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Abstract. The paper discusses the optimal configuration of one or more ring lasers to be used for measuring

the general relativistic effects of the rotation of the Earth, as manifested on the surface of the planet. The

analysis is focused on devices having their normal vector lying in the meridian plane. The crucial role

of the evaluation of the angles is evidenced. Special attention is paid to the orientation at the maximum

signal, minimizing the sensitivity to the orientation uncertainty. The use of rings at different latitudes is

mentioned and the problem of the non-sphericity of the Earth is commented.

PACS. 04.80.Cc Experimental tests of gravitational theories – 07.05.Fb Design of experiments

1 Introduction

Ring lasers (RL) are top sensitivity devices able to measure absolute rotations. The principle of operation of a ring

laser is based on the Sagnac effect [1]. RLs are very reliable instruments, with large bandwidth and very high duty

cycle. The most advanced RLs are indeed used in geophysics for accurate metrology (rotational seismology), and in

geodesy for monitoring the fast variations of the rotation rate of the Earth.
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For a laboratory on Earth, the signal of a RL is proportional to the instantaneous1 norm of the vector sum of the

diurnal rotation rate of the planet, Ω⊕, and the local rotation rate of the device, Ωl; the two components together

may be called kinematic rotations. In principle the superposition of local and global kinematic rotations produces a

time varying signal, since local rotations are referred to a non-inertial reference frame, so that the rotation rate with

respect to distant inertial observers turns out to cyclically depend on time. In many practical applications the latter

time dependence is de facto negligible.

When the effects of non-Newtonian gravity are included, an additional contribution may appear; let us call it Ωgr.

If General Relativity (GR) is used, Ωgr is in turn the sum of two contributions: the Lense-Thirring drag term ΩLT

and the de Sitter geodetic precession ΩdS . If the RL is carried on a vehicle the dominant term is Ωl; in a laboratory

fixed to the ground Ω⊕ prevails; the absolute values of the GR terms are ∼ 10−14 rad/s, nine orders of magnitude

below the Earth rotation rate. As for Ωl, in an Earth based laboratory it is either negligible or known and modelled

so that it can be accounted for and subtracted. The present best sensitivity of a RL is ∼ 10−13 rad/s in one day of

integration time [2], not far from the threshold to be crossed in order to detect the GR terms.

In short, the response of the RL is a beat frequency f proportional to the scalar product between the total angular

rotation vector and the area vector, An̂, of the ring: f = S(Ω⊕ +Ωl +Ωgr) · n̂. The proportionality factor S is called

scale factor and depends on the geometry of the ring. It is S = 4A
λP , where A is the area and P the perimeter of the

ring, λ is the wavelength of the light of the laser. With an appropriate construction and location of the apparatus

and for long enough integration time we may assume 〈Ωl〉 to be negligible, even with respect to the GR terms, and

other effects to be modelled and subtracted accurately, so that, in the framework of General Relativity, we write

f = S(Ω⊕ +ΩLT +ΩdS) · n̂.

The purpose of the GINGER experiment (Gyroscopes IN GEneral Relativity) is to measure the GR components

of the gravitational field of the Earth at 1% or better accuracy level, by means of an array of ring-lasers. In 2011 a

first proposal was presented based on an octahedral configuration [3]. The three-dimensional array would permit to

reconstruct the modulus of the total angular rotation vector in the laboratory. The GR terms in this scheme would

be evaluated by subtracting the Earth rotation rate measured independently by the International Earth Rotation

and Reference Systems Service (IERS), ΩIERS . The proposed approach would require long term stability and very

1 Actually the measured rotation rate is over a time interval corresponding to the lifetime of a photon in the cavity of the

ring. The latter is however in the order of 10−3 s, much smaller than the typical times of other time depending phenomena in

the lab and on the planet altogether.
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high accuracy, since it would be necessary to subtract the contribution of Ω⊕, which, as said, is about nine orders of

magnitude bigger than the GR terms.

So far the gravitomagnetic field of the Earth has been measured by spaceborne experiments, being the present

accuracy limit ∼ 5% [4]. The experimental goal to measure ΩLT down to 1%, remains an important challenge. GINGER

would provide the first measurement of the General Relativistic features of the gravitational field on the surface of

the Earth (not considering the gravitational redshift). Though not in free fall condition, it would be a direct local

measurement independent from the global distribution of the gravitational field, which is the principle difference with

the space experiments where the result is the consequence of an averaging of the effects along whole orbits.

