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Abstract 

Er-doped phosphate glasses were fabricated by melt-quenching technique. The changes in their 

thermal, structural and luminescence properties with the addition of Al2O3, TiO2 or ZnO were studied. 

Physical and thermal properties were investigated through density measurement and differential 

thermal analysis. Structural characterization was performed using the Raman and Infrared 

spectroscopy. In order to study the influence of the composition on the luminescence properties of the 

glasses, the refractive index, the luminescence spectra and the lifetime values were measured. 

The results show that with the addition of Al2O3 and TiO2 the phosphate network becomes more 

connected increasing the glass transition temperature, whereas the addition of ZnO does not show 
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significant changes in the optical, thermal and structural properties but it leads to a larger emission 

cross-section at 1540 nm as compared to the other glasses. As the site of the Er3+ is not strongly 

affected by the change in the glass composition, we think that the emission properties of the glasses 

depend on the glass structure connectivity, which has an impact on the Er3+ ions solubility. 

 

Keywords: phosphate glass, Raman spectroscopy, Infrared spectroscopy, Er luminescence property 

  

1. Introduction 

Since the initial discovery of the Bioglass®, with a composition known as 45S5 corresponding to 45.0 

wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O and 6.0 wt% P2O5 [1], the interest in bioglasses for tissue 

regeneration has increased [2–5]. Besides silicate glasses, phosphate glasses with a P2O5 content equal 

to 50 mol% have shown to be bioactive, degradable and suitable for fiber drawing [6–12]. These 

bioactive glasses form a hydroxyapatite layer, which is capable of bonding to the connective tissue 

when placed into body fluids [13]. They have been studied in many biomedical applications, especially 

for use in bone repair and reconstruction [14], as well as for peripheral nerve regeneration because they 

allow neuronal cells growth along the fiber’s axis [9,15]. The glass system employed in this study is 

based on the composition 50 P2O5 – 40 SrO – 10 Na2O (in mol%), whose bioactivity was previously 

assessed by J. Massera et al. [10]. However, the influence of the addition of erbium and metal oxides 

on the thermal, structural and luminescence properties of this glass system has never been reported 

before. 

Phosphate glasses are of interest for the engineering of photonic devices, thanks to the following 

properties: easy processing, good thermal stability and excellent optical characteristics, such as high 

transparency in the UV-Visible-Near Infrared (UV-Vis-NIR) region [16–20]. Besides, phosphate 

glasses allow high rare earth (RE) ions solubility. Thus, quenching phenomenon does only occur at 
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very high concentrations of RE ions [20,21]. Due to these properties, phosphate glasses have recently 

become appealing for optical communications [22] and laser sources as well as optical amplifiers 

[20,21,23–25]. However, to the best of our knowledge, up to now only few studies focusing on glass 

compositions that combine both biocompatibility and suitable optical properties have been reported 

[8,26,27]. 

The dopant environment around the RE ions plays a significant role in the RE-doped glasses. 

Specifically, parameters such as the covalency, mass and charge of the ligand atoms affect the 

luminescence properties as well as the solubility of RE ions in glassy hosts [28]. By adding different 

metal oxides such as Al2O3, TiO2 and ZnO, phosphate based glasses are able to modify their structural 

network, thus changing the glass chemical durability, biocompatibility and other properties [29–33]. In 

this study, the dopants were selected on the basis of their high covalency and their ability to change the 

structure of the phosphate glass matrix. In particular, Al2O3 and TiO2 are known to create cross-linking 

bonds such as Al-O-P [29,34] and Ti-O-P [35], respectively, while ZnO is considered as a modifier and 

is responsible for the depolymerization of the glass network [36]. 

In this paper, we report on the effect of the addition of Al2O3, TiO2 and ZnO on the thermal, structural 

and luminescence properties of erbium-doped phosphate glasses. 

