
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the consolidation of mixed criticalities applications on multicore architectures / Esposito, Stefano; Violante, Massimo.
- In: JOURNAL OF ELECTRONIC TESTING. - ISSN 0923-8174. - ELETTRONICO. - 33:(2017), pp. 65-76.
[10.1007/s10836-016-5636-7]

Original

On the consolidation of mixed criticalities applications on multicore architectures

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s10836-016-5636-7

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10836-016-5636-7

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2662083 since: 2017-01-11T14:48:32Z

Springer

On the consolidation of mixed criticalities

applications on multicore architectures

Stefano Esposito, Massimo Violante

Politecnico di Torino, Torino, Italy

stefano.esposito@polito.it

massimo.violante@polito.it

Abstract In this paper we propose a hybrid solution to ensure results correctness

when deploying several applications with different safety requirements on a single

multi-core-based system. The proposed solution is based on lightweight hardware

redundancy, implemented using smart watchdogs and voter logic, combined with

software redundancy. Two techniques of software redundancy are used: the first one

is software temporal triple modular redundancy, used for those tasks with low crit-

icality and no real-time requirement. The second software redundancy technique is

triple module redundancy for tasks with high criticality and real-time requirements,

assisted by a hardware voter. A hypervisor is used to separate each task in the sys-

tem in an independent resource partition, thus ensuring that no functional interfer-

ence is occurring. The proposed solution has been evaluated through hardware and

software fault injection on two hardware platforms, featuring a dual-core processor

and a quad-core processor respectively. Results show a high fault tolerance

achieved using the proposed architecture.

Keywords Mixed Criticality; Software Implemented Fault Tolerance; Hybrid Ar-

chitecture; Multicore Systems; Real Time Applications

1. Introduction

Today’s processors market is dominated by multicore architectures. Even though

many systems, especially safety-critical ones, are still based on single-core chips,

manufacturers are actively phasing out the production of such chips in favor of

multi-core architectures, which are proved to be overall more performant than single

core architectures. This trend is driven mainly by the need of reducing power con-

sumption while increasing computational capabilities. Markets such as the con-

sumer electronics embraced rapidly this trend, and lately the Internet-of-Things

emerged, which is further pushing the evolution of more advanced highly integrated

2

System-on-Chip (SoCs), featuring several hardware accelerators and peripheral in

order to speed-up computations.

However, the industries that have quickly adopted multicore architectures are

those that are not concerned with safety standards and regulations. As a conse-

quence, the majority of multicore architectures evolved to optimize an average use-

case which is not concerned with deterministic execution and which is facing at best

soft real-time requirements, such as the case of video streaming or Voice-over-IP

(VoIP).

Nevertheless, there are industries driven by additional concerns other than per-

formance, such as those dealing with safety-critical or mission-critical applications.

Industries such as automotive, aerospace, defense, and railways signaling haven’t

yet started using multicore architectures in all their systems due to safety and regu-

lations concerns. There are mainly two challenges to the use of multicore architec-

ture in such safety-critical use-cases:

1. Functional isolation: when several applications are running on the same

multicore processor, they should not interfere with one another from a func-

tional point-of-view, i.e. one application should never be able to compro-

mise the correctness of the results of another application, unless there is an

explicit dependency.

2. Temporal isolation: when several applications are running on the same

multicore processor, they should not interfere with one another from a tem-

poral point-of-view, i.e. the worst case execution time (WCET) of one ap-

plication should not be changed from the presence on the same platform of

another application, unless there is an explicit dependency.

Several system architectures based on multicore processors have been proposed,

though at the best of our knowledge, none has been widely accepted nor has solved

all the challenges faced by such an architecture.

Besides the challenges described above, industries such as aerospace and defense

must face strict safety regulations and a long and complex certification process, with

the objective of checking that all safety requirements are met. The certification pro-

cess is based on safety standards adopted by interested industries, like the DO-178C

standard, and is carried on by a certification agency. For instance, avionics in the

European Union are certified by the European Aviation Safety Agency (EASA).

In this paper, we propose a system architecture designed to allow deployment of

mixed criticality applications on multi-processor systems-on-chip (MPSoC). The

system architecture is designed to allow consolidation of different applications with

different requirements in safety and performance on the same chip. The proposed

architecture has been implemented with a prototypical vision-based navigation sys-

tem as might be found in systems like autonomous rovers for extraterrestrial explo-

ration. In such a system, besides the concerns related to mission critical applications,

there is the added problem of the significant exposure of semiconductors to radia-

tions, both during travel to the destination and during the operation phase of the

mission. While the effects of the Total Ionizing Dose (TID) can be significant, they

3

are out of the scope of this paper, as we decided to focus our attention on the oper-

ation phase and the soft-errors that might affect it. We modeled effects of the radi-

ations as Single Event Upsets (SEUs), Single Event Latch-ups (SELs), and Single

Event Functional Interruptions (SEFIs), using fault injection experiments to evalu-

ate effects of such faults on a prototypical vision-based navigation system. The sys-

tem is composed of two applications: one is mission-critical, while the other has a

lower criticality. The architecture has been implemented on two different Commer-

cial Off-The-Shelf (COTS) multicore chips with a companion COTS FPGA. The

FPGA was used to implement some special-purpose hardware to detect errors and

allow a recovery action.

