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Abstract

The reliable prediction in probabilistic terms of the aeolian events magnitude is a key element for human activities in
arid regions. Threshold shear velocity is in turn a key component of such a prediction. It suffers the effects of a number
of uncertainties, such as the ones related to the physical phenomena, measurement procedures, and modelling. Semi
empirical models are often fitted to a small amount of data, while recent probabilistic models needs the probability
distribution of a number of random variables. Triggered by this motivation, this paper proposes a purely statistical
approach to threshold shear velocity for sands, treated as a single comprehensive random variable. The data ensemble
is defined collecting a huge number of studies available in literature. Estimates of probability density functions of
threshold shear velocity for given sand classes are obtained. The obtained statistical moments are critically compared
to some deterministic semi empirical models refitted to the same collected data. The proposed statistical approach
allows to obtain high order statistics useful for practical purposes.

Keywords: windblown sand, saltation, threshold shear velocity, uncertainty, statistics

1. Introduction1

Aeolian sand transport is a complex process that is induced by the interaction between subfields such as wind,2

air suspended particles and bed-particles. It contributes to soil erosion and landform evolution. Understanding and3

modeling its features is of fundamental interest in many research fields. Beside the importance of windblown sand4

and dust to the Earth sciences (Kok et al., 2012), from the engineering perspective, simulating windblown sand5

phenomena is relevant because of the interaction with a number of human activities and related infrastructures in arid6

environments (e.g. Middleton and Sternberg, 2013; Rizvi, 1989; Alghamdi and Al-Kahtani, 2005; Zhang et al., 2007;7

Cheng and Xue, 2014). In the infrastructure design perspective and within a probabilistic approach to design, the8

engineer is interested in relating a sand erosion or transport condition to a given, preferably low enough, probability9

of exceedance.10

Among the transport mechanisms responsible of sand transport, saltation largely prevails in term of sand mass. The11

evaluation of the involved sand flux is usually given in term of sand transport rate by several laws, revised e.g. in12

Dong et al. (2003); Kok et al. (2012); Sherman and Li (2012). Most of such laws require the definition and evaluation13

of the fluid or static threshold, i.e. the value of the wind shear stress at which saltation is initiated. Usually, such a14

threshold is given in terms of fluid threshold shear velocity u∗t. In turn, such a threshold value depends on a number15
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of parameters belonging to both the wind and sand subfields.16

Several authors have investigated such dependencies and proposed fluid threshold models, many of them reported e.g.17

in the overviews by Shao (2008); Pye and Tsoar (2009); Merrison (2012); Kok et al. (2012).18

Systematic experimental studies addressed to u∗t versus the grain diameter d were carried out by e.g. Bagnold (1937),19

Chepil (1945), Zingg (1953), Fletcher (1976), Iversen et al. (1976). These measurements ground the consolidated20

literature data base. They are reported in Figure 1. A significant scatter among data can be observed notably at low21

values of the particle diameter. However, two general trend can be observed, divided by a local minimum at about22

75-100µm (Kok et al., 2012).23

A number of deterministic models of the threshold shear velocity have been proposed in literature so far. They24

can be categorized in two classes with respect to both modelling scale and goal. Microscopic models discuss the25

equilibrium of the moments of the forces acting on the single particle resting on a bed of other particles (Shao,26

2008). They aim at pointing out the physical phenomena underlying each force and at modelling it. In a general27

framework, entraining aerodynamic forces (drag and lift ones) induce saltation, while stabilizing forces (gravitational28

and the interparticle ones) counteract them (Greeley and Iversen, 1985; Shao and Lu, 2000). On one hand, the29

effective gravitational force including buoyancy, and the drag force correspond to well known phenomena and their30

modelling is widely accepted, see e.g. Greeley and Iversen (1985) and the cited reviews. On the other hand, the31

same does not hold for the other forces: the resultant lift force results form the Saffman one (Saffman, 1965) and32

the lift induced by vortical structures; the overall interparticle force results from several kinds of forces, including33

van der Waals forces, water adsorption forces and electrostatic forces. Although interparticle forces are expected to34

scale with the soil particle size (e.g. Shao and Lu, 2000), their modelling for aspherical and rough sand and dust35

remains poorly understood (Kok et al., 2012). In particular, such forces depend upon a number of parameters such36

