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Abstract

The purpose of this paper is to prove some results on the absence
of bound states for certain nonlinear Schrödinger equations on noncom-
pact metric graphs with localized nonlinearity. In particular, we show
how the topological and metric properties of graphs affect the exis-
tence/nonexistence of bound states. This work completes the discussion
initiated in [19, 20].
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1 Introduction

The study of NLS equations on noncompact metric graphs has gained pop-
ularity in the last few years, because (among other things) these equations
are expected to describe the dynamics of Bose–Einstein condensates in rami-
fied traps (see [12, 15]). In particular, many studies concentrate on a specific
NLSE, the cubic focusing Gross–Pitaevskii equation,

(1) iψt = −ψxx − |ψ|2ψ

on a graph G, with homogeneous Kirchhoff conditions at the vertices (see
(7)). A central role in this line of research is played by stationary solutions of
prescribed mass (i.e., L2 norm) µ > 0, namely functions of the form

(2) ψ(t, x) = eiλtu(x), u : G → C, λ ∈ R,
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which solve (1) when the function u solves the stationary NLS equation

u′′ + |u|2u = λu

(see e.g. [1, 5, 6, 7]). The functions u with these properties are called bound
states of mass µ.

The papers [13, 17] present several interesting motivations for investigating
a variant of this problem, characterized by the fact that the nonlinearity affects
only a compact part of the graph. One speaks therefore of problems with
localized nonlinearity. In this case, and for a generic power nonlinearity, the
bound states u appearing in (2) satisfy the same mass constraint

(3)

∫
G
|u|2 dx = µ

but solve (for some λ ∈ R) the stationary NLS equation

(4) u′′ + κ(x)|u|p−2u = λu

on each edge of G, still with Kirchhoff boundary conditions. The coefficient κ
is the characteristic function of the part of G where the nonlinearity is located.
Bound states satisfy therefore a double regime: nonlinear in a compact part of
G and linear elsewhere. The exponent p is always assumed to be greater than
2; when p ∈ (2, 6), the problem is called L2–subcritical (see [11]).

In this work we confine ourselves to Kirchhoff boundary conditions. Many
other choices (both in the localized and in the non–localized case) are possible,
such as, for instance, the case of δ–like conditions at the vertices. Recent
results on this topic are presented in [2, 3, 4].

In this paper we are mainly concerned with problems with localized non-
linearity. Specifically, we consider a noncompact metric graph G and we as-
sume that the nonlinearity is localized in the compact core K of G, namely
the subgraph of G consisting of its bounded edges (see Section 2 for precise
statements).

Thus a bound state of mass µ for the NLS equation on G with nonlinearity
localized on K is a function u that satisfies the mass constraint (3) and solves
equation (4) on each edge of G, with Kirchhoff boundary conditions at each
vertex of K.

Defining H1
µ(G) = {u ∈ H1(G) : ‖u‖L2(G) = µ}, it is immediate to

recognize (see Section 2) that bound states correspond to critical points on
H1
µ(G) of the energy functional

E(u) =
1

2

∫
G
|u′|2 dx− 1

p

∫
K
|u|p dx.

If u happens to be not only a critical point of the functional E but an absolute
minimizer, it is called a ground state.
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Existence (and multiplicity) of ground and bound states for the NLS equa-
tion with localized nonlinearity has been studied in the papers [19] and [20],
in dependence of the parameters µ and p. We summarize in the next theorem
the main results obtained so far in order to explain our motivations.

Theorem 1.1 ([19], [20]). Let G be a noncompact metric graph with nonempty
compact core.

1. If p ∈ (2, 4), for every µ > 0 there exists a ground state of mass µ.

2. If p ∈ (2, 6), for every µ large there exist many bound states of mass µ.

3. If p ∈ [4, 6), for every µ large there exists a ground state of mass µ.

4. If p ∈ [4, 6), for every µ small there exist no ground states of mass µ.

The unexpected presence of the threshold p = 4, discovered in [20], is a
peculiar feature of problems with localized nonlinearity. No analogue has been
found so far for the NLS equation with nonlinearity on the whole of G.