This paper’s main contribution is the development of a method to consolidate

safety- or mission-critical applications on a multicore chip starting from the parti-

tioning method down to special purpose hardware supporting the fault-tolerance.

The main focus is on fault-tolerance, which is one of the main issues for some ap-

plications domains, whereas the resource sharing issue is not directly tackled in this

paper.

The paper is organized as follows: section II contains an overview of previous

works on the subject; section III describes in detail the proposed architecture; sec-

tion IV describes the performed fault injection experiments and gathered results;

finally, section V proposes some conclusions.

2. Previous works

Semiconductors behavior in radioactive environment have been widely studied

in the past years. The main field of interest for this researches has always been space

and several solutions were proposed, starting from the adoption of specifically de-

signed hardware capable of correct operations under the effect of radiation. In this

paper we use the same terminology as introduced in Goloubeva et al. [1].

Several well-known techniques exist and are currently used by industry. One of

these is the Triple Modular Redundancy (TMR). In TMR a single module, usually

hardware, is implemented three times. All the replicas receive the same input at the

same time and are expected to produce the same output. A voter receives the outputs

of all the replicas and compares them to find a majority agreement, i.e. the voter

selects the correct output based on the fact that at least two of the three replicas

provided the same output. This technique has been used to implement a space com-

puter based on COTS components [2]. The implementation of this computer shows

how TMR can be implemented at different granularities: although it has been used

to design radiation-hardened hardware by replicating simple design units, some-

times down to the single device, authors of [2] have triplicated an entire processor

module to check correctness of the outputs. TMR is guaranteed to transparently

tolerate a single error, as may be caused by a Single Event Effect (SEE).

Goloubeva et al. [1] also present an extensive overview of many software imple-

mented hardware fault tolerance (SIHFT) techniques. Such techniques are based on

4

the idea of software redundancy, i.e. of additions and modifications to the software

with the purpose of detecting and tolerate the effects of hardware faults. The tech-

niques that are most relevant to this paper are those used to detect and tolerate tran-

sient faults, as those modeled by Single Event Upsets (SEUs). Among these, the

Virtual Duplex System (VDS) is of particular interest for this paper. VDS is based

on software duplication at program level. An entire program is executed twice, and

the outputs of the replicas are compared for agreement. The original proposal was

based on temporal redundancy, meaning that the two executions were performed on

the same single processor in subsequent times, but the solution can also be imple-

mented exploiting spatial redundancy, i.e. the replicas can be executed in parallel

on different processing cores, reducing time overhead [3]. Moreover, VDS can ben-

efit from an N-versioning approach [4][5]. N-versioning prescribes that the replicas

are created separately, possibly by different people, using different toolchains and

implementing different algorithms to satisfy the same requirements. This can sig-

nificantly reduce the probability of common-mode faults leading to a silent data

corruption, due to the fact that when both replicas are affected in the exact same

way by the same fault, they also produce the same output, although wrong, and VDS

would not be able to detect this fault.

VDS and TMR can be combined in Temporal Triple Module Redundancy

(TTMR) [6]. In TTMR, two executions are performed and the outputs are compared

for agreement, as described for VDS. When no agreement is found, a third execution

is performed, and the correct output is selected by a majority vote, as in TMR.

To reduce computational overhead of purely software solutions, many hybrid

solutions have been proposed, in which special hardware is used to offload some

detection from the software, thus reducing overhead. Two hybrid solutions are pro-

posed by Pignol [7], where a software redundancy scheme is assisted by a special

hardware IP-core to implement fault tolerance. The architecture was designed to

allow use of COTS in space applications, and needs the use of radiation hardened

companion chips implementing some key functionality for detection and tolerance

(e.g. safe context storage). Special purpose hardware cores can be used to assist

fault detection as in the case of Watchdog Timers (WDTs) and Watchdog Proces-

sors (WDPs) [8][9].

Esposito and Violante [10], proposed an architecture based on a combination of

WDPs and WDTs focused on space applications. The proposed architecture used

software and hardware means for detecting errors and implemented tolerance to

transient faults by redundancy of execution. Permanent faults were addressed by

use of a standby spare which would be activated after a configurable number of fault

detections in the same system.

That architecture was adapted to the mixed criticality avionic use case and tested

by Avramenko et al. [11]. The implementation was based on a type-1 hypervisor

granting isolation of applications in resource partitions. A specifically designed

WDP core was used to implement a control flow check (CFC) technique, used to

ensure correct execution flow of all tasks in the system. The WDP implemented a

signature-based CFC technique, in which the software has to send a predefined se-

5

quence of signatures to the WDPs within a given timeout. Each signature is associ-

ated to a block in the program, defined as a portion of software with a singled entry

and a single exit. A WDT is also used in the architecture described in Avramenko

et al. [10] to recover from Single Event Functional Interruptions (SEFIs) and from

permanent errors. The software is in charge of resetting the WDT within a given

timeout, otherwise the system is reset and a signal is sent to the external interface

in order to allow a redundant computer to provide correct outputs to the user. Av-

ramenko et al. [10] evaluated the architecture through fault injection simulation ex-

periments.