In the following we shall discuss the ways an actual measurement based on ring lasers can be done, evidencing

criticalities and the role of physical and geometrical parameters and the related uncertainties.

2 Ring lasers for retrieving a general rotation vector

As we have already written in the Introduction, the beat frequency f of a RL is proportional to the flux of a total

rotation vector Ωt across the area of the ring. In general we may write:

f = SΩt · n̂ (1)

where n̂ is the unit vector perpendicular to the plane of the ring (provided, of course, that it is contained in a plane).

If we wish to fully recover Ωt from the measurement of frequencies we need in principle three independent rings, which

form a local three-dimensional reference frame, as it was proposed in [3]. If we have reasons to think that a couple of

rings may be oriented so that the plane of their n̂’s contains Ωt, the problem becomes bi-dimensional and two rings

are enough; we shall comment on this later, but let us assume for the moment that this is the case.

Making the scalar products explicit and calling γ the angle between n̂1 and n̂2 (see Fig.1) we may write:

f1 = S1Ωt cos ζ

f2 = S2Ωt cos (γ − ζ)

(2)

Here ζ is the angle between Ωt and n̂1. System (2) may be transformed into:

f2
f1

= S2

S1

cos(γ−ζ)
cos ζ

Ωt = f1
S1 cos ζ = f2

S2 cos(γ−ζ)

(3)
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Provided γ is known (directly measured), we may solve and obtain:

tan ζ = S1f2−S2f1 cos γ
S2f1 sin γ

Ωt =

√
S2
1f

2
2+S

2
2f

2
1−2S1S2f1f2 cos γ

S1S2 sin γ

(4)

Of course everything simplifies if we may assume S1 = S2 = S and γ = π/2. It would then be:

tan ζ =
f2
f1

(5)

SΩt =
√
f22 + f21 (6)

In order not to get in trouble with signs, we should specify a couple of assumptions:

1) Ωt is in between n̂1 and n̂2;

2) it is 0 < γ ≤ π/2.

Either in the form (4) or (5) (6) the two rings give Ωt without any reference to the composition of the vector and

specifying the orientation in the meridian plane with respect to themselves.

3 General relativity: the ring laser signal

The metric of the external space-time of a spherical rotating mass is written in the simplest form in the reference

frame of an inertial observer located at infinity and at rest with respect to the center of the source of gravity. It is also

convenient to work in weak field approximation, where terms down to the smallest interesting contribution are kept.

The smallest term we keep is linear in the angular momentum of the central mass J . The line element, using space

”polar” coordinates, is:

ds2 =
(

1− 2
m

r

)
c2dt2∗ −

(
1 + 2

m

r

)
dr2 − r2dθ2 − r2 sin2 θdφ2∗ + 4

j

r2
sin2 θ (cdt∗) (rdφ∗) (7)

Variables marked by pedix ∗ will change when passing to the final frame. It has been assumed that m2/r2 < j/r2 and

negligible. It is

m = GM⊕
c2 ' 4.43× 10−3 m

j = G J
c3 = G I

c3Ω⊕ ' 1.75× 10−2 m2

(8)

The last assumption includes the hypothesis that the Earth is a rigid body whose relevant moment of inertia is I.

The numerical values, when considering the surface of the Earth, i.e. r = R = 6.373 × 106 m, confirm that the

approximation adopted is correct. The measurement is intended to be performed in a terrestrial laboratory, so it is

appropriate to rewrite the line element in its reference frame. This is made through two steps [5]:
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Fig. 1. A schematic, pictorial, not on scale, view of the orientation of the kinematic Ω⊕ and the total effective rotation vector

Ωt in the meridian plane. The unit area vectors of the two rings, n̂1 and n̂2 are also shown. The angle between Ωt and Ω⊕ is

α; β and γ are respectively the angles between ring 1 and Ω⊕, and ring 2 with respect to ring 1. Angle ζ is between Ωt and n̂1.
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– rotation of the axes at the angular velocity of the Earth Ω⊕;

– boost at the peripheral speed of the Earth whose absolute value is V = Ω⊕R sin θ where θ is the colatitude of the

laboratory and R is the (average) radius of the Earth.

