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Abstract

This paper deals with the static analysis of fiber reinforced composites via the Component-Wise approach

(CW). The main aim of this work is the investigation of the CW capabilities for the evaluation of integral

quantities such as the strain energy, or integral failure indexes. Such quantities are evaluated in the global

structures and local volumes. The integral failure indexes, in particular, are proposed as alternatives to point-

wise failure indexes. The CW approach has been recently developed as an extension of the 1D Carrera Unified

Formulation (CUF). The CUF provides hierarchical higher-order structural models with arbitrary expansion

orders. In this work, Lagrange-type polynomials are used to interpolate the displacement field over the element

cross-sections. The CW makes use of the 1D CUF finite elements to model simultaneously different scale

components (fiber, matrix, laminae and laminates) with a reduced computational cost. CW models do not

require the homogenization of the material characteristics nor the definition of mathematical lines or surfaces.

In other words, the material characteristics of each component, e.g. fibers and matrix, are employed, and the

problem unknowns are placed above the physical surface of the body. In the perspective of failure analyses,

the integral evaluation of failure parameters is introduced to determine critical portions of the structure where

failure could take place. Integral quantities are evaluated using 3D integration sub-domains that may cover

macro- and micro-volumes of the structure. The integral quantities can be evaluated directly on fiber and

matrix portions. Numerical results are provided for different configurations and compared with solid finite

element models. The results prove the accuracy of the CW approach and its computational efficiency. In

particular, 3D local effects can be detected. The use of the integral failure index provides qualitatively reliable

results; however, experimental campaigns should be carried out to related such indexes to the failure occurrence.

Keywords: Component-Wise, Composites, Carrera Unified Formulation, 1D Models.
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1 Introduction

Fiber reinforced composite structures have been increasingly used in many engineering applications over the

last decades. Nevertheless, many aspects of composites are still only partially understood and hard to model.

A typical example being failure and fatigue processes. The proper mathematical modeling of such phenomena

should take into account the multiscale properties of composites. Multiscale approaches have been recently

proposed to model the different scales involved in the analysis of composites and provide a refined description

of the stress and strain on the components [1, 2, 3, 4, 5].

In a failure analysis scenario, integral quantities are commonly used to predict failure. Depending on the

failure mode, integrals can be evaluated on lines, areas or volumes, as shown in Fig. 1. For instance, forces

exchanged through the thickness can lead to delamination. Therefore, 1D-, 2D- and 3D-sub-domains nearby

the lamina interfaces can be appropriate zones to investigate. Or, if the debonding/pull-out mechanisms have

to be analyzed, sub-domains around the fiber/matrix interface can be taken into account. As in Fig. 2, line

contours around microcracks can be considered when the matrix behaviour has to be studied.

In the framework of the evaluation of integral parameters, the J-integral method was introduced for the

analysis of metallic structure and, in the last decades, has received many attentions for its several attractive

features. According to this theory [6], a path independent parameter, J, can represent an average measure

of the crack tip elastic-plastic field. The J-integral can be directly evaluated from single load-displacement

records [7], making this value particularly attractive to be used as a fracture criterion [8]. This method

has been extensively used for two-dimensional problems, and for traditional metallic materials; an extension

to three-dimensional problems can be found in [9]. The J-integral approach has then been extended to

composites; it can be used to measure the crack resistance curves (R-curve) in fiber-dominated failure modes

of polymer-matrix composites, and to characterize the fracture toughness. It has also been used to evaluate

the parameters used in softening laws for the numerical simulation of the fracture mechanism [10]. The J-

integral is a path-independent parameter that can also be used to analyze the failure areas when the linear

elastic fracture mechanics approximations are not valid as shown in [11]. A similar approach was presented

in [12] for cementitious composites while, in [13], it has been used to determine the fracture toughness of the

tensile and compressive fiber failure modes.