The architecture proposed in this paper, is built on top of the one proposed by

Esposito and Violante [10] and uses results of Avramenko et al. [11] with some

additions and modifications. This paper is an extension of Esposito et al. [12]. The

main additions are a more extensive description of the architecture and an evalua-

tion on quad-core architecture, which allowed to experiment with the scalability of

the proposed solution.

3. Proposed Architecture

The proposed solution is a multi-layered fault-tolerant architecture. The fault mod-

els considered are transient faults affecting at most one memory element in the ar-

chitecture, i.e. Single Event Upset (SEU) faults. The architecture also targets Single

Event Functional Interruptions (SEFIs) and functional interruptions caused by per-

manent faults, including Single Event Latch-ups (SELs). It uses a hybrid approach

for fault detection and tolerance, implementing special purpose hardware cores to

support fault detection. The architecture is composed of three layers, which are,

from bottom to top:

1. Hardware: it is composed of a Multi-Processor System-on-Chip (MPSoC)

and of a companion chip. A set of requirements is specified for the MPSoC,

as specified below. The companion chip implements three specific Intellec-

tual Property (IP) core, as described below.

2. Middleware: it is implemented through a type-1 hypervisor which uses ser-

vices provided by the hardware layer in order to implement functional sep-

aration of different partitions of the application software.

3. Application Software: it implements the functionality required of the sys-

tem, and uses services provided by the two layers below it to implement

fault detection and tolerance.

3.1. Hardware Layer

The hardware represents the first layer of the architecture. Its architecture is de-

picted in Fig. 1

6

.

Fig. 1. Hardware layer architecture

The hardware layer is composed of an MPSoC and of a companion chip. The

MPSoC includes the main processing units together with some peripherals required

for correct functioning of the system. In order for the middleware layer to work

properly, the MPSoC should implement cores with a Memory Management Unit

(MMU).

The companion chip implements the hardware peripherals required by the sys-

tem that are not found in the MPSoC. The system architecture requires the availa-

bility of three intellectual property (IP) cores:

 Watchdog Processor (WDP): used to control that the execution flow of the

monitored task is the expected one.

 Majority Voter (Voter): used to control that the outputs of a task in TMR

configuration are correct.

 System Watchdog Timer (SWDT): a WDT able to reset the system when

not rearmed within the configured timeout.

The Watchdog Processor implements a Control-Flow-Check (CFC) technique

based on predefined signatures. To implement this technique, the monitored task

has to be partitioned into blocks. A block is defined here as a portion of software

with one entry point and one exit point. It is not to be confused with the similar but

stricter notion of Basic Block (BB). A BB is defined as a portion of software without

jump instructions, except the last one, and in which no instruction is target of a jump

instruction, except the first one [1], whereas the block definition used in this paper

allows for internal jumps and even function calls to be included, as long as the block

has one entry point and one exit point. This definition allows to select he preferred

granularity for software partitioning. The finest granularity allowed by the defini-

tion is considering a BB as a block; on the other end of the spectrum, the coarsest

granularity would be to consider the whole program as a block. In between these

two ends, any intermediate granularity can be used. When selecting the desired

granularity, a trade-off between performance overhead and error-latency should be

7

considered. The finer the granularity, the higher the performance overhead, due to

the interaction between the software and the WDP. On the other hand, the coarsest

the granularity, the longer is the error latency. Once the partitioning has been com-

pleted, a signature is associated to each block. The signature is a unique identifier

hand-picked by the designer. The signature should be constant at compile time, alt-

hough the WDPs are not hardcoded with the signatures, meaning that the same

WDP implementation can be reused for different software and different partitioning

selections. During bootstrap the software is in charge of sending to the WDP the

expected signature and timeout for each block, in the expected order. Once the con-

figuration phase has been completed the WDP can be enabled by the software. Start-

ing from the enable signal, the WDP expects to receive the predefined signatures

within the configured timeout. The WDP is able to detect the following error sce-

narios:

 Unexpected signature: when the WDP receives a signature from the software it

checks if it is the expected one; an error is detected if the received signature is

not the expected one. This can be due to a CFE causing the software to send the

signature for a different block, or a fault causing the software to send a signature

not included in the predefined set.

 Timeout: the configured timeout expired before a signature was received;

 Illegal interaction: the only legal interactions with the WDP are configuration

and sending a signature. Any other way of interaction, including access to con-

figuration registers while the WDP is enabled, is treated as an error condition.

Whenever an error condition is detected, the WDP sends an Interrupt Request

(IRQ) to the MPSoC. The system reacts to the IRQ by implementing a proper re-

covery action, as described below. WDP is able to detect transient faults and per-

manent faults that do not hinder the ability of the processor to react to IRQs.

The Hardware Majority Voter features three registers in which the software

writes its results or a signature of its results. Each register is statically assigned to a

replica of the software. Once all replicas write their output to the dedicated registers,

the voter performs a majority vote to select the correct output. The correct output is

presented to the user directly by the voter.

Using WDP and Voter, the architecture is able to manage control flow errors and

silent data corruptions. Still, there are some conditions in which the system is not

able to perform the expected workload nor to react to IRQs. To detect this condition

a third IP is used in the proposed architecture: System Watchdog Timer (SWDT).