In the process, we keep an approximation level consistent with the weak field hypothesis, extended to kinematical

rotation terms. The size of the latter is expressed by the ratio Ω⊕R/c ∼ 1.55× 10−6. The result is:

ds2 =
(

1− 2
m

r

)
c2dt2 −

(
1 + 2

m

r

)
dr2 − r2dθ2

−
(

1 + 2
r2Ω2

⊕
c2

sin2 θ

)
r2 sin2 θdφ2 (9)

+2

(
2
j

r2
− rΩ⊕

c
− 2m

Ω⊕

c

)
sin2 θ (cdt) (rdφ)

For short we write

g0φ =

(
2
j

r2
− rΩ⊕

c
− 2m

Ω⊕

c

)
sin θ (10)

The frame is non-inertial and comoving with the laboratory; the origin remains in the center of the Earth. Considering

a null line-element (i.e. a light ray: ds = 0) from (9) we deduce the coordinated travel time of flight element dt.

Assuming a path closed in the laboratory (it is not closed for an inertial external observer) and integrating along the

path once to the right (dφ > 0), once to the left (dφ < 0), then subtracting the two results, we arrive to the difference

in the coordinated times of flight (expressed in arbitrary coordinates):

δt = −2

∮
g0i
g00

dxi (11)

It is possible to convert the result to the proper time of the observer at rest in the lab, τ , just multiplying by
√
g00 at

his/her position

δτ = −2
√
g00

∮
g0i
g00

dxi. (12)

Considering the symmetry of the problem we may interpret g0φ as the only non-zero component of a three-vector h

aligned with the axis of rotation of the Earth so that (introducing the unit vector ûl aligned with the trajectory of

light) the formula becomes:

δτ =
2

c

√
g00

∣∣∣∣∮ h · ûl
g00

dl

∣∣∣∣ (13)

The quantity is an observable, i.e. a true scalar: the same for any observer. In a ring laser the time of flight asymmetry

is converted into a difference in the frequency of stationary light beams and one obtains a beat frequency:

f =
2c

λP

√
g00

∣∣∣∣∮ h · ûl
g00

dl

∣∣∣∣ (14)



8 Angelo Tartaglia et al.: Testing general relativity by means of ring lasers

The line integral may be transformed into a flux using Gauss’s theorem (classically it would be called Stoke’s theorem).

If the change of the values of the curl of h/g00 across the area of the closed integration path is negligible, the result

becomes simply

f =
2cA

λP
∇ ∧

(
h
√
g00

)
· ûn (15)

where A is the area contoured by the beams, P is the length of the path, λ is the wavelength in the active cavity and

the curl is evaluated in any point within the ring. Besides the physical and geometrical parameters, to be controlled

experimentally, the signal depends on three quantities: m (proportional to the mass of the source M⊕), I ( contained

in G j
c3 ), and Ω⊕. After a few manipulations, the expected signal becomes

f =
4A

λP

[
Ω⊕ − 2

m

r
Ω⊕ sin θûθ +G

IΩ⊕

c2r3
(2 cos θûr + sin θûθ)

]
· ûn = S (Ω⊕ +ΩdS +ΩLT ) · ûn (16)

As we see, according to GR, Ωt is the sum of three vectors, all contained in one plane (the meridian plane), thus

explaining the special attention paid to the two rings system in the previous section. Let us introduce the angle β

between the direction of the axis of the Earth and the axis of the ring (see Fig. 2). Then the relevant dot products

become:

û⊕ · ûn = cos (β) (17)

ûr · ûn = cos (β − θ) (18)

ûθ · ûn = sin (β − θ) (19)

Introducing the shorthand notations

a = 2
m

R
(20a)

b =
GI

c2R3
(20b)

Eq. (16) is converted into:

f = SΩ⊕ |cos (β)− (a− b) sin θ sin (β − θ) + 2b cos θ cos (β − θ)| (21)

The absolute value bars ‖ have been introduced just to remember that the frequency is of course always a positive

quantity. The factor in front of the bar is the scale factor S of the RL. It is also important to remark that Ω⊕ acts as a

global multiplication factor. Eq.s (16) and (21), unlike Eq.s (2), present the expected orientation of the RL referring to

the external frame formed by ûr and ûθ; this is manifested by the presence of the colatitude θ and the angle β (in the

configuration represented in Fig. 2 the two angles have opposite signs). As stated at the beginning, we have treated
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Fig. 2. The mutual orientation of the angular velocity of the Earth Ω⊕ and of the two GR effective rotations ΩLT and ΩdS

