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Abstract—The statistics of indefinite quadratic forms in Gaus-
sian vectors are of particular relevance as they often occur in
signal processing, wireless communications, information theory
and adaptive filter theory. Very recently their distribution has
been characterized in closed form in [1]. In this work, we extend
such results to the case of indefinite quadratic form with random
kernel matrix. We focus on Rayleigh quotients in random ma-
trices commonly met in MIMO communications. As an instance
of practical application of our findings, the gap between the
multiuser efficiency of a MIMO linear Minimum Mean-Squared
Error (MMSE) receiver and the corresponding efficiency in the
Zero Forcing (ZF) case, is statistically characterized in the finite-
size setting for the first time.

I. INTRODUCTION

Since the pioneering investigation in [2], Minimum Mean-
Squared Error (MMSE) and Zero Forcing (ZF) receivers have
been proven to give different performance in terms of outage
and error probability even at asymptotically high Signal to
Noise Ratio (SNR). In [2], assuming independent stream
decoding in a multi-antenna link affected by Rayleigh fading,
the authors have focused on the high-SNR statistics of the per-
stream SNR gap between the output of a MIMO MMSE filter
and a ZF filter. A non-asymptotic analysis of such a gap has
been developed in [3], for different interfering stream fading
models and for arbitrary SNR values.

Specifically, the analysis in [3] relies upon early results in
the characterization of (in general matrix-valued) quadratic
forms in normal vectors [4], and it is extended to the case
of randomly distributed kernel matrix. In particular, kernel
matrices considered in [3] represent the impact of interfering
streams random covariance, within a single-stream decoding
setting. According to the findings in [2], error and outage
probability offset due to the mentioned SNR gap, have been
mainly investigated in [3]. Furthermore, by assuming the
desired and the interfering streams to follow far-field het-
erogeneous fading laws, the authors have paved the way
to the analysis of a multiuser setting. In this framework, a
key parameter is the multiuser efficiency, which, for linear
receivers, takes the form of, e.g., [5, Eq. (18)]. While error and
outage probability can be evaluated as functions of the above
mentioned SNR gap (see e.g., [2, Eqq.(39),(52)]), multiuser
efficiency characterization boils down to the study of a ratio
of quadratic forms, otherwise known as Rayleigh quotient in
linear algebra [6].

A closed-form expression for the cumulative density func-
tion (cdf) and the corresponding probability density function
(pdf) of a ratio of quadratic forms have been provided only
very recently, as a by-product of a deep investigation on
quadratic forms1 in indefinite matrices [1]. We herein further
extend the results in [1], by assuming the kernel matrix of the
quadratic form at the numerator of the ratio to be random.
By doing so, we achieve our starting goal of providing an
expression for the pdf of the multiuser efficiency gap between
MMSE and ZF receivers. Numerical results, referring to a
spatially correlated Rayleigh fading scenario, complement and
validate our analysis. We also remark that the proof technique
is of independent interest for further applications in both the
signal processing and the multivariate statistics domain, and
provide a further instance of application of multiple integral
simplification lemmas appearing in the milestone paper [7].

The paper is organized as follows. The next section intro-
duces the system model and the definition of the multiuser
efficiency gap. Section III illustrates the derivation of the cdf
expression for the standard Rayleigh quotient of a random ma-
trix, and includes remarks on the distribution of a generalized
Rayleigh quotient. Numerical results are presented in Section
IV, while conclusions are provided in Section VI.