as surface cleanliness, surface roughness at micro/nano meter scale, air and grain humidity, mineralogy and surface37

contaminants affecting hydrophilicity (Merrison, 2012). Semi-empirical macroscopic models aim at approximating38

the threshold shear velocity trend versus the particle diameter. Some of them are compared to the experimental data39

in Figure 1(a). Because of the above modelling difficulties, they do not analytically include the contribution of lift and40

interparticle forces while they explicitly retain the gravitational and drag ones. Any other contribution is accounted41

for in a semi empirical approach by introducing one or more free parameter(s), and the value of the latter obtained42

by fitting experimental data. The pioneering Bagnold (1941) model involves a single dimensionless constant AB,43

i.e. independent from the grain diameter or, in other terms, from Reynolds number: a monotonic increasing trend of44

u∗t(d) results. The model by Iversen and White (1982) defines the same parameter A(Re∗t) as a piece-wise empirical45

function of the friction Reynolds number Re∗t to mimic the effects of lift and interparticle forces: the resulting u∗t(d)46

law is no longer monotonic and qualitatively reflect the trend of the experimental data. The model by Shao and Lu47

(2000) is more compact than the previous one. It neglects the Re∗t dependency, and at the same time generalizes the48

Bagnold one by introducing a novel correction term to account for the interparticle forces. A second dimensional49

constant free parameter γ [N/m] is included in the correction term. More recently, McKenna (2003) have considered50

the effect of soil moisture on the interparticle cohesive force by defining γ(∆P, d) as a function of the capillary-suction51

pressure deficit and of the grain diameter. Other laws of u∗t have been proposed for natural surfaces: they account52

for the effects of soil texture, soil moisture, salt concentration, surface crust, vegetation and/or pebbles on the surface.53

The review of such models is out of scope of the present paper: interested readers can refer to Shao (2008); Webb and54

Strong (2011).55

The probabilistic modelling approach is a promising alternative to the deterministic one, having in mind that the56

modelling difficulties outlined above are mainly due to the uncertainties which affect the sand-acting forces (Merrison,57

2012). We suggest to ascribe such uncertainties to distinct comprehensive sources of uncertainty, that are:58

• randomness of the grain features. Among these features, grain size distribution is traditionally recognized in59

literature as an important sand feature affecting u∗t (e.g. Edwards and Namikas, 2015, and included references),60

beside the mean diameter. In fact, smaller particles interspersed among the large particles provide additional61

cohesive forces in natural sands, resulting in higher threshold conditions (Roney and White, 2004). The early62

studies on u∗,t (e.g. Bagnold, 1937) usually assume nominally uniform sand, but this restriction clearly does not63

hold in a probabilistic framework. Others random/uncontrolled features are raised in literature, such as grain64

shape, surface microstructure (e.g. Duan et al., 2013), grain position relative to the other bed particles (Phillips,65

1980), grain mineralogy and surface cleanliness (Merrison, 2012);66
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Figure 1: Threshold friction velocity: experimental data (symbols) compared with semi-empirical deterministic models (a, redrawn after Kok
et al., 2012), and the probabilistic model by Duan et al. (2013) (b)

• the inborn variability of the environmental conditions even in wind tunnel facilities, e.g. air temperature and air67

relative humidity (e.g. Greeley and Iversen, 1985; Jones et al., 2002);68

• epistemic uncertainties due to modelling, measurement procedures and techniques adopted to evaluate the bulk69

granulometry (Blott and Pye, 2006; Zhang et al., 2014) and/or the threshold shear velocity (Barchyn and Hugen-70

holtz, 2011).71

The smaller the grain size, the major the role of the interparticle forces, the higher the expected effect of the above72

uncertainties on the threshold shear velocity. Having this qualitative dependency in mind, Shao (2008) conjectured73

that while it is meaningful defining a threshold shear velocity as a single value for sand-sized particles, it is not mean-74

ingful to do the same for dust particles. This conjecture seems to be confirmed by the scatter of the experimental75

data at low values of d even for a common nominal setup condition (Figure 1a). Zimon (1982) first suggested to76

treat cohesive forces acting upon dust particles as random variables (r.v.s). He argued from experimental data that77

the cohesive forces probability distribution can be approximated by a lognormal one. Following Zimon’s findings,78

