, ..., tN} of [t0, t0+a] with tN = t0+a and µπ < ε,
is a function obtained by iteratively solving the following integral equations

ϕπ(t) = x0 +
∫ t
t0
f(τ, ϕπ(τ), k(t0, x0))dτ t ∈ [t0, t1]

ϕπ(t) = ϕπ(ti) +
∫ t
ti
f(τ, ϕπ(τ), k(ti, ϕπ(ti))dτ t ∈ [ti, ti+1], i = 1, ..., N − 1

Let us remark that ε-trajectories do not necessarly exist, nor are unique.
Nevertheless, if an ε-trajectory exists, then it is absolutely continuous.

Definition 10 A function ϕ : [t0, t0 + a] → IRn is said to be a general-
ized sampling solution of (1.1) if it is the uniform limit of a sequence of
ε-trajectories as ε→ 0.

It is important to emphasize that, in the definition of generalized sam-
pling solution on [t0, t0 +a], it is implicit that a sequence of ε-trajectories of
(1.5) on [t0, t0 + a] does exist.

We denote the set of generalized sampling solutions of (1.5) by S. As
for Euler solutions it would be possible to define also externally disturbed
generalized sampling solutions and disturbed generalized sampling solutions.

Let us now state a local existence theorem for generalized sampling so-
lutions.

Theorem 3 Let f be defined on the set Q = {(t, x, u) : t0 ≤ t ≤ t0 +
a, ‖x− x0‖ ≤ b, u ∈ IRm}. If f is such that

(i) for all fixed u ∈ IRm, f is measurable in t for all x and continuous in
x for a.e. t

(ii) there exists a positive summable function m : [t0, t0 +a] → IR such that
‖f(t, x, u)‖ ≤ m(t) for all (t, x, u) ∈ Q

then there exists at least one local generalized sampling solution of (1.5).
Moreover it is absolutely continuous.



Proof Let {πj} be a sequence of partitions of [t0, t0 + a] with µπj <
εj → 0. By Theorem 1, there exists δ > 0 such that for each partition πj a
corresponding εj-trajectory ϕj exists (it is sufficient that

∫ t0+δ
t0

m(t)dt ≤ b).
Let us remark that for every t ∈ [t0, t0 + δ] and for all u, (t, ϕj(t), u) ∈

Q. In fact ‖ϕj(t) − x0‖ ≤ ‖
∫ t
t0
m(τ)dτ‖ ≤

∫ t0+δ
t0

m(τ)dτ ≤ b. From this
inequality it also follows that the sequence of functions {ϕj} is equi-bounded.

Let us show that it is equi-continuous. Let ε > 0 be arbitrarily fixed
and let γ > 0 be such that for any t1, t2 ∈ [t0, t0 + a], if |t1 − t2| < γ
then

∫ t2
t1
m(τ)dτ < ε (such a γ exists because of the absolute continuity

of Lebesgue integral). Let us then consider t1, t2 ∈ [t0, t0 + a] such that
|t1 − t2| < γ. We get that ‖ϕj(t1)− ϕj(t2)‖ ≤

∫ t2
t1
m(τ)dτ < ε.

By the Ascoli and Arzelà theorem it follows that the sequence {ϕj}
admits a subsequence uniformly converging to a continuous function ϕ, that
is a generalized sampling solution of (1.5) by definition. As in Theorem 2,
the absolute continuity of ϕ follows by Theorem 4 page 13 in [AC].

Remark 1 Analogous theorems could be stated if f verifies some conditions
which guarantee the existence of ε-trajectories for any sequence of partitions
of an interval [t0, t0 + δ] ⊆ I for some δ and for every fixed u.

Remark 2 If we assume that the feedback law k is locally bounded and
M > 0 is such that ‖k(t, x) − k(t0, x0)‖ ≤ M for all t ∈ [t0, t0 + a] and for
all x such that ‖x − x0‖ ≤ b, then hypothesis (ii) in the previous theorem
can be weakened to the following:

(iibis) there exists a summable function m : [t0, t0 + a] → IR such that
‖f(t, x, u)‖ ≤ m(t) for all (t, x, u) ∈ Q such that ‖u− k(t0, x0)‖ ≤M

As for Euler solutions, the existence a.e. of the derivative does not imply
that a generalized sampling solution satisfies (1.5) a.e.. We can reinterpret
Example 2 in terms of generalized sampling solutions by posing f(x) = k(x).
We get that −t is a generalized sampling solution, but not a Carathéodo-
ry solution, then S 6⊆ C. Analogously, by reinterpreting Example 1, we get
C 6⊆ S. This can be also seen by means of the example in [AB].

It is then natural to look for conditions which guarantee S ⊆ C. The
following theorem is analogous to Theorem 4.1.7 in [CLSW2], page 183, for
Euler solutions.

Theorem 4 If f is continuous with respect to (t, x, u) on Q, there exists a
positive and summable function m : [t0, t0 + a] such that ‖f(t, x, u)‖ ≤ m(t)
for all (t, x, u) ∈ Q and k is continuous with respect to (t, x), then every



generalized sampling solution of (1.5) on [t0, t0 + a] is also a Carathéodory
solution.

Proof Let ϕ be a generalized sampling solution of (1.5), {ϕj} a sequence
of εj-trajectories corresponding to the sequence {πj} of partitions of the
interval [t0, t0 + a] with µπj < εj → 0, such that ϕj → ϕ uniformly.

Let us posit kj(t) = k(ti, ϕj(ti)), t ∈ [ti, ti+1]. Since k is continu-
ous in (t, x) and ϕj is continuous in t for all j, we have that kj(t) →
k(t, ϕ(t)) and also f(t, ϕj(t), kj(t)) → f(t, ϕ(t), k(t, ϕ(t))) for every t. More-
over ‖f(t, ϕj(t), kj(t))‖ ≤ m(t), then ϕj(t) → x0+

∫ t
t0
f(τ, ϕ(τ), k(τ, ϕ(τ)))dτ

for all t.
On the other hand we know that ϕj → ϕ uniformly, then
ϕ(t) = x0 +

∫ t
t0
f(τ, ϕ(τ), k(τ, ϕ(τ)))dτ for all t, i.e. ϕ is a Carathéodory

solution of (1.5).

Let us end this section by comparing generalized sampling solutions with
Euler solutions. In general, Euler solutions can be seen as a particular case
of generalized sampling solutions, when the equation in the Cauchy problem
is given by ẋ = k(t, x). Nevertheless these two kinds of generalized solutions
are not really tightly connected. The example in [AB], if reinterpreted in
terms of equation (1.5), shows that E 6⊆ S. Moreover the following example
shows that S 6⊆ E .

Example 3 Let us consider the Cauchy problem (1.5) with f(t, x, k(t, x)) =
3
2k(x)x

1
3 , where k is defined by

k(x) =
{

1 if x ∈ {0} ∪ {(IR\Q) ∩ [0, 1]}
0 if x ∈ Q ∩ (0, 1]

t0 = 0, a = π and x0 = 0. The unique Euler solution is 0.
On the other hand, by considering the sequence of partitions
πj =

{
0, π

j ,
2π
j , ..., (j − 1)π

j , π
}
, we get that, besides 0, also t

3
2 and t−

3
2 are

generalized sampling solutions.

1.4 Krasovskii and Filippov Solutions

The idea behind the concepts of Krasovskii and Filippov solutions is that
the value of a solution at a certain point should be determined by the be-
haviour of its derivative in the nearby points. Moreover the definition of
Filippov solution suggests that possible misbehaviour of the derivative on
null measure sets could be ignored.



More precisely, if we denote by co the convex closure and by µ the usual
Lebesgue measure in IRn, we have the following definitions.

Definition 11 An absolutely continuous function ϕ : [t0, t0 + a] → IRn is
said to be

- a Krasovskii solution of (1.1) if it is a solution of the differential in-
clusion

ẋ ∈ Kf(t, x) =
⋂
δ>0

cof(t, B(x, δ)) (1.6)

i.e. ϕ satisfies (1.6) for a.e. t ∈ [t0, t0 + a],
- a Filippov solution to (1.1) if it is a solution of the differential inclusion

ẋ ∈ Ff(t, x) =
⋂
δ>0

⋂
µ(N)=0

cof(t, B(x, δ)\N) (1.7)

i.e. ϕ satisfies (1.7) for a.e. t ∈ [t0, t0 + a].

We denote the sets of Krasovskii and Filippov solutions to (1.1) respec-
tively by K and F .

Let us consider the set-valued functions Kf,Ff : IRn → 2IRn

. If f is
locally bounded, then Kf and Ff are both upper semicontinuous and have
nonempty, compact and convex values. The same is still true for Ff if f is
just locally essentially bounded. From this remark and a classical existence
theorem for differential inclusion (see [AC], page 97), the local existence
theorem for Krasovskii and Filippov solutions follows.

Theorem 5 If f : [t0, t0 + a]× IRn → IRn is locally bounded (locally essen-
tially bounded), then a local Krasovskii (Filippov) solution of (1.1) exists.

Obviously, if f is locally bounded, F ⊆ K. An interesting condition
in order to get K = F is given in [H] (Lemma 2.8). As in the mentioned
paper, we report it for autonomous systems, but it can be generalized to
nonautonomous ones.

Proposition 1 If there exists a disjoint decomposition IRn =
⋃

Ωi, with
Ωi ⊂ IntΩi and continuous functions fi : IRn → IRn such that f = fi on Ωi,
then each Krasovskii solution of (1.2) is a Filippov solution, i.e. K ⊆ F .

If f is continuous with respect to x, thenKf(t, x) = Ff(t, x) = {f(t, x)},
so that K ≡ F ≡ C. Let us remark that this does not always occur when
Carathéodory solutions exist. The example in [AB] shows that K 6⊆ C and



F 6⊆ C (note that in this example, thanks to Proposition 1, K = F). As far
as the opposite inclusions are concerned, we have that C ⊆ K, while C 6⊆ F .
The inclusion C ⊆ K is due to the fact that f(t, x) ∈ f(t, B(x, δ)) for every
(t, x) and δ > 0 and then f(t, x) ∈ Kf(t, x) . On the other hand C 6⊆ F is
shown by the following example.

Example 4 Let us consider the Cauchy problem (1.2) with

f(x1, x2) =
{

(0, 0) if (x1, x2) = (0, 0)
(1, 0) if (x1, x2) 6= (0, 0)

t0 = 0, (x10 , x20) = (0, 0). The function x1(t) ≡ 0, x2(t) ≡ 0 is a Cara-
théodory solution of the Cauchy problem (1.5). On the other hand, since
F (x1, x2) = (1, 0) for each (x1, x2) ∈ IR2, the unique Filippov solution is
x1(t) = t, x2(t) = 0.

Let us now compare Krasovskii and Filippov solutions with Euler solu-
tions. The example in [AB] shows that F 6⊆ E . In the same example K = F ,
then also K 6⊆ E . The opposite inclusions don’t hold too. This can be seen
by means ofthe following example.

Example 5 Let us consider the Cauchy problem (1.1) with

f(t, x) =
{

1 if t ∈ IR\Q
−1 if t ∈ Q

t0 = 0, a = 1, x0 = 0 and the sequence of partitions of the interval [0, 1]
given by πN = {0, 1

N ,
2
N , ..., 1}. The corresponding Euler solution is −t,

while the unique both Krasovskii and Filippov solution is t.

Nevertheless, as mentioned in [Br], if the system is autonomous it may
be proved that ED ≡ K, then also E ⊆ K. On the other hand, even for the
autonomous case, E 6⊆ F , as it can be seen by means of Example 2: −t is
an Euler solution, while the only Filippov solution is t.

We now compare Krasovskii and Filippov solutions with generalized sam-
pling solutions. The example in [AB], if reinterpreted in terms of the Cauchy
problem (1.5), shows that K = F 6⊆ S. Moreover, if in Example 5 we pose
f(t, x) = k(t, x), we also get that S 6⊆ K and S 6⊆ F . Finally, in the au-
tonomous case, we have that S ⊆ K (see [LS], Lemma 2.9).



Chapter 2

Elements in nonsmooth
analysis

In our study of stability and stabilization we need to deal with nonsmooth
Lyapunov functions. The central problem is then to have conditions which
guarantee the decrease of functions which, in general, are not differentiable.
Such conditions can be based on different kinds of generalized derivatives
and gradients. We only introduce generalized derivatives and gradients that
are needed in the following chapters.

2.1 Functions of one variable

Let I be any interval of IR and V : I → IR. We recall some basic results (see
[MS], page 207).

Proposition 2 Let V be absolutely continuous on each compact subinterval
of I. V is non-increasing on I if and only if V̇ (t) ≤ 0 for a.e. t ∈ I.

If V is just continuous its decrease can be characterized by means of
Dini derivatives. Let us then recall some definitions. We denote r(h, t) =
V (t+h)−V (t)

h .

upper right Dini derivative: D+V (t) = lim suph↓0 r(h, t)

upper left Dini derivative: D−V (t) = lim suph↑0 r(h, t)

lower right Dini derivative: D+V (t) = lim infh↓0 r(h, t)

lower left Dini derivative: D−V (t) = lim infh↑0 r(h, t).
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Proposition 3 Let V be continuous. Then the following statements are
equivalent:

(i) V is non-increasing on I

(ii) D+V (t) ≤ 0 for all t ∈ I

(iii) D−V (t) ≤ 0 for all t ∈ I

(iv) D+V (t) ≤ 0 for all t ∈ I

(v) D−V (t) ≤ 0 for all t ∈ I.

Also in the case V is just either lower semi-continuous or upper semi-
continuous, criteria for the decrease of V based on Dini derivatives can be
formulated.

2.2 Functions of several variables: generalized di-
rectional derivatives and gradients

A fundamental notion associated to functions of several variables is that of
directional derivative. Many different definitions can be given for nonsmooth
functions and, in connection with them, also different notions of generalized
gradients come out.

Let V : IRn → IR and R(h, x, v) = V (x+hv)−V (x)
h . Dini generalized direc-

tional derivatives are

upper right Dini directional derivative: D+V (x, v) = lim suph↓0R(h, x, v)

upper left Dini directional derivative: D−V (x, v) = lim suph↑0R(h, x, v)

lower right Dini directional derivative: D+V (x, v) = lim infh↓0R(h, x, v)

lower left Dini directional derivative: D−V (x, v) = lim infh↑0R(h, x, v).