The accuracy of point-wise and integral predictions are related to the accuracy of the displacement, strain,

and stress fields. Accurate 3D fields in composite structures require refined models. Typical classes of refined

structural models for composites are based on higher-order models [14, 15], Zig-zag theories [16, 17, 18],

Layer-Wise (LW) approaches [19, 20, 21], and mixed variational approaches [22]. The present work makes use

of 1D advanced structural models based on the Carrera Unified Formulation [23, 21, 24]. In particular, the

Component-Wise approach (CW) is adopted. The CW stemmed from the 1D CUF. Lagrange polynomials are

usually adopted to model the cross-section displacement field. In a CW model, each component of a complex

structure is modeled through 1D models. 1D, 2D, and 3D structural elements can be modeled through 1D
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models by enriching the displacement fields. The definition of mathematical lines and surfaces is no more

needed since the unknown variables can be placed on the physical surfaces of the structure. Each component

can be modeled with its material characteristics, and no homogenization is needed. CW models have been

recently exploited to deal with the analysis of aerospace structures [25, 26, 27, 28, 29], civil structures [30, 31],

fiber/matrix cells of composite structures [32, 33], and damage analysis [34, 35]. The use of the CW approach

for composites was introduced in [32, 33]. The capability to obtain the solid-like accuracies was proved. The

current work presents recent developments of the CW to evaluate integral parameters in composite structures.

Particular attention was paid to the proper choice of the integration domain. Since the micro and the macro

scales can be modelled simultaneously, integrals were evaluated simultaneously in a whole lamina, fiber, or

matrix portion or specific parts of these components.

This work is a companion paper of [36]. In particular, this paper extends the numerical cases presented in [36]

via comparisons with 3D finite elements and more comprehensive evaluations of the local effects. This paper

is organized as follows: a brief theoretical introduction to the present formulation is given in Section 2. An

overview of the CW and the evaluation of integral parameters is given in section 3. The numerical examples

are presented and discussed in Section 4. The main conclusions are drawn in Section 5.

2 CUF 1D Formulation

Let us assume the Cartesian, orthogonal coordinate frame shown in Fig. 3. In the CUF framework, the

displacement field of a 1D structural model is written as follows:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (1)

where u(x, y, z) = {ux, uy, uz}T is the displacement vector; Fτ (x, z) indicates the cross-section functions; uτ

is the generalized displacement vector; M indicates the number of terms in the expansion. The repeated

subscript indicates summation. The choice of Fτ and M is arbitrary. In other words, various types of basis

functions can be used to model the displacement field across the section - e.g. polynomials, harmonics,

exponentials, and combinations thereof - as well as any expansion orders.

In this paper, Lagrange polynomial expansions (LE) were used for the displacement field. Bi-quadratic nine-

nodes (L9) Lagrange polynomials are used as Fτ . The displacement field within an L9 element can be written

as:

ux(x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y) + ...+ F9(x, z)ux9(y)

uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y) + ...+ F9(x, z)uy9(y)

uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y) + ...+ F9(x, z)uz9(y)

(2)

Where ux1, ..., uz9 are the translational components of the nine points of the L9 element. The unknown

variables are only pure displacements. Lagrange polynomials can be found in [24]. Multiple L-elements can
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be used above a cross-section. Figure 4 shows a typical L9 distribution above a cross-section with local loads.

The local refinement of the displacement field is achieved via the use of a finer discretization. Figure 5 shows

the LE capability of using directly the physical surfaces of the structure to place the unknown variables.

While classical models require the definition of a line - commonly known as the beam axis - along which the

unknown variables are defined, LE can use the physical boundaries of the 3D body. Such a feature can be of

fundamental importance whenever a 3D CAD geometry must be dealt with.

2.1 Geometrical and Constitutive Equations

The stress σ and the strain ε vectors are defined as follows:

σ = {σxx, σyy, σzz, σxy, σxz, σyz}T

ε = {εxx, εyy, εzz, εxy, εxz, εyz}T
(3)

The linear strain-displacement relations are employed,

ε = Du (4)

where D is

D =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


=



∂
∂x 0 0

0 0 0

0 0 ∂
∂z

0 ∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z 0


+



0 0 0

0 ∂
∂y 0

0 0 0

∂
∂y 0 0

0 0 0

0 0 ∂
∂y


= [DΩ] + [Dy] (5)

The constitutive law is

σ = C̃ε (6)

For the sake of brevity, the coefficients of C̃ are non reported here, they can be found in [37].