SWDT is a WDT configured at boot. When it is not rearmed within the configured

timeout, SWDT is capable of triggering a system reset. A hardware able to perform

the operations required to the SWDT is usually available in the Multi-Processor

System-on-Chip (MPSoC) in use, and as such is not further specified in this paper,

nor it is considered as included in the companion chip.

The SWDT is able to detect and react to SEFIs and to permanent faults compro-

mising the operations of the MPSoC.

8

3.2. Middleware

The proposed architecture includes a middleware layer implemented through a

commercial type-1 hypervisor. The selected type-1 hypervisor implements separa-

tion between the tasks composing the application software. In this architecture the

task is the basic software entity. A task implements a functionality that satisfies one

or more system requirements. Each task has an associated assurance level. To grant

functional isolation between tasks, each task has its own resource partition, which

includes a memory area private to the task and hardware peripherals. The type-1

hypervisor implements resource partitioning by using services provided by the hard-

ware layer. The type-1 hypervisor is in charge of granting that tasks assigned to

different partitions cannot interfere with one another in case of misbehavior. This

includes the use of separated physical memory segments, granting that no task is

able to corrupt data used by another task in a different partition. The type-1 hyper-

visor is also responsible for providing inter-partition communication methods, so

that tasks can exchange data as needed. A failure in the type-1 hypervisor is detected

by the SWDT.

3.3. Application Software

The top layer of the proposed architecture is the application software layer,

which implements fault detection and tolerance using the services provided by the

two bottom layers. The focus of this work is on mixed-criticality applications, thus

we refer to two levels of criticality, which can be mapped to any two assurance

levels of the industry standard of interest. In the proposed architecture, we abstract

from the details of the safety standard to focus on the real-time requirements of an

application and on the impact of its misbehavior.

Real-time tasks can be classified based on the consequences of a deadline miss.

In this paper we use the classification from Shin and Ramanathan [13]:

 Soft deadline/Soft real-time task: violation of the deadline causes a degrada-

tion of service without catastrophic consequences. Value of results obtained after

the deadline is not zero and degrades with time.

 Firm deadline/Firm real-time task: violation of the deadline causes a degrada-

tion of service without any catastrophic consequences, granted that the number

of violations is not too high. Value of results obtained after the deadline is zero.

 Hard deadline/Hard real-time task: violation of the deadline causes cata-

strophic consequences.

Based on the classification of the task, one of the two proposed fault detection

and tolerance technique can be used.

9

3.4. Fault Detection and Fault Tolerance techniques

The fault detection and tolerance techniques implemented in the proposed archi-

tectures are TMR and TTMR. Depending on the classification described in the pre-

vious subsection, one of the two techniques should be applied to each task as de-

scribed in this subsection.

3.4.1. Triple Modular Redundancy

Hard Real-Time (HRT) tasks should be implemented using a TMR approach, as

described in Fig. 2. This approach is to be used for HRT because tasks of this kind

cannot tolerate the delay introduced by the TTMR approach described in Section

3.4.2 when recovery is needed. The TMR approach does not introduce any delay,

since any error is detected and recovered in the hardware voter.

Fig. 2: Triple Modular Redundancy scheme. Each HRT task is triplicated. A voter receives

outputs of all replicas and selects the correct one by majority vote.

In the proposed approach, each HRT task that has to be implemented is triplicated.

Each replica is inserted in its own hypervisor partition and executed on a dedicated

core. The output of each replica is fed to the hardware voter implemented in the

hardware layer, which selects the correct output as previously described. This solu-

tion is suited to HRT tasks because it guarantees that the correct output is available

after the completion of all three replicas, i.e. in a deterministic time. It is to be noted

that in this configuration, the type-1 hypervisor is responsible to ensure that each

replica can only write on the dedicated voter register, in order to avoid that a mis-

behavior in one replica could mask the error by writing more than once its result,

thus compromising the correct functionality of the voter.

The TMR architecture is able to mask transient and permanent faults which only

affects one of the replicas, without adding any delay, which is the main reason it

10

should be used for HRT tasks. It is able to detect faults affecting two of the replicas,

in which case a reset of the board should be performed. In case the same condition

is detected several times within a given time or the reset is not acceptable for the

application, the system should react to this eventuality by switching to a stand-by

spare. Since a stand-by spare is usually mandatory in safety- or mission-critical ap-

plications, this does not introduce any additional cost.

3.4.2. Time Triple Modular Redundancy

Firm Real-Time (FRT) and Soft Real-Time (SRT) tasks should be implemented us-

ing a TTMR approach as described in Fig. 3. This approach is to be preferred for

these kinds of tasks because it does not introduce a hardware cost, since the voter is

software-implemented, and the delay introduced by the additional execution can be

tolerated by FRT and SRT tasks.

Fig. 3. Temporal Triple Modular Redundancy. White modules are in software, the voter can

be either in software or in hardware, the output selection is a logical block.

In TTMR each task is triplicated, but instead of always running the three replicas

in parallel, just two instances are executed. Outputs of the two replicas running in

parallel are compared by a software module. In case of disagreement, the third rep-

lica is executed and the correct output is selected through majority voting. In this

implementation of TTMR, no checkpoint storage is needed, because the third exe-

cution is performed from scratch. In this configuration, the voter can be imple-

mented either in hardware or in software. The comparator output is also used to

select the final output of the TTMR task, which is either the output of the first rep-

lica, if comparison finds agreement, or the output of the voter, if comparison does

not find agreement.