Other generalized directional derivatives are contingent directional deri-
vatives. The upper right contingent derivative is defined as

D+
KV (x, v) = lim sup

h↓0, w→v
R(h, x, w)

The other contingent derivatives can be defined analogously. If V is locally
Lipschitz continuous contingent derivatives and Dini derivatives coincide.



We mainly focus on Clarke generalized derivatives and gradient (see
[Cl1]):

upper Clarke directional derivative: DCV (x, v) = lim suph→0 y→xR(h, y, v)

lower Clarke directional derivative: DCV (x, v) = lim infh→0 y→xR(h, y, v)

From the definitions it follows that

DCV (x, v) ≤ D+V (x, v) ≤ D+V (x, v) ≤ DCV (x, v)

Dini, contingent and also Clarke directional derivatives are positively
homogeneous with respect to v. Moreover Clarke directional derivative is
subadditive (and hence convex) as a function of v.

Clarke generalized gradient is defined by means of Clarke directional
derivatives as

∂CV (x) = {p ∈ IRn : DCV (x, v) ≤ p · v ≤ DCV (x, v) ∀v ∈ IRn}

In a similar way, by means of other generalized directional derivatives, other
generalized gradients can be defined.

For each x, the set ∂CV (x) is convex and closed.

The connection between Clarke generalized derivatives and gradient can
also be seen by means of the following equalities:

DCV (x, v) = sup{p·v, p ∈ ∂CV (x)} DCV (x, v) = inf{p·v, p ∈ ∂CV (x)}

From these it follows that DCV (x, v) = −DC(x,−v).

Very important properties of Clarke generalized directional derivatives
and gradient arise if V is locally Lipschitz continuous. Let us recall that in
this case, by the well known Rademacher theorem, the gradient ∇V of V
exists a.e.. Moreover for every v ∈ IRn ∇V (·) · v is a measurable function
(see [EG], page 83). Let us then denote by N the set of zero measure where
the gradient of V does not exist and let S be any subset of IRn of zero
measure. We have that

∂CV (x) = co{ lim
i→+∞

∇V (xi) : xi → x, xi /∈ S xi /∈ N} (2.1)

Still if V is Lipschitz continuous, its gradient is bounded, then ∂CV (t, x)
is not just closed but also bounded, and then compact. Thanks to this



characterization of ∂CV (x) it can be proved that, if V is C1, then ∂CV (x) =
{∇V (x)}. Still in the case V is locally Lipschitz continuous, if Ux is a
compact neighbourhood of x and Lx is the Lipschitz constant of V on Ux,
we have that

−Lx‖v‖ ≤ DCV (y, v) ≤ DCV (y, v) ≤ Lx‖v‖ ∀y ∈ Ux ∀v ∈ IRn.

Concluding this paragraph let us recall how Clarke upper directional
derivative is used in the definition of C-regular functions.

Definition 12 V : IRn → IR is said to be C-regular at x if for every v ∈ IRn

(i) there exists the usual right directional derivative

D+V (x, v) = limh↓0R(h, x, v)

(ii) DCV (x, v) = D+V (x, v).

V is said to be C-regular if it is regular at each x ∈ IRn.

Let us remark that a convex function is not only Lipschitz continuous,
but it is also regular.

2.3 A chain rule

We now restrict our attention to functions which are the composition of a
locally Lipschitz continuous funtion V : IRn → IR and an absolute continuous
function ψ : IR → IRn. First of all, let us remark that, in these hypothesis,
V ◦ ψ : IR → IR is an absolutely continuous function and then its derivative
exists a.e.. In [MV] the authors prove a chain rule, that we now state in the
particular case that is of interest for us.

Proposition 4 If V : IRn → IR is locally Lipschitz continuous and ψ : IR →
IRn is absolutely continuous, then for a.e. t there exists p0 ∈ ∂CV (ψ(t))
such that d

dtV (ψ(t)) = p0 · ψ̇(t).

In this context it becomes very interesting the notion of healthy function
introduced in [V], and that we slightly modify for functions V having an
explicit dependence on time.

Definition 13 We say that a locally Lipschitz function V : IRn+1 → IR is
healthy if for every absolute continuous function ϕ : IR → IRn and for a.e. t
the set ∂CV (t, ϕ(t)) is a subset of an affine subspace orthogonal to (1, ϕ̇(t)).



Let us remark that C-regular functions (and then also convex functions)
are healthy. The interest in healthy functions is motivated by the following
proposition, that can be seen as a chain rule for healthy functions and is
easily proved by means of Proposition 4.

Proposition 5 If V : IRn+1 → IR is healthy and ψ : IR → IRn is absolutely
continuous, then the set {p · (1, ϕ̇(t)), p ∈ ∂CV (t, ϕ(t))} is reduced to the
singleton

{
d
dtV (t, ϕ(t))

}
for a.e. t.

Proof Let ψ : IR → IRn+1 be defined by ψ(t) = (t, ϕ(t)). ψ is absolutely
continuous and the same is true for V ◦ψ(t) = V (t, ϕ(t). Then d

dtV ◦ψ(t) =
d
dtV (t, ϕ(t)) exists a.e.. By Proposition 4 we have that for a.e. t there exists
p0 ∈ ∂CV (t, ϕ(t)) such that d

dtV ◦ψ(t) = p0 · ψ̇(t) = p0 · (1, ϕ̇(t)) and, by the
definition of healthy function, it follows that d

dtV (t, ϕ(t)) = p · (1, ϕ̇(t)) for
all p ∈ ∂CV (t, ϕ(t)).

2.4 Monotonicity along solutions of differential in-
clusions

In this section we still consider functions which are the composition of a
healthy function V : IRn+1 → IR and an absolutely continuous function
ϕ : IR → IRn, but in the particular case ϕ is a solution of a differential
inclusion of the form

ẋ ∈ F (t, x) (2.2)

with the initial condition x(t0) = x0, where F : IRn+1 → 2IRn

\∅ is an upper
semi-continuous set-valued function with compact and convex values.

Definition 14 A function V : IRn+1 → IR is said to be decreasing along F
if for each solution ϕ(t) of (2.2) on I and all t1, t2 ∈ I one has

t1 ≤ t2 ⇒ V (t2, ϕ(t2)) ≤ V (t1, ϕ(t1)) (2.3)

Note that a function V with the property (2.3) is said to be a Lyapunov
function for (2.2). We don’t emphazise the point of view of Lyapunov func-
tions now because we will focus on them in Chapter 3, in connection with
the problem of stability of differential inclusions.

Let us remark that the definition of monotonicity we have given is
“strong”, in the sense that it refers to all solutions of (2.2). One could



analogously define “weak” monotonicity, by refering only to some solutions
of (2.2).

In the case V is C1 the classical condition which guarantees its decrease
along F is that for all t and all x

D+V ((t, x), (1, v)) =
∂V

∂t
(t, x) +∇V (t, x) · v ≤ 0 ∀v ∈ F (t, x)

It is from this condition that one gets inspiration for the nonsmooth case.
If V locally Lipschitz continuous, a condition based on Dini derivatives

which implies (2.3) is that for a.e.t and all x (see [B3]):

D+V ((t, x)(1, v)) ≤ 0 ∀v ∈ F (t, x) (2.4)

Note that (2.3) does not imply (2.4). This can be seen by means of
Example 1 in Chapter 3.
Since D+V ((t, x)(1, v)) ≤ DCV ((t, x)(1, v)) = max{p ·(1, v), p ∈ ∂CV (t, x)}
for all (t, x) and for all v ∈ F (t, x), also the condition

for a.e. t ∀x ∀v ∈ F (t, x) max{p · (1, v), p ∈ ∂CV (t, x)} ≤ 0 (2.5)

guarantees the monotonicity of V along F . The advantage of this last condi-
tion is that, thanks to the characterization of Clarke generalized gradient for
locally Lipschitz continuous functions, it can be relatively easily computed.
On the other hand it is not very sharp, except for the case F (t, x) = {F (x)},
where F is continuous. In this case we have the following proposition (see
[BCM]).

Proposition 6 Let F : IRn → 2IRn

\∅ be continuous and let V : IRn → IR be
Lipschitz continuous. V decreases along all solutions of

ẋ ∈ F (x) (2.6)

if and only if

∀x ∈ IRn ∀v ∈ F (x) max{p · v, p ∈ ∂CV (x)} ≤ 0

Proof The proof that if for all x ∈ IRn and for all v ∈ F (x) one has
max{p · v, p ∈ ∂CV (x)} ≤ 0 then V decreases along all solutions of (2.6)
trivially follows from the previous discussion.

Let us prove that if V decreases along all solutions of (2.6) then for all x
and for all p ∈ ∂CV (x) one has p·v ≤ 0. Let us suppose by contradiction that
there exists a x0 ∈ IRn, v0 ∈ F (x0) and p0 ∈ ∂CV (x0) such that p0 · v0 > 0.
By (2.1) there exist



a) λ1, ..., λm > 0 such that
∑m

i=1 λi = 1

b) p(1), ..., p(m) ∈ IRn and {x(1)
k } ⊂ IRn, ..., {x(m)

k } ⊂ IRn such that for all
i ∈ {1, ...,m} and for all k there exists ∇V (x(i)

k ),

p(i) = limk→+∞∇V (x(i)
k ) and limk→+∞ x

(i)
k = x0

such that p0 = λ1p
(1)+...+λmp

(m). Since p0·v0 = λ1p
(1)·v0+...+λmp

(m)·v0 >
0, there exists j ∈ {1, ...,m} such that p(j) · v0 > 0. Let {x(j)

k } be a sequence
as in b).

Let us fix ε < min
{
1, p(j)·v0

2(‖v0‖+‖p(j)‖+1)

}
.

Since p(j) = limk→+∞∇V (x(j)
k ), there exists k such that for all k > k

there exists wk ∈ B(0, 1) such that ∇V (x(j)
k ) = p(j) + εwk, where B(0, 1) is

the unit ball in IRn centered at the origin.
Moreover x(j)

k → x0 and F is continuous, then there exists k̃ such that for
all k > k̃ there exist vk ∈ F (x(j)

k ) and zk ∈ B(0, 1) such that vk = v0 + εzk.
Then for all k > max{k, k̃} there exist vk ∈ F (x(j)

k ) and wk, zk ∈ B(0, 1)
such that ∇V (x(j)

k ) · vk = (p(j) + εwk) · (v0 + εzk) = p(j) · v0 − ε|wk · v0 + zk ·
p(j) + εwk · zk| ≥ p(j) · v0 − ε(‖v0‖+ ‖p(j)‖+ 1) > p(j)·v0

2 > 0.
Let us fix K > max{k, k̃} and let us consider the solution ϕ(t) of (1.2)

with the initial conditions ϕ(t0) = x
(j)
K and ϕ̇(t0) = v

(j)
K . The existence of

such a solution is guaranteed by Theorem 2.3 in [C].
Since V decreases along solutions of (2.6), then d

dtV (ϕ(t)) ≤ 0 a.e., i.e. on
the set where V ◦ϕ is differentiable. In particular we have that d

dtV (ϕ(t0)) ≤
0. On the other hand d

dtV (ϕ(t0)) = ∇V (ϕ(t0)) · vK = ∇V (x(j)
K ) · vK > 0,

that is a contradiction.

In the general case, in order to get a condition sharper than (2.5), we
need to define the set-valued derivative of V with respect to (2.2):

V̇
(2.2)

(t, x) = {a ∈ IR : ∃v ∈ F (t, x) such that p · (1, v) = a ∀p ∈ ∂CV (t, x)}

Remark 3 By Proposition 5, if ϕ(t) is any solution of (2.2) we have that
d
dtV (t, ϕ(t)) ∈ V̇

(2.2)
(t, ϕ(t)) for a.e.t.

Lemma 1 Let V : IRn+1 → IR be a Lipschitz continuous function. For

each fixed (t, x) ∈ IRn+1 the set V̇
(2.2)

(t, x) is a closed and bounded interval,
possibly empty.



Moreover, if V is differentiable, then

V̇
(2.2)

(t, x) =
{

∂V
∂t (t, x) +∇V (t, x) · v, v ∈ F (t, x)

}
.

Proof We first prove that V̇
(2.2)

(t, x) is closed. Let {an} ⊂ V̇
(2.2)

(t, x),
an → a. For each n there exists vn ∈ F (t, x) such that p · (1, vn) = an for
all p ∈ ∂CV (t, x). Since F (t, x) is compact there exists a subsequence {vnj}
of {vn} converging to v ∈ F (t, x). We get that anj = p · (1, vnj ) → p · v. By

the uniqueness of the limit we have p · (1, v) = a ∈ V̇
(2.2)

(t, x).

Let us now prove that V̇
(2.2)

(t, x) is bounded. Let Ut,x be a compact
neighbourhood of (t, x), Lt,x be the Lipschitz constant of V on Ut,x and

Mt,x be such that ‖(1, v)‖ ≤ Mt,x for all v ∈ F (t, x). Let a ∈ V̇
(2.2)

(t, x).
Since there exists v ∈ F (t, x) such that a = p · (1, v) for all p ∈ ∂CV (t, x),
we get that |a| ≤ ‖p‖‖(1, v)‖ ≤ Lt,xMt,x.

Let us show that V̇
(2.2)

(t, x) is convex. Let a1, a2 ∈ V̇
(2.2)

(t, x). There
exist v1, v2 ∈ F (t, x) such that a1 = p · (1, v1) and a2 = p · (1, v2) for all
p ∈ ∂CV (t, x). Let τ ∈ [0, 1] and let us consider v = τv1 + (1 − τ)v2.
Since F (t, x) is convex, v ∈ F (t, x). For all p ∈ ∂CV (t, x) we have that

p · v = τa1 + (1− τ)a2, so that τa1 + (1− τ)a2 ∈ V̇
(2.2)

(t, x).