Shao (2008) assumed that also the threshold shear velocity is log-normally distributed. Such an assumption looks79

questionable from an analytical point of view even by assuming the cohesive force the sole random variable among80

the grain acting forces: in fact, u∗t does not result from a simple rescaling of the cohesive force.81

Fueled by these problem features, Duan et al. (2013) have recently proposed a probabilistic model for threshold shear82

velocity. The study is grounded on a microscopic model, where the drag force, the electrostatic force, the gravity83

force and the cohesion force are described as functions of four microscopic r.v.s owing to the random nature of the84

microstructure of soil surface, of the particle shape and of positions in the bed irregular particle. The threshold85

shear velocity is then expressed as a function of these random quantities, some of them independent, some dependent,86

and its Probability Density Function (PDF) then evaluated through a statistical estimation of the distributions of the87

predictors. Subsequently, the mean value and standard deviation of the threshold shear velocity are fitted as functions88

of d. On one hand, the innovative model by Duan et al. (2013) has the merit to tackle for the first time the statistical89

characterization of the threshold shear velocity. On the other hand, the obtained results (Figure 1b) are not not entirely90

convincing. First, at very low values of d, mean value minus standard deviation µ(u∗t) − σ(u∗t) is negative, while91

u∗t ∈ R+. Second, the standard deviation σ(u∗t) is monotonically increasing for d ≥ 100 µm and asymptotically tends92

to 0.132, while the scatter of experimental data clearly decreases for increasing d. Third, the mean µ(u∗t) is a linear93

function of d for d > 100 µm, while its deterministic counterpart, i.e. the nominal values obtained by semi-empirical94

macroscopic models, is not. Finally, the study of Duan et al. (2013) does not evaluate high order statistical moments95

of the threshold shear velocity, i.e. skewness. In our opinion, such critical features can be ascribed to both modelling96

and technical difficulties. Among the former ones, the challenging task in writing a microscopic model inclusive of97

all the r.v.s affecting the sand grain acting forces. Among the second ones, the difficulties in obtaining probability98
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distribution for each microscopic r.v. from measurements and in handling mutually dependent r.v.s.99

According to the authors, three main questions rise from the state of art briefly reviewed above: i. Is the determin-100

istic approach able to face to the sources of uncertainties introduced above? ii. Is a statistical approach to the threshold101

shear velocity required only for dust particles or for sand-sized particles too? iii. How to overcome the difficulties102

encountered by probabilistic mechanical models in handling a number of microscopic r.v.s?103

The present study aims at contributing in shedding some light on such issues. The deterministic approach is criti-104

cally reconsidered in the light of a huge collection of experimental measurements. Then, a purely statistical approach105

to threshold shear velocity is proposed, where the effects of all kinds of uncertainty sources are comprehensively106

included and merged. Finally, the two approaches are compared.107

The paper develops accordingly to the above objectives through the following sections. In Section 2 the collected108

measurements and the resulting ensemble of selected data are described. In Section 3 some semi-empirical macro-109

scopic models are refitted to the ensemble by means of non-linear regression. In Section 4 the statistical description of110

the threshold shear velocity is given by referring to both analytical distributions (Subsect. 4.1) and the non-parametric111

one (Subsect. 4.2). The deterministic and statistical approach are critically compared in Section 5, while conclusions112

and research perspectives are outlined in Section 6.113

2. Data collection and ensemble setting114

The data already collected in Figure 1 are complemented by additional experimental measures collected from re-115

view papers (Kok et al., 2012; Edwards and Namikas, 2015) and studies addressed to the evaluation of sand transport116

rate for single particle diameters. Table 1 summarizes in chronological order the considered studies, while the com-117

plete ensemble of retained sand experimental measurements of u∗t is plotted in Figure 2(a) versus d.118

All studies test nominally dry granular matters. Except for Fletcher (1976) and Iversen et al. (1976), granular matter

Table 1: Collected setups: reference paper, number of samples, reference diameter