TTMR is suitable for applications that do not have hard real-time requirements,

because in case a fault the time required to perform the computation can be longer

than expected. It can be suitable for FRT and SRT tasks, provided that the proba-

bility of a fault is acceptably low. It is particularly suited for best-effort tasks, i.e.

11

tasks with no real-time requirements, because it guarantees that the correct result is

eventually achieved.

TTMR is able to detect and tolerate transient and permanent faults affecting one

of the replicas, although permanent faults in the TTMR architecture can cause a

performance degradation. Such a performance degradation should be tolerated by

the system, given the non-safety- nor mission-critical nature of tasks that can be

implemented in a TTMR configuration.

3.5. System scheduling

Once the tasks have been classified as HRT, FRT or SRT tasks and the proper de-

tection and tolerance technique has been selected and implemented at task level, the

system should be properly scheduled in order to fit all the tasks within respective

deadlines. Any feasible [14] scheduling algorithm can be adopted. In order to

properly implement the TTMR technique some modifications should be imple-

mented to the obtained system scheduling. In order to explain this concept, let us

consider a system composed of two tasks running on a dual-core MPSoC. The two

tasks are

1. Vision (V): a soft real-time task whose results are still useful if they arrive

within a given latency after the deadline. In the scenario considered in this

example, the vision task is periodical, its deadline corresponds to the period

and the maximum latency of a result is one period.

2. Control (C): a hard real-time task whose results are mission critical.

Given its nature, the Vision task can be implemented in a TTMR configuration,

whereas the Control task should be implemented in a TMR configuration. This de-

cision yields a system with the following set of tasks:

1. V, V’, V’’: three replicas of the vision task V.

2. C, C’, C’’: three replicas of the control task C.

3. VC (Vision Check): the task implementing the comparator and (optionally)

the software voter for the TTMR configuration. This task is responsible for

selecting the correct output of the Vision task, as described in the previous

subsection.

The scheduler should be aware that in each major cycle, only two Vision tasks

should be scheduled and all three Control tasks should be scheduled, and the Vision

check should be scheduled too. Considering the availability of only two cores, one

possible scheduling for this system is given in Fig. 4. It is to be noticed that for the

method to be applicable, requests to shared resources performed by each task should

be contained in the execution slot of each task and that the concurrent execution of

two instances of the same task should be possible.

12

Fig. 4. One possible system scheduling in nominal operation.

The system scheduling showed assumes the system is working as expected, i.e.

no faults are active in the system. Fig. 5 shows two consecutive major cycles, which

are delimited by the period of the tasks. Both tasks are assumed to have the same

period for sake of simplicity, however the proposed solution does not require this

condition, as long as a feasible scheduling exists. In this scenario, if a fault affects

one of the Control tasks it gets masked by the TMR configuration. A fault affecting

one of the two Vision tasks running in parallel is detected by the Vision Check task.

The system reacts to such a fault by modifying the scheduling for the next major

cycle as showed in Fig. 5.

Fig. 5. The scheduling is modified for the next major cycle when an error is detected in a

TTRM configuration.

In this scenario, the third replica of the Vision task is executed in the next major

cycle, and its results are passed to the Vision Check task. When executed in this

context, the Vision Check should implement the software voter and provide the cor-

rect output.

A similar example can be proposed for a system based on a quad-core MPSoC,

implementing three tasks:

1. Vision (V): same as in the previous scenario

2. Control (C): same as in the previous scenario

3. Sensor Logging (S): a task responsible for collecting and compacting sen-

sors data to be stored or sent to a remote station. This task can be considered

neither safety-critical nor hard real-time, however it should not produce

wrong results, otherwise the stored sensor data could be useless or mislead-

ing.

13

After applying the proposed tolerance techniques, the system includes the fol-

lowing tasks:

1. V, V’, V’’: three replicas of the vision task V.

2. C, C’, C’’: three replicas of the control task C.

3. S, S’, S’’: three replicas of the sensor logging task S.

4. VC (Vision Check): the task implementing the comparator and (optionally)

the software voter for the TTMR configuration of the Vision task. This task

is responsible for selecting the correct output of the Vision task, as described

in the previous subsection.

5. SC (Sensor Logging Check): the task implementing the comparator and

(optionally) the software voter for the TTMR configuration of the Sensor

Logging task. This task is responsible for selecting the correct output of the

Sensor logging task, as described in the previous subsection.

A possible scheduling for the system is showed in Fig. 6. As for Fig. 4, this is a

scheduling assuming that the system works as expected. It is to be noticed that for

the method to be applicable, requests to shared resources performed by each task

should be contained in the execution slot of each task and that the concurrent exe-

cution of two instances of the same SRT task or three instances of the same HRT

task should be possible.

Fig. 6. One possible system scheduling in nominal operations.

Having four cores to use, the three replicas of the Control task can run in parallel,

thus reducing the execution time of the task. Moreover, one more task can be con-

solidated on the same chip, thus scaling up the level of integration. In case a fault is

detected in one of the tasks in TTMR configuration, the system reacts in the same

way described for the dual-core scenario. In a quad-core scenario, the system can

even tolerate two faults in TTMR tasks, as long as the two faults do not affect rep-

licas of the same task, as shown in Fig. 7. In this scenario, the next major cycle is

used to run the third replica of both TTMR tasks, while the Control tasks continues

unaffected.