Finally V̇
(2.2)

(t, x) =
{

∂V
∂t (t, x) +∇V (t, x) · v, v ∈ F (t, x)

}
is an imme-

diate consequence of the fact that, if V is differentiable, then
∂CV (t, x) =

{(
∂V
∂t (t, x),∇V (t, x)

)}
.

Proposition 7 If V : IRn+1 → IR is locally Lipschitz continuous then for
all (t, x) ∈ IRn+1

max V̇
(2.2)

(t, x) ≤ max
v∈F (t,x)

D+V ((t, x)(1, v)) (2.7)

Proof Let a = max V̇
(2.2)

(t, x). There exists v ∈ F (t, x) such that
p · v = a for all p ∈ ∂CV (t, x), so that

a = DCV ((t, x), (1, v)) ≤ D+V ((t, x), (1, v)) ≤ max
v∈F (t,x)

D+V ((t, x), (1, v)).

Proposition 8 If V : IRn+1 → IR is a healthy function and

max V̇
(2.2)

(t, x) ≤ 0 for a.e. t and all x, then V decreases along F .



Proof Let ϕ(t) be any solution of (2.2) and let us consider the absolute
continuous function V (t, ϕ(t)). By Proposition 5 the set {p · (1, ϕ̇(t)), p ∈
∂CV (t, ϕ(t))} reduces to the singleton

{
d
dtV (t, ϕ(t))

}
for a.e. t.

Since ϕ̇(t) ∈ F (t, ϕ(t)) for a.e.t, we have that
{

d
dtV (t, ϕ(t))

}
⊆ {p ·

(1, ϕ̇(t)), p ∈ ∂CV (t, ϕ(t))} ⊆ {a ∈ IR : ∃v ∈ F (t, ϕ(t)) such that p · v =

a ∀p ∈ F (t, x)} = V̇
(2.2)

(t, x). Then, if max V̇
(2.2)

(t, x) ≤ 0 for a.e.t and for
all x, we get that d

dtV (t, ϕ(t)) ≤ 0 for a.e. t. Finally Proposition 2, implies
that V decreases along ϕ(t).

Remark 4 Let ϕ(t) be any solution of (2.2). V̇
(2.2)

(t, ϕ(t)) = ∅ can occur
only on a zero measure set. In fact for a.e. t there exists d

dtV (t, ϕ(t)) ∈

V̇
(2.2)

(t, ϕ(t)) so that V̇
(2.2)

(t, ϕ(t)) 6= ∅ for a.e. t. We can then extend the

conclusion of Proposition 8 to the case V̇
(2.2)

(t, x) = ∅ by posing

max V̇
(2.2)

(t, x) = −∞ if V̇
(2.2)

(t, x) = ∅.

Remark 5 An analogous version of Proposition 8 was given in [SP] for C-
regular functions. The set-valued derivative used in that paper is slightly

different and, in general, it is a set larger than V̇
(2.2)

. We show this by
means of Example 6 in Chapter 3.

Remark 6 The converse of inequality (2.7) does not hold (see Example 6
in next chapter). This means that, if V is healthy, the stability criterion

based on V̇
(2.2)

works better than the criterion based on Dini lower right
derivative.

Remark 7 It is important to emphasize that, if instead of the differential
inclusion (2.2) we consider the autonomous differential inclusion (2.6) and
Lyapunov functions V : IRn → IR not depending on time, we obtain results
perfectly analogous to those described in this section (see [BC]).



Chapter 3

Stability of differential
inclusions

The problem of stability of differential inclusions is of primary interest for us.
In fact, as we have seen in Chapter 1, discontinuous differential equations
are often interpreted in terms of differential inclusions, so that the study of
stability of discontinuous differential equations can coincide with the study
of stability of differential inclusions. Since in general a differential inclusion
has not a unique solution, the stability property is usually said to be strong
or weak according to the fact that it refers to all or just some of its solutions.
We only consider strong stability, so we omit to mention the adjective strong
in the following. But let us define stability precisely.

Definition 15 The differential inclusion (2.2) is said to be stable at x = 0
if for all ε > 0 there exists δ > 0 such that for each initial condition (t0, x0)
and each solution ϕ(t) of (2.2) such that ϕ(t0) = x0,

‖x0‖ < δ ⇒ ‖ϕ(t)‖ < ε ∀t ≥ t0.

More precisely this concept of stability is uniform, in the sense that δ
does not depend on t0.

Note that if the differential inclusion (2.2) is stable at x = 0, then x = 0
is an equilibrium point for it, i.e. 0 ∈ F (t, 0) for all t ≥ t0. In fact, if x0 = 0,
then ‖x0‖ < δ for all δ and , if ϕ(t) is a solution of (2.2) with ϕ(t0) = 0,
then for all ε one has ‖ϕ(t)‖ < ε for all t ≥ t0, i.e. ϕ(t) ≡ 0. Since ϕ(t) ≡ 0
is a solution of (2.2) and ϕ̇(t) ≡ 0, we get that 0 ∈ F (t, 0) for all t. In this
way, we have also proved that ϕ(t) ≡ 0 is the unique solution of (2.2) such
that ϕ(t0) = 0.

29



3.1 Lyapunov’s direct method

Lyapunov’s direct method (also called Lyapunov’s second method), origi-
nated in order to study stability of differential equations, but it can be also
successfully applied to differential inclusions. It makes it possible to investi-
gate the stability of (2.2) without knowing the explicit form of its solutions,
but just using the differential inclusion itself. The method is based on the
knowledge of Lyapunov functions, which can be seen as a generalization of
the concept of energy.

Definition 16 V : IRn → IR is said to be a Lyapunov function for (2.2)ϕ(t)
if for each solution of (2.2) on I ⊆ IR and for all t1, t2 ∈ I

condition (2.3) holds.

Let us emphasize that we always consider differential inclusions of the
form (2.2) where F is an upper semi-continuous set-valued map with non-
empty, compact and convex values. In these hypothesis the existence of at
least one solution of (2.2) is ensured (see, e.g., [AC], page 37).

A well known version of first Lyapunov theorem for differential inclusions
is the following. Because of its importance we also prove it.

Theorem 6 If there exist a Lyapunov function V : IRn → IR for (2.2) and
two continuous, strictly increasing functions a, b : IR+ → IR+ such that

(i) a(0) = b(0) = 0 and a(r) > 0 for r > 0

(ii) a(‖x‖) ≤ V (t, x) ≤ b(‖x‖) for all (t, x)

then (2.2) is stable at x = 0.

Remark 8 Note that hypothesis (i) and (ii) imply that

1) V (t, x) ≥ 0 for all (t, x)

2) V (t, 0) = 0 for all t

3) V (t, x) is continuous with respect to x at (t, 0) for all t.

Proof We want to prove that for all ε > 0 there exists δ > 0 such that
for all t0 and all solutions ϕ(t) of (2.2) with ϕ(t0) = x0, ‖x0‖ < δ implies
‖ϕ(t)‖ < ε for all t ≥ t0.

Let ε > 0 and t0 be given, and let us consider a(ε). By the continuity of
b there exists δ > 0 such that if ‖x0‖ ≤ δ then V (t0, x0) ≤ b(‖x0‖) < a(ε).



Since V is a Lyapunov function, for every solution ϕ(t) of (2.2) with
ϕ(t0) = x0

V (t, ϕ(t)) ≤ V (t0, x0) < a(ε) ∀t ≥ t0 (3.1)

From this inequality it follows that ‖ϕ(t)‖ < ε for all t ≥ t0.
In fact otherwise there would exist t such that ‖ϕ(t)‖ ≥ ε and, by (i) and
(ii), V (t, ϕ(t)) ≥ a(‖ϕ(t)‖) ≥ a(ε), that is a contradiction to (3.1).

In order to apply Lyapunov’s second method and prove the stability of
a differential inclusion, the fundamental tool is to find a Lyapunov function
and, in particular, to verify condition (2.3), without knowing the explicit
form of its solutions. We are then led back to the problem of monotonicity
along solutions of a differential inclusion that we discussed in Section 2.4.

The following result is a corollary of the previous theorem and Proposi-
tion 8 in Chapter 2.

Corollary 1 If there exists a function V : IRn+1 → IR such that

max V̇
(2.2)

(t, x) ≤ 0 for a.e.t and for all x and two continuous strictly in-
creasing functions a, b : IR+ → IR+ such that hypothesis (i) and (ii) of
Theorem 6 hold, then the differential inclusion (2.2) is stable at x = 0.

Remark 9 If instead of (2.2) we consider the autonomous differential in-
clusion (2.6), it makes more sense to consider Lyapunov functions not de-
pending on t. Hypothesis (i) and (ii) in Theorem 6 can then be changed
into the following:

V : IRn → IR is positive definite and continuous at x = 0.

The conclusion of the previous corollary still holds with V̇
(2.2)

replaced

by V̇
(2.6)

(x) = {a ∈ IR : ∃v ∈ F (x) s.t. p · v = a ∀p ∈ ∂CV (x)} (see [BC]).

Remark 10 Nonsmooth Lyapunov functions and generalized derivatives
have been previously used in the literature on stability mainly in connection
with the problem of asymptotic stability and stabilization: see for instance
[SP, SS2, CLSS, R2, FK].

Example 6 We consider a system of the form (1.2) in IR2 where f(x1, x2) =
(−sgnx2, sgnx1)T (Fig.1). According to the Filippov’s approach, this leads
to the differential inclusion (2.6), where

F (x1, x2) = Ff(x1, x2) =



=


{−sgnx2} × {sgnx1} at (x1, x2), x1 6= 0 and x2 6= 0
[−1, 1]× {sgnx1} at (x1, 0), x1 6= 0
{−sgnx2} × [−1, 1] at (0, x2), x2 6= 0
co{(1, 1), (−1, 1), (−1,−1), (1,−1)} at (0, 0)

Let us now consider V (x1, x2) = |x1|+ |x2|. We have

∂CV (x1, x2) =


{sgnx1} × {sgnx2} at (x1, x2), x1 6= 0 and x2 6= 0
{sgnx1} × [−1, 1] at (x1, 0), x1 6= 0
[−1, 1]× {sgnx2} at (0, x2), x2 6= 0
co{(1, 1), (−1, 1), (−1,−1), (1,−1)} at (0, 0)

so that

V̇
(2.6)

(x1, x2) =


{0} at (x1, x2), x1 6= 0 and x2 6= 0
∅ at (x1, 0), x1 6= 0
∅ at (0, x2), x2 6= 0
{0} at (0, 0)

Since for all (x1, x2) ∈ IR2 one has max V̇
(2.6)

(x1, x2) ≤ 0, by Corollary 1,

the system is stable at x = 0. Let us remark that max V̇
(2.6)

(0, x2) = −∞ <
D+V ((0, x2), (−1, 1)) = 2 ≤ maxv∈F (0,x2)D

+V ((0, x2), v). This means that

a test based on Dini derivative is inconclusive. Moreover V̇
(2.6)

(0, x2) = ∅ is

a strict subset of the set ˙̃V
(2.6)

(0, x2) = {0} considered in [SP].

Fig.1
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Remark 11 The previous example clearly shows that, in general, there is
no hope to find smooth Lyapunov functions for discontinuous equations.



Let us assume by contradiction that a smooth Lyapunov function V does
exist. V is constant on cycles and any cycle is a level set for V . Then V has
nonsmooth level sets, and this contradicts the fact that V is smooth.

Example 7 Nonsmooth harmonic oscillator. Let us consider the scalar
differential equation

ẍ = −sgnx (3.2)

We can associate to this equation a system of the form (1.2) in IR2 where
f(x1, x2) = (x2, −sgnx1)T . The Filippov multivalued map associated to the
system is

F (x1, x2) = Ff(x1, x2) ==
{
{x2} × {−sgnx1} at (x1, x2), x1 6= 0
{x2} × [−1, 1] at (0, x2)

Let us now consider V (x1, x2) = |x1|+
x2
2
2 . We have

∂CV (x1, x2) =

{
{sgnx1} × {x2} at (x1, x2), x1 6= 0
[−1, 1]× {x2} at (0, x2)

so that

V̇
(2.6)

(x1, x2) =


{0} at (x1, x2), x1 6= 0
{0} at (x1, x2), x1 = 0, x2 = 0
∅ at (0, x2), x2 6= 0

Since for all (x1, x2) ∈ IR2 one has max V̇
(2.6)

(x1, x2) ≤ 0, by Corollary 1,
the system is stable at x = 0.

Example 8 Gradient vector fields. It is well known that if V : IRn → IR
is a positive definite smooth function then the equation

ẋ = −∇V (x)

has an asymptotically stable equlibrium at the origin. For a locally Lipschitz,
healthy positive definite function V , a natural substitute of the previous
equation is the differential inclusion

ẋ ∈ −∂CV (x).

Let a ∈ V̇
(2.6)

(x), where F (x) = −∂CV (x). Then there exists v ∈ −∂CV (x)
such that p · v = a for each p ∈ ∂CV (x). In particular the equality must
be true for p = v. But then a = −|v|2 ≤ 0. According to Corollary 1, we
conclude that any differential inclusion of the form ẋ ∈ −∂CV (x) is stable
at the origin.



3.2 Inverse Lyapunov’s theorems

We devote just a short paragraph to the problem of inverting Theorem 6.
The cases of a continuous or smooth, time dependent or autonomous single
valued righthandside of (2.2) have been widely treated in the literature: see
[BS, K, Ku, Y1, KV, AS] and [BR1] for an overview on the problem. It
is important to emphasize that really the most important issue in these
papers is not the existence of a Lyapunov function, that is relatively easily
obtained, but its regularity. Actually, regularity of Lyapunov functions plays
an important role in the applications, for example in connection with the
problem of asymptotic stabilization of a control system, as we will see in
Chapter 4. We have already remarked that, in general, for discontinuous
systems, there is no hope to find a smooth Lyapunov function. In [KV] the
authors give an example of a system of the form (1.1) with f continuous such
that a continuous Lyapunov function does not exist. Moreover they prove
that the existence of a continuous Lyapunov function becomes a necessary
and sufficient condition if the notion of stability is conveniently strengthened
(see also [AS] for the autonomous case).

From our point of view, it is interesting to know a notion of stability
equivalent to the existence of a Lipschitz continuous (or regular or healthy)
Lyapunov function, both for autonomous and time dependent systems. For
time dependent systems the problem has been solved by Kurzweil and Vrkoc̆
([KV]) in the case f is continuous, by means of the notion of robust stability.
For autonomous systems the problem has been very recently solved in the
scalar case (see [BR2]), but it is still open in IRn.

Going back to discontinuous equations and differential inclusions, let us
mention just two results. The first one can be found in [D], page 205. It
essentially is the inverse of Theorem 6.

In the second one ([BR1]), the authors generalize the mentioned result
in [KV] to differential inclusions of the form (2.2).

3.3 Asymptotic Stability and Invariance Principle

As shown in the previous section, if a Lyapunov function is known, one
can get some conclusions about stability, but nothing can be said in general
about asymptotic stability, whose definition is the following.

Definition 17 The differential inclusion (2.2) is said to be asymptotically
stable at x = 0 if



(i) (2.2) is stable at x = 0

(ii) there exists η > 0 such that if ‖x0‖ ≤ η then for all t0 and for
all solutions ϕ(t) of (2.2) with initial condition ϕ(t0) = x0 one has
limt→∞ ϕ(t) = 0.

Note that the given concept of asymptotic stability is strong, in the
sense that it refers to all solutions of (2.2), and uniform, because η does not
depend on t0.

Both for autonomous and time dependent differential equations with
continuous right handside there are classical results which give asymptotic
stability. They are based on the knowledge of a smooth Lyapunov functions
whose derivative with respect to the system is negative definite. In the
autonomous case some asymptotic stability results can be achieved by means
of LaSalle principle (also called invariance principle) even if the derivative
of the Lyapunov function with respect to the system is not known to be
negative definite. Beside its application in the study of asymptotic stability,
LaSalle principle is interesting by itself, because it provides information on
the behaviour of solutions. Even if a “plain” version of LaSalle principle for
time-dependent systems does not exist, many results in this direction can
be mentioned: [RHL, A, AP] and references therein.

Going back to differential inclusions and nonsmooth Lyapunov functions,
we now limit ourselves to consider the autonomous case. We give a version
of the invariance principle based on the notion of set-valued derivative with
respect to (2.6) and compare it with similar early results.

The following definitions (see [F2], page 129) are useful to formulate and
prove such an invariance theorem.

Definition 18 A point q ∈ IRn is said to be a limit point for a solution
ϕ(t) of (2.6) if there exists a sequence {ti}, ti → +∞ as i→ +∞, such that
ϕ(ti) → q as i→ +∞.

The set of the limit points of ϕ(t) is said to be the limit set of ϕ(t) and
is denoted by Ω(ϕ).

Definition 19 A set Ω is said to be a weakly invariant set for (2.6) if
through each point x0 ∈ Ω there exists a maximal solution of (2.6) lying in
Ω.

We recall that under the assumption that F is an upper semi-continuous
multivalued map with compact, convex values, if ϕ(t) is a solution of the
autonomous differential inclusion (2.6) and Ω(ϕ) is its limit set, then Ω(ϕ)



is weakly invariant and if ϕ(t), t ∈ IR+, lies in a bounded domain, then Ω(ϕ)
is nonempty, bounded, connected and dist(ϕ(t),Ω(ϕ)) → 0 as t→ +∞ (see
[F2], page 129).

Theorem 7 Let V : IRn → IR be a locally Lipschitz continuous and healthy
Lyapunov function for (2.6). Let us assume that for some l > 0, the
connected component Ll of the level set {x ∈ IRn : V (x) ≤ l} such that
0 ∈ Ll is bounded. Let x0 ∈ Ll and ϕ(t) be any solution of (2.6) such that
ϕ(t0) = x0. Let

Z
(2.6)
V = {x ∈ IRn : 0 ∈ V̇

(2.6)
(x)}

and let M be the largest weakly invariant subset of Z(2.6)
V ∩ Ll.

Then dist(ϕ(t),M) → 0 as t→ +∞.

Proof Let Ω(ϕ) be the limit set of ϕ(t). Let us remark that ϕ(t) is
bounded. In fact otherwise there would exist t1 > 0 such that ϕ(t1) /∈ Ll

and, since ϕ(t) is continuous, ϕ(t1) is not in any other connected component
of {x ∈ IRn : V (x) ≤ l}. Then V (ϕ(t1)) > l ≥ V (x0), that is impossible
since V ◦ ϕ is decreasing.

Let us prove that Ω(ϕ) ⊆ Z
(2.6)
V ∩ Ll. Because of the definition of Ll,

Ω(ϕ) ⊆ Ll.

We now prove that Ω(ϕ) ⊆ Z
(2.6)
V .

Let us remark that V is constant on Ω(ϕ). Indeed, since V ◦ ϕ is
decreasing and bounded from below, there exists limt→+∞ V (ϕ(t)) = c ≥
0. Let y ∈ Ω(ϕ). There exists a sequence {tn}, tn → +∞, such that
limn→+∞ ϕ(tn) = y and, by the continuity of V , V (y) = c.

Let y ∈ Ω(ϕ) and ψ(t) be a solution of (2.2) lying in Ω(ϕ) such that
ψ(0) = y. Since V (ψ(t)) = c for all t, we have d

dtV (ψ(t)) = 0 for all t.

Therefore 0 ∈ V̇
(2.6)

(ψ(t)) almost everywhere, namely ψ(t) ∈ Z
(2.6)
V almost

everywhere.
Let {ti}, ti → 0, be a sequence such that ψ(ti) ∈ Z(2.6)

V for all i. Since

ψ is continuous limi→+∞ ψ(ti) = ψ(0) = y ∈ Z(2.6)
V .

From the fact that Ω(ϕ) is weakly invariant it follows that Ω(ϕ) ⊆ M
and from the fact that dist(ϕ(t),Ω(ϕ)) → 0 as t → +∞ it follows that
dist(ϕ(t),M) → 0 as t→ +∞.

Remark 12 Early versions of the invariance principle for differential inclu-
sions can be found in [SP] and [R2]. Although the result presented here
has been largely inspired by both of them, certain differences should be



pointed out. First of all, we emphasize that Theorem 7 is more general
than Theorem 3.2 of [SP] since no assumption about uniqueness of solutions
is required. As far as Ryan’s invariance principle is concerned, essentially
two remarks have to be done. On one hand Ryan’s result refers to merely
locally Lipschitz continuous Lyapunov functions, while we deal with locally
Lipschitz continuous and also healthy Lyapunov functions. On the other
hand our identification of the “bad” set Z(2.6)

V is sharper than Ryan’s one.
Finally, Example 10 shows a case in which Theorem 7 can be used in order
to compute the limit set, while Ryan’s invariance principle doesn’t help.

Remark 13 Example 6 of the previous Section shows that, in the conclu-
sion of Theorem 7, we cannot avoid to take, in general, the closure of Z(2.6)

V .
Indeed, in Example 6 each trajectory is a closed path that coincides with
its limit set and crosses the coordinates axis.

Remark 14 As a consequence of the invariance principle we get asymptotic
stability in the case that a Lyapunov function for (2.6) is known and the set
Z

(2.6)
V reduces to the origin.

Example 9 Smooth oscillator with nonsmooth friction and uncertain coef-
ficients. Let us consider a differential inclusion of the form (2.6) in IR2,
where

F (x1, x2) =



[−2x2 − 1,−x2 − 1]× {x1} at (x1, x2), x1 > 0 and x2 > 0
{−x2 − sgnx1} × {x1} at (x1, x2) ∈ IR2\({(0, x2)}

∪{(x1, x2), x1 > 0, x2 > 0})
[−2x2 − 1,−x2 + 1]× {0} at (0, x2), x2 > 0
[−x2 − 1,−x2 + 1]× {0} at (0, x2), x2 < 0
[−1, 1]× {0} at (0, 0).

Let us now consider the smooth function V (x1, x2) = x2
1+x2

2
2 . In this case

V̇
(2.6)

(x) =



{[−1, 0]x1x2 − x1} at (x1, x2), x1 > 0 and x2 > 0
{−|x1|} at (x1, x2) ∈ IR2\({(0, x2)IR}

∪{(x1, x2), x1 > 0 and x2 > 0})
{0} at (0, x2), x2 6= 0
{0} at (0, 0),

then Z(2.6)
V = {(0, x2), x2 ∈ IR}.

Let us now determine the largest weakly invariant subset M of Z(2.6)
V .



Let us remark that , if |x2| ≤ 1, then (0, 0) ∈ F (x1, x2), hence the
segment P1P2, where P1 = (0, 1) and P2 = (0,−1), is a weakly invariant
subset of Z(2.6)

V .
Moreover, if |x2| > 1, all the vectors v ∈ F (0, x2) point in the same

direction, hence each trajectory, starting in (0, x2), with |x2| > 1, leaves the
x2-axis.

We conclude that M = P1P2, i.e. all trajectories of the differential
inclusion (2.6) tend to the segment P1P2 as t→ +∞. In fact each solution
is attracted by a single point of the segment P1P2. This follows by the proof
of Theorem 7. Indeed each solution is attracted by the set Z(2.6)

V ∩Ll∩V −1(c)
for some c.

Example 10 Nonsmooth harmonic oscillator with nonsmooth friction (Fig.
2). Let us consider a system of the form (1.2) in IR2 where f(x1, x2) =
(−sgnx2 − 1

2sgnx1, sgnx1)T . Filippov solutions of (1.2) are solutions of the
differential inclusion (2.6), where

F (x1, x2) = Ff(x1, x2) =

=



{−sgnx2 − 1
2sgnx1} × {sgnx1} at (x1, x2), x1 6= 0, x2 6= 0

co
{(
−3

2 , 1
)
,
(

1
2 , 1
)}

at (x1, 0), x1 > 0

co
{(
−1

2 ,−1
)
,
(

3
2 ,−1

)}
at (x1, 0), x1 < 0

co
{(
−3

2 , 1
)
,
(
−1

2 ,−1
)}

at (0, x2), x2 > 0

co
{(

3
2 ,−1

)
,
(

1
2 , 1
)}

at (0, x2), x2 < 0

co
{(
−1

2 ,−1
)
,
(

1
2 , 1
) (
−3

2 , 1
)
,
(

3
2 ,−1

)}
at (0, 0)

Let us now consider V (x1, x2) = |x1|+ |x2|. In this case

V̇
(2.6)

(x1, x2) =


{−1

2} at (x1, x2), x1 6= 0 and x2 6= 0
∅ at (x1, 0), x1 6= 0
∅ at (0, x2), x2 6= 0
{0} at (0, 0)

then V is a Lyapunov function for the system, that is stable at x = 0.
Moreover Z(2.6)

V = {(0, 0)}, hence the solutions tend to (0, 0) as t → +∞
(see Fig.2). Let us remark that in this example Ryan’s invariance principle
doesn’t help if we want to compute the limit set of the differential inclusion.
In fact, if x2 > 0, we have that max{V o((0, x2), v), v ∈ F (0, x2)} = 5

2 > 0.



Fig.2

-

6

�
�

�
�
�

Q
Q

Q
Q

QQ

k

�
�

�
�
�

Q
Qs ���



Chapter 4

Asymptotic stabilization of
control systems

We now turn our attention to control systems of the form{
ẋ = f(x, u)
x(t0) = x0

(4.1)

where x ∈ IRn, u ∈ IRm, f : IRn+m → IRn is locally essentially bounded and
continuous with respect to u and f(0, 0) = 0. The parameter u is said to be
the control.

Definition 20 System (4.1) is said to be (locally) asymptotically stabiliz-
able at x = 0 if there exists δ > 0 and a measurable function u : IRn → IRm

(called feedback law) such that for any initial condition x0 such that ‖x0‖ <
δ the system {

ẋ = f(x, u(x))
x(t0) = x0

(4.2)

is asymptotically stable at x = 0.

Note that, from now on, if a system is discontinuous, solutions are in-
tended in some generalized sense (see Chapter 1).

4.1 Asymptotic stabilizability and asymptotic con-
trollability

The problem of asymptotic stabilizability is historically tied to the problem
of asymptotic controllability to zero. In fact, for linear systems, these two

40



concepts are equivalent.

Definition 21 System (4.1) is said to be (locally) asymptotically control-
lable to zero if

1) there exists η > 0 such that for all x0 with ‖x0‖ < η there exists a
control u : IR → IRm such that for every solution ϕ(t) of the system{

ẋ(t) = f(x(t), u(t))
x(t0) = x0

(4.3)

ϕ(t) → 0 as t→ +∞

2) for all ε > 0 there exists δ > 0, (δ ≤ η), such that for all x0 with
‖x0‖ < δ there exists a control u as in 1) such that for every solution
ϕ(t) of (4.3) one has ‖ϕ(t)‖ < ε for all t ≥ t0.

It is evident that an asymptotically stabilizable system is also asymp-
totically controllable, but the converse is not obvious at all.

In an important paper Sussmann ([S]) shows an analytic system which
is globally asymptotically controllable but not globally asymptotically sta-
bilizable by means of a continuous (static) feedback law. More examples
of controllable systems which can not be stabilized by means of continuous
static feedback laws can be given by means of the following Brockett’s con-
dition ([Bro]). It is a topological necessary condition for a nonlinear smooth
control system to be asymptotically stabilizable by means of a continuous
(static) feedback law.

Theorem 8 If f is locally Lipschitz continuous and the control system (4.1)
can be (locally) asymptotically stabilized by means of a continuous (static)
feedback law, then the image of any neighbourhood of (0, 0) ∈ IRn × IRm is a
neighbourhood of 0 ∈ IRn.

From this result it arises the problem of stabilizing systems which don’t
admit continuous stabilizing feedback laws. Mainly two alternative ways can
be pursued. The first one consists in introducing continuous time-varying
feedback laws (see [C2] for an overview on this point of view), while the sec-
ond one makes use of discontinuous feedback laws. We devote our attention
to this second point of view.

With the introduction of discontinuous feedback laws two problems arise:
one must choose which kind of discontinuities allow and then, according to
that choice, an appropriate definition of solution.



Let us very briefly examine from this point of view some important
papers.

In [CR], the authors consider an affine input system of the form

ẋ = f(x) +G(x)u = f(x) +
m∑

i=1

uigi(x) (4.4)

where f, g1, ..., gm are continuous vector fields of IRn and G is the matrix
whose columns are g1, ..., gm. The feedback laws are taken to be such that
u ∈ L∞loc(IR

n, IRm) and

esssup {‖u(x)‖, ‖x‖ < ε} → 0 as ε→ 0 (4.5)

This last condition can be seen as a sort of continuity of the feedback at the
origin. Admitting this kind of feedback the most natural concept of solution
is that of Filippov. In this context Coron and Rosier prove that the existence
of a discontinuous feedback law implies the existence of a continuous one.
Note that if (4.5) is not satisfied, Coron and Rosier’s result does not hold
anymore. This can be seen by means of the following example (see [R1]).

Example 11 Let us consider the scalar differential equation

ẋ = x+ u|x| (4.6)

where x, u ∈ IR. The feedback law u(x) = −2sgnx asymptotically stabilizes
it but it doesn’t satisfy (4.5). Let us prove that there doesn’t exist a con-
tinuous asymptotically stabilizing feedback by contradiction. Assume that
ũ(x) is a continuous asymptotically stabilizing feedback. Note that (1.2)
is asymptotically stable at x = 0 if and only if for all x ∈ IR\{0} one has
xf(x) < 0. This implies that
- if x > 0 then xf(x) = x2(1 + ũ(x)) < 0 and ũ(x) < −1
- if x > 0 then xf(x) = x2(1− ũ(x)) < 0 and ũ(x) > 1
that is a contradiction to the continuity of ũ. Finally note that in this
example Filippov solutions of the implemented system are simply classical
solutions.

In [R1] essentially affine systems are considered and feedback laws are
assumed to be upper semi-continuous multivalued maps with compact and
convex values. Ryan proves that, if solutions are intended in the Filippov’s
or Krasovskii’ s sense, then Brockett’s topological necessary condition still
holds.



The previous two papers suggest that Filippov and Krasovskii solutions
are not the most adequate in order to prove that, for general nonlinear
systems, asymptotic controllability implies asymptotic stabilizability. Ac-
tually this problem has been recently solved by means of different kinds of
feedbacks and solutions.

In [CLSS] the authors solve the problem by considering locally bounded
feedback laws and (not generalized) sampling solutions. A technique analo-
gous to that used in [CLSS] is used by Rifford ([Ri]) for Euler solutions.

Finally, a totally different approach has been used by Ancona and Bres-
san ([AB]). They introduce a new class of piecewise smooth feedback laws,
called patchy feedback, and consider Carathéodory solutions.

4.2 Discontinuous feedbacks: two examples

The previous paragraph should have motivated the use of discontinuous
feedback laws, but, actually, there is still the problem of constructing them.
In many papers (see, for example, [BD, CS, FM]) concrete strategies in order
to stabilize class of systems which do not satisfy Brockett’s condition are
suggested. Moreover the fact that they work well is also proved by means
of numerical experiments. Nevertheless it is not always clear in which sense
solutions have to be considered. In particular, sometimes they are taken in
the Filippov’s sense, while some other times they seem to be thought in the
Carathéodory’s sense. We now try to illustrate the problem of choosing a
good definition of solution by means of two examples. The first one is the
classical example of the nonholonomic integrator ([Bro]). The feedback law
we consider has been suggested by Bloch and Drakunov ([BD]).

Example 12 Nonholonomic integrator. Let us consider the system
ẋ1 = u
ẋ2 = v
ẋ3 = x1v − x2u

(4.7)

This system does not satisfy Brockett’s condition, then a continuous stabi-
lizing feedback does not exist. Let (u0, v0) ∈ IR2\{(0, 0)} be a fixed vector,
α, β be positive constants and P =

{
(x1, x2, x3) ∈ IR3 : β

2α(x2
1 + x2

2) < |x3|
}
.



We consider the feedback law

(
u(x1, x2, x3)
v(x1, x2, x3)

)
=



(
u0

v0

)
if (x1, x2, x3) ∈ P(

−αx1 + βx2sgnx3

−αx2 − βx1sgnx3

)
if (x1, x2, x3) ∈ IR3\P

(4.8)
Note that on the surfaces x3 = 0 and ∂P the feedback is discontinuous.
Let us denote k1(x1, x2, x3) = (u0, v0, v0x1 − u0x2)T and k2(x1, x2, x3) =
(−αx1 + βx2sgnx3,−αx2 − βx1sgnx3,−βx2

1sgnx3 − βx2
2sgnx3)T , i.e. k1 and

k2 are the values of the implemented system respectively on P and on IR3\P.
Let us remark that on the set S = ∂P ∩

{
(x1, x2, x3) ∈ IR3 :

(αu0 + βv0)x2 = (αv0 − βu0)x1, sgnx1 = sgn(αu0 + βv0)} the vectors k1

and k2 are parallel and have opposite directions, then the righthand side of
the implemented system is not patchy (in the sense of [AB]).

We briefly examine the behaviour of some of the different kinds of solu-
tions of the implemented system that can be considered. All of Carathéodory
and Euler solutions actually tend to the origin, but the same is not true for
for Krasovskii and Filippov solutions. In fact the points of S are equilibrium
points for the associated differential inclusions.

Note that, in this example, the value given to the feedback on the
discontinuity surfaces is essential. In particular if, in a natural way, we
define either (u(x1, x2, 0), v(x1, x2, 0))T = (−αx1 + βx2,−αx2 − βx1)T or
(u(x1, x2, 0), v(x1, x2, 0))T = (−αx1 − βx2,−αx2 + βx1)T Carathéodory so-
lutions of the implemented system do not exist for arbitrary initial conditions
anymore.

In the following example the system considered is not stabilizable by
means of a continuous feedback law even if Brockett’s condition is satisfied
(for a proof see [Ar] and also [S2]). We consider the stabilizing feedback law
suggested in [CS].

Example 13 Let us consider the system{
ẋ1 = (x2

1 − x2
2)u

ẋ2 = 2x1x2u
(4.9)

The trajectories of the system when u = 1 are shown in Fig.3.
Let us introduce the arc length of the circles passing through the points

(x1, x2) and (0, 0) and with the center on the x2 − axis:

a(x1, x2) =

{
x1 if x2 = 0
x2
1+x2

2
x2

arctan x2
x1

if x2 6= 0 (4.10)



We define the feedback law u(x1, x2) = −ka(x1, x2), where k is a positive
constant. The x2-axis is a discontinuity line for the feedback, in fact, for
x2 6= 0, we have that limx1→0+ u(x1, x2) = k π

2x2 and limx1→0− u(x1, x2) =
−k π

2x2. From this fact it immediatelly follows that the points of the x2-axis
are equilibrium points for the associated Krasovskii and Filippov differen-
tial inclusions, and then not all of Krasovskii and Filippov solutions of the
implemented system converge to the origin.

Note that if we posit either u(0, x2) = k π
2x2 or u(0, x2) = −k π

2x2, the
feedback is not patchy. Nevertheless Carathéodory solutions do exist: the
trajectories of the system are either the right or the left half circles (see Fig.
4). The same happens if, instead of Carathéodory solutions, we consider
Euler solutions.

Intuitively, when initial conditions are taken on the x2-axis, it would be
more desirable to have both the right and the left half circles as trajectories
of the system. It is possible to get them by considering Euler externally
disturbed solutions.

Fig.3
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4.3 Discontinuous damping feedback

In this paragraph we see an example of discontinuous feedback laws which
stabilize a wide class of systems.

We study stabilization of autonomous systems affine in the control by
means of discontinuous damping feedbacks. Let us first go back to smooth
systems for a while.

In one of the first papers devoted to nonlinear feedback stabilization,



Jurdjevic and Quinn used the idea introduced in [J] that the stability prop-
erties of the affine system (4.4) can be enhanced by setting

u = u(x) = −α(∇V (x)G(x))T (4.11)

where V is a Lyapunov function for the unforced system (1.2), the row vector
∇V (x) denotes its gradient and α is a positive real parameter (see [JQ]; see
also [B1] for subsequent developments and improvements). More precisely,
assume that

(A) the origin is Lyapunov stable for (1.2) and a positive definite Lyapunov
function V ∈ C1 such that V̇ is negative semi-definite is known;

(B) an additional condition, involving Lie brackets of the vector fields
f, g1, ..., gm, holds.

Then, Jurdjevic and Quinn proved that (4.4) can be asymptotically stabi-
lized by means of the feedback law (4.11).

Although it has been largely and successfully exploited in the literature
both from a practical and a theoretical point of view, a weakness of the
method related to assumption (A) should be pointed out. Indeed, we have
already remarked that, even for smooth f , Lyapunov stability does not imply
in general the existence of a (not even) continuous Lyapunov function.

When it is known that the unforced system is stable but the existence
of a C1 Lyapunov function cannot be guaranteed, two alternative ways can
be pursued:

1) to introduce time dependent Lyapunov functions. In this case the
Jurdjevic and Quinn method can be extended (see [MT]) but it gives rise,
of course, to a time dependent feedback;

2) to replace the (classical) gradient in (4.11) by some type of generalized
gradient. This in general leads to discontinuous feedback, so that we have
to choose in which sense solutions of the discontinuous differential equation
involved have to be interpreted.

We devote our attention to the second point of view.

4.3.1 Filippov solutions of the closed loop system

The main assumption we make in the following is that we know a Lipschitz
continuous and healthy Lyapunov function for the unforced system (1.2). In
general, this implies that the origin is a stable equilibrium point for system
(1.2). Moreover, if G is continuous, the feedback law (4.11) is defined a.e.
and it is locally essentially bounded and measurable.



In fact, if Lx is the Lipschitz constant of V in a compact neighbourhood
Ux of x,

‖u(x)‖ ≤ α‖∇V (x)‖‖G(x)‖ ≤ αLx‖G(x)‖ a.e. in Ux,

that is bounded in Ux because G is continuous. As already remarked, for
every v ∈ IRn, ∇V (·) · v is measurable; hence u is also measurable. On the
other hand note that, in general, u does not satisfy (4.5).

From this fact it follows that the right hand-side of the equation

ẋ = f(x)− αG(x)(∇V (x)G(x))T (4.12)

is also locally essentially bounded and measurable on IRn.
Among the various solutions introduced in Chapter 1, the most adeguate

to this context seem then to be Filippov solutions. We make the following
assumptions:

(f0) f ∈ L∞loc(IR
n; IRn) , 0 ∈ Ff(0);

(G0) G ∈ C(IRn; IRn×m);

(V0) V : IRn → IR is a positive definite, locally Lipschitz continuous and
healthy function.

In particular, note that in general we don’t assume f to be continuous.
In the smooth case, the proof that (4.11) stabilizes system (4.4) is divided

into two steps. First one proves that the stability property of system (4.4) is
not affected by the application of the feedback (4.11). After that, by means
of LaSalle’s principle, it is proved that solutions actually tend to the origin.
In the particular case the function f is continuous the first step still holds,
as the following proposition shows.

Proposition 9 If f : IRn → IRn is continuous, V : IRn → R is a Lyapunov
function for the unforced system (1.2) and (V0) and (G0) hold, then system
(4.2) is stable at x = 0.

Before proving the proposition let us recall some results that simplify
the calculation of Filippov’s multivalued maps (see [PS]).

Proposition 10 (i) If f ∈ C(IRn; IRn) then Ff(x) = {f(x)} for all
x ∈ IRn.



(ii) If f, g ∈ L∞loc(IR
n; IRn) then F (f + g)(x) ⊆ Ff(x) + Fg(x) for all

x ∈ IRn.

Moreover if f ∈ C(IRn; IRn) then F (f + g)(x) = f(x) + Fg(x) for all
x ∈ IRn.

(iii) If G ∈ C(IRn; IRn×m), u ∈ L∞loc(IR
n; IRm) then F (Gu)(x) = G(x)Fu(x)

for all x ∈ IRn.

(iv) If V : IRn → IR is locally Lipschitz continuous, then F (∇V )(x) =
∂CV (x) for all x ∈ IRn.

Proof of Proposition 9 Let us prove that max V̇
(4.12)

≤ 0. Indeed
from this, by Corollary 1 in Chapter 3, it follows the thesis. Let a ∈
V̇

(4.12)
(x). By Proposition 10, we have that F (f − αG(∇V G)T )(x) =

f(x)−αG(x)(∂CV (x)G(x))T , then there exists q ∈ ∂CV (x) such that p ·v =
p · f(x) − α(pG(x)) · (q · G(x)) for all p ∈ ∂CV (x). In particular, for p = q
we get that a = q · f(x)− α‖qG(x)‖2. Since by Proposition 6 in Chapter 2
p · f(x) ≤ 0 for all p ∈ ∂cV (x), we get that a ≤ 0.

If f is not continuous the Proposition 9 fails to be true. This is proved
by means of the following example.

Example 14 Let us consider a single-input system of the form (4.4) in IR2,
where

f(x1, x2) =
{

(sgnx1, −2)T at (x1, x2), x2 ≥ 0
(0, 0)T at (x1, x2), x2 < 0

G(x1, x2) = (0, 1)T , and the function V (x1, x2) = |x1|+ |x2|. By computing

V̇
(1.2)

(x1, x2), it is easily proved that system (3) is stable at x = 0 (see Fig.
5).

Let us now consider system (4.12).

F (f − αG(∇V G)T )(x1, x2) =

=



{sgnx1} × {−2− α} at (x1, x2), x1 6= 0, x2 > 0
{0} × {α} at (x1, x2), x2 < 0
[−1, 1]× {−2− α} at (0, x2), x2 > 0
co{(sgnx1,−2− α)T , (0, α)T } at (x1, 0), x1 6= 0
co{(1,−2− α)T , (0, α)T , (−1,−2− α)T } at (0, 0)



Let us remark that for all α > 0 and for all the points (x1, 0) with x1 6= 0,
there exists a trajectory starting from (x1, 0) which lies on the x1-axis and
goes to infinity. This is obtained by considering the vector

(
α

2(1+α) , 0
)
∈

F (f − αG(∇V G))(x1, 0) if x1 > 0, and the vector
(
− α

2(1+α) , 0
)
∈ F (f −

αG(∇V G))(x1, 0) if x1 < 0 (see Fig.6 in the case α = 1).

Fig.5
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As the previous example shows, in the nonsmooth case, in order to guar-
entee the conservation of stability for the closed loop system, we need to add
some extra assumptions. Actually, we do not present a unique condition,
but we list some alternative conditions which, combined together in a con-
venient way, allow us to get not only the stability of system (4.12), but also
the stabilizability of system (4.4). Note that in these conditions the variable
x is not yet quantified. Since the role of x will depend on the circumstances,
it is convenient to specify it later. The possible conditions are the following:

(f1) max V̇
(1.2)

(x) ≤ 0;

(f2) for all v ∈ Ff(x) there exists p ∈ ∂CV (x) such that p · v ≤ 0;

(f3) for all v ∈ Ff(x) and for all p ∈ ∂CV (x), p · v ≤ 0;

(G1) there exists c ∈ IR such that for all p, q ∈ ∂CV (x), (pG(x)) · (qG(x)) =
c2 (c may depend on x);

(G2) either (pG(x)) · (qG(x)) > 0 for all p, q ∈ ∂CV (x) , or (pG(x)) ·
(qG(x)) = 0 for all p, q ∈ ∂CV (x);

(G3) (pG(x)) · (qG(x)) ≥ 0 for all p, q ∈ ∂CV (x) ;



(fG1) there exists α > 0 such that for all v ∈ Ff(x) and for all q ∈ ∂CV (x)
there exist p1, p2 ∈ ∂CV (x) such that

(p1 − p2) · (v − αG(x)(qG(x))T ) 6= 0.

By definition of V̇
(1.2)

(x), (f1) can be restated by saying that if there
exists v ∈ Ff(x) such that for all p ∈ ∂CV (x) one has p · v = a, then a ≤ 0.
Conditions (f1),(f2) and (f3) can then be seen as geometric conditions on
mutual positions of the sets Ff(x) and ∂CV (x). Moreover we have that (f3)
⇒ (f2)⇒ (f1) and all of these conditions imply that V is a Lyapunov function
for the unforced system. Note that if f is continuous, (f3) is equivalent to the
fact that V is a Lyapunov function for the unforced system (see Proposition
6, Chapter 2).

In order to interpretate conditions (G1), (G2) and (G3), let us consider
the set H(x) = {pG(x), p ∈ ∂CV (x)}. (G1) implies that H(x) reduces to a
single vector, while (G2) and (G3) are conditions on the size of H(x). For
these conditions it holds that (G1) ⇒ (G2) ⇒ (G3).

The meaning of condition (fG1) is explained by the following lemma.

Lemma 2 Assume that conditions (f0), (G0) and (V0) hold for some x ∈
IRn. There exists α = α(x) > 0 such that condition (fG1) holds if and only

if V̇
(4.12)

(x) = ∅.

Proof We prove the statement by contradiction.

Let us suppose that for all α > 0 one has V̇
(4.12)

(x) 6= ∅. Then there
exist a ∈ IR, w ∈ F (f − αG(∇V G)T )(x) such that, for all p ∈ ∂CV (x),
p · w = a. By (ii), (iii) and (iv) in Proposition 10 it follows that there
exist v ∈ Ff(x) and q ∈ ∂CV (x) such that for all p ∈ ∂CV (x), p · (v −
αG(x)G(x)T q) = a. Let p1, p2 ∈ ∂CV (x). We have p1 ·(v−αG(x)G(x)T q) =
p2 · (v−αG(x)G(x)T q) = a, hence (p1− p2) · (v−αG(x)G(x)T q) = 0, which
is a contradiction to (fG1).

The viceversa is easily proved by contradiction.

4.3.2 Conservation of stability

From the previous discussion it follows that, in order to prove a stabilization
result for system (4.4) by means of the feedback law (4.11), the first step is
to give some sufficient conditions for system (4.12) being stable. We do that
in the following lemma.



Lemma 3 Let us assume that (f0), (G0), (V0) hold and (f1) holds for all
x ∈ IRn\N , where

N = {x ∈ IRn such that V is not differentiable at x}.

Let us suppose further that for each x ∈ N one of the following combinations
of conditions holds: (i) (f1) and (G1), (ii) (fG1) for some α independent of
x, (iii) (f2) and (G3), (iv) (f3).

Then for each x ∈ IRn, max V̇
(4.12)

(x) ≤ 0.
Moreover, if the use of (fG1) can be avoided, the choice of α can be

arbitrary.

Proof Let a ∈ V̇
(4.12)

(x). Then there exists w ∈ F (f−αG(∇V G)T )(x)
such that, for all p ∈ ∂CV (x), p · w = a. From (ii), (iii) and (iv) in
Proposition 10 it follows that there exist v ∈ Ff(x) and q ∈ ∂CV (x) such
that w = v−αG(x)(qG(x))T . In the following we will use this representation
for w without mentioning it explicitly.

We distinguish five cases: (o) for x ∈ IRn\N and (i), (ii), (iii), (iv) for
x ∈ N .

(o) In this case ∂CV (x) = {∇V (x)}, then a = ∇V (x) · w = ∇V (x) · (v −
αG(x)(∇V (x)G(x))T ) and ∇V (x) · v = a+α‖(∇V (x)G(x))T ‖2 = b, where

b ∈ V̇
(1.2)

(x). Since by assumption max V̇
(1.2)

(x) ≤ 0, we also have that
b ≤ 0, hence a = b− α‖(∇V (x)G(x))T ‖2 ≤ 0.

(i) In this case a = p · w = p · v − α(pG(x))(qG(x))T = p · v − αc2 for each

p ∈ ∂CV (x). Hence the proof that max V̇
(4.12)

(x) ≤ 0 is analogous the one
in (o).

(ii) From assumption (fG1) and Lemma 2 it follows that V̇
(4.12)

(x) = ∅ for
suitable choice of α.

(iii) Since (f2) implies (f1), clearly it is sufficient to prove that for all
w ∈ F (f + Gu)(x) there exists p ∈ ∂CV (x) such that p · w ≤ 0. Let
p ∈ ∂CV (x) such that p · v ≤ 0 (such a p exists because of (f2)). By (G3)
we get a = p · w = p · v − α(pG(x))T · (qG(x))T ≤ 0, as required.

(iv) For all p ∈ ∂CV (x), a = p · w = p · v − α(pG(x))T · (qG(x))T . In
particular, for p = q we get a = q · w = q · v − α‖(qG(x))T ‖2 that is non-
positive because of (f3).

From the previous lemma and Corollary 1 it follows that system (4.12)
is stable at x = 0.



4.3.3 Improvement of stability

In order to study asymptotic stabilization of system (4.4) let us introduce
the sets

Z
(4.12)
V = {x ∈ Rn : 0 ∈ V̇

(4.12)
(x)}

and
Z

(1.2)
V = {x ∈ Rn : 0 ∈ V̇

(1.2)
(x)}.

Let us recall that, if the connected component Ll of the level set {x ∈
IRn : V (x) ≤ l} such that 0 ∈ Ll is bounded, by the invariance theorem
stated in Chapter 3, the solutions of systems (1.2) and (4.12), with initial

condition x0 ∈ Ll, respectively tend to Z(1.2)
V ∩ Ll and Z(4.12)

V ∩ Ll.

Lemma 4 Let us assume that (f0), (G0), (V0) hold and that (f1) holds for
all x ∈ IRn\N . Let us suppose that for each x ∈ N one of the following
pairs of conditions holds: (i) (f1) and (G1), (ii) (f1) and (fG1) for some α
independent of x, (iii) (f2) and (G2), (iv) (f3) and (G3).

Then Z
(4.12)
V ⊆ Z

(1.2)
V .

Proof x ∈ Z
(4.12)
V means that there exists w ∈ F (f − αG(∇V G)T )(x)

such that, for all p ∈ ∂CV (x), p · w = 0. Using the decomposition of
w already mentioned in the proof of Lemma 3, we get that there exist
v ∈ Ff(x) and q ∈ ∂CV (x) such that p ·w = p ·v−α(pG(x))T ·(qG(x))T = 0,
i.e. p · v = α(pG(x))T · (qG(x))T . Again, we distinguish five cases: (o)
x ∈ IRn\N , (i), (ii), (iii), (iv).

(o) In this case ∂CV (x) = {∇V (x)} then ∇V (x) ·v = α‖(∇V (x)G(x))T ‖2 =

b ≥ 0. On the other hand, since b ∈ V̇
(1.2)

(x) and max V̇
(1.2)

(x) ≤ 0,
b ≤ 0, hence b = 0, i.e. there exists v ∈ Ff(x) such that ∇V (x) · v = 0 and
x ∈ Z(1.2)

V .

(i) The proof is analogous to the one in (o).

(ii) By Lemma 2, V̇
(4.12)

(x) = ∅, so that 0 6∈ V̇
(4.12)

(x) and x 6∈ Z(4.12)
V .

(iii) p · v = α(pG(x))T · (qG(x))T implies that x is such that for all p, q ∈
∂CV (x), (pG(x))T · (qG(x))T = 0, otherwise for all p ∈ ∂CV (x) one has
p · w > 0, which contradicts (f2). We conclude that, for all p ∈ ∂CV (x),
p · v = 0, i.e. x ∈ Z(4.12)

V .



(iv) p · v = α(pG(x))T · (qG(x))T ≥ 0 because of (G3). On the other
hand, by condition (f3), for all p ∈ ∂CV (x) we have p · v ≤ 0, hence, for all
p ∈ ∂CV (x), p · v = 0, i.e. x ∈ Z(3)

V .

We can finally summarize the results of the present section in the fol-
lowing theorem.

Theorem 9 Let us assume that (f0), (G0) and (V0) hold and (f1) holds for
all x ∈ IRn\N . If N can be decomposed as a union N = N11∪N12∪N2∪N3

such that

(i) for all x ∈ N11 ∪N12 (f1) holds; for all x ∈ N11\{0}, (G1) holds and
for all x ∈ N12\{0}, (fG1) holds with α independent of x;

(ii) for all x ∈ N2, (f2) holds and for all x ∈ N2\{0}, (G2) holds;

(iii) for all x ∈ N3, (f3) holds and for all x ∈ N3\{0}, (G3) holds.

Then, there exists α > 0 such that

(A) (4.12) is stable at x = 0,

(B) Z(4.12)
V ⊆ Z

(1.2)
V .

Moreover let us assume that

(V1) there exists l > 0 such that the connected component Ll of the level set
{x ∈ IRn : V (x) ≤ l} such that 0 ∈ Ll is bounded,

(fG2) the largest weakly invariant subset of Z(4.12)
V ∩ Ll is {0}.

Then

(C) (4.4) is asymptotically stabilizable by means of the feedback law (4.11).

Finally, if the use of (fG1) can be avoided, the choice of α is arbitrary.

Corollary 2 Let us assume that f : IRn → IRn is continuous and that, if
there exists p ∈ ∂CV (x) such that ‖pG(x)‖ = 0, then x = 0. Then system
(4.4) is asymptotically stabilizable by means of the feedback law (4.11).

Remark 15 If V ∈ C1 then N = ∅, hence we only need to check condition
(f1) in order to get the stability of (4.12), and conditions (V1) and (fG2)
to get the asymptotic stabilization of (4.4), i.e. we have a classical-like
stabilization theorem that can be applied in the case the only assumptions
on f are measurability and local boundedness.



4.3.4 Examples

In the present subsection we illustrate the various situations described in
Theorem 9 by means of some examples.

Example 15 Let us consider a system of the form (4.4) in IR2, where
f(x1, x2) = (−sgnx2, sgnx1)T and G(x1, x2) = (x1, x2)T , and the function
V (x1, x2) = |x1|+ |x2|.
As shown in Example 6, for all (x1, x2) ∈ IR2 we have max V̇

(1.2)
(x1, x2) ≤ 0.

N = {(x1, 0), x1 ∈ IR} ∪ {(0, x2), x2 ∈ IR}. Let us consider p = (p1, p2) and
q = (q1, q2) ∈ ∂CV (x1, x2)

(pG(x1, x2)) · (qG(x1, x2)) =

{
x2

1 (x1, 0), x1 6= 0
x2

2 (0, x2), x2 6= 0

i.e. condition (G1) is verified for all (x1, x2) ∈ N . Then, by (A) in Theorem
9, for all α > 0 system (4.4) with the feedback (4.11) is stable at x = 0.

Moreover let us consider the set

˙
V

(4.12)

(x1, x2) = {a ∈ IR : ∃v ∈ Ff(x1, x2) ∃q ∈ ∂CV (x1, x2) such that

∀p ∈ ∂CV (x1, x2), p · (v − αG(x1, x2)((qG(x1, x2))T ) = a}

˙
V

(4.12)

(x1, x2) =


−α(|x1|+ |x2|)2 at (x1, x2), x1 6= 0 and x2 6= 0
∅ at (x1, 0), x1 6= 0
∅ at (0, x2), x2 6= 0
{0} at (0, 0).

From Proposition 10 it follows that for all (x1, x2) ∈ IR2, V̇
(4.12)

(x1, x2) ⊆
˙
V

(4.12)

(x1, x2), hence Z(4.12)
V = {(0, 0)} and, by (C) in Theorem 9, the system

is asymptotically stabilizable by means of the feedback law (4.11).

Example 16 Let us consider a system of the form (4.4) in IR2, where
f(x1, x2) = (−sgnx2, sgnx1)T and G(x1, x2) = (1, 0)T , and the function
V (x1, x2) = |x1|+ |x2|.
As shown in Example 6, for all (x1, x2) ∈ IR2 one has max V̇

(1.2)
(x1, x2) ≤ 0.

Also in this case N = {(x1, 0), x1 ∈ IR} ∪ {(0, x2), x2 ∈ IR}. Condition (G1)
is verified on {(x1, 0), x1 ∈ IR} but not on {(0, x2), x2 ∈ IR}. Nevertheless,
for α ∈ (0, 1), condition (fG1) is verified on {(0, x2), x2 ∈ IR}, in fact

{v − αG(0, x2)(qG(0, x2))T , for v ∈ Ff(0, x2), q ∈ ∂CV (0, x2), x2 6= 0} =



=
{

[−1− α,−1 + α]× [−1, 1] at (0, x2), x2 > 0
[1− α, 1 + α]× [−1, 1] at (0, x2), x2 < 0

and
{(p1 − p2); p1, p2 ∈ ∂CV (0, x2), x2 6= 0} = ([−2, 2], 0)T .

By (A) in Theorem 9, it follows that system (4.12) is stable at x = 0 with
α ∈ (0, 1). Moreover computations analogous to those of the previous
example show that Z(4.12)

V = {(0, 0)}. Hence, by (C) in Theorem 9, the
system is asymptotically stabilizable by means of the feedback law (4.11)
with a fixed α ∈ (0, 1). Example 10 is actually a particular case of the
present example, with α = 1

2 . Fig.1 and Fig.2 show the behaviour of the
system before and after the application of the feedback.

Remark 16 By direct computation, it is possible to see that the closed loop
system considered in the previous example is actually stable for all α > 0.
However, for α > 1, no one of the alternative conditions of Theorem 9 can
be applied. This shows that Theorem 9 does not cover all the possible cases.

Example 17 Let us consider a system of the form (4.12) in IR2, where

f(x1, x2) = (−sgnx2, sgnx1)T and G(x1, x2) =
(
x1 + 1

2x2, x2 + 1
2x1

)T
, and

the function V (x1, x2) = |x1|+ |x2|.
As shown in Example 6, for all (x1, x2) ∈ IR2 we have max V̇

(1.2)
(x1, x2) ≤ 0,

so that, also in this case, N = {(x1, 0), x1 ∈ IR} ∪ {(0, x2), x2 ∈ IR}. On
N condition (f2) is satisfied. Moreover for all (x1, x2) ∈ N and for all
p, q ∈ ∂CV (x1, x2) we have (pG(x)) · (qG(x)) > 0, i.e. condition (G2) is
satisfied in N . By (A) in Theorem 9, it follows that system (4.12) is
stable at x = 0 for all α > 0. Moreover Z(4.12)

V = {(0, 0)}, hence, by (C)
in Theorem 9, the system is asymptotically stabilizable by means of the
feedback law (4.11) for all α > 0.

Example 18 Let us consider a system of the form (1.2) in IR2, where

f(x1, x2) =



(x2,−x2)T at (x1, x2), 0 ≤ x2 ≤ x1

(−x1, x1)T at (x1, x2), 0 ≤ x1 ≤ x2

(−x1,−x1)T at (x1, x2), 0 ≤ −x1 ≤ x2

(−x2,−x2)T at (x1, x2), 0 ≤ x2 ≤ −x1

(x2,−x2)T at (x1, x2), x1 ≤ x2 ≤ 0
(−x1, x1)T at (x1, x2), x2 ≤ x1 ≤ 0
(−x1,−x1)T at (x1, x2), x2 ≤ −x1 ≤ 0
(−x2,−x2)T at (x1, x2), −x1 ≤ x2 ≤ 0



andG(x1, x2) = (x1 + x2, x1 + x2)
T , and the function V (x1, x2) = |x1|+|x2|.

By computing Ff(x1, x2), it is easy to see that (f3) is verified, then (1.2)
is stable at x = 0 (see Fig.7). Since condition (G3) is satisfied on N (note
that (G2) is not satisfied on N), then not only system (4.12) is stable at
x = 0, but also Z(4.12)

V ⊆ Z
(1.2)
V . Actually in this case it can be shown that

the feedback law (4.11) does not stabilize system (4.12) asymptotically.

Fig.7
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4.3.5 Krasovskii solutions of the closed loop system

In the present section we briefly investigate the effect of the Jurdjevic and
Quinn’s feedback on the affine system in the case its solutions are intended
in the Krasovskii’s sense. Note that, thanks to the definition of Filippov
solutions, in the previous paragraphs it was not important to specify explic-
itly the values taken by the righthand side of (4.12) on the subset N of IRn

where ∇V (x) does not exist. Now, in order to consider Krasovskii solutions,
we can’t anymore ignore the values of the righthand side of (4.12) on zero
measure sets, then we define the feedback law in a slightly different way.

Let

∇̃V (x) =

{
∇V (x) if x ∈ IRn\N
p̃ where p̃ is any fixed vector in ∂CV (x), if x ∈ N (4.13)

We define
u(x) = −α(∇̃V (x)G(x))T (4.14)

The righthand side of (4.12) is locally bounded and it makes sense to consider
its Krasovskii solutions.



The essential tool in order to deal with Krasovskii solutions and make
explicit computations is the analogous of Proposition 10.

Proposition 11 (i) If f ∈ C(IRn; IRn) then Kf(x) = {f(x)} for all
x ∈ IRn.

(ii) If f, g are locally bounded then K(f + g)(x) ⊆ Kf(x)+Kg(x) for all
x ∈ IRn.

Moreover if f ∈ C(IRn; IRn) then K(f + g)(x) = f(x) +Kg(x) for all
x ∈ IRn.

(iii) If G ∈ C(IRn; IRn×m) and u is locally bounded then K(Gu)(x) =
G(x)Ku(x) for all x ∈ IRn.

(iv) If V : IRn → IR is locally Lipschitz continuous, then K(∇̃V )(x) =
∂CV (x) for all x ∈ IRn.

The proof of (i), (ii) and (iii) is perfectly analogous to that of Paden and
Sastry (see [PS]), while the proof of (iv) needs some extra remarks.

Proof of (iv) Let us first remark that from the definition of the multi-
valued map Kf it follows that, in general, Kf(x) = co{limi f(xi), xi → x}.

Let us prove that ∂CV (x) ⊆ K(∇̃V (x)). Let p ∈ ∂CV (x). Because of
(2.1) and there exist m sequences {x(k)

i }, x(k)
i → x as i → ∞, x

(k)
i 6∈

N , k = 1, ...,m and m scalars λk > 0 with
∑m

k=1 λk = 1 such that p =∑m
k=1 λk limi∇V (x(k)

i ). Since ∇V (x) = ∇̃V (x) on N , we have that p =∑m
k=1 λk limi ∇̃V (x(k)

i ), and then p ∈ K(∇̃V (x)).
Let us now prove that K(∇̃V (x)) ⊆ ∂CV (x). p ∈ K(∇̃V (x)) can be

written as p =
∑m

k=1 λkpk, where, for all k = 1, ...,m, pk = limi ∇̃V (x(k)
i ),

λk > 0,
∑m

k=1 λk = 1 and x
(k)
i → x as i→∞.

Let us emphazise that ∇̃V (x(k)
i ) ∈ ∂CV (x(k)

i ) for all k, i. Since ∂CV , as
a multivalued map from IRn to 2IRn

\∅, is upper semi-continuous then its
graph is closed and pk ∈ ∂CV (x) for all k.

From the convexity of ∂CV (x) it finally follows that p ∈ ∂CV (x).

Thanks to the previous proposition one can get stabilizations results
perfectly analogous to those obtained in the context of Filippov solutions,
simply by replacing Filippov’s multivalued maps with Krasovskii’s ones.
In particular, also when Krasovskii solutions are considered, the damping
feedback may destabilize the system. This can be still proven by means of
Example 14 and slightly different computations.



Chapter 5

External Stabilization

In the present chapter we apply the technique we have used for the stabiliza-
tion of discontinuous systems affine in the control to the problem of external
stabilization of the same kind of systems.

5.1 UBIBS Stability

Let us consider a time dependent nonlinear system of the form{
ẋ = f(t, x, u)
x(t0) = x0

(5.1)

where f : IRn+m+1 → IRn is locally essentially bounded and measurable with
respect to (t, x) and continuous with respect to u. As in Chapter 4, solutions
of (5.1) are intended in the Filippov’s sense.

We are interested in intrinsic stability properties which take into ac-
count the presence of the control in the system. Many different concepts
have been recently introduced: ISS (input-to-state stability), iISS (integral
input-to-state stability), IOS (input-to-output stability), OSS (output-to-
state stability), BIBO (bounded-input bounded-output) stability, UBIBS
(uniform bounded input bounded state) stability (see [S2] and [BM] for an
overview on these problems).

We focus on UBIBS stability.

Definition 22 System (5.1) is said to be UBIBS stable if for each R > 0
there exists S > 0 such that for each (t0, x0) ∈ IRn+1, and each input u ∈
L∞loc(IR; IRm), if ϕ(t) indicates any solution of (5.1), one has

‖x0‖ < R, ‖u‖∞ < R ⇒ ‖ϕ(t)‖ < S ∀t ≥ t0.
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UBIBS stability is related to Lagrange stability, that, roughly speaking,
can be seen as (Lyapunov) stability “in the large”.

If we posit u = 0 in system (5.1) we get the unforced system{
ẋ = f(t, x, 0)
x(t0) = x0

(5.2)

Definition 23 System (5.2) is said to be (uniformly) Lagrange stable if for
each R > 0 there exists S > 0 such that for each (t0, x0) ∈ IRn+1, if ϕ(t)
indicates any solution of (5.2), one has

‖x0‖ < R ⇒ ‖ϕ(t)‖ < S ∀t ≥ t0.

It is clear that if (5.1) is UBIBS stable then (5.2) is Lagrange stable,
while the converse is not true.

Lagrange stability has been characterized in terms of (smooth) Lyapu-
nov-like functions in [Y2] in the case of a system with continuous righthand
side and then this result has beem generalized in [BR1] to the case of dis-
continuous systems.

Definition 24 V : IRn+1 → IR is a Lyapunov-like function for

ẋ = f(t, x) (5.3)

if there exists S > 0 such that for each solution ϕ(t) of (5.3) and each pair
of points t1, t2 such that ‖ϕ(t)‖ ≥ S for all t ∈ [t1, t2], condition (2.3) holds.

Lyapunov-like functions differ from Lyapunov functions for the fact that
they have to be defined “in the large”, while Lyapunov functions could have
been defined only on a neighbourhood of the origin.
In [VL, BR1], sufficient conditions for UBIBS stability in terms of (smooth)
control Lyapunov-like functions have been given.

Definition 25 V : IRn+1 → IR is a control Lyapunov-like function for

ẋ = f(t, x, u) (5.4)

if for all R > 0 there exists S > 0 such that for each control such that
‖u‖∞ < R, and each solution ϕ(t) of

ẋ(t) = f(t, x(t), u(t)) (5.5)

one has that for each pair of points t1, t2 such that ‖ϕ(t)‖ ≥ S for all t ∈
[t1, t2], condition (2.3) holds.



As for Lyapunov functions, in order to verify if a given function V is
actually a control Lyapunov-like function, it is important to have sufficient
conditions for V to decrease along trajectories of (5.5) that don’t involve
explicitly neither the control function, nor the solutions of the system.

We give a result analogous to Theorem 1 in [VL] and Theorem 6.2 in
[BR1]. It differs from both for the fact that it involves control Lyapunov-like
functions which are not of class C1, but just locally Lipschitz continuous and
healthy.

Lemma 5 If there exists a control Lyapunov-like function V for (5.1), such
that

(V0t) there exist L > 0 and two continuous, strictly increasing, positive func-
tions a, b : IR → IR such that limr→+∞ a(r) = +∞ and for all t ≥ t0
and for all x

‖x‖ > L ⇒ a(‖x‖) ≤ V (t, x) ≤ b(‖x‖)

then system (5.1) is UBIBS stable.

Proof We prove the statement by contradiction, by assuming that there
exists R such that for all S > 0 there exist x0 and u : [0,+∞) → IRm such
that ‖x0‖ < R, ‖u‖∞ < R and there exists a solution ϕ(t) of (5.5) with
u = u, and t > 0 such that ‖ϕ(t)‖ ≥ S.

Because of (V0t), there exists SM > 0 such that if ‖x‖ > SM , then
V (t, x) > M = b(R) ≥ max{V (t, x), ‖x‖ = R, t ≥ 0} for all t ≥ t0.

Let us consider S > max{R, SM}. By hypothesis there exist x0 and
u : [0,+∞) → IRm such that ‖x0‖ < R, ‖u‖∞ < R and there exists a
solution ϕ(t) of (5.5) with u = u, and t > 0 such that ‖ϕ(t)‖ ≥ S. Then
there also exist t1, t2 > 0 such that t ∈ [t1, t2], ‖ϕ(t1)‖ = R, ‖ϕ(t)‖ ≥ R
for all t ∈ [t1, t2] and ‖ϕ(t2)‖ ≥ S. Then

V (t2, ϕ(t2)) > M ≥ V (t1, ϕ(t1)). (5.6)

that contradicts (2.3).

Before stating next lemma, let us introduce some set-valued derivatives.

V̇
(5.1)

(t, x, u) = {a ∈ IR : ∃v ∈ Ff(t, x, u) such that

∀p ∈ ∂CV (t, x) p · (1, v) = a}.



Analogously, if t > 0, x ∈ IRn and a measurable and locally essentially
bounded u : IR → IRm are fixed, we set

V̇
(5.5)

u(·) (t, x) = {a ∈ IR : ∃v ∈ Ff(t, x, u(t)) such that

∀p ∈ ∂CV (t, x) p · (1, v) = a}

and, if t > 0 and x ∈ IRn are fixed, we define

V̇
(5.2)

(t, x) = {a ∈ IR : ∃v ∈ Ff(t, x, 0) such that

∀p ∈ ∂CV (t, x) p · (1, v) = a}.

Note that if ϕ(t) is any solution of (5.5) with u(t) = u(t) we have

V̇
(5.5)

u(·) (t, ϕ(t)) ⊆ V̇
(5.1)

(t, ϕ(t), u(t)).

Lemma 6 Let V : IRn+1 → IR locally Lipschitz continuous and healthy. If
(V0t) holds and

(fut) for all R > 0 there exists S > max{L,R} such that for all x ∈ IRn and
for all u ∈ IRm the following holds:

‖x‖ > S, ‖u‖ < R ⇒ max V̇
(5.1)

(t, x, u) ≤ 0 for a.e. t ≥ 0

then V is a control Lyapunov-like function for (5.1).

Proof Let R > 0 be fixed and let us choose S corresponding to R as in
(fut). Let us also fix u such that ‖u‖∞ < R. Let ϕ(t) be any solution
of (5.5) with u = u and let t1, t2 be such that for all t ∈ [t1, t2] one has

‖ϕ(t)‖ ≥ S. By Remark 3, d
dtV (t, ϕ(t)) ∈ V̇

(5.1)

u(·) (t, ϕ(t)) a.e.. Moreover,

as remarked before stating the lemma, V̇
(5.5)

u(·) (t, ϕ(t)) ⊆ V̇
(5.1)

(t, ϕ(t), u(t)).
Since ‖u(t)‖ < R a.e. and ‖ϕ(t)‖ > S for all t ∈ [t1, t2], by virtue of (fut)
we have d

dtV (t, ϕ(t)) ≤ 0 for a.e. t ∈ [t1, t2]. We get that V ◦ ϕ decreases in
[t1, t2].

The following theorem is now an obvious consequence of the two previous
lemmas.

Theorem 10 Let V : IRn+1 → IR be locally Lipschitz continuous and
healthy and such that (V0t) and (fut) hold. Then system (5.1) is UBIBS
stable.



Remark 17 In order to get a sufficient condition for system (5.2) to be
uniformly Lagrange stable, one can state Theorem 10 in the case u = 0. In
this case the control Lyapunov-like function V simply becomes a Lyapunov-
like function.

Remark 18 If system (5.1) is autonomous it is possible to state a theo-
rem analogous to Theorem 10 for a control Lyapunov-like function V not
depending on time.

5.2 UBIBS Stabilizability

We now turn our attention to the external stabilizabity property associated
to UBIBS stability.

Definition 26 System (5.1) is said to be UBIBS stabilizable if there exists
a function k ∈ L∞loc(IR

n+1; IRm) such that the closed loop system

ẋ = f(t, x, k(t, x) + v) (5.7)

(with v as input) is UBIBS stable.

We study UBIBS stabilization for systems of the form

ẋ = f(t, x) +G(t, x)u = f(t, x) +
m∑

i=1

uigi(t, x) (5.8)

where x ∈ IRn, u ∈ IRm, f : IRn+1 → IRn is measurable and locally essen-
tially bounded, g1, ..., gm ∈ C(IRn+1; IRn) for all i ∈ {1, ...,m} and G is the
matrix whose columns are g1, ..., gm.

We are interested in finding conditions which guarantee UBIBS stabi-
lizabilty of system (5.8) when the unforced system (1.1) is known to be
Lagrange stable. Our result essentially recalls Theorem 6.2 in [BR1] and
Theorem 5 in [Ro], with the difference that the control Lyapunov-like func-
tion involved is not smooth.

We do not give a unique condition for system (5.8) to be UBIBS stabi-
lizable, but some alternative conditions which, combined together, give the
external stabilizability of the system. Before stating the theorem we list
these conditions. Note that the variable x is not yet quantified. Since its
role depends on different situations, it is convenient to specify it later.

(f1t) max V̇
(1.1)

(t, x) ≤ 0;



(f2t) for all z ∈ Ff(t, x) there exists p ∈ ∂CV (t, x) such that p · (1, z) ≤ 0;

(f3t) for all z ∈ Ff(t, x) and for all p ∈ ∂CV (t, x), p · (1, z) ≤ 0;

(G1t) for each i ∈ {1, ...,m} there exists cit,x ∈ IR such that for all p ∈
∂CV (t, x), p · (1, gi(t, x)) = cit,x;

(G2t) for each i ∈ {1, ...,m} only one of the following mutually exclusive
conditions holds:

– for all p ∈ ∂CV (t, x) p · (1, gi(t, x)) > 0,

– for all p ∈ ∂CV (t, x) p · (1, gi(t, x)) < 0,

– for all p ∈ ∂CV (t, x) p · (1, gi(t, x)) = 0;

(G3t) there exists i ∈ {1, ...,m} such that for each i ∈ {1, ...,m}\{i} only
one of the following mutually exclusive conditions holds:

– for all p ∈ ∂CV (t, x) p · (1, gi(t, x)) > 0,

– for all p ∈ ∂CV (t, x) p · (1, gi(t, x)) < 0,

– for all p ∈ ∂CV (t, x) p · (1, gi(t, x)) = 0;

Let us remark that (f3t) ⇒ (f2t) ⇒ (f1t) and (G1t) ⇒ (G2t) ⇒ (G3t).

Theorem 11 Let V : IRn+1 → IR be locally Lipschitz continuous, healthy
and such that there exists L > 0 such that (V0t) holds.

If for all x ∈ IRn with ‖x‖ > L one of the following couples of conditions
holds for a.e. t ≥ 0:
(i) (f1t) and (G1t), (ii) (f2t) and (G2t), (iii) (f3t) and (G3t),
then system (5.8) is UBIBS stabilizable.

Let us make some remarks.
If for all x ∈ IRn with ‖x‖ > L assumption (f1t) (or (f2t) or (f3t)) holds for
a.e. t ≥ t0, then, by Theorem 10, system (1.1) is uniformly Lagrange stable.
Actually in [BR1] the authors introduce the concept of robust uniform La-
grange stability and prove that it is equivalent to the existence of a locally
Lipschitz continuous Lyapunov-like function. Then assumption (f1t) (or
(f2t) or (f3t)) implies more than uniform Lagrange stability of system (1.1).
In [Ro], the author has also proved that, under mild additional assumptions
on f , robust Lagrange stability implies the existence of a C∞ Lyapunov-like
function, but the proof of this result is not actually constructive. Then we



could still have to deal with nonsmooth Lyapunov-like functions even if we
know that there exist smooth ones.

Moreover Theorem 11 can be restated for autonomous systems with the
function V not depending on time. In this case the feedback law is au-
tonomous and it is possible to deal with a situation in which the results in
[Ro] do not help.

Finally let us remark that if f is locally Lipschitz continuous, then, by
[Y2] (page 105), the Lagrange stability of system (1.1) implies the existence
of a time-dependent Lyapunov-like function of class C∞. In this case, in
order to get UBIBS stabilizability of system (5.8), the regularity assumption
on G can be weakened to G ∈ L∞loc(IR

n+1; IRm) (as in [BB]).

5.2.1 Proof of Theorem 11

We first state and prove a lemma.

Lemma 7 Let V : IRn+1 → IR be such that there exists L > 0 such that
(V0t) and (V1) hold. If (t, x), with ‖x‖ > L, is such that, for all p ∈
∂CV (t, x) p · (1, gi(t, x)) > 0, then there exists δx > 0 such that, for all
x ∈ B(x, δx), for all p ∈ ∂CV (t, x), p · (1, gi(t, x)) > 0.

Analagously if (t, x), with ‖x‖ > L, is such that for all p ∈ ∂CV (t, x),
p · (1, gi(t, x)) < 0, then there exists δx > 0 such that, for all x ∈ B(x, δx),
for all p ∈ ∂CV (t, x), p · (1, gi(t, x)) < 0.

Proof Let γ > 0 be such that ‖x‖ > L+γ, and let Lx > 0 be the Lipschitz
constant of V in the set {t} ×B(x, γ). For all (t, x) ∈ {t} ×B(x, γ) and for
all p ∈ ∂CV (t, x) ‖p‖ ≤ Lx (see [Cl1], page 27).

Since gi is continuous there exist η and M such that ‖(1, gi(t, x))‖ ≤M
in {t} ×B(x, η).

Let d = min{p · (1, gi(t, x)), p ∈ ∂CV (t, x)}. By assumption d > 0.
Let us consider ε < d

2(Lx+M) .
By the continuity of gi, there exists δi such that, if ‖x − x‖ < δi, then

‖(1, gi(t, x))− (1, gi(t, x))‖ < ε.
By the upper semi-continuity of ∂CV (see [Cl1], page 29), there exists

δV > 0 such that, if ‖x − x‖ < δV , then ∂CV (t, x) ⊆ ∂CV (t, x) + εB(0, 1),
i.e. for all p ∈ ∂CV (t, x) there exists p ∈ ∂CV (t, x) such that ‖p− p‖ < ε.

Let δx = min{γ, η, δi, δV }, x be such that ‖x − x‖ < δx and p ∈
∂CV (t, x), p ∈ ∂CV (t, x) be such that ‖p− p‖ < ε.

It is easy to see that |p · (1, gi(t, x)) − p · (1, gi(t, x))| < d
2 , hence p ·

(1, gi(t, x)) > p · (1, gi(t, x))− d
2 = d

2 > 0.



The second part of the lemma can be proved in a perfectly analogous
way.

Proof of Theorem 11 For each x ∈ IRn, let Nx be the zero-measure
subset of IR+ in which no one of the couples of conditions (i), (ii) and (iii)
holds. Let k : IRn+1 → IRm, k(x) = (k1(t, x), ..., km(t, x)), be defined by

ki(t, x) =


−‖x‖ if ∀p ∈ ∂CV (t, x) p · (1, gi(t, x)) > 0
0 if ∀p ∈ ∂CV (t, x) p · gi(t, x) = 0,

or (f3) and (G3) hold and i = i, or t ∈ Nx

‖x‖ if ∀p ∈ ∂CV (t, x) p · (1, gi(t, x)) < 0.

It is clear that k : IR → IRm is locally essentially bounded.
By Theorem 10 it sufficient to prove that for all R > 0 there exists

ρ > L,R such that for all x ∈ IRn and v ∈ IRm the following holds:

‖x‖ > ρ, ‖v‖ < R ⇒ max V̇
(5.7)

(t, x) ≤ 0 for all t ∈ IR+\Nx

where V̇
(5.8)

(t, x) = {a ∈ IR : ∃w ∈ F (f(t, x)+G(t, x)k(t, x)+G(t, x)v) such
that∀p ∈ ∂CV (t, x) p · (1, w) = a}.

Let x be fixed and t ∈ IR+\Nx. Let a ∈ V̇
(5.8)

(t, x), w ∈ F (f(t, x) +
G(t, x)k(t, x) +G(t, x)v) be such that for all p ∈ ∂CV (t, x) p · w = a.

By Proposition 10 we have that
F (f(t, x) +G(t, x)(k(t, x) + v)(x) ⊆ Ff(t, x) +

∑m
i=1 gi(t, x)F (ki(t, x) + vi),

then there exists z ∈ Ff(t, x), zi ∈ F (ki(t, x)+ vi), i ∈ {1, ...,m}, such that
w = z +

∑m
i=1 gi(t, x)zi.

Let us show that a ≤ 0. We distinguish the three cases (i), (ii), (iii).

(i) b = p · (1, z) = a−
∑m

i=1 c
i
t,xzi does not depend on p, then b ∈ V̇

(1.1)
(t, x)

and, by (f1t), b ≤ 0.
Let us now show that for each i ∈ {1, ...,m} cit,xzi ≤ 0. If i is such

that cit,x = 0, obviously cit,xzi ≤ 0. If i is such that cit,x > 0 then, by
Lemma 7, there exists δx such that ki(t, y) = −‖y‖ in {t} × B(x, δx), then
ki is continuous at x with respect to y. This implies that F (ki(t, x) + vi) =
−‖x‖ + vi, i.e. zi = −‖x‖ + vi and cit,xzi ≤ 0, provided that ‖v‖ > ρ ≥
max{L,R}.

The case in which i is such that cit,x < 0 can be treated analogously. We
finally get that a = b+

∑m
i=1 c

i
t,xzi ≤ 0.

(ii) By (f2t) there exists p ∈ ∂CV (t, x) such that p · (1, z) ≤ 0. a =
p · (1, z) +

∑m
i=1 p · (1, gi(t, x))zi. The fact that for each i ∈ {1, ...,m} we



have p · (1, gi(t, x))zi ≤ 0 can be proved as in (i) we have proved that for
each i ∈ {1, ...,m} cit,xzi ≤ 0. We finally get that a ≤ 0.
(iii) Let us remark that if (G2t) is not verified, i.e. we are not in the case (ii),
there exists p ∈ ∂CV (t, x) corresponding to i such that p · (1, gi(t, x)) = 0.
Indeed, because of the convexity of ∂CV (t, x), for all v ∈ IRn, if there exist
p1, p2 ∈ ∂CV (t, x) such that p1 · v > 0 and p2 · v < 0, then there also exists
p3 ∈ ∂CV (t, x) such that p3 · v = 0.

Let p ∈ ∂CV (t, x) be such that p · (1, gi(t, x)) = 0. For all p ∈ ∂CV (t, x)
a = p · (1, w). In particular we have a = p · (1, w) = p · (1, z) +

∑
i6=i p ·

(1, gi(t, x))zi + p · (1, gi(t, x))zi. By (f3t), p · (1, z) ≤ 0. If i 6= i the proof
that p · (1, gi(t, x))zi ≤ 0 is the same as in (ii). If i = i, because of the choice
of p, p · (1, gi(t, x)) = 0. Also in this case we can then conclude that a ≤ 0.
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[H] O. Hájek, Discontinuous Differential Equations I, II, Journal of
Differential Equations, 32, 1979, 149-170, 171-185

[K] N.N. Krasovskii, The Converse of the Theorem of K.P. Persidskij
on Uniform Stability, Prikladnaya Matematika i Mekhanika, 19,
1955, 273-278 (in Russian)

[KS] N.N. Krasovskii and A.I. Subbotin, Game-Theoretical Control
Problems, Springer-Verlag, New York, 1988

[Ku] J. Kurzweil, On the Invertibility of the First Theorem of Lyapunov
Concerning the Stability of Motion, Czechoslovak Mathematical
Journal, 80, 1955, 382-398 (in Russian)



[KV] J. Kurzweil and I. Vrkoc̆, The Converse Theorems of Lyapunov
and Persidskij Concerning the Stability of Motion, Czechoslovak
Mathematical Journal, 80, 1955, 382-398 (in Russian)

[LS] Y. Ledyaev and E.D. Sontag, A Lyapunov Characterization of
Robust Stabilization, J. Nonlin. Anal., 37, 1999, 813-814

[MT] L. Mazzi and V. Tabasso, On Stabilization of Time-Dependent
Affine Control Systems, Rendiconti del Seminario Matematico
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