# d [mm]
Bagnold (1937) 6 0.05 ≤ d ≤ 0.92
Chepil (1945) 11 0.02 ≤ d ≤ 1.57
Kawamura (1951) 2 0.25, 0.31
Zingg (1953) 5 0.20 ≤ d ≤ 0.72
Chepil (1959) 5 0.20 ≤ d ≤ 0.72
Belly (1964) 1 0.44
Kadib (1964) 1 0.15
Lyles and Krauss (1971) 3 0.24 ≤ d ≤ 0.72
Fletcher (1976) 7 0.01 ≤ d ≤ 0.31
Iversen et al. (1976) 33 0.01 ≤ d ≤ 3.09
Logie (1981) 4 0.15 ≤ d ≤ 0.43
Logie (1982) 1 0.24
Horikawa et al. (1983) 1 0.28
McKenna Neuman and Nickling (1989) 3 0.19 ≤ d ≤ 0.51
Nalpanis et al. (1993) 2 0.12, 0.19
Nicking and McKenna Neuman (1997) 1 0.20
Dong et al. (2002) 9 0.13 ≤ d ≤ 0.90
Dong et al. (2003) 9 0.13 ≤ d ≤ 0.90
Cornelis and Gabriels (2004) 3 0.16 ≤ d ≤ 0.36
McKenna Neuman (2004) 1 0.27
Roney and White (2004) 12 0.31 ≤ d ≤ 0.39

119

is sand and/or dust. For each considered study, the number # of the tested samples is given: an overall collection of120
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Figure 2: Threshold shear velocity measurements collected in literature (a), and their histograms for each sub-ensemble (b): fine (blue), medium
(red), coarse (green) sands

120 setups follows. For each setup, the cited papers provide the grain mean, or median, diameter. In order to account121

for the effect of different density of the grain constitutive materials, the equivalent particle diameter defined by Chepil122

(1951); Kok et al. (2012) is evaluated. In Table 1 and in the following the equivalent reference diameter is noted as d123

for the sake of conciseness. In the rest of the paper, d is treated as a deterministic quantity.124

A significant dispersion of the data can be easily observed in Figure 2(a), notably for fine and medium sands. In other125

terms, u∗t takes different values at the same d. Such a feature suggests the ensembles are potentially constituted by126

heterogeneous setups or, in other terms, setup parameters other than d are conjectured to affect the quantity of interest.127

As anticipated in Sect. 1, several uncertain/uncontrolled parameters can be detailed for the considered studies.128

• In the selected setups the grain size distribution is often qualitatively described, e.g. ”as uniform as possible”129

in Bagnold (1937), ”very well and poorly sorted” in Belly (1964), ”naturally graded” in Kawamura (1951).130

Such a qualitative description is usually complemented by the nominal size-range of grains (e.g. Bagnold,131

1937; Dong et al., 2003), while in some papers the cumulative grain size distribution is plotted (e.g. Belly,132

1964; Nalpanis et al., 1993; Kawamura, 1951; Nicking and McKenna Neuman, 1997; Roney and White, 2004).133

Recently, Edwards and Namikas (2015) have made an effort to evaluate a measure of the diameter variability134

by evaluating the sorting coefficient for a number of studies: in spite of some difficulties in obtaining such135

a measure from nominal size-range, it is worth recalling that non negligible variability (e.g. sorting≈ 0.05,136

coefficient of variation c.o.v. ≈ 0.12 in Chepil (1959)) results also from sieving addressed to obtain sands as137

uniform as possible. Even greater variability characterizes natural sands (e.g. sorting≈ 0.65, c.o.v. ≈ 0.35 in138

Kawamura (1951)). Other randomness of the grain features (e.g. grain shape, surface microstructure, grain139

position relative to the other bed particles, grain mineralogy) are not specified in the collected studies.140

• Air humidity during wind tunnel tests is given and systematically addressed only by Kadib (1964) to our best141

knowledge.142
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• Analogously, u∗t measurements and post processing techniques are heterogeneous among the studies (Blott and143

Pye, 2006; Zhang et al., 2014), Roney and White (2004) prove their effects on fluid threshold shear velocity by144

adopting three different techniques.145

• The quantitative definition of the fluid threshold shear velocity is not commonly adopted in all the studies, only146

Lyles and Krauss (1971) provide several u∗t values from visual observations depending on the kind of grain147

motion.148

In short, the experimental data ensemble is naturally and inevitably affected by a huge number of uncertainties,149

belonging to both physical setup and epistemic uncertainty.150

The present paper is devoted to the characterization of threshold shear velocity of sand only. Hence, setups adopt-151

ing dust, i.e. having d < 0.063 mm according to ISO14688-1:2002, are first discarded (empty light grey markers in152