Remark 1.2. We have stated the preceding result in a slightly simplified form
(“µ small/large”) for the sake of clarity. Actually, as observed in [7] and
[20], the problem on G with mass µ is equivalent, for every θ > 0, to the

problem on the homothetic graph θ
2−p
6−pG with mass θµ via the scaling u(x) 7→

θ
2

6−pu(θ
p−2
6−px). From this it follows that if ` denotes the total length of the

compact core K, the quantity `µ
p−2
6−p is scale invariant. Therefore a precise

statement of Theorem 1.1, and of all our result below, will involve the quantity

`µ
p−2
6−p instead of µ.

It is clear from Theorem 1.1 that, as far as the solvability of equation (4)
is concerned, there exists a region of the parameters p and µ where existence
of solutions is not assured. Precisely, when p ∈ [4, 6) and µ (or more correctly

`µ
p−2
6−p ) is small, Theorem 1.1 says that no solution can appear as a ground

state, but leaves open the possibility to solve the problem through the existence
of bound states.

The main purpose of this paper is precisely to analyze what happens in
the region of parameters where Theorem 1.1 does not apply. It turns out that
in this case the situation is much more involved, and that the solvability of
equation (4) depends on the topological properties of the graph G, in sharp
contrast with the general results provided by Theorem 1.1, that do not depend
on the graph at all.

Before we outline our main results, we need to spend a few words on the
type of bound states u that a graph may support. These are essentially of two
kinds. Indeed, either u vanishes identically on all the half-lines, or u 6≡ 0 on
at least one half-line. In the former case we speak of solutions supported on
K, in the latter of solutions supported on G (notice that a solution supported
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on G may vanish identically on some half-lines, but not on all of them). We
will deal with solutions supported on K in Section 4. This class of solutions
is less interesting: if u ≡ 0 on all half-lines, it can be considered as a solution
of an NLS equation with any nonlinearity f(u) (with f(0) = 0) outside the
compact core and, in a sense, the problem loses its identity. On the contrary,
bound states supported on G are much more interesting because they live on
a noncompact domain and are really subject to the double regime imposed by
the localized nonlinearity, linear on the half-lines and nonlinear in the compact
core.

We are now in a position to describe our main results. We will first deal
with a generic graph G and prove (Theorem 3.2) that for every p ∈ [4, 6)

there exists an (explicit) constant C∗ such that if `µ
p−2
6−p < C∗, there are no

bound states of mass µ with λ ≥ 0. From this it follows that under the same
conditions there are no bound states supported on G.

Next we identify a particular class of graphs (trees with at most one pen-
dant, see Definitions 2.2, 2.3) where the preceding result can be much im-
proved. Indeed for this class of graphs we first show (Theorem 3.5) that for
every p > 2 and every µ > 0, there are no bound states with mass µ and
λ ≤ 0. Combining the two results we deduce that whenever G is in this class

and p ∈ [4, 6), the condition `µ
p−2
6−p < C∗ rules out the existence of any bound

state of mass µ. On this class of graphs the question arising from Theorem
1.1 has therefore a complete answer: when p ∈ [4, 6) for “µ small”, equation
(4) has no solutions at all.

These results are complemented in the following way. First we show that
whenever the graph is not a tree with one pendant, it is possible to construct
bound states supported on K (at least for a dense set of the parameters in-
volved). This shows that Theorem 3.5 cannot be extended to more general
classes of graphs. Finally we compare the case of localized nonlinearity to the
more common case of the “everywhere nonlinear” NLS equation. It turns out
that some of the phenomena described in this paper are a specific feature of
problems with localized nonlinearity. We exhibit indeed a graph G that admits
no ground state for both problems, that has no bound state supported on G for
small µ when the nonlinearity is localized on the compact core, but does have
bound states supported on G for every mass µ when the nonlinearity affects
the whole graph.

The paper is structured as follows. In Section 2 we introduce the precise
setting and definitions required to describe the problem. The main nonexis-
tence results are in Section 3, while in Section 4 we show that the nonexistence
result on trees cannot be extended to other graphs. Finally, Section 5 is de-
voted to the comparison between problems with localized nonlinearity and
everywhere nonlinear equations.
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2 Setting and definitions

We start by recalling some basic definitions on metric graphs (for more details
we refer the reader to [6, 8, 16] and references therein).