14

Fig. 7. System reacts to a fault affecting one replica of each TTRM task.

4. Experiments and Results

The proposed architecture was evaluated through fault injection experiments on ac-

tual hardware, using an external debugger and targeting architectural registers and

MPSoC configuration registers. The workload of the system was selected in order

to emulate part of the workload of an autonomous vehicle navigation system. In

particular, we selected a processing phase, consisting of one or two tasks, and an

actuation or control phase, consisting of one phase. In this section, the program im-

plemented in all the tasks are described, together with the fault injection system

used. The experiments have been performed on two hardware platforms.

The first hardware platform is a Xilinx Zynq system, which is a dual-core based

MPSoC. The Xilinx Zynq implements a dual-core ARM Cortex-A9 processor as a

hard-IP core, together with an FPGA fabric on the same die. In our experiments, the

FPGA fabric is used to implement the companion chip.

The second hardware platform is a SanitasEG’s Inventami board, featuring an

NXP i.MX6Quad MPSoC, based on a quad-core ARM Cortex-A9 processor, to-

gether with a Lattice ECP5U FPGA, which has been used to implement the com-

panion chip.

On both hardware platforms, the whole system described in Section 3 has been

implemented, using the commercially available type-1 hypervisor we described in

Section 3.

4.1. Benchmark application

The benchmark application has been selected to emulate part of the workload of a

navigation system of an autonomous vehicle to be used in the context of space ex-

15

ploration. The target system is an autonomous rover on the surface of an extrater-

restrial body. In this context, the electronics systems are subject to a radiation envi-

ronment which could compromise the correct behavior of the system. Using the

proposed architecture, such misbehavior can be detected and tolerated.

In our scenario, the navigation system uses computer vision to decide some ac-

tuations. The system is partitioned so that the computational heavy vision algo-

rithms are not considered mission critical, whereas a control task, which is mission

critical, is in charge of deciding the actuation based on the results from the vision

algorithms. Besides this two tasks there is a third task in charge of collect and com-

pact sensor data to be logged and sent to Earth by a different subsystem.

The vision algorithm used in our scenario is a Sobel-based edge detection algo-

rithm. The result of the edge detection is used by the control task to decide the ac-

tuations to be performed. For instance, the edge detection algorithm could identify

an obstacle on the path, the control algorithm would then actuate the wheels so that

the rover deviates from the original path in order to avoid the obstacle.

In our scenario, a new frame is available every two control task’s periods, mean-

ing that the vision task can use two periods to perform its computations. Rather than

use all that time in pure computation, the vision task can be implemented in a TTMR

configuration, as described in the previous section. On the other hand, the control

task is mission critical and has hard real-time requirements, thus it should be imple-

mented in a TMR configuration.

The third task, performing sensor data logging, can be considered a best-effort

task, although it is desirable to not have misleading outputs from it. This task can

be implemented in a TTMR configuration too.

The resulting system scheduling on the two hardware platforms are as described

in the previous section (see Fig. 4, Fig. 5, Fig. 6, and Fig. 7).

The benchmark application code size and WCET are reported in Table 1 and

Table 2, for both the vanilla benchmark and the protected version used in our ex-

periments. When the technique is applied, code memory size roughly triplicates,

with some overhead due to addition of some operations needed to use WDPs and

SWDT. The WCET was estimated by profiling in a multicore system the experi-

mental workload described below with the worst case workload. The worst case

workload was crafted based on the knowledge of the implementation.

It is to be noticed, that the actual performance overhead of using WDPs depends

on the partitioning granularity. As described above, WDP is designed to monitor

that blocks of the software executes in the expected sequence within the expected

duration. The block definition used in the WDP specification is generic on purpose,

so that the designer can trade-off between error latency and performance overhead.

Small blocks yield a lower error latency, but require a higher performance overhead,

since the WDP is accessed more often. Larger blocks yield a higher error latency,

but require a lower performance overhead. In our experiments, we selected large

blocks, thus the performance overhead is low. However, both the Vision and the

Sensor Logging tasks have the overhead of the error detection, which amounts to

most of the overhead reported in Table 2. In Table 2 the performance overhead is

reported in ms, instead of clock-cycles, because we feel that clock-cycles count is

16

an architecture-dependent measure, whereas the execution time can be more easily

compared with results on different architectures.

 The Control task does not experience any of this overheads, since its only over-

head is the rearming of the SWDT, performed through a single store instruction,

and the write of the result in the voter register, which has the same overhead as

writing the results on an actuator register. However, in a dual core scenario the con-

trol task has a 100% overhead, due to the third execution which has to be executed

in sequence after the first two as showed in Fig. 4.