Notation: Boldface uppercase and lowercase letters denote
matrices and vectors, respectively. I is the identity matrix.
The determinant and the conjugate transpose of the generic
matrix A are denoted by |A| and AH, respectively, while
Ai,j is the (i, j)-th element of A. Moreover, Ea[·] represents
the average operator with respect to the random variable
a. For any m ⇥ m Hermitian matrix A with eigenvalues
a = [a1, . . . , am], the Vandermonde determinant is defined
as: V(A) =

Q
1k<`m(ak � a`). For simplicity, the Vander-

monde determinant V(A) is also denoted as V(a).
The complex multivariate Gamma function is defined as

[9]: �p(q) = ⇡p
Qp

`=1(q � `)! , with p and q non-negative
integers such that pq, and ⇡p = ⇡p(p�1)/2. fa(a) denotes
the pdf of the scalar random variable a (for the pdf of random
matrices, we drop the subscript). Finally, a ⇠ b indicates that
two variables a and b share the same distribution.

1For sake of compactness, herein we only discussed the (very limited)
number of references on indefinite quadratic forms. For a detailed literature
analysis, we refer the interested reader to [1, Sec.I.A,B], which surveys
the state-of-art and discusses the different approaches to quadratic forms
characterization.



II. MULTIUSER EFFICIENCY GAP

Multiuser efficiency is a merit figure widely investigated
in early analysis of wireless multiuser systems, since its very
first definition in [10] for the optimal receiver. Recently, it
has been gaining new attention, due to its interesting possible
connection with compressed sensing problems [11]. In the
context of linear receivers, multiuser efficiency is defined as
the ratio between the achieved Signal to Interference and Noise
Ratio (SINR) and the corresponding SNR in absence of other
users interference, for each independently decoded user. We
focus on a MIMO system with nt transmitters and nr � nt

receivers, represented by the input-output relationship:

y = Hx+ n , (1)

where the received signal vector y is of length nr, H is the
nr⇥nt random channel matrix, x is a random input vector of
size nt with covariance E[xxH

] = Es/ntI, and n represents
Gaussian noise with covariance E[nnH

] = N0I.
In case of independent stream decoding, the output SINR

corresponding to the k-th transmitted signal stream can be
expressed for the MMSE and, respectively, for the ZF receiver
as [12, Ch. 6]:

�mmse
k =

1h
(I+�HHH)

�1
i

k,k

�1, �zfk =

�h
(HHH)

�1
i

k,k

,

(2)
where � =

Es
ntN0

. The difference of the above quantities is
referred to as SINR gap and is defined as [2], [13]

⌫k = �mmse
k � �zfk . (3)

The SINR gap is a non-decreasing function of the SNR,
accounting for the energy nulled out by the ZF but not by
the MMSE receiver.

The multiuser efficiency achieved by the k-th stream is
given by the ratio between the corresponding SINR and the
SNR in absence of other-stream interference, i.e.,[5, Eq. (18)]

⌘mmse
k =

�mmse
k

�khkk2
, ⌘zfk =

�zfk
�khkk2

(4)

where hk is the k-th column of H. In analogy with the SINR
gap, one can naturally define the multiuser efficiency gap from
(3) and (4) as follows

µk = ⌘mmse
k � ⌘zfk =

⌫k
�khkk2

. (5)

Let Hk be the nr ⇥ (nt � 1) matrix obtained by removing
the column hk from H. Let Hk = Uk⌃kVk

H be the singular
value decomposition of Hk, where Uk is an nr ⇥ nr unitary
matrix. Moreover, let � = [�1, . . . ,�nt�1] be the nt � 1 non-
zero eigenvalues of HkHk

H.
Then the multiuser efficiency gap can be rewritten as the

ratio of two quadratic forms as proposed in [2, Eq.(26)], i.e.,

µk =

hk
HAhk

khkk2
, (6)

where A = UkLUk
H, and the nr ⇥ nr diagonal matrix L is

given by

L = diag

0

@↵1, . . . ,↵nt�1| {z }
↵

, 0, . . . , 0| {z }
nr�nt+1

1

A

and
↵i = (1 + ��i)

�1 i = 1, . . . , nt � 1 . (7)

For the sake of simplicity, in the following we assume a
square channel matrix, i.e. nt = nr = n. In such a case
the matrix A has eigenvalues [↵, 0], with ↵i > 0 for i =

1, . . . , nt � 1.
Being both the numerator and the denominator in (6)

quadratic forms in hk, µk can be expressed as a Rayleigh
quotient, whose main properties are summarized in the next
subsection, as a preliminary stage toward its characterization.