In this paper a metric graph G is actually a connected multigraph, where
multiple edges and self–loops are allowed. Each edge is a finite or half-infinite
segment of line and the edges are joined at their endpoints (the vertices of G)
according to the topology of the graph (see Figure 1).

∞

∞

∞

Figure 1: a metric graph with 3 half-lines and 22 bounded edges (one pendant).

Unbounded edges are identified with (copies of) R+ = [0,+∞) and are
called half-lines, while bounded edges e are identified with closed bounded
intervals Ie = [0, `e], `e > 0. In each case a coordinate xe is chosen in the
corresponding interval, with arbitrary orientation if the interval is bounded,
and with the natural orientation in case of a half-line.

The graph G turns in this way into a locally compact metric space, the
metric given by the shortest distance along the edges. Clearly a metric graph
is compact if and only if it does not contain any half-line. An important role
in this paper is played by the following notion, introduced in [7, 19].

Definition 2.1. If G is a metric graph, we define its compact core K as the
metric subgraph of G consisting of all its bounded edges.

In what follows, with some abuse of notation, we will say that edges or
vertices belong to the compact core when their points belong to K as a metric
space.

We also denote by ` the measure of the compact core K, namely

` =
∑
e∈K

`e.

Definition 2.2. We call pendant an edge e ∈ K which is incident at a vertex
of degree one.

An example of (noncompact) graph with a pendant is given again by Figure
1. We notice that, by definition, a half-line can never be a pendant.

Finally we recall the following notion.
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Definition 2.3. A tree is a graph that contains no cycles.

Trees will play an important role in the next sections. An example of a
noncompact tree is given in Figure 2.

∞

∞

∞
∞

∞

∞

∞

Figure 2: a noncompact tree (with one pendant).

A function u : G → C can be regarded as a family of functions {ue}, where
ue : Ie → C is the restriction of u to the edge (represented by) Ie. The usual
Lp spaces can be defined over G in the natural way, with norm

‖u‖pLp(G) =
∑
e

‖ue‖pLp(Ie),

while H1(G) is the space of continuous u : G → C such that ue ∈ H1(Ie;C)
for every edge e, with norm

‖u‖2H1(G) = ‖u′‖2L2(G) + ‖u‖2L2(G).

Continuity at a vertex v means that different components ue meeting at v
agree. Further details can be found in [6].

For µ > 0 we set

H1
µ(G) = {u ∈ H1(G) : ‖u‖2L2(G) = µ},

and we define bound states of prescribed mass as follows (see [19]).

Definition 2.4. Let G be a metric graph with nonempty compact core K and
let κ : G → {0, 1} be the characteristic function of K. Finally, let p > 2. We
say that a function u : G → C is a bound state of mass µ for the NLS equation
on G with nonlinearity localized on K and Kirchhoff conditions if:

(5) u ∈ H1
µ(G),
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there exists λ ∈ R such that for every edge e

(6) u′′e + κ(x)|ue|p−2 ue = λue,

and for every vertex v ∈ K

(7)
∑
e�v

due
dxe

(v) = 0.

The symbol e � v means that the sum is extended to all edges e incident at
v, while due

dxe
(v) stands for u′e(0) or −u′e(`e), according to whether xe is equal

to 0 or `e at v.

The final requirement in the preceding definition is called the Kirchhoff
condition. For simplicity, we refer to a function u satisfying Definition 2.4 as
a bound state of mass µ.

It is straightforward to check that (5)–(7) are equivalent to their weak
formulation: u ∈ H1

µ(G) and for every v ∈ H1(G)

(8) Re

(∫
G
u′v′ dx

)
− Re

(∫
K
|u|p−2 uv dx

)
+ λRe

(∫
G
uv dx

)
= 0,

with v denoting the conjugate of v (see [19]).
It is thus clear that u is a bound state of mass µ if and only if it is a critical

point of the energy functional

(9) E(u) =
1

2
‖u′‖2L2(G) −

1

p
‖u‖pLp(K) =

1

2

∫
G
|u′|2 dx− 1

p

∫
K
|u|p dx

over H1
µ(G). The constant λ appearing in (6) and (8) is a Lagrange multiplier,

arising because the funcional E is constrained on the manifold H1
µ(G) (the

sphere of L2 of radius
√
µ in H1(G)).