Figure 2-a). An overall sand ensemble having # = 97 results. A deterministic dependency on d is clearly confirmed153

along the ensemble. Hence, on one hand, the definition of sub-ensemble is therefore advisable. On the other hand,154

the limited number of realization in the ensemble does not allow to define a huge number of sub-ensembles. Hav-155

ing these issues in mind, we gather realizations in three sand classes according to the common practice in aeolian156

geomorphology and referring to ISO14688-1:2002:157

• Fine sand (0.063 < d ≤ 0.2 mm), # = 27;158

• Medium sand (0.2 < d ≤ 0.63 mm), # = 58;159

• Coarse sand (0.63 < d ≤ 1.2 mm), # = 12.160

It is worth noting that ”very coarse” sand as defined by Friedman and Sanders (1978) is not included in the coarse161

sub-ensemble because scarceness of available experimental data. The histograms for each sub-ensemble are plotted162

in Figure 2(b). The adequateness of each sub-ensemble cardinality in providing accurate statistics will be carefully163

checked in the study.164

3. Deterministic approach: non-linear regression165

Prior to the statistical analysis of the sub-ensembles above, non-linear regression is applied to the whole collected166

data in order to refit some of the semi-empirical macroscopic models available in literature. The refitting objective is167

twofold: on the one hand, the field of application is limited to sands, i.e. on an entrainment physics simpler than the168

one governing dusts; on the other hand, model parameters are fitted to a number of data higher than the one originally169

adopted by the authors of the models. Bagnold (1941) (Eq.1) and Shao and Lu (2000) (Eq.2) models are selected170

because of their compactness, i.e. their dependence from a small number of empirical parameters (Ab, As and γ). The171

two semi-empirical models are172

u∗t = Ab

√
ρp − ρa

ρa
gd, (1)

173

u∗t = As

√
ρp − ρa

ρa
gd +

γ

ρad
. (2)

where ρp and ρa are particle and air density, respectively, and g is gravitational acceleration. Beside the single-valued174

estimates of a goodness of fit, for each model the prediction Confidence Intervals (CIs) are evaluated at 5th and 95th
175

percentiles, i.e. the interval within which the true value is expected to lie. Figure 3 compares the refitted laws to the176

original ones, while the corresponding model parameters are summarized in Table 2. The following remarks can be177

outlined:178

• generally speaking, the refitted laws predict higher values of u∗t for given d. It is worth pointing out that179

the ensemble includes a number of poorly sorted and natural sands, while the ensemble originally adopted by180

Bagnold (1941) and Shao and Lu (2000) were limited to sand as uniform as possible. Hence, interspersed small181

particles provide additional cohesive forces also for medium and coarse natural sands (Roney and White, 2004);182
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Table 2: Original and refitted model parameters

Original parameters Refitted parameters
Bagnold (1941) Shao and Lu (2000) Bagnold (1941) Shao and Lu (2000)

A [-] 0.100 0.111 0.127 0.125
γ [N/m] - 2.9 × 10−4 - 9.15×10−5

R2 - - 0.76 0.77

• both laws pretty agree for medium and coarse sands (d > 0.2 mm), i.e. they share both the asymptotic trend183

due to the common dependency of u∗t on
√

d, and the intercept, i.e. Ab = 0.127 ≈ As = 0.125. This finding184

is consistent with the spirit of the Shao’s model, whose corrective term γ/ρad is conceived to modify Banold’s185

model at low d only;186

• as regards Shao and Lu (2000) model, the refitted law predicts lower u∗t values for small d than the original one,187

because fitting is restricted to sands and exclude dusts. In other words, the refitted Shao’s law mimics herein188

only the sand physics, and its trend at low d is not driven by the dust physics, and notably by the very high189

values u∗t ≈ 0.5 m/s provided by Iversen et al. (1976) at d = 0.023, 0.034, 0.041 mm and u∗t > 1 m/s provided190
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by Fletcher (1976) at d = 0.008, 0.009 mm. A lower value of γ for the refitted law follows;191