III. RAYLEIGH QUOTIENT CHARACTERIZATION

Given a square Hermitian matrix A of size n, with ordered
eigenvalues a1 � . . . � an, and a complex vector v of length-
n, the ratio

r(A,v) =
vHAv

kvk2 (8)

is defined as Rayleigh quotient of A with respect to v.
A relevant relationship between r and the spectrum of A
holds [6], namely

an  r(A,v)  a1 .

Rayleigh quotients with deterministic A and v have been
largely studied [6]. A first compact characterization of the pdf
and of the cdf of r(A,v), when v is random, has been recently
derived in [1, Sec.VII.A], under various assumptions on the
pdf. The whole analysis in [1] assumes a deterministic matrix
A. Some of the possible applications in wireless communi-
cations, among which multiuser efficiency characterization,
call instead for the study of r(A,v) when both A and
v are randomly distributed. We hereinafter recall the result
from [1] and, later, we detail the procedure to get a statistical
characterization of (8). We do so under Gaussian assumption
for v as well as some assumptions on the statistics of A,
tailored to the multiuser efficiency problem at hand.

Let us consider the cdf of the Rayleigh quotient, i.e.,
Fr(z) = P(r  z), with z � 0, and A a random square
Hermitian matrix with eigenvalues a = [a1, . . . , an]. Follow-
ing [1], one easily gets

Fr|A(z) = P (r  z|A)

= P
✓
vHAv

kvk2  z|A
◆

= P
�
vH

(A� zI)v  0|A
�
. (9)

It is evident that Rayleigh quotient characterization boils
down to the study of the sign probability of the quadratic
form vH

(A� zI)v. Under the assumption of v following
a standard complex Gaussian multivariate distribution, with



uncorrelated elements, the cdf of r(A,v) coincides with the
cdf of vH

(A� zI)v evaluated at 0. Using [1, Eq.(48)], we
therefore write:

Fr|A(z) = 1�
nX

`=1

(a` � z)n u (a` � z)Qn
j=1,j 6=` (a` � aj) |a` � z|

(10)

where u(·) is the Heaviside step function. Eq. (10) holds only
when the eigenvalues of A are all distinct2, which is our case
since we assume a = [↵, 0] and the eigenvalues ↵ to be
positive and distinct with probability 1. For a = [↵, 0] and
z > 0, we can then rewrite (10) as

Fr|A(z) = Fr|↵(z) = 1�
n�1X

`=1

(↵` � z)n�1 u (↵` � z)

↵`
Qn�1

j=1,j 6=` (↵` � ↵j)
(11)

Observe that in our case (11) only depends on ↵ therefore we
can write Fr|A(z) = Fr|↵(z).

Taking into account the randomness of the matrix A, the
cdf of r(A,v) can be obtained by averaging Fr|↵(z) over the
distribution of ↵. In practice

Fr(z) = E↵ [P (r < z|↵)]

=

Z

An�1

Fr|↵(z)f↵(↵) d↵ . (12)

where f↵(↵) is the distribution of the unordered eigenvalues
↵ and A ⇢ R+ is the support of the generic eigenvalue ↵.
Of course, the expression of the integral in (12) will depend
on the postulated f↵(↵), which, in turn, is tailored to the
specific application one has in mind. By using the definition
of the Vandermonde determinant, it is easy to show that

V(↵) = (�1)

n�1�`V(↵`)

n�1Y

j=1,j 6=`

(↵` � ↵j)

where ↵` = [↵1, . . . ,↵`�1,↵`+1, . . . ,↵n] for ` = 1, . . . , n�1.
Then we can rewrite the expression of Fr|↵(z) as

Fr|↵(z) = 1�
n�1X

`=1

(�1)

n�1�`V(↵`)

↵`V(↵)

(↵` � z)n�1 u(↵` � z) .