In particular, ground states of mass µ are the absolute minimizers of E.
Up to the multiplication by a constant phase, they are real–valued and of
constant sign.

We note, for future reference, that setting v = u in (8) one finds that

(10) λ = λ(u) =
1

µ

(∫
K
|u|p dx−

∫
G
|u′|2 dx

)
.

The following definition will help in stating our main results.

Definition 2.5. We say that a bound state u is supported on K if u vanishes
identically on all the half-lines of G. Otherwise (i.e. if u does not vanish on at
least one half-line), we say that it is supported on G.

Finally, we mention the graph version of two cases of the Gagliardo–
Nirenberg inequality. The proof coincides almost completely with that for
real–valued function that can be found in [20, 7]. We sketch it briefly for the
sake of completeness.
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Proposition 2.6. For every p ∈ [2,∞] there exists a constant Cp > 0 such
that

(11) ‖u‖pLp(G) ≤ Cp‖u‖
p
2
+1

L2(G)‖u
′‖
p
2
−1

L2(G) ∀u ∈ H1(G) if p <∞

and

(12) ‖u‖L∞(G) ≤ C∞‖u‖
1/2
L2(G)‖u

′‖1/2
L2(G) ∀u ∈ H1(G) if p =∞

for every noncompact metric graph G.

Proof. Following [6], given a real–valued nonnegative u ∈ H1(G) we can define
its decreasing rearrangement as the function u∗ : R+ → R such that

u∗(x) = inf{t ≥ 0 : ρ(t) ≤ x},

with
ρ(t) =

∑
e

meas{xe ∈ Ie : ue(xe) ≥ t}, t ≥ 0.

One can prove (see again [6]) that u∗ ∈ H1(R+), supG u = supR+ u∗,∫
G
|u|r dx =

∫
R+

|u∗|r dx and

∫
R+

|(u∗)′|2 ≤
∫
G
|u′|2 dx.

Now, let u ∈ H1(G) be a generic complex–valued function. Since

||u|′(x)| ≤ |u′(x)| for a.e. x in G,

from the classical Gagliardo–Nirenberg inequality in R+ ([14]) we obtain

‖u‖pLp(G) = ‖|u|∗‖p
Lp(R+)

≤ Cp‖|u|∗‖
p
2
+1

L2(R+)
‖(|u|∗)′‖

p
2
−1

L2(R+)

≤ Cp‖u‖
p
2
+1

L2(G)‖|u|
′‖
p
2
−1

L2(G) ≤ Cp‖u‖
p
2
+1

L2(G)‖u
′‖
p
2
−1

L2(G).

In the very same way one can prove (12).

3 Nonexistence results

In this section we prove the main nonexistence results. In the sequel we tacitly
assume that G is a noncompact metric graph with a nonempty compact core
K, where the nonlinearity is located, and that µ > 0. We also recall that `
denotes the mesaure of the compact core.

First we show that when p ∈ [4, 6) the nonnegativity of the Lagrange
multiplier λ implies a double estimate on the kinetic part of any bound state
in terms of its mass.
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Lemma 3.1. Let p ∈ [4, 6). Assume that u is a bound state of mass µ with
λ ≥ 0. Then

(13)

∫
G
|u′|2 dx ≤ C

4
6−p
p µ

p+2
6−p

and

(14)

(∫
G
|u′|2 dx

) p−4
4

≥ C−p∞ `−1µ−
p
4

where Cp and C∞ are the constants appearing in inequalities (11) and (12).

Proof. Since λ ≥ 0, by (10),

(15)

∫
G
|u′|2 dx ≤

∫
K
|u|p dx

and hence, using (11),∫
G
|u′|2 dx ≤

∫
K
|u|p dx ≤

∫
G
|u|p dx ≤ Cpµ

p+2
4

(∫
G
|u′|2 dx

) p−2
4

.