 

2. Experimental 

2.1 Glass preparation 

Glasses with the compositions in mol% (0.5 P2O5 – 0.4 SrO – 0.1 Na2O)100-x – (TiO2/Al2O3/ZnO)x, 

with x = 0 and x = 1.5 mol%, were prepared. A fixed amount of Er2O3, 0.25 mol%, was added to the 

100 mol% composition for all the glasses manufactured. The glasses with 1.5 mol% Al2O3, TiO2 and 

ZnO were labeled as AlG, TiG and ZnG, respectively, while the glass with x = 0 was labeled as RefG. 

The glasses were prepared by the conventional melt-quenching technique using NaPO3 (Alfa Aesar), 
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SrCO3 (Sigma-Aldrich, ≥99.9%), Er2O3 (MV Laboratories Inc., 99.999%), Al2O3 (Sigma-Aldrich, 

≥99.5% α-phase), TiO2 (Sigma-Aldrich, 99.99% rutile) and ZnO (Sigma-Aldrich, ≥99%). Sr(PO3)2 

precursor was independently prepared using SrCO3 and (NH4)2HPO4 as raw materials and with a 

heating up to 850 °C. The chemicals were ground and mixed to prepare a 40 g batch, then placed in a 

quartz crucible and heated up to 1100 °C for 30 min with a heating rate of 10 °C/min. The melt was 

poured into a preheated brass mold and annealed at 400 °C for 5 h to decrease the residual stress. 

Finally, the glasses were cooled down to room temperature. All the glasses were cut and optically 

polished or ground, depending on the characterization technique. 

2.2 Physical and thermal properties 

The density of the glasses was measured using Archimedes’ method with an accuracy of ± 0.02 g/cm3, 

using distilled water as immersion liquid. 

The glass transition temperature (Tg) and crystallization temperature (Tp) were measured by differential 

thermal analysis (DTA) using a Netszch JUPITER F1 instrument. The measurement was carried out in 

a Pt crucible at a heating rate of 10 °C/min. Tg was determined as the inflection point of the endotherm 

obtained by taking the first derivative of the DTA curve, while Tp was taken as the maximum peak of 

the exotherm. All measurements were performed with an error of ± 3 °C. 

2.3 Structural properties 

The structural properties of the glasses were assessed using Fourier Transform Infrared (FTIR) 

Spectroscopy, both in transmission mode and Attenuated Total Reflection mode (FTIR-ATR), and 

Raman spectroscopy. FTIR-ATR spectra were acquired on glass powders with a Bruker Tensor 27 

spectrometer equipped with a liquid nitrogen-cooled mercury–cadmium–telluride (MCT) detector, 

operating at 2 cm-1 resolution, equipped with an ATR cell. The spectra were recorded in the range from 

600 to 1400 cm-1 and were normalized to the band with maximum intensity ( 880 cm-1).  
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Raman spectra were acquired with a Renishaw inVia Reflex micro-Raman spectrophotometer 

(Renishaw plc, Wotton-under-Edge, UK) equipped with a cooled CCD camera using a 785 nm 

excitation line. The spectra were recorded in the range 600-1400 cm−1 and were normalized at the 

maximum point ( 1170 cm-1).  

Semi-quantitative analysis was carried out by using a Scanning Electron Microscope (FESEM, Zeiss 

Merlin 4248) equipped with an Oxford Instruments X-ACT detector and Energy Dispersive 

Spectroscopy Systems (EDS/EDX) in order to determine the final composition of the glasses. The 

composition of all the glasses was found to be in agreement with the nominal one, within the accuracy 

of the measurement (± 1.5 mol%). Despite the use of quartz crucibles, no Si was found in the EDS 

analysis of the investigated glasses. 

2.4 Optical and luminescence properties 

The refractive index (n) of the glasses was measured at 5 different wavelengths (633, 825, 1061, 1312 

and 1533 nm) by prism-coupling technique (Metricon, model 2010). Ten scans were performed for 

each wavelength. Estimated error of the measurement was ± 0.001. The experimental data were fitted 

using Sellmeier’s equation:  

𝑛2(𝜆) = 1 +
𝐵1∙𝜆2

𝜆2−𝐶1
+

𝐵2∙𝜆2

𝜆2−𝐶2
+ 

𝐵3∙𝜆2

𝜆2−𝐶3
       (1) 

where 𝜆 is the wavelength and 𝐵1,2,3 and 𝐶1,2,3 are the experimentally determined Sellmeier’s 

coefficients.  