(13)
The expectation with respect to ↵, is accomplished in the

following proposition, assuming a quite general3 model for the
distribution of ↵.

Proposition 3.1: Let us consider the Rayleigh quotient
r(A,v) in (8) where A is an Hermitian random matrix with
eigenvalues a = [↵, 0] and v is a standard complex Gaussian
vector of size n with uncorrelated entries. Assume that the
joint law of the n� 1 (distinct) non-zero, unordered, positive
eigenvalues ↵ = [↵1, . . . ,↵n�1] of A, can be written as

f↵(↵) = K|�(↵)|V(↵)

n�1Y

i=1

 (↵i) , (14)

2For the case of multiple eigenvalues, the reader is referred to the more
general derivation provided in [1, Eq.(30)].

3We indeed consider matrix A to belong to a so-called polynomial ensemble

of random matrices. This ensemble contains Wishart matrices and, in general,
matrices largely adopted in wireless communications since early MIMO
analysis [14, and references therein].

where �(↵) is an (n�1)⇥(n�1) matrix whose generic i, j-
th entry can be expressed as �i(↵j), and K is a normalization
constant. Then the cdf and the pdf of r(A,v) admit the
following closed-form expressions

Fr(z) = 1�K(n�1)!

n�1X

h=1

(�1)

n�1+h|Fh|Ih,n(z) , (15)

fr(z) = K(n�1)(n�1)!

n�1X

h=1

(�1)

n�1+h|Fh|Ih,n�1(z) .

(16)

In (15) and (16), Fh is a square matrix of size (n�2)⇥(n�2)

and generic entry

(Fh)i,j =

8
>><

>>:

Z

A
↵j�1�i(↵) (↵) d↵ 1  i < h

Z

A
↵j�1�i+1(↵) (↵) d↵ h  i  n� 2

(17)
while

Ih,q(z) =
Z

[z,+1)\A
�h(↵) (↵)

(↵� z)q�1

↵
d↵ . (18)

Proof: We first observe that the term |�(↵)| can be
rewritten by using the Laplace expansion over the `-th row
of �(↵), i.e.,

|�(↵)| =
n�1X

h=1

(�1)

h+`�h(↵`)Dh,`(↵`)

where Dh,` denotes the h, `-th co-factor (see e.g. [6, (0.3.1)])
in the determinant of �(↵). We evaluate Fr(z) by plug-
ging (14) and (13) into (12). By doing so, we get

Fr(z) = 1�K
n�1X

`=1

n�1X

h=1

(�1)

n�1+h ·

Z

An�2

V(↵`)Dh,`(↵`)

n�1Y

i=1,i 6=`

 (↵i) d↵`

Z

A
�h(↵`) (↵`)

(↵` � z)n�1

↵`
u(↵` � z) d↵`

(19)

where all terms depending on ↵` are collected in the second
integral. The integral over ↵` can be performed by using the
result in [7, Corollary I], thus obtaining

Z
V(↵`)Dh,`(↵`)

n�1Y

i=1,i 6=`

 (↵i) d↵` = (n� 2)!|Fh|

where the elements of (Fh)i,j are given in (17)4.
The integral over ↵` can be immediately rewritten as in (18).

Since both |Fh| and Ih,n(z) are independent of `, the sum over

4Notice that, by definition of co-factor, the matrix whose determinant we
denote by Dh,`(↵`) is obtained from �(↵), by deleting its h-th row and its
`-th column.



` reverts to a factor n�1. Then (15) follows. The density fr(z)
is readily obtained by taking the derivative of Fr(z) in (19).

fr(z) =

d

dz
Fr(z)

= �K(n�1)!

n�1X

h=1

(�1)

n�1+h|Fh|
d

dz
Ih,n(z)

= K(n�1)(n�1)!

n�1X

h=1

(�1)

n�1+h|Fh|Ih,n�1(z)

The last equality follows from the definition of Ih,n(z) and
from the rules of differentiation under integral sign.