• CI of the Bagnold fitting is quite narrow (being the model easily reducible to a linear regression model). On192

the contrary, CI for Shao’s model becomes wider as d decreases, because of the statistical uncertainty on the193

parameter γ in the term γ/ (ρad), which has its main effects for small values of d;194

• for both fittings R2 ≈ 0.76. This value, although satisfying, highlights a shortcoming of the deterministic195

approach: both laws cross over different kind of sands (fine, medium, coarse), while distinct regimes can be196

expected in each sand class, notably as regards data dispersion and skewness.197

4. Statistical approach198

In the following a statistical approach is proposed, having in mind the shortcomings of the deterministic approach,199

and the perspective practical needs in design infrastructures in arid environments. In fact, engineers are interested in200

evaluating low percentiles of u∗t, i.e. values having not-exceedance low probability, which reflect in high percentiles201

of the transport rate, i.e. values having an exceedance low probability.202

Within such an approach, each source of uncertainty and related microscopic parent r.v.s are not described in203

statistical terms, because of the lack of data. Conversely, the threshold shear velocity is adopted as a single compre-204

hensive r.v. On the one hand, its variability comprehensively includes and reflects the effects of all the parent r.v.s. On205

the other hand, the effects of a given single parent r.v. cannot be isolated.206

The statistics of u∗t are obtained for each sub-ensemble resulting from the sand grading as illustrated in Sect. 2.207

4.1. Analytical distributions fitting208

Since the probability distributions of u∗t for the three size ranges are a priori unknown, we first aim at assessing if209

a parametric distribution can be adopted to describe the threshold shear velocity for each kind of sand. The data in210

each sub-ensemble are fitted to some guess reference distributions by means of the maximum likelihood estimation211

method. The considered distributions are normal, lognormal, and Weibull. Figure 4(a), (b), (c) collects the empirical212

and fitted Cumulative Distribution Functions (CDF). In order to assess the goodness of the fit, two approaches are213

used.214

First, we employ the Anderson and Darling (1952) empirical distribution test because of the high weight placed215

on observations in the tails of distribution. The null hypothesis is never rejected, being the resulting p-values always216

greater than 0.1 for all tested distributions (with a range from 0.11 to 0.43 for fine sand, always greater than 0.5217

for medium sand, and with range a from 0.22 to 0.89 for coarse sand). In particular, for medium sand, the normal218

distribution obtains the largest p-value (p ≈ 0.88), while for coarse sand, the Weibull distribution is highly scored219

(p ≈ 0.89).220

However, having in mind the high levels of probability of errors of the second kind in goodness of fit tests like221

Anderson and Darling (1952) dealing with small samples, and the fact that we are interested in evaluating extreme222

percentiles of u∗t (notably, the low ones), a second analysis based on the so-called quantile q− q plots is adopted as an223

exploratory visual aid to assess the local goodness of fitting of the reference distributions (Figure 4-d, e, f). The q − q224

plots exam reveals that parametric distributions generally fail in describing experimental data. Only the goodness of225

normal fit is confirmed for medium sand (µ(u∗t) = 0.355 mm, σ(u∗t) = 0.068 mm) also close to the tails, while a226

significant departure of the Weibull quantiles from bisector is observed at the lower tail for coarse sand.227

4.2. Non-parametric distribution fitting228

Since most of the parametric distributions do not seem able to correctly fit data in the tails, we decide to adopt a229

non-parametric density estimation based on kernel methods.230
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Figure 4: Analytical distribution results: cumulative distribution functions (a), (b), (c), and q− q plots (d), (e), (f) for fine, medium and coarse sand

4.2.1. Adopted methods231

The PDF kernel estimate method is based on representation of the density as a weighted sum of the kind

f̂h(x) =

n∑
i=1

K
( x − xi

h

)
,

where the xi’s are the observed values, the kernel K is a suitable unimodal probability density symmetric about zero,232

while h is a suitable smoothing parameter known as the bandwidth of the estimate. While the choice of the kernel K233

seems not to affect too much a proper non-parametric estimate f̂ of the density f (commonly, Gaussian kernels are234

applied), the specific choice of the bandwidth h controlling the smoothness of the resulting density curve is extremely235

important, since the bias and the variance of the estimator f̂ strongly depend on h in a non-linear relation. In fact, the236