is represented. The sum Ωt of all rotation vectors is also shown. The amplitude of Ω⊕ is down-scaled by about 10 orders of

magnitude. The graph is not on scale.
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throughout the Earth as a sphere, but we know that our planet is not a sphere. Without entering into the details

of the geoid, we should better treat the Earth as an ellipsoid: how would this better approximation affect formulae

like (16) and (21)? We can recall that the shape parameter of the terrestrial reference ellipsoid is ' 0.003. It should

produce locally a deviation of the vertical direction (i.e. the local gravitoelectric field) from the radial direction (which

appears in the formulae) in the order of ∼ 10−3 rad at most. Such a deviation affects the GR terms in Eq. (16) on the

corresponding amount of 1 part in 103 at most, so being below the target accuracy for the experiment.

4 Confronting the experiment with the theory

Going back to Eq. (16) we may express Ω⊕ in terms of ûr and ûθ. We then obtain an explicit formula for the modulus

of Ωt:

Ωt = Ω⊕

√
(1 + (a− b)(a− b+ 2) sin2 θ + 4b(b+ 1) cos2 θ) (22)

Equating (22) to the second equation in (4) we get a relation between the experimental quantities and a combination

of the parameters of the theory:

Ω⊕

√
1 + (a− b)(a− b+ 2) sin2 θ + 4b(b+ 1) cos2 θ =

√
S2
1f

2
2 + S2

2f
2
1 − 2S1S2f1f2 cos γ

S1S2 sin γ
(23)

Remember that a and b are expected to be of the order of 10−9, so that we may keep the only first order corresponding

terms:

1 + 2b cos2 θ + (a− b) sin2 θ '
√
S2
1f

2
2 + S2

2f
2
1 − 2S1S2f1f2 cos γ

Ω⊕S1S2 sin γ
(24)

If, for simplicity, we assume that the Earth is spherical with an internal uniform mass distribution, the relationship

between I and M⊕ is: I = 2
5M⊕R

2 (b = a/5). For the real Earth the numerical factor is closer to 1/3 rather than 2/5

(b = a/6)(see the Appendix 6). Apart from the modulus of Ωt the theory tells us also the orientation of the vector in

the meridian plane: it will be at an angle α with respect to the axis of the Earth. When the ring has its axis oriented

as Ωt, the signal reaches its maximum value:

fmax = SΩt (25)

Angle α can be obtained applying the maximum condition to Eq. (21). In fact, starting from Eq. (21), using β as the

independent variable, calling α the value of the angle at the maximum, we find:

tanα =
(a− 3b) sin θ cos θ

(3b− a) sin2 θ − 2b− 1
(26)

Considering the orders of magnitude, the first order approximation is:

α ' (3b− a) sin θ cos θ (27)
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Posing β = α in (21), then using (26) or (27), we may obtain from (21) the same Ωt as the one written in (22). In

order to establish a correspondence between the predictions of the theory and the results obtained from a couple of

rings, let us remark that Eq. (21) can also be written putting β = ζ+α. Looking at (4), let us consider a configuration

where ring 1 is aligned at the maximum; this corresponds to ζ = 0. If the second ring is horizontal (i.e. n̂2 ‖ ûr), it is

γ = α+ θ (see Fig.2). We may write:

tanα =
tan γ − tan θ

1 + tan γ tan θ
(28)

Finally, calling in (26) or (27), we arrive at:

(a− 3b) sin θ cos θ

(3b− a) sin2 θ − 2b− 1
=

tan γ − tan θ

1 + tan γ tan θ
(29)

or

a− 3b ' tan θ − tan γ

(1 + tan γ tan θ) sin θ cos θ
(30)

The end point of this process is reached putting (30) and (24) in a system:

a− 3b ' tan θ − tan γ

(1 + tan γ tan θ) sin θ cos θ

(31)

1 + 2b cos2 θ + (a− b) sin2 θ '
√
S2
1f

2
2 + S2

2f
2
1 − 2S1S2f1f2 cos γ

Ω⊕S1S2 sin γ

Choosing a and b as unknowns, all other parameters must be measured. In principle system (31) can be solved. The

formal result is:

a = −3

2
+

tan θ − tan γ

1 + tan θ tan γ

2 cos2 θ − sin2 θ

2 sin θ cos θ
+

3

2

√
S2
1f

2
2 + S2

2f
2
1 − 2S1S2f1f2 cos γ

Ω⊕S1S2 sin γ
(32)

b = −1

2
− (tan θ − tan γ) tan θ

2(1 + tan θ tan γ)
+

√
S2
1f

2
2 + S2

2f
2
1 − 2S1S2f1f2 cos γ

2Ω⊕S1S2 sin γ
(33)