IV. EXPLOITATION OF THE ANALYTICAL RESULT

Our previous proposition has an immediate application
in the multiuser efficiency characterization. For this to be
effective, it is sufficient to pick a fading law to particularize
(14) and henceforth evaluate the integrals in (18). Note that,
as largely observed in the literature (see e.g., [14], [15]),
(14) embodies most of the micro-wave fading models in the
MIMO case. Mirroring the assumptions of Proposition 3.1,
we assume the intended stream to be affected by uncorrelated
Rayleigh fading, and investigate different fading laws affecting
the interfering streams.

A. Rayleigh-faded interferers

For sake of simplicity, we start the analysis from the case
of uncorrelated Rayleigh-faded interference. This translates in
hk in (6) following a standard multivariate complex Gaussian
distribution, with uncorrelated elements. The joint distribution
of the n� 1 non-zero random eigenvalues of HkHk

H can be
instead written as [19]

f�(�) = V2
(�)

n�1Y

i=1

e

��i�i , (20)

where

 =

⇡2
n�1

(n� 1)!�n�1(n� 1)�n�1(n)
.

We now need to map the distribution of � into that of ↵ by
using (7) which, solved for �i, provides

�i =
1

�↵i
� 1

�
(21)

for i = 1, . . . , n� 1. We then obtain [16, Chap. 7]

f↵(↵) = |J|f�(�) (22)

where |J| is the absolute value of the determinant of the
Jacobian matrix characterizing the change of variable from
� to ↵. In practice Jij =

d�i
d↵j

. By differentiating (21), we
obtain d�i

d↵i
= � 1

�↵2
i

. Since d�i
d↵j

= 0 for i 6= j, we have

|J| = 1

�n�1
Qn�1

i=1 ↵
2
i

.

Moreover, we observe that

V(�) =

Y

1i<j<n�1

(�j � �i)

=

Y

1i<j<n�1

✓
1

�↵j
� 1

�
� 1

�↵i
+

1

�

◆

=

Y

1i<j<n�1

↵i � ↵j

�↵i↵j

=

(�1)

(n�1)(n�2)/2V(↵)

�(n�1)(n�2)/2
Qn�1

i=1 ↵
n�2
i

. (23)

By substituting these results in (22), we get

f↵(↵) =

e(n�1)/�

�n(n�1)
V2

(↵)

n�1Y

i=1

e

�1/↵i�

↵2n�1
i

(1� ↵i) . (24)

At last, we observe that �i 2 R+ for i = 1, . . . , n�1 and, by
the transformation law given in (7), we have ↵i 2 A = [0, 1].
By comparing (24) to (14), we identify the following terms

|�(↵)| = V(↵), �i(↵j) = ↵i�1
j ,  (↵i) =

e

�1/↵i�

↵2n�1
i

(1� ↵i).

Moreover,

K =

e(n�1)/�

�n(n�1)
.

Upon replacement, where needed, of the above expressions
into (17) and (18), one obtains

(Fh)i,j =

8
>>><

>>>:

Z 1

0
(1� ↵)

e

� 1
↵�

↵2n�i�j+1
d↵ 1  i < h

Z 1

0
(1� ↵)

e

� 1
↵�

↵2n�i�j
d↵ h  i  n� 2

(25)
while

Ih,q(z) =
Z 1

z
(1� ↵)(↵� z)q�1 e

� 1
↵�

↵2n�h+1
d↵ . (26)

B. Spatially correlated interferers

Moving to a slightly less homogeneous scenario, we postu-
late that, while the useful signal stream undergoes uncorrelated
Rayleigh fading, interference is coming from a bunch of
spatially correlated users. This occurs, e.g., when interfering
transmitters are located in close proximity to each other, but
well spatially separated from the useful signal source. In
particular, for nt = nr = n, the distribution of the unordered
eigenvalues � is given by

f�(�) = V (�) |E|
n�1Y

i=1

�i , (27)

with [9]
 =

⇡n�1

(n� 1)!�n�1(n)V(⇥)|⇥|2 .