The absorption spectra in the range 2500-4000 cm-1 were recorded by means of a FTIR spectrometer 

(Alpha, Bruker Optics, Ettlingen, Germany) working in transmission mode and equipped with a DTGS 

detector. The measurements were performed at room temperature and corrected for Fresnel losses and 

glass thickness. 
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The UV-Vis absorption spectra were measured at room temperature from 190 to 1600 nm using an UV-

Vis-NIR Agilent Cary 5000 spectrophotometer (Agilent, Santa Clara, CA, USA). The absorption cross-

section (σAbs) was calculated from the experimentally measured absorption coefficient and from Er3+ 

ions concentration in the glass, using the following formula:  

𝜎𝐴𝑏𝑠(𝜆) =
2.303

𝑁𝐿
log (

𝐼0

𝐼
)     (2) 

where log(I0/I) is the absorbance, L is the thickness of the sample (in cm) and N is the rare-earth ion 

concentration (ions/cm3). The Er3+ ions concentration was calculated from the measured glasses 

density. 

The emission spectra in the 1400-1700 nm range were measured with a Jobin Yvon iHR320 

spectrometer equipped with a Hamamatsu P4631-02 detector and a filter (Thorlabs FEL 1500). 

Emission spectra were obtained at room temperature using an excitation monochromatic source at 976 

nm, emitted by a single-mode fiber pigtailed laser diode (CM962UF76P-10R, Oclaro). The glass 

samples used for the absorption and emission measurements were optically polished disks of 1 mm of 

thickness. 

The emission cross-section (σe) spectrum was calculated from the absorption cross-section spectrum 

using the McCumber’s equation [37]: 

𝜎𝑒 = 𝜎𝐴𝑏𝑠 ∙ exp
(𝜀−𝐸)

𝑘𝑇
    (3) 

where 𝜎𝐴𝑏𝑠 is defined by Eq. (2), 𝜀 is the photon energy at which the two spectra cross at temperature 

T, 𝐸 is the energy in eV and k is the Boltzmann’s constant. 

The fluorescence lifetime of Er3+:4I13/2 energy level was obtained by exciting the samples with a fiber 

pigtailed laser diode operating at the wavelength of 976 nm, recording the signal using a digital 

oscilloscope (Tektronix TDS350) and fitting the decay traces by single exponential. Estimated error of 
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the measurement was ± 0.20 ms. The detector used for this measurement was a Thorlabs PDA10CS-

EC. 

3. Results 

The physical and thermal properties of the investigated glasses are reported in Table 1. The addition of 

Al2O3 (AlG), TiO2 (TiG) or ZnO (ZnG) has no impact on the density. However, the addition of Al2O3 

and TiO2 increases the Tg, while the addition of ZnO does not modify the Tg. Table 1 also shows ∆T, 

the temperature difference between Tp and Tg, which is an indicator of the glass resistance to 

crystallization. It is interesting to point out that AlG has the highest ∆T as compared to the other 

glasses. All the investigated glasses show ∆T higher than 100 °C. 

The FTIR-ATR and Raman spectra of the glasses are shown in Fig. 1a and Fig. 2a, respectively. All the 

spectra were normalized to the band with maximum intensity, thus all the discussed intensity changes 

are expressed relatively to the main peak. 

The FTIR-ATR spectra exhibit a broad band between 650 and 800 cm−1, three absorption bands located 

at around 1250, 1085 and 880 cm−1, and two shoulders at ~ 1160 and 980 cm−1. The addition of ZnO 

leads to very small changes in the IR spectra: the intensity of the shoulder at 980 cm-1 and of the band 

at 1085 cm-1 are slightly decreased, as reported in Fig. 1b and Fig. 1c, respectively. Moreover, a small 

increase in intensity of the band at 1250 cm-1 as compared to the band at 880 cm-1 is evidenced in Fig. 