2.2 Finite Element Formulation and the Fundamental Nucleus

The generalised displacement vector uτ is interpolated along the y direction by means of the shape functions

Ni,

u(x, y, z) = Fτ (x, z)Ni(y)uτi (7)
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where uτi is the nodal unknown vector. According to the principle of virtual displacements, the internal

strain energy Lint can be written as follows:

δLint =

∫
V

δεTσ dV (8)

Where δ stands for virtual variation. Considering Eqs. 4, 6 and 7, the virtual variation of the strain energy

can be written in a compact form:

δLint = δuTsjK
τsijuτi (9)

where Kτsij is the fundamental nucleus of the stiffness matrix and the superscripts indicate the four indexes

exploited to expand the elemental matrix: τ and s are related to the expansion functions Fτ and Fs whereas

i and j are related to the shape functions Ni and Nj . The fundamental nucleus, which is a 3 × 3 array,

is formally independent of the order of the beam model. By introducing the geometrical and constitutive

relations, it is possible to rewrite the virtual variation of Lint as

δLint = δuTsj

{∫
V

[(
DΩ +Dy

)T(
Fs(x, z)Nj(y)I

)]
C
[(
DΩ +Dy

)(
Ni(y)Fτ (x, z)I

)]
dV

}
uτi =

= δuTsj

{∫
l

(
Nj(y)

(∫
Ω

[
DT

Ω

(
Fs(x, z)I

)]
C
[
DΩ

(
Fτ (x, z)I

)]
dΩ
)
Ni(y)

)
dy+

+

∫
l

(
Nj(y)

(∫
Ω

[
DT

Ω

(
Fs(x, z)I

)]
CFτ (x, z)dΩ

)
Dy

(
Ni(y)I

))
dy+

+

∫
l

(
DT
y

(
Nj(y)I

)(∫
Ω

Fs(x, z)C
[
DΩ

(
Fτ (x, z)I

)]
dΩ
)
Ni(y)

)
dy+

+

∫
l

(
DT
y

(
Nj(y)I

)(∫
Ω

Fs(x, z)CFτ (x, z)dΩ
)
Dy

(
Ni(y)I

))
dy

}
uτi

(10)

where Ω is the cross-section domain and I is the unit matrix. All the other finite element matrices and vectors

can be written in a similar way, as shown in [24].

3 The CW approach and evaluation of integral quantities

CUF 1D models can be particularly convenient in the case of multi-component structures. Typical examples

are aircraft wings and composite structures. These structures are composed of multiple components, which

can have rather different geometrical and material characteristics. A fibre reinforced composite plate is made

of layers made of matrix and fibers. Usually, such plates are modeled as homogenized structures through

the equivalent single layer (ESL) and layer-wise (LW) approaches. The ESL models a multilayered plate as

an equivalent monolayer plate. The LW retains each layer but with higher computational costs. The CW

approach can be seen as a further improvement of the previous techniques that allows the modelling of a

fiber-reinforced composite structure up to the component scale.
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The CW exploits LE 1D elements to model each component of a structure separately and independently

of their geometrical and material characteristics. Each 1D, 2D, 3D or micro and macro component can be

modeled via LE 1D models with no need for ad hoc coupling and interface techniques. Figure 6 shows a

typical CW strategy for a composite plate; 1D LE models can be simultaneously adopted to model layers

(macroscale), matrix and fibres (microscale). This methodology can be very powerful when, for instance,

detailed stress fields are required in a specific portion of the structure. It is important to underline that

each component geometrical and material characteristics are retained, and the CW approach does not require

coupling techniques, as the FE matrices of each element are formally the same. Figure 7 shows the different

assemblage strategies for a multicomponent structure stiffness matrix. In classical approaches, the structure

is reduced to a single equivalent structure. In the CW, the stiffness matrix elements of different components

are superimposed only at the interface level to impose the displacement continuity. CW models can be locally

refined by using higher- or lower-order models where required. Such a feature leads to further computational

cost reductions.

Previous works have evidenced the enhanced capabilities of the CW to detect complete 3D, accurate displace-

ment/strain/stress and failure index fields in the matrix, fibers, layers and interfaces of composite structures

with low computational costs [33, 32].

3.1 Integral quantities

The present paper focuses on the evaluation of integral quantities, such as the strain energy, in global and

local portions of the structure. Given the 3D geometry of the structure, some sub-volumes, Vi, are considered.