In the above expressions, ⇥ is the common covariance of
each column of Hk, whose eigenvalues are denoted by
{✓1, . . . , ✓n�1}, and the generic entry of the matrix E is given



by Ei,j = e

��i/✓j . Under these assumptions on the fading
model, the density of ↵ can be written as

f(↵) =

(�1)

(n�2)(n�1)/2)

�(n�1)(n+2)/2
V(↵)|eE|

n�1Y

i=1

1� ↵i

↵n+1
i

, (28)

with
eEi,j = exp

✓
↵i � 1

�↵i✓j

◆
.

By comparing this expression to (14), we identify the follow-
ing terms:

�(↵) =

eE, �i(↵j) = exp

✓
↵i � 1

�↵i✓j

◆
,  (↵i) =

1� ↵i

↵n+1
i

.

Moreover,

K = 
(�1)

(n�1)(n�2)/2)

�(n�1)(n+2)/2
.

As a consequence, Fr(z) can be determined by evaluating

(Fh)i,j =

8
>>><

>>>:

e

1
�✓i

Z 1

0

1� ↵

↵n�j+2
e

� 1
✓i↵�

d↵ 1  i < h

e

1
�✓i+1

Z 1

0

1� ↵

↵n�j+2
e

� 1
✓i+1↵�

d↵ h  i  n�2

(29)
while

Ih,q(z) = e

1
�✓h

Z 1

z

e

� 1
✓h↵�

(↵� z)q�1

↵n+2
(1� ↵) d↵ . (30)

V. RESULTS

We now validate our analysis through numerical simulation.
Figure 1 shows the cdf of the Rayleigh quotient in the
presence of uncorrelated Rayleigh-faded interferers. Analytical
results are denoted by lines (either solid or dashed), while
numerical results are represented by circle-shaped markers.
The agreement between analytical and numerical results is
excellent, for any value of the number of antennas n and of
the SNR Es/N0. Furthermore, as expected, low values of the
Rayleigh quotient become more likely as Es/N0 increases,
as well as, given Es/N0, for a smaller number of antennas.
Figures 2 and 3 depict the cdf and pdf, respectively, of the
Rayleigh quotient for the case where interferers are correlated
and Rayleigh faded. Here we set ✓i =

2i
n(n�1) , i.e., such

that
Pn�1

i=1 ✓i = 1. We observe that when the SNR increases
the difference between the performance of ZF and MMSE
receivers tend to vanish, i.e., smaller values of r are more
likely. A similar effect occurs as the number of antenna
decreases.

VI. CONCLUSION

We provided closed-form statistics for the Rayleigh quotient
of a random matrix with respect to a Gaussian uncorrelated
vector, in the complex case. As an immediate application of
our result, the gap in terms of multiuser efficiency achievable
by MMSE and ZF receivers is statistically characterized for
the first time in closed form, and for a large class of fading
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Fig. 1. Cumulative distribution function of the Rayleigh quotient under
Rayleigh-faded uncorrelated interferers.
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Fig. 2. Cumulative distribution function of the Rayleigh quotient under
Rayleigh-faded correlated interferers.

distributions. Assuming the intended stream to be Rayleigh-
faded, we first analyze a totally homogeneous case, where
all interfering streams undergo uncorrelated Rayleigh fading;
then we move to a correlated Rayleigh fading for the in-
terference. Numerical results validate our analysis in both
cases. Exploitation of our results on Rayleigh quotient in
both cognitive radio strategy analysis, as well as in stochastic
networks performance evaluation, are subject of our ongoing
work.
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