A METHODOLOGY TO DISAGGREGATE SPEED DATA COLLECTED BY

 ROAD DETECTORSCatani L., Tremblay J.-M., Bassani M., Cirillo C
POLITECNICO DI TORINO

BACKGROUND, MOTIVATIONS AND OBJECTIVES

- Speed is the fundamental parameter in road design, traffic operation and control, and road safety.
- Speed data acquisition are performed by several methods (magnetic, pneumatic, laser, video, etc.) that may collect data in aggregate or disaggregate form; each method has different functionalities, costs, and accuracies.
- Aggregate data conceal information about the real trend of discrete values, that are more powerful for operating purposes.

Algorithm that computes disaggregate values from aggregate speed samples by considering different statistical distributions. Such individual speeds are necessary to operate with continuous distribution functions and to derivate basic descriptive measures.

METHODOLOGY

The algorithm has been provided for three statistical distributions (Normal, Lognormal, and Gamma) usually employed for speed modeling. It was developed by using R software v3.1.1.

Generation of speed sample
 according to counts
 (inverse transform sampling)

Definition of counts. Assuming that V_{j} are observed speeds that follow a particular distribution f, characterized by a parameter θ
$V_{1}, V_{2}, \ldots V_{j}, \ldots, V_{n}$ iid $f(\theta) \quad$ for $j=1,2, \ldots, n$
Defining the speed thresholds T_{i}, the counts of vehicles c_{i} are defined as: $c_{i}=\sum_{j=1}^{n} I\left\{V_{j} \in\left[T_{i}, T_{i+1}\right]\right\} \quad$ for $i=1,2, \ldots, k$ $I\left(V_{j}\right):=\left\{\begin{array}{l}1 \text { if } V_{j} \in\left[T_{i}, T_{i+1}\right] \\ 0 \text { if } V_{j} \notin\left[T_{i}, T_{i+1}\right]\end{array}\right.$
Maximum Likelihood Estimation method. The Log-Likelihood (LL) function and the estimated parameter $\hat{\theta}_{M L E}$ are respectively:
$L L(\theta)=\sum_{i=1}^{k} c_{i} \cdot \log \left[F\left(T_{i+1} ; \theta\right)-F\left(T_{i} ; \theta\right)\right]$
$\hat{\theta}_{M L E}=\arg \max _{\theta} \sum_{i=1}^{K} c_{i} \cdot \log \left[F\left(T_{i+1} ; \theta\right)-F\left(T_{i} ; \theta\right)\right]$
Inverse Transform Sampling technique to compute individual speeds according to the distribution parameter and the sample size.

$$
V=F^{-1}(u) \quad \text { where } u=\left(\frac{1}{c_{i}+1}, \ldots, \frac{i}{c_{i}+1}, \ldots, \frac{c_{i}}{c_{i}+1}\right)
$$

Example. Speed sample of 350 data.
Parameters estimated by Salter and Hounsell (1) methodology

Parameters	mean, \bar{v}	std.dev, s
20	$79.9 \mathrm{~km} / \mathrm{h}$	$11.5 \mathrm{~km} / \mathrm{h}$
5	$80.3 \mathrm{~km} / \mathrm{h}$	$13.4 \mathrm{~km} / \mathrm{h}$

Parameters estimated through the proposed algorithm
(1) Salter, J., and N. B. Hounsell. Highway Traffic Analysis and Design, 3rd ed. Palgrave Macmillan, Houndmills, 1996. ISBN 0333609034

ACKNOWLEDGEMENTS $\begin{aligned} & \text { The work included in this paper has been supported by the Compagnia di San Paolo (taly) and the Politecnico di Torino under the } \\ & \text { grant "Bando per il Finanziamento di Progettici internazionalizzazione della Ricerca"', approved with the Rectoral Decree n. } 208 \text { of the }\end{aligned}$ grant "Bando per il
24th of May, 2013 .

viate from the equality line, the data close to the

- average are very close to it. As expected, the algorithm works reasonably well and sometimes very well for the speed located across the central speed classes.
Some measures of accuracy (MPB, MAD, SDE, MPE) were used to provide information on the goodness-of-fit between observed and modeled data.
These indexes confirm the results of statistical analysis performed on observed samples, or rather there is no one distribution that fits better with respect to the others.

CONCLUSIONS aggregation, while some discrepancies are noticed in the standard deviation
the choice of the statistical distribution which best interprets the field observations may be made on the basis of
accuracy measures such as those considered in this manuscript;
the proposed algorithm facilitates the construction of databases of individual data that are essential for conducting a variety of investigations which deal with speed analysis.