Mean Integrated Square Error (MIS E, Eq. 3)237

238

MIS E(h) = E
∫

( f̂h(x) − f (x))2dx, (3)

which provides a measure of the difference between the estimate density function and the true density, can be expressed239

as240

MIS E(h) =

∫
Bias2( f̂h(y))dy +

∫
Var( f̂h(y))dy, (4)
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where Bias( f̂h(y)) = c1h2 + o(h2) and Var( f̂h(y)) = c2
h + o( 1

h ), being c1 and c2 values depending on K and on the true241

density f (see Sheather, 2004, for details).242

Since the MIS E is not mathematically tractable, common methods for bandwidth selection employ the Asymptotic243

Mean Integrated Square Error (AMIS E), whose minimum as a function of h can be less hardly evaluated, as well as a244

variety of alternative automatic, data-based methods. Among all, the most common are Plug-In (PI) and Least Squares245

Cross-Validation (LSCV) bandwidth estimate methods. Both these two techniques provide good performances, but246

while LSCV often shows tendency to undersmooth, PI tends to oversmooth in the case of densities with high fluctua-247

tions (see, again Sheather, 2004), as our raw data suggest. Because of this reason, and since oversmoothing provides a248

prudential approach in estimation of extreme quantiles (i.e., tends to estimate larger interquantiles differences), the PI249

method is adopted. The Matlab c©Kernel Smoothing Toolbox developed by Koláček and Zelinka (2012) (see Horová250

et al., 2012, for details) is used to numerically evaluate the values of h through the PI method and Gaussian kernels.251

4.2.2. Results252

As anticipated, the convergence of the first two statistical moments is checked for increasing ensemble cardinality253

# = n, i.e. number of data included in each sub-ensemble. The weighted residual of the generic parameter ϕ for254

growing cardinality of a sub-ensemble is defined as ϕres,n = |(ϕn − ϕn−1)/ϕn|, and averaged over 20.000 random255

permutations of the order of the data. Residual convergence versus n is plotted on loglog scale in Figure 5. The rate

φ re
s,n

1 10

100

10-1

10-2

10-3

20 30 502 3 4 5 1 10 20 30 502 3 4 5 1 10 20 30 502 3 4 5

𝜇 (u   )
σ (u   )

*t 
*t 

Figure 5: Convergence of the the mean µ(u∗t) and standard deviation σ(u∗t) for each sub-ensemble (fine, medium and coarse sand)

256

of convergence is the same for both moments and for every sand class. Hence, the key element in convergence is257

the cardinality of each sub-ensemble. The complete set of collected events allows one to reach a threshold of about258

3 × 10−3 ≤ µres,# ≤ 7 × 10−3 for the mean values, and of 8 × 10−3 ≤ σres,# ≤ 6 × 10−2 for the standard deviation. The259

obtained final residual error is acceptable from a practical engineering point of view, except for the one of the standard260

deviation for coarse sand (Figure 5-c). In spite of such an encouraging convergence, the fitting of high order moments261

and extreme percentiles would benefits of higher cardinality of the sub-ensembles. We encourage further independent262

experimental measurements to enrich the ensembles.263

The non-parametric PDFs estimated from the complete sub-ensembles are shown in Figure 6(a), (b), (c), for fine,264

medium and coarse sands, respectively. Statistical moments, such as mean values, standard deviations and skewness265

sk, coefficient of variation (c.o.v.), 1st and 3rd quartiles, and 5th and 95th percentiles are obtained from the fitted266

PDFs. They are summarized in Table 3. Remarkably, the non parametric estimate gives results coherent with the267

goodness of fit assessment for the analytical distributions: u∗t for medium sand is confirmed to be pretty normally268

distributed (Figure 6-b), with analogous mean value and standard deviation, and with a very low value of skewness269

(sk = 0.033). Conversely, the PDFs for fine and coarse sands are confirmed to be far from gaussian, positively and270

negatively skewed, respectively. It is worth pointing out that, even if no constraints are a priori imposed on the support271

of the non parametric PDFs, also the low percentiles are positive, i.e. p5(u∗t) > 0 for fine sand too. The monotonic272

growth of both c.o.v. and skewness for decreasing reference diameter d properly reflects the expected growing role273

played by interparticle forces and related uncertainties. In particular, the coefficient of variation for fine and medium274

sands is about c.o.v. ≈ 0.25: even if this is a relatively moderate c.o.v. value with respect to other environmental r.v.s275