The practical difficulty with this solution is that it is composed of strongly differing parts, scaling over at least eleven

orders of magnitude (if the aim is a 1% accuracy in a and b), so requiring a corresponding accuracy in all parameters,

including Ω⊕. Going back to system (31), we see that the first equation is apparently purely geometrical, without

calling in Ω⊕. Now the basis is the measurement of γ, which in fact is equivalent to the direct measurement of α;

remember that γ is the angle between Ωt (i.e. the direction of the maximum along which the first ring is oriented) and

ûr (which is perpendicular to the plane of the second ring). Using the first equation only, it would even be unnecessary

to have the second ring, but of course the angles must be measured with an accuracy better than 1 nrad and the result

would be the combination a − 3b. To have a − 3b, instead of the two parameters separately, would not be a problem

since we know the relation between the two. Of course the same results may be obtained from (32) and (33).
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5 Various configurations

The configuration first considered in 2011, as recalled in the Introduction, has been the octahedron [3]. This configu-

ration has been extensively discussed in previous papers; it measures the three components of Ωt in all three spatial

directions and reconstructs the norm of the vector combining together different measurements. This approach allows

the comparison of different co-located rings, giving the possibility of precisely measuring the systematics of the laser.

If the orientation of the octahedron with respect to the rotation axis of the Earth and the meridian plane are not

given, all information that can be retrieved by the experiment is contained in the norm of Ωt confronted with the

theory. If also the external orientation is given, the full Ωt vector, including the angle with respect to the axis of the

Earth, is obtained.

In general, using multiple independent rings (two, three or more) has several advantages: the statistics would be

improved since the shot noise of each ring, in the set of many, is independent from the others. Co-locating more than

three rings would be a powerful tool to keep the systematics of an experimental apparatus under control. An array

of at least four co-located rings would have the very interesting feature that the angular rotation vector could be

reconstructed with different combinations 3 by 3. The comparison of different results would give information on the

systematics of the lasers. Redundancy would be allowed, which is always welcome in this kind of experiment.

The weak point is that the detection of the GR terms requires the knowledge of Ω⊕ which in practice is provided

by IERS and ΩIERS is given with an uncertainty too high, as for now, to allow to reconstruct the Lense-Thirring effect

at the 1% accuracy level. In fact, the Length of Day (LoD) is measured with different methods by the IERS, but, in

the best case, with a 10÷ 15 µs error. This is compatible with a 10% test, more or less; improvements are not foreseen

in the next five years plan (IERS Annual Report 2014 [7]). It is however true that prolonging the measurement time

would reduce the uncertainty (1 order of magnitude in 10 days), but of course one must insure the stability of the

apparatus over the whole extension of the run.

5.1 The output of a single ring and the RL at the maximum signal

As we have already seen, a single ring measures the projection of the total Ωt on a direction perpendicular to the

plane containing the ring. In principle a single ring could give all the information (first equation in (2)) besides the

orientation of the total vector with respect to the axis of the Earth, but the knowledge of the absolute angle ζ between

the normal to the ring and the direction of the maximum signal is required. The normal to the ring is assumed to lie

in the meridian plane. Using the first approximation of Eq. (22) it is:
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2b cos2 θ + (a− b) sin2 θ ' f

SΩ⊕ cos ζ
− 1 (34)

A special case is obtained when the ring is oriented to the maximum signal. It is then ζ = 0 and f = fmax.

An advantage of this configuration is that, being in a maximum condition, the sensibility to orientation inaccuracy

is second order: an uncertainty of the order of a µrad affects the frequency at the prad/s level. Furthermore the

orientation with respect to the axis of the Earth is directly given by the theory, Eq. (26) or (27).

In any case using the simple proportionality relation mentioned at the end of Sect.4, the unknown is reduced to

one (for instance a) and we may solve for it.

5.2 Horizontal ring

Another special case is a horizontal ring (normal in the meridian plane and aligned with the local Newtonian field).

The output is obtained from Eq. (21) putting β = θ:

fh = SΩ⊕(1 + 2b)cosθ (35)

whence the gravito-magnetic parameter b immediately stems.