Observing that u′ 6≡ 0 and then dividing by
(∫
G |u

′|2 dx
) p−2

4
, one obtains

(∫
G
|u′|2 dx

) 6−p
4

≤ Cpµ
p+2
4

and thus (13) is proved.
Next, from (15), we also see that∫

G
|u′|2 dx ≤

∫
K
|u|p dx ≤ `‖u‖pL∞(K) ≤ `‖u‖

p
L∞(G),

and using (12), we find∫
G
|u′|2 dx ≤ Cp∞`µ

p
4

(∫
G
|u′|2 dx

) p
4

.

Hence, as p ≥ 4, dividing by
∫
G |u

′|2 dx and suitably rearranging terms, (14)
follows.

Now we can prove a first nonexistence result. In its statement it is conve-
nient to keep in mind Remark 1.2.
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Theorem 3.2. Let p ∈ [4, 6). Assume that

(16) `µ
p−2
6−p < C−p∞ C

4−p
6−p
p ,

where Cp and C∞ are again the constants appearing in (11) and (12). Then,
there are no bound states of mass µ with λ ≥ 0. In particular, there are no
bound states supported on G.

Proof. Assume that there exists a bound state u with λ ≥ 0 and mass µ
satisfying (16). If p = 4, then (14) immediately implies

`µ ≥ C−4∞ ,

which contradicts (16) when p = 4.
When p > 4, combining (14) and (13), we find that

1 ≤ `Cp∞µ
p
4

(
C

4
6−p
p µ

p+2
6−p

) p−4
4

,

whence, with some easy computations,

`µ
p−2
6−p ≥ C−p∞ C

4−p
6−p
p ,

contradicting again (16). Thus there are no bound states with λ ≥ 0. Note
also that if u is a bound state supported on G, then by definition u 6≡ 0 on at
least one half-line. Since on half-lines u′′ = λu and u is L2, necessarily λ > 0,
and this is why this type of bound states is ruled out.

Remark 3.3. Condition (16) could be made sharper by using the specific
Gagliardo–Nirenberg constants of the graph G. These however depend on
the topology and on the metric properties of the graph (e.g. the lengths of its
edges) in an unaccessible way, at least for now. We prefer to use the universal
constants of the half-line Cp, C∞ for two reasons: first because in this way
the inequalities (11) and (12) hold for every noncompact graph, and secondly
because these constants are explicit (see [14]). For example, since C∞ =

√
2,

in the model case p = 4 (and for every graph) condition (16) reads simply

`µ <
1

4
.

Before proceeding, we note that assumption (16) is the condition that
guarantees in [20] the nonexistence of ground states. Here, however, it is
used to prove a far stronger result. In addition, arguing as in the preceding
results, one can slightly improve Theorem 3.4 in [20] (raising the nonexistence
threshold for ground states), with a completely different (and simpler) proof.
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Corollary 3.4. Let p ∈ [4, 6). If

(17) `µ
p−2
6−p <

(p
2

) 2
6−p C−p∞ C

4−p
6−p
p ,

then there is no ground state of mass µ.

Proof. By Theorem 3.1 of [20], for every µ > 0,

(18) inf
u∈H1

µ(G)
E(u) ≤ 0.

If u ∈ H1
µ(G) satisfies E(u) ≤ 0, by (9),∫

G
|u′|2 dx ≤ 2

p

∫
K
|u|p dx.

Now, arguing as in the proof of Lemma 3.1 one obtains that∫
G
|u′|2 dx ≤

(
2Cp
p

) 4
6−p

µ
p+2
6−p

and (∫
G
|u′|2 dx

) p−4
4

≥ C−p∞
(

2`

p

)−1
µ−

p
4 .

Combining the two inequalities, there results

`µ
p−2
6−p ≥

(p
2

) 2
6−p C−p∞ C

4−p
6−p
p ,

which contradicts (17). Summing up, if µ satisfies (17), then E(u) > 0 for
every u ∈ H1

µ(G). In view of (18), this entails that there is no ground state of
mass µ.

For certain classes of graphs Theorem 3.2 can be used to prove a full
nonexistence result for bound states of small mass, independently of their
support. The general class of graphs that enjoys this property is that of
trees with at most one pendant (Definitions 2.2 and 2.3). Some significative
examples of this type of graphs are depicted in Figure 3.