(e.g. turbulent wind velocity), it implies the 5th percentile is about 0.6 times the mean value.276
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Figure 6: Non-parametric PDFs of the threshold shear velocity for fine, medium and coarse sands. Lower vertical bars stand for sand sample
measurements

Table 3: Statistics of threshold shear velocity from non-parametric distributions

Fine sand Medium sand Coarse sand
µ(u∗t) [m/s] 0.234 0.355 0.498
σ(u∗t) [m/s] 0.062 0.080 0.032
sk(u∗t) [-] 0.360 0.033 -0.539
c.o.v. [-] 0.266 0.224 0.063

p5(u∗t) [m/s] 0.136 0.225 0.437
Q1(u∗t) [m/s] 0.192 0.299 0.482
Q3(u∗t) [m/s] 0.269 0.411 0.520
p95(u∗t) [m/s] 0.351 0.488 0.544

5. Comparison between deterministic and statistical approach277

Finally, the main findings of the proposed statistical approach are critically compared to the results of the deter-278

ministic approach. In Figure 7(a) the mean values µ(u∗t) obtained from the non-parametric distribution for the three279

sand classes are superimposed to the refitted deterministic semi-empirical expressions of the nominal value of u∗t. It is
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Bagnold (1941) and Shao and Lu (2000) models (a), boxplots versus deterministic ranges (b)

280

11



clear that statistics over data for a given sand class, i.e. a given d range, implies the mean value has a step-wise trend281

versus the reference diameter d. In other words, the statistical approach apparently involves loosing information with282

respect to the continuous deterministic laws u∗t(d), if reference is made to the mean value only. In fact, this apparent283

under-sampling, is largely compensated by high-order statistics, that substantially enrich the description of u∗t for284

each sand class. In order to testify this feature, the box plots corresponding to the sand classes are plotted in Figure285

7(b) together with the corresponding deterministic range of the nominal values of the threshold shear velocity u∗t,d286

predicted through Bagnold (1941) and Shao and Lu (2000) refitted models. From both Figures the role of skewness287

is clearly depicted: the mean value of u∗t as a r.v. is very close to the nominal value deterministically evaluated at the288

mid-range diameter dm only for null skewness (medium sand); otherwise, µ(u∗t) ≥ u∗t(dm) for sk > 0 (fine sand) and289

viceversa (coarse sand). Finally, the statistical approach allows to associate a given probability of exceedance to any290

value of the threshold shear velocity, while the nominal value from a deterministic law does not.291

6. Conclusions292

The present study critically compares deterministic and statistical approaches to threshold shear velocity on the293

basis of the collection of a huge amount of experimental measurements collected ad hoc from literature. Since the de-294

scription of each random variable affecting u∗t is hard to be practically tractable, each source of uncertainty is merged295

within the single and comprehensive random variable u∗t.296

Deterministic approach is updated thanks to the amount of collected data: in spite of a satisfying fitting of the297

u∗t(d) nominal law, the lack of information about u∗t variability remains a shortcoming of the approach.298

The proposed statistical approach allows to enrich the threshold shear velocity description providing measures299

of its variance and high order statistics, notably extreme percentiles. From a practical perspective in a number of300

application fields, the proper definition of u∗t values associated to given non exceedance probabilities allows to pre-301

dict aeolian events and in turn to assess the performances of mitigation measures in probabilistic terms. Moreover,302

statistics are obtained over broad sub-ensembles defined w.r.t. sand classes, rather than on narrow d intervals. From a303

practical perspective, this allows to apply the statistical approach to mesoscale problems (e.g. infrastructures crossing304

several landforms along their path), where a single local reference sand diameter (e.g. at a dune toe or crest) is no305

longer relevant.306

In the light of the obtained results, we suggest two research perspectives. First, a high cardinality of the dataset307

allows the full convergence of the statistical estimates: hence, the authors hope that further independent experimental308

studies will enrich the data ensemble. Second, the uncertainty propagation from the threshold shear velocity to the309

sand transport rate would worth to be further investigated.310
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