Table 1. Code memory area

 Vanilla Hardened

Vision 23.4 KiB 93 KiB

Sensor Logging 18 KiB 72 KiB

Control 9.4 KiB 29 KiB

Table 2. WCET

 Vanilla Hardened

Vision 12 ms 16 ms

Sensor Logging 12 ms 16 ms

Control 4 ms
8 ms (ZYNQ)

4 ms (i.MX6)

4.2. Fault Injection System

The fault injection system has been implemented using an external debugger to

access the system through the Test Access Ports (TAPs) available on both hardware

platforms. In this subsection, the fault injection system is described. In this section

we refer to:

 Fault injection experiment: a single execution of the benchmark, in which a

fault is injected and results are gathered and compared with a golden result to be

classified

 Fault injection campaign: a collection of fault injection experiments.

17

4.2.1. Fault model and fault list generation

The fault model used is that of the bit-flip in a memory cell, which can model

most SEEs in a simple and convenient way. The target of the fault injection exper-

iments was composed by CPUs architectural registers and MPSoC configuration

registers. Given such target, the possible faults are points of a space identified by

the target location and the injection time. The cardinality of such space is easily too

big to make an exhaustive fault injection campaign infeasible. In order to reduce the

number of faults to be injected, two operations can be performed:

1. Space cardinality reduction: the fault space cardinality was reduced by

reducing the number of target locations, thus identifying a subspace contain-

ing significant faults.

2. Random sampling of the subspace: since the cardinality of the identified

subspace can still be too large, random sampling can be performed within

the subspace.

Space cardinality reduction

In order to reduce the dimension of the faults space, a sampling can be performed

on all dimensions of the space.

A first subsampling can be performed on the time dimension, by considering

only the core part of the benchmark applications, i.e. discarding the time during

which the system is performing bootstrap and configuration. The justification for

such subsampling is that the bootstrap and configuration phases are far less fre-

quently executed than the core part, thus the probability of them being affected by

a fault is negligible compared to the probability of the core part being affected by a

fault.

Moreover, also the location dimension can be subsampled. In order to explain

and justify this subsampling, let us explicitly state that each point of the location

dimension identifies a bit in the CPU architectural registers and MPSoC configura-

tion registers. As such, not all bits are useful as targets of a fault injection. Indeed,

not all architectural registers might be used by the program, for instance, the pro-

gram might not be using floating point operations, thus the floating point registers

can be neglected. In a similar way, not all configuration bits in the MPSoC registers

are useful, since many may be used to configured unused subsystems and periph-

erals, for instance the application may not be using the Controller Area Network

(CAN) controller or the integrated High Density Multimedia Interface (HDMI). As

a consequence, the cardinality of target locations can be significantly reduced.

Random Sampling

Random sampling consists in randomly selecting a given number of faults from

the reduced fault space. The exact number of faults to be sampled is obtained by

successive approximation. At the beginning of the process, a sensible number of

faults is selected and a fault campaign is executed. Results are collected and signif-

icant statistics are extracted (more details on this below). Next a new set of faults

of the same cardinality is sampled from the reduced subspace, without repetition,

and a new fault campaign is executed. If the statistics extracted from this campaign

18

are within a confidence interval from the results of the first one, the cardinality is

considered sufficient and results are finalized.

4.2.2. Fault injection campaigns and classification

When the fault list is ready, fault injection campaigns are performed. A fault

injection campaign consists of a collection of fault injection experiments. Each fault

injection experiments injects one fault from the fault list. A fault injection experi-

ments is performed as follows:

1. A fault is extracted from the fault list

2. The system is reset, to avoid fault accumulation

3. As soon as the bootstrap and configuration phase is over a timer is started

4. When the timer expires, the fault injection time has been reached and exe-

cution is stopped

5. The target bit is flipped

6. Execution resumes until the end of the actuation cycle

7. Execution is stopped and outputs are downloaded on the workstation

8. Fault classification is performed and results are logged for further pro-

cessing.

Each fault is classified as:

 Silent (S): the fault had no effect on the system. Since faults detected and cor-

rected by the TMR are completely transparent to the user and to the software,

those faults are considered Silent in this paper and are not analyzed further.

 Recovered without reset (w/o R): the fault was detected and recovered without

resetting the system. This means that a third execution of a monitored FRT, SRT

or best-effort task was performed to correct the error.

 Recovered with reset (w/ R): the fault was detected by the SWDT and caused

a system reset.

 Failure: the fault led to Silent Data Corruption (SDC) or deadline miss in the

Control task.

To classify an output as SDC, a comparison is performed with a golden output.

A golden output is obtained by an execution without fault injection, or golden run.

Obviously, all fault injection experiments are performed using the same input data

as the golden run.

4.3. Results

Two campaigns, each composed of 10,000 faults, were performed on each of the

hardware platforms. Of these, one campaign for each hardware platform targeted

CPU architectural registers, and one campaign for each hardware platform targeted

MPSoC configuration registers. Results of all campaigns are reported in Fig. 8 and

19

Fig. 9. The number of injected faults has been selected observing that the results did

not vary anymore with the execution of more experiments after the first 10,000 were

injected, which is indication of statistical significance.

Results show tolerance to injected faults. Most faults are silent or masked by the

hardware voter. Of those detected, very few put the system in a state from which it

can only be recovered through a reset. No fault at all caused a Failure, i.e. a SDC.

Fig. 8. Results on the Xilinx Zynq-7000 hardware platform.

Fig. 9. Results on the SanitasEG Inventami hardware platform

Performance and Code memory size overhead are reported in Table 1 and Table

2 and are discussed in the corresponding subsection.