The particular feature of this class is that it is possible to prove a priori
and without any restriction on p > 2 and µ that they do not admit any bound
state with Lagrange multiplier λ ≤ 0.

Theorem 3.5. Let G be a noncompact tree with at most one pendant. Then
for every p > 2 and every µ > 0 there is no bound state of mass µ with λ ≤ 0.

11



∞

(a)

∞
∞
∞
∞
∞

(b)

∞∞

∞

∞

∞

∞

∞

∞

(c)

∞

∞

∞

∞

∞
∞

(d)

Figure 3: topical examples of noncompact trees: (a) segment and half-line; (b) segment
and several half-lines; (c) N–star graph with nonlinearity affecting a compact portion of each
half-line; (d) N–star graph with nonlinearity affecting only some half-lines.

Proof. Assume that u is a bound state of mass µ with λ ≤ 0 (p > 2 and µ > 0
are understood). Clearly u ≡ 0 on every half-line of G, since there u′′ = λu
with λ ≤ 0, and then, if u does not vanish identically, it cannot be in L2(G).

We also note the following property: if v is a vertex of degree n ≥ 2 and
if u vanishes identically on n− 1 edges incident at v, then it vanishes on all n
edges. In order to see this, identify an edge e incident at v with [0, `e] (attached
at v when x = 0) or with [0,+∞) and assume that u ≡ 0 on all other edges
incident at v. Then, by continuity, ue(0) = 0 and, by the Kirchhoff conditions,
u′e(0) = 0. Therefore, by the uniqueness of the solution of the Cauchy problem

u′′e + κ(x)|ue|p−2 ue = λue

ue(0) = 0

u′e(0) = 0,

one obtains that ue ≡ 0 on e.
Now, consider first trees with no pendants. As µ > 0, u 6≡ 0 on some

(necessarily finite) edge e1. Let v1 be a vertex of e1. By the preceding property
there is at least one edge e2 6= e1 incident at v1 where u 6≡ 0. If e2 is a half-line

12



we have reached a contradiction. Otherwise, e2 is a finite edge and hence one
can repeat the procedure starting from e2. In this way one can construct a
path starting from e1 and consisting of edges where u 6≡ 0. Since G is a tree, it
contains no cycles, and therefore the last edge of the path is a half-line, where
u ≡ 0, and this is a contradiction.

Assume, finally, that the graph has a single pendant e. If u 6≡ 0 on e, then
we set e1 = e and we repeat the above argument. On the other hand, if u ≡ 0
on e, we remove e from the graph, and we are in the preceding case. In every
case we reach a contradiction whenever u 6≡ 0 on some edge.

Remark 3.6. The preceding result is valid also in the everywhere nonlinear case
(with the same proof). In other words, by Theorem 3.5, the NLS equation
with nonlinearity on the whole of G does not admit solutions for λ ≤ 0 on
trees with at most one pendant.

Remark 3.7. If G is not a tree, or if it is a tree with at least two pendants,
then Theorem 3.5 is false (see Section 4).

Combining Theorems 3.2 and 3.5, we can prove the following nonexistence
result.

Corollary 3.8. Let G be a tree with at most one pendant. Assume that p ∈
[4, 6) and that

(19) µ
p−2
6−p ` < C−p∞ C

4−p
6−p
p

Then there is no bound state of mass µ.

Proof. Since G is a tree with at most one pendant, there are no bound states
with λ ≤ 0 (for any µ) by Theorem 3.5. When λ > 0, condition (19) excludes
bound states via Theorem 3.2.

4 Bound states with compact support

The aim of this section is to discuss more in detail the claim of Remark 3.7.
Precisely, we construct some examples that make clear the reasons why The-
orem 3.5 does not apply to graphs containing cycles and/or two or more pen-
dants.

The technique we use below has been formerly introduced for studying the
everywhere nonlinear problem on the tadpole graph (Figure 4). In particular,
the case p = 4 was studied in [10] while [18] deals with the general case
p ∈ (2, 6).

The obstruction in constructing solutions that vanish identically on the
half-lines of the graph, is that one forces the value of the solution to be zero
at the vertices where the half-lines are incident but wants, at the same time,
to preserve the Kirchhoff condition. In order to do this we make use of the
following lemma, which is an immediate consequence of Proposition 2.4 of [18].
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∞

Figure 4: a tadpole graph.