1d. The addition of Al2O3 leads to a decrease in the intensity of all the bands as compared to the main 

band. One can also observe a small shift of the bands position to higher wavenumbers. The addition of 

TiO2 slightly increases the intensity of the shoulder at 980 cm-1 (see Fig. 1b) and of the band at 1250 

cm-1 (see Fig. 1d) and decreases the intensity of the band in the 650-800 cm-1 range and at 1085 cm-1 

(see Fig. 1c). The position of the main band and of the band at 1250 cm-1 is also shifted to higher 

wavenumbers. 
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The Raman spectra of the glasses exhibit defined bands at ~ 700, 1170 and 1280 cm-1 and several 

bands between 800 and 1110 cm-1. With the addition of ZnO, the band at 700 cm-1 is slightly reduced 

(see Fig. 2b). The band at 1250 cm-1 is shifted to higher wavenumbers and becomes narrower. With the 

addition of TiO2, all the bands remained unchanged in terms of intensity and shape. As for the impact 

of the Al2O3 addition, the intensity of the band at 700 cm-1 increases and the main band at 1170 cm-1 is 

broader, probably due to an increase of the topological disorder within the glass matrix (see Fig. 2b). 

Fig. 3 shows the refractive index values of the glasses measured at 5 different wavelengths fitted with 

the Sellmeier’s formula. RefG, AlG and ZnG show similar refractive index values, while TiG displays 

higher values at all the wavelengths. 

Fig. 4 shows the IR spectra of the glasses registered in absorption mode. The spectra exhibit a broad 

absorption band between 2700 and 3500 cm-1, which corresponds to the stretching vibration mode of 

OH- groups in several oxide glasses [38]. The TiG system is characterized by the most intense band, 

suggesting a larger OH- population as compared to the other glasses. 

The UV-Vis absorption spectra of all the glasses are reported in Fig. 5. The addition of Al2O3 and ZnO 

slightly shifts the UV absorption edge to longer wavelengths, and this effect is more pronounced with 

the addition of TiO2. The spectra exhibit several bands characteristics of the Er3+ ion 4f-4f transitions 

from the ground state to various excited levels [39,40]. 

The absorption cross-section spectra at around 980 and 1550 nm, calculated using the Eq. (2), are 

represented in Figs. 6a and 6b, respectively. All the glasses show similar absorption cross-sections 

within the accuracy of the measurement. 

Emission and normalized emission spectra, measured in the wavelength range 1400-1700 nm under 

excitation at 976 nm, are illustrated in Fig. 7a and 7b, respectively. They exhibit the typical emission 

band assigned to the Er3+ transition from 4I13/2 to 4I15/2, which changes with the composition. The 

addition of ZnO and Al2O3 increases the intensity of the emission at 1550 nm, while the RefG and TiG 
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exhibit emission with similar intensity. As evident in Fig. 7b, the change in the glass composition has 

no impact on the shape of the emission band. The McCumber’s emission cross-section spectra of the 

glasses, calculated using the Eq. (3), are shown in Fig. 7c and their respective values at 1550 nm are 

listed in Table 1. The ZnG exhibits the highest emission cross-section, in agreement with the emission 

measurements. 

Luminescence decay curves from the 4I13/2 to the 4I15/2 emission upon 976 nm excitation are reported in 

Fig. 8, and their corresponding lifetime values are listed in Table 1. The AlG shows similar lifetime 

value as compared to the reference glass, whereas the TiG exhibits the lowest lifetime and the ZnG the 

highest one. 

 

4. Discussion 

4.1 Structural properties 

The physical and thermal properties of the investigated glasses are reported in Table 1. The addition of 

Al2O3, TiO2 or ZnO has no significant impact on the density, but remarkable effects are reported 

regarding the thermal properties of the prepared glasses. The addition of ZnO has no impact on Tg, it 

decreases slightly Tp and thus ΔT, whereas the addition of TiO2 and Al2O3 increases Tg, Tp and ΔT. The 

increase in Tg could indicate that the addition of TiO2 and Al2O3 improves the strength of the network, 

whereas Zn is believed to act as a network modifier, in agreement with Schwarz et al. [41]. It is 

worthwhile noting that the AlG exhibits the highest Tg, Tp and ΔT, thus suggesting that Al has a higher 

impact on the bond strength than the other elements [42]. A ΔT higher than 100 °C for all glasses 

suggests their reasonable thermal stability. 