The strain energy in Vi can be calculated as follows:

Ei =

∫
Vi

σT ε dVi (11)

In particular, the contributions from the axial and shear strains are given by

Ei,ax =

∫
Vi

σyyεyy dVi, Ei,s =

∫
Vi

(σyzεyz + σxyεxy) dVi (12)

In composite structures, several failure mechanisms can take place, such as fiber or matrix collapse, debonding

or delamination. To determine where failure may occur, integral quantities can be evaluated in sub-domains

that can be lines, areas or volumes of the components, or at lamina/fiber-matrix interfaces. Integral quantities

are usually computed through stress and strain distributions. Therefore, the accuracy of such quantities

depends on the accuracy of the strain and stress field. However, the accurate evaluation of the 3D fields can

be quite cumbersome. The use of the CW may be helpful to compute these integrals with high accuracy

and low computational costs. Figure 8 shows a typical analysis scenario involving a composite plate. Various

sub-volume distributions are shown ranging from macro areas, e.g. entire layers, to micro areas, e.g. portions
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of the matrix. The CW can predict 3D stress fields up to the micro scale and, therefore, provide reliable

evaluations with no significant computational cost penalties.

One of the most common methods to predict failure in composites relies on the use of failure indexes (FI). FI

offer punctual evaluations of the criticality in a given structure. However, as it is well known, FEs may be

inaccurate as far as punctual evaluations are concerned. Such a problem is usually worsened by geometrical

and mechanical boundary conditions. Moreover, most of the FE models require the use of homogenized,

equivalent elements whose materials properties are computed from those of the single constituents, e.g. fibers

and matrix. This, for instance, may lead to failure predictions that do not take into account the different

properties and failure mechanisms of fibers and matrix. A possible way to overcome such a shortcoming

may be represented by solid models, but with a considerable growth of the computational cost. In this paper,

integral evaluations of FI are proposed and evaluated through the CW approach to avoid punctual evaluations.

The aim is to highlight the capability of CW in the evaluations of failure related quantities by retaining the

geometrical, and material characteristics of a fiber reinforced composite structure constituents, i.e. fibers and

matrix cells. The effectiveness of such novel integral quantities to predict failure should be evaluated through

experimental campaigns that are beyond the scope of this paper.

The integral version of FI within a sub-volume Vi is given by

FI∗i =

∫
Vi
FI dVi

Vi
(13)

Where FI can be one of the indexes commonly used in literature or commercial codes. In the case of multiple

sub-volumes a mean value of FI∗ may be computed as

FI∗ =

∑NV ol

i=1 FI∗i
NV ol

(14)

Where NV ol indicates the number of sub-volumes.

3.2 Failure indexes

In this paper, the Maximum Stress (MS) and Tsai-Wu (TW) criteria were considered as FI. For an anisotropic

material, the conditions for the Maximum Stress criterion are [37]

σ11 ≥ 0 ⇒ σ11 ≥ XT or σ11 < 0 ⇒ σ11 ≤ XC

σ22 ≥ 0 ⇒ σ22 ≥ YT or σ22 < 0 ⇒ σ22 ≤ YC

σ33 ≥ 0 ⇒ σ33 ≥ ZT or σ33 < 0 ⇒ σ22 ≤ ZC

τ12 ≥ S12; τ13 ≥ S13; τ23 ≥ S23

(15)
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The Failure Coefficient, FC, for an anisotropic material changes depending on the direction. In agreement

with the choice to use isotropic materials, the FC can be X or S for the Maximum Stress criterion where X

is the material strength in axial directions and S, the material strength in shear directions. T and C indicate

tension and compression, respectively. For the Maximum Stress criterion the FI is

FI = max
[ σij
FCT,C,L

]
(16)

Points in which the index becomes greater or equal to one indicate the failure. Table 1 shows the maximum

stress values adopted for the numerical examples.

The Tsai-Wu (TW) is a quadratic interaction tensor polynomial failure criterion and can be defined as [38]

A11σ
2
11 +A22σ

2
22 +A33σ

2
33 +B1σ11 +B2σ22 +B3σ33 + 2A12σ11σ22+

2A13σ11σ33 + 2A23σ22σ33 +A66τ
2
12 +A55τ

2
13 +A44τ

2
23 ≥ 1

(17)

Where

A11 = 1
XTXC

A22 = 1
YTYC

A33 = 1
ZTZC

B1 = 1
XT
− 1

XC
B2 = 1

YT
− 1

YC
B3 = 1

ZT
− 1

ZC

A12 = 1
2
√
XTXCYTYC

A13 = 1
2
√
XTXCZTZC

A23 = 1
2
√
YTYCZTZC

A44 = A55 = A66 = 1
SLSL

(18)

4 Numerical results

A