Lemma 4.1. For every L > 0, p > 2 and λ ∈ R, there exists an odd, L–
periodic, smooth function φ that solves

φ′′ + |φ|p−2φ = λφ.

Using this lemma we can exhibit a wide class of graphs with cycles that
violate Theorem 3.5.

Theorem 4.2. Let p > 2 and λ ∈ R. Assume that G contains a cycle C ,
whose edges have pairwise commensurable lengths. Then there exists µ > 0
for which there is at least a bound state of mass µ, with Lagrange multiplier λ
and supported on K.

Remark 4.3. The rational dependence assumption on the lengths of the edges
clearly prevents this result to be valid in generically (see [9] for the discussion
of a similar phenomenon in the linear case). However the main feature of the
theorem is that it shows that Theorem 3.5 cannot be expected to hold when
the graph contains a cycle.

Proof of Theorem 4.2. Let e1, . . . , en denote the consecutive edges of C (see
for instance Figure 5). Since the lengths `1, . . . , `n of these edges are pairwise

v

e1

e2

e3

e4

e5

e6

Figure 5: an example of a cycle C consisting of 6 edges.

commensurable, there exists L > 0 such that

`i = kiL, with ki ∈ N, ∀i ∈ {1, . . . , n}.

14



Set k =
∑n

i=1 ki. The cycle C can be identified with the interval [0, kL], the
coordinate x = 0 corresponding to a fixed vertex v. Clearly, at each vertex
the coordinate x (read in [0, kL]) is an integer multiple of L.

Now, for fixed (but arbitrary) λ ∈ R and p > 2, let φ be the odd L–periodic
function obtained via Lemma 4.1. In view of the identification of the cycle C
with the interval [0, kL], the function φ can be seen as a function on C that
vanishes at the vertices of C . Setting

u(x) =

{
φ(x) if x ∈ C

0 otherwise on G,

we immediately see that u ∈ H1(G), solves (6) on each edge of G, satisfies the
Kirchhoff conditions at every vertex of K and by construction is supported on
C ⊂ K. Hence, letting µ =

∫ kL
0 |φ|2 dx, the proof is complete.

Remark 4.4. The previous theorem applies also to the everywhere nonlinear
problem, with the same proof.

Remark 4.5. Theorem 4.2 goes beyond a mere breach of Theorem 3.5 for
graphs with cycles. It shows that the presence of a cycle (with some nice
metric properties) immediately generates bound states supported on K (more
precisely, on C ) for any value of λ ∈ R.

Remark 4.6. If G is a tadpole graph, such as that considered in [10] and [18],
then Theorem 4.2 holds without any restriction on the length of the cycle.

Exploiting the same technique, one can also exhibit trees with two or more
pendants that admit bound states supported on K for any value of λ ∈ R.
This, in particular, shows that the assumption on the pendants in Theorem
3.5 is necessary too.

In the next two examples we assume that p > 2, λ ∈ R and L > 0 are fixed
and that φ is the odd L–periodic function provided by Lemma 4.1. Let x be
a point in (0, L) such that φ′(x) = φ′(−x) = 0.

Example 4.7. The simplest noncompact tree having more than one pendant
is the graph G of Figure 6. Assume (for simplicity) that the length of each
pendant is x, so that we can identify e1 ∪ e2 with the interval [−x, x]. Hence,

∞
e1

e2

Figure 6: a tree consisting of a half-line and two pendants.

defining

u(x) =

{
φ(x) if x ∈ e1 ∪ e2
0 otherwise on G,

15



one sees that u is a bound state of mass µ =
∫ x
−x |φ|

2 dx, with Lagrange
multiplier λ, supported on K = e1 ∪ e2.

Example 4.8. Let G be the graph with three pendants of Figure 7, with
`e1 = `e5 = x and `e2 = `e3 = `e4 = L. The path e1–e5 can be identified with
the interval [−x, 3L+ x].

∞

∞

∞

∞

e1
e5e2 e3 e4

Figure 7: a tree with 4 half-lines and 3 pendants.