In the IR spectra shown in Fig. 1a, the broad band between 650 and 800 cm-1 may include symmetric 

vibrational modes νsym (P-O-P) of Q2 units [43]. The main band at ~ 880 cm−1 is attributed to the 

asymmetric vibrational mode νas (P-O-P) in chains of Q2 units [43–46]. The various bands between 930 
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and 1010 cm-1 are often related to rings-type formation in the glass network [47]. The shoulder 

centered at ~ 980 cm−1 and the band peaked at 1085 cm−1 correspond to the symmetric and asymmetric 

stretching vibrations of PO3
2- in Q1 units, respectively [45,46,48,49]. Besides, the band at 1085 cm−1 

can be attributed to an overlap between PO3
2- of Q1 units and PO2

− of Q2 groups in metaphosphate [50]. 

The shoulder at 1160 cm−1 and the absorption band at 1250 cm−1 correspond to the symmetric and 

asymmetric vibrations of PO2
− in Q2 units, respectively [43,45,46,48,51]. No bands are revealed at 

wavenumbers higher than 1300 cm-1, where the ν(P=O) of Q3 groups typically locate. These IR spectra 

clearly indicate the presence of a metaphosphate structure, which is confirmed from the analysis of the 

Raman spectra presented in Fig. 2a. The Raman band at around 700 cm-1 corresponds to the symmetric 

stretching of bridging νsym(O-P-O) of Q2 groups and the band at 1025 cm-1 to the symmetric stretching 

ν(P-O) of terminal groups (Q1) [43]. The bands at 1170 and 1280 cm-1 can be ascribed to the symmetric 

and asymmetric stretching vibrations of non-bridging ν(PO2) of Q2 groups, respectively [52–54]. These 

spectra are clearly index of the presence of a metaphosphate structure, as suggested by Velli et al. [55]. 

A few amount of terminal groups Q1 can also be observed, while there is no evidence of the presence of 

Q3 units, usually responsible of Raman shifts higher than 1300 cm-1. 

The addition of ZnO barely affects the IR and Raman spectra, as corroborated by the analysis of the 

density and of the thermal properties of this glass. From the small changes in the IR and Raman 

spectra, Zn seems to act as a modifier, leading to a depolymerization of the phosphate network and to a 

less cross-linked network. Its concentration in the present glass is probably too small to induce 

noticeable changes in its physical, thermal and structural properties.  

Regarding the TiG, the incorporation of TiO2 has a small influence on the broadening and shifting of 

the Q2 units bonds. The decrease in intensity of the IR band at 1085 cm-1 and the increase in intensity 

of the IR shoulder at 980 cm-1 might be related to the decrease of bridging oxygens on incorporation of 

TiO2 due to the formation of P-O-Ti bonds, as suggested by Kiani et al. [56]. The addition of TiO2 
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leads to an increase in Tg, maybe ascribable to the distortion of the glass network due to the formation 

of three-dimensional networks of P-O-Ti linkages, as suggested by Segawa et al. [57]. The shift of the 

main Raman band at 1170 cm-1 confirms the change in the average length of the P-O-P bond with the 

addition of TiO2. The concentration of TiO2 is probably too small to display the Raman band assigned 

to Ti-O bond, which appears at 930 cm-1 according to Kiani et al. [56]. As shown in Fig. 3, the addition 

of TiO2 increases the refractive index, probably due to an increase in the electron density. This effect is 

usually ascribed to the creation of more Q1 units, which have higher polarizability than Q2 units 

[58,59]. 