The advantage of this configuration is that, unlike other orientations, it corresponds to an angle materially defined in

the laboratory. Unfortunately this simplification is not so strong as it looks: horizontality is not an extremal condition,

so it has to be reached with an accuracy of the same order of magnitude as the one required for the GR term. In

practice the maximum tolerable deviation from the horizontal plane is of the order of a prad. We must mention that the

horizontality condition is affected by the shape of the geoid, which has no regular surface, according to the comments

we have put at the end of section 3. Here too, however, the effect on the GR terms as such is negligible. Unfortunately

the isolation of the Lense-Thirring term requires the subtraction of a contribution of the order of SΩ⊕ which must be

known in 1 part in 1012 and this is the real reason for the prad requirement mentioned above.

5.2.1 Ring containing the direction of the terrestrial axis

It is worth remarking that Eq. (16) tells also that GR terms could, in principle, be obtained keeping the normal in the

meridian plane, but orienting the ring so that its plane contains the direction of the axis of the Earth (orthogonality

condition between the axis and the normal to the plane of the ring). In that configuration the kinematic frequency

would be zero. Unfortunately, this method is not viable for two reasons: 1) ring-lasers must be operated with a bias in
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order to avoid the locking of the two counter-propagating modes (and the GR terms alone would probably be too small

to give the necessary bias); 2) the accuracy required in the alignment in order to insure that the ring keeps its normal

in the meridian plane becomes extremely severe. The latter statement may be verified by an example: considering

a square ring-laser 6 m in side, and in the same time with its normal perpendicular to the axis of the Earth, a tilt

of 30 prad (from the zero kinematical contribution orientation) would mimic the expected GR signal. In general a

single ring requires a control of its absolute orientation and, based on the above arguments, the practically viable

solution is the ring oriented at the maximum signal. A single ring parallel to the axis of the Earth has no practical

application: the RL does not work properly, and the requirements on the accuracy of β become exceedingly severe.

These considerations hold also in the case of a pair of nested rings perpendicular to each other (γ = π/2), where one

is oriented to the maximum: the second ring would not work.

5.3 Rings at different latitudes

Keeping a and b as separate unknowns, the dependence on the co-latitude can be exploited. A couple of measurements

performed by rings in laboratories located at different latitudes could give both unknowns.

The general equations are:

fθ=θ1 = S1Ω⊕ |cos (β1) + (a− b) sin θ1 sin (θ1 − β1) + 2b cos θ1 cos (β1 − θ1)| (36)

fθ=θ2 = S2Ω⊕ |cos (β2) + (a− b) sin θ2 sin (θ2 − β2) + 2b cos θ2 cos (β2 − θ2)| (37)

If both rings are oriented to the maximum, it is:

fmax1 ' S1Ω⊕
(
1 + 2b cos2 θ1 + (a− b) sin2 θ1

)
(38)

fmax2 ' S2Ω⊕
(
1 + 2b cos2 θ2 + (a− b) sin2 θ2

)
The formal solution of the system (38) is:

a ' −3

2
+

1

2Ω⊕

fmax2S1 − fmax1S2

S1S2(cos 2θ1 − cos 2θ2)
+

3

2

fmax2S1 cos 2θ1 − fmax1S2 cos 2θ2
Ω⊕S1S2(cos 2θ1 − cos 2θ2)

(39)

b ' sin2 θ1 − sin2 θ2
cos 2θ1 − cos 2θ2

+
fmax1S2 sin2 θ2 − fmax2S1 sin2 θ1

Ω⊕S1S2(cos 2θ1 − cos 2θ2)
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Here too, a useful combination obtainable from (39) is

a− 3b ' 2
fmax2S1 − fmax1S2

Ω⊕S1S2(cos 2θ1 − cos 2θ2)
(40)

The advantage of this equation is that Ω⊕ (actually its inverse) appears only as a global multiplier, which means

that the requirement on its absolute accuracy is much less severe than in the cases where it has to be subtracted from

something else.