With the same function φ as above, defining

u(x) =

{
φ(x) if x ∈

⋃5
i=1 ei

0 otherwise on G,

one sees that u is a bound state with Lagrange multiplier λ, supported on⋃5
i=1 ei ⊂ K.

5 Comparison with the everywhere nonlinear prob-
lem

It is interesting, finally, to compare the phenomenon of nonexistence of bound
states with small mass described in Theorem 3.2, to the case where the nonlin-
earity is present on the whole graph. Essentially, Theorem 3.2 says that when
p ∈ [4, 6) and µ is small there are neither ground states nor bound states
supported on G. In other words all solutions supported on G are ruled out for
small values of the mass.

This feature is specific of problems with localized nonlinearity, since it has
no analogue when the nonlinearity is present on the whole graph, as we now
show. In particular, we show that there are graphs such that for every value
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of µ the everywhere nonlinear problem has no ground states, but does admit
bound states supported on the whole graph.

We recall that a function u is a bound state of mass µ for the everywhere
nonlinear problem if and only if it satisfies Definition 2.4 with (6) replaced by

(20) u′′e + |ue|p−2 ue = λue.

The associated NLS energy functional is

E(u,G) =
1

2

∫
G
|u′|2 dx− 1

p

∫
G
|u|p dx,

where we have made explicit the dependence on G for future use, and a ground
state of mass µ is a minimizer of E( · ,G) in H1

µ(G).
As an example of graph to illustrate the above discussion we consider the

double bridge graph B of Figure 8.

∞ ∞

r

Figure 8: a double bridge graph, symmetric with respect to the axis r.

By Theorem 1.2 of [5] or Theorem 2.5 of [6], the graph B does not support
ground states, for any value of p ∈ (2, 6) and µ > 0. However, the situation
changes drastically when bound states are concerned.

Proposition 5.1. Let p ∈ (2, 6). For every µ > 0, there exists a bound state
u of mass µ, symmetric with respect to the axis r and everywhere positive on
B.

Proof. Let B̃ be the graph on the left of the axis r, as in Figure 9.

∞
v1

v2

Figure 9: the graph B̃.

By the results of [7], for every µ > 0 there exists ũ ∈ H1
µ/2(B̃) such that

E(ũ, B̃) = inf
v∈H1

µ/2
(B̃)
E(v, B̃),
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that is, ũ is a ground state of mass µ/2 on B̃ for the everywhere nonlinear
problem. Notice that, since ũ is a minimizer of E , up to multiplication by a
constant phase, it can be taken real and everywhere positive (see again [6]).
Of course ũ solves (20) on the edges of B̃ and the Kirchhoff condition on the
vertices. In particular, ũ′(v1) = ũ′(v2) = 0.

Now, consider the function u : B → R, symmetric with respect to the axis
r and such that u|B̃ = ũ. Obviously, u ∈ H1

µ(B), satisfies (7) at the vertices of

B and (20) on all the edges of B, by the vanishing of u′ at v1 and v2. Thus u
is a bound state of mass µ, symmetric on B and everywhere positive.

Arguing as in the proof of Proposition 5.1, one can prove that an analogous
result holds also for the triple bridge graph.

We conclude with a heuristic justification of this phenomenon. By Theorem
3.2, there are no bound states supported on B (for the localized problem) as

soon as `µ
p−2
6−p is small enough. If this were not the case, namely if we had

a bound state for every `µ
p−2
6−p small, we could construct a sequence un of

bound states of fixed mass each of them living on a double bridge graph Bn,
with `n → 0. Now, it is not difficult to show that this sequence of bound
states tends to a bound state on the limiting graph, which is R (the compact
core, of length `n, disappears in the limit). Thus we would have a nonzero
L2 solution of the linear problem u′′ = λu on R, which is impossible. This
is where the presence of the localized nonlinearity is essential: if the compact
core “disappears”, we are left with a linear problem, that has no solution.

On the contrary, if we consider the everywhere nonlinear problem and we
use the same argument, we end up in the limit with the problem u′′+|u|p−1u =
λu on R, a problem that does have solutions (the solitons). Thus, in this case
there is no contradiction in the existence of bound states on all the Bn’s.
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