The addition of Al2O3 has the highest impact on the glass structure. The decrease in the intensity of all 

the IR bands, as compared to the main band, indicates that Al3+ ions are expected to enter gradually the 

network, as reported by Saddeek et al. [60]. The non-bridging oxygens of P=O bonds may be converted 

into bridging oxygens upon formation of P-O-Al bonds and the links O-Al-O replace O-P-O as 

aluminum enters the network [60]. This process is associated with the small shift to higher 

wavenumbers of the IR bands position. These P-O-Al cross-linking bonds between phosphate chains 

increase the network connectivity, as suspected from the increase in intensity of the Raman band at 700 

cm-1. This is also in agreement with the increase of Tg.  

The IR absorption spectra of the glasses between 2400 and 4000 cm-1 are shown in Fig. 4. The spectra 

show a similar band for all glasses, however, the TiG presents the highest absorption intensity for the 

signal at 2900 cm-1, ascribable to a higher OH- content [38]. This larger OH- population if compared to 

that of the other glasses might indicate that the formation of the P-O-Ti bonds distorts the phosphate 

network, increasing the free volume in the glass followed by an increase of the OH- absorption. 

4.2 Optical properties 

The absorption spectra of the glasses are shown in Fig. 5. The UV absorption edge was not clearly 

affected by the addition of Al2O3 or ZnO. However, with the addition of TiO2, the UV absorption edge 
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shifted to longer wavelengths due to the presence of Ti3+, as explained by Zikmund et al. [61]. In the 

250-500 nm range several bands are observed. These bands are characteristics of the Er3+ ion 4f-4f 

transitions from the ground state to various excited levels. In the inset of Fig. 5, the absorption edge at 

the UV end of the UV-Vis spectra can be seen in more detail. As stated in [62,63], an increase in the 

polymerization of the phosphate network leads to a shift of the UV absorption edge to lower 

wavelength values. Due to the formation of Al-P-O bond, the polymerization in the AlG is more 

significant than in TiG and ZnG, thus leading to a more pronounced shift of the UV absorption edge to 

lower wavelengths with respect to the other glasses.  

The absorption cross-section values at around 980 and 1550 nm are represented in Fig. 6a and 6b, 

respectively. The absorption cross-sections were calculated from the absorption coefficients using Eq. 

(2). Within the error of the measurement, the absorption cross-section remains unchanged with the 

addition of Al2O3, TiO2 and ZnO, thus indicating that the site of the Er3+ ions is not strongly influenced 

by the changes in the glass composition. This clearly shows that although Al, Ti and Zn have different 

impacts on the glass structure, they do not participate to the second coordination shell around the Er3+ 

ions.  

4.3 Luminescence properties 

The emission spectra upon excitation at 976 nm are reported in Fig. 7a. The ZnG exhibits the highest 

emission at 1540 nm, whereas the TiG and AlG show the lowest emission at 1540 nm as compared to 

the RefG. The shape of the emission band (see Fig. 7b) is unaffected by the changes in glass 

composition, thus confirming that Al2O3, TiO2 and ZnO have no significant impact on the site of the 

Er3+ ions. Additionally, the higher emission of the ZnG as compared to the other glasses cannot be 

related to the absorption properties of the glasses at 980 nm, as all the investigated glasses possess 

similar absorption cross-sections at this pump wavelength. It is not possible either to relate it to the OH- 

groups, which are known to diminish the emission intensity by non-radiative phenomena [38], as the 
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glasses have also similar OH- content except for the TiG. Therefore, we believe that the different 

emission properties of the glasses could be related to the different Er3+ ions solubility within the glass 

matrix and thus to the different network connectivity. Similarly, the larger emission and emission 

cross-section (see Table 1 and Fig. 7c) of the ZnG could be associated to a better solubility of the Er3+ 

ions into the ZnG due to the depolymerization of the network induced by the addition of ZnO. On the 

contrary, the addition of Al2O3 and TiO2, which are suspected to increase the network connectivity, 

would most probably reduce the Er-Er distance and so the Er3+ ions solubility. Further investigations on 

Er3+ solubility in the glasses are currently ongoing in order to clarify the above observation. 