Another possibility worth mentioning is with a ring to the maximum at latitude θ1 and the other horizontal at

latitude θ2. The equations are:

fmax1 ' S1Ω⊕
[
1 + b(2 cos2 θ1 − sin2 θ1) + a sin2 θ1

]
fh2 ' S2Ω⊕(1 + 2b) cos θ2

The formal solution is now:

a ' −3

2
− fmax1

S1Ω⊕ sin2 θ1
+ fh2

sin2 θ1 − 2 cos2 θ1

2S2Ω⊕ cos θ2 sin2 θ1

b ' −1

2
+

fh2
2S2Ω⊕ cos θ2

Finally the convenient combination:

a− 3b ' fmax1S2 cos θ2 − fh2S1

Ω⊕S1S2 cos θ2 sin2 θ1
(41)

Again the impact of the accuracy on SΩ⊕ is reduced, but the second ring needs to be laid in the horizontal plane

within a prad or so.

5.4 Two rings in the same place

This case has already been treated in Sect.s 2 and 4. A constraint for this configuration is to insure that the normals

to both rings lay in the meridian plane. It is a manageable condition, since the meridian is a symmetry plane; the

additional contributions coming for an out-of-the plane component of Ωt would be proportional to the cosine of an

angle φ whose value on the plane would be 0. In practice, as for the orientation to the maximum, an uncertainty of

10−6 rad on φ would affect the measured frequencies at the 10−12 rad/s level only.
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The retrievable information is contained in system (31) and its solutions. Recalling the discussion made in Sect. 4

we remark again that in principle the only ring at the maximum could be enough (Eq. (30)), provided one is able to

measure the angle to the radial direction γ, then exploiting the relation between a and b.

5.5 Frequencies

In the discussions presented so far, always appear frequencies f , either as expected values obtained from the knowledge

of the other physical parameters and of the angles, or as input data to find the GR quantities a and b. It must be

recalled that the f ’s are not the measured frequencies given by the RLs system, since in that experimental output

other effects are contained too. The measured frequencies also account for the movements of the axis of the Earth,

originated from external perturbations; the rotational motions of the crust of the planet; the local movements of the

ground and of the laboratory originating from various possible causes, etc. Last but not least there are the instabilities

of the laser, down to the shot noise. Prolonging the duration of each experimental run, the random components tend

to average to zero; the other contributions need to be identified and then can be described as best as possible by

appropriate modeling. In any case whatever is not Earth rotation and GR must carefully be subtracted from the raw

data in order to obtain the frequencies to be used in our formulae. The cleaning process must of course be as accurate

as the required final accuracy in the f ’s.

6 Conclusion

We have analyzed and discussed various possible configurations and orientations of up to three RLs, located either in

one place or at different latitudes. We have laid down the basic equations to be used in the various cases and shown

the level of accuracy required, if the GR effects are aimed at. A convenient choice is to have one ring oriented to the

maximum signal so that the orientation accuracy can be relaxed to approximately 1 µrad. Apart from the above, the

critical parameters are the angles, which, with the exception of the orientation at the maximum, should be known

within the prad.

So far, the physical principles and constraints have been treated, laying down the fabric of possible experiments

and the constraints to be abided by in order to give relevant results. Next come the measurement strategies and all

the features of a real experiment. The behaviour of the laser and of the resonant loop need to be discussed, then the

behaviour of the mirrors used to obtain the closed path for light, back scattering effects, etc.. The mechanical and

thermal stability of the whole setup have to be taken into account, and so on. It is clear that, for practical reasons,
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it will be convenient to work with a redundancy of rings, allowing to mutually control and quantize the intrinsic

uncertainties. All these aspects are under consideration and will be treated in a technical paper, now in preparation.

For sure, the experiment is not an easy one, but both the general considerations we have presented, and the ongoing

technological trends tell us that the objective of using ring laser arrays for fundamental physics is a viable one and

the GINGER project and collaboration moves on the right path. An additional bonus for this type of measurements

is that they also provide a good amount of important information on the behaviour of the geophysics and geodesy of

our planet.

A General relativistic parameters of the planet Earth

From the general definitions we may express b as a function of a: b = k a2 = kGM⊕
c2R . The present knowledge about the

size and shape of the Earth is thoroughly exposed in [8] and the most recent data are in [6]. It is:

GM⊕ = 3.986004418(9)× 1014 m3/s
2

(42)

R = 6.373044737(1)× 106 m (43)

k = 0.3307(5) (44)

R is assumed to be the mean squared radius of an ellipsoid.

The values of the parameters are then

a = 1. 391 808 224 5(20)× 10−9 (45)

b = 2. 301 3 26(700)× 10−10 (46)

These results do not include the systematic effect due to the non-sphericity of the Earth.
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