The tolerance overhead is mainly on the non-time-critical tasks, i.e. Vision and

Sensor Logging, whereas the control task is only affected by the tolerance when a

reset is required to recover the system execution. This is due to the TMR configu-

ration, in which the hardware voter implements both fault detection and tolerance

in a way completely transparent to the software and without overhead.

20

5. Conclusions

This paper presented a system architecture for mixed criticality applications in-

tegrated on a multi-core chip. The proposed architecture combines known tech-

niques in an innovative way to achieve high rates of fault tolerance with a reduced

time overhead. The architecture is designed to consolidate high criticality applica-

tions with hard real-time requirements with low criticality tasks with softer real-

time requirements. The architecture uses both TTMR and TMR to implement fault

detection and tolerance, and relies on some special hardware to support software

fault tolerance. The TMR is implemented by triple execution of the task and a hard-

ware voter, which drives the actual outputs. The TTMR is implemented in two steps:

1. two tasks are executed in parallel on the same input, and their outputs are

compared for an agreement.

2. in case of mismatch, the task is executed a third time and a software imple-

mented voter selects the correct output; in case of agreement, the output is

sent to the user.

The architecture was implemented on two hardware platforms, one based on a

dual-core processor, the other based on a quad-core processor. The implementation

was tested by means of fault injection simulation experiments. Results show high

fault tolerance capabilities, with a decisive majority of faults having no effect on

the system or being masked by tolerance mechanisms. A few faults affecting non-

time-critical tasks were detected and recovered without affecting the time-critical

tasks. Fewer faults yet, required a system reset, due to the fault resulting in SEFIs

or affecting the execution of the hypervisor kernel causing a kernel panic condition.

Results described in this paper, prove that the solution is a viable way to imple-

ment fault-tolerant applications.

6. Acknowledgments

The research was partially supported by the ECSEL Joint Undertaking project in

the Innovation Pilot Programme “Computing platforms for embedded systems”
(AIPP5) under grant agreement n. 621429 (project EMC2).

7. References

[1] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante, Software-Implemented

Hardware Fault Tolerance. Springer Science and Business Media, 2006.

[2] R. Hillman, G. Swift, P. Layton, M. Conrad, C. Thibodeau, and F. Irom, “Space processor
radiation mitigation and validation techniques for an 1, 800 MIPS processor board,” Eur. Sp.

Agency, (Special Publ. ESA SP, vol. 2003, no. 536, pp. 347–352, 2004.

21

[3] S.K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simultaneous multithread-
ing,” Proceedings of the 27th International Symposium on Computer Architecture, pp. 25-36,

2000.

[4] K. Echtle, B. Hinz, and T. Nikolov, “On hardware fault detection bydivers software,” Proceed-
ings of the 13th International Conference on Fault-Tolerant Systems and Diagnostics.

[5] H. Engel, “Data flow transformations to detect results which are corrupted by hardware
faults,” Proceedings of the High-Assurance Systems Engineering Workshop, 1996, IEEE, pp.

279-285, IEEE, 1996.

[6] D. R. Czajkowski, M. P. Pagey, P. K. Samudrala, M. Goksel, and M. J. Viehman, “Low power,
high-speed radiation hardened computer & flight experiment,” IEEE Aerosp. Conf. Proc., vol.

2005, no. October 2004, 2005.

[7] M. Pignol, “DMT and DT2: Two Fault-Tolerant Architectures developerd by CNES for COTS-

based Spacecraft Supercomputers,” Symp. A Q. J. Mod. Foreign Lit., 2006.

[8] A. Mahmood and E. J. McCluskey, “Concurrent error detection using watchdog processors-a

survey,” IEEE Trans. Comput., vol. 37, no. 2, pp. 160–174, 1988.

[9] M. Namjoo and E. J. McCluskey, “Watchdog Processors and Capability Checking,” Twenty-

Fifth Int. Symp. Fault-Tolerant Comput. 1995,“ Highlights from Twenty-Five Years”., vol. III,

pp. 245–248, 1995.

[10] S. Esposito and M. Violante, “Mitigating Soft Errors in Processors Cores Embedded in System-

on Programmable-Chips,” in FPGA and Parallel Architectures for Aerospace Architecture, F.

L. Kastensmidt and P. Rech, Eds. Zug, Switzerland: Springer, 2015.

[11] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M. Binello, and M. Ter-
rone, “An Hybrid Architecture for Consolidating Mixed Criticality Applications on Multicore
Systems,” in 2015 IEEE 21st International On-Line Testing Symposium, 2015, pp. 26–29.

[12] S. Esposito, S. Avramenko, M. Violante, “On the consolidation of mixed criticalities

applications on multicore architectures”, in 2016 17th IEEE Latin American Test Symposium, pp.

57-62.

[13] K. G. Shin and P. Ramanathan, “Real-Time Computing: A New Discipline of Computer Sci-

ence and Engineering,” Proc. IEEE, vol. 82, no. 1, pp. 6–24, 1994.

[14] C. J. W. L. L.Liu, “Scheduling Algorithms for Multiprogramming in a Hard- Real-Time En-

vironment,” J. Assoc. Comput. Mach., vol. 20, no. 1, pp. 46–61, 1973.