The lifetime values of Er3+:4I13/2 level in the investigated glasses are shown in Fig. 8 and listed in Table 

1. Within the measurement error, all investigated glasses exhibit similar lifetime values, except for the 

TiG which displays a lower one. This could be related to the slightly higher OH- content in this glass as 

compared to the other ones. As shown in Fig. 9, a nearly linear relationship between the reciprocal of 

the lifetime and the absorption coefficient at 2900 cm-1 related to the OH- content is observed. The 

decrease in lifetime and emission with increasing the OH- concentration due to the energy transfer from 

Er3+ ions to quenching centers like OH- groups is in agreement with Yan et al. [38]. 

 

5. Conclusions 

The effect of the glass composition on the physical, structural and luminescence properties of Er3+ 

containing glasses in the system P2O5 – SrO – Na2O was investigated. The addition of Al2O3 and TiO2 

has a slight impact on the density, glass structure and on the spectroscopic (absorption and emission) 

properties of the fabricated glasses. Instead, the addition of ZnO, which is suspected to slightly 

depolymerize the phosphate network, increases the intensity of the emission at 1540 nm, although this 

glass has similar absorption cross-section at the pump wavelength compared to the other investigated 
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glasses. As the site of the Er3+ ions is not influenced by the change in the glass composition, the 

modification in the glass connectivity is supposed to affect the Er3+ ions solubility and thus the 

emission properties of the glasses. The investigated glasses possess also a good thermal stability and 

are therefore promising for the fabrication of fiber lasers and amplifiers. 
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Figure captions 

Fig. 1. FTIR-ATR spectra of the glasses (a). The insets show the zoom-up of the bands at 980 (b), 1085 

(c) and 1160 (d) cm-1, respectively.  

Fig. 2. Raman spectra of the glasses (a). The insets show the zoom-up of the bands at 700 (b) and 1170 

cm-1 (c), respectively.  

Fig. 3. Refractive index values of the prepared glasses at 5 different wavelengths fitted with the 

Sellmeier’s formula. The filled squares represent the experimental data, while the continuous lines are 

the fitting curves.  

Fig. 4. IR absorption spectra of the glasses.  

Fig. 5. UV-Vis absorption spectra of the investigated glasses. The inset shows the UV edge of RefG, 

AlG and ZnG in the range between 195 and 210 nm. 

Fig. 6. Absorption cross-section of the investigated glasses centered at 980 (a) and 1500 nm (b).  

Fig. 7. Emission (a), normalized emission (b) and emission cross-section (c) spectra of the investigated 

glasses. 

Fig. 8. Room temperature decay curves of the 4I13/2 level of Er3+ ions in the glasses obtained under 

excitation at 980 nm. The intensity data are reported on a Log scale. 

Fig. 9. Decay rate, defined as the inverse of the Er3+:4I13/2 level lifetime, as a function of the absorption 

coefficient of OH- vibration band at 2900 cm-1 of all the glasses. The experimental data were fitted 

through the formula reported in [64]. 
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Fig. 5. 
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Fig. 8. 
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Fig. 9. 
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Table 1 Physical, thermal and luminescence properties of the glasses. 

 

 

 

 

 

 

 

Glass 

label 

ρ 

± 0.02 

g/cm3 

Tg 

± 

3 °C 

Tp 

± 

3 °C 

ΔT 

± 

6 °C 

[Er3+] 

(⋅1019) 

(ions/cm3) 

± 5% 

Abs. coeff. 

at 2900 cm-1 

related to [OH-] 

σAbs  

at 1550 nm 

(⋅10-21) (cm2) 

± 10% 

σAbs  

at 980 nm 

(⋅10-21) (cm2) 

± 10% 

σe  

at 1550 nm  

(⋅10-21) (cm2) 

± 10% 

Er3+:4I13/2 

 (ms) 

± 0.20 ms 

RefG 3.08 440 555 115 7.775 15.1 6.08 1.89 5.78 4.23 

AlG 3.10 447 583 136 7.843 15.3 5.02 1.79 4.85 4.42 

TiG 3.09 448 563 115 7.840 16.8 6.25 2.04 6.01 3.73 

ZnG 3.08 439 538 99 7.813 14.8 6.71 2.03 6.53 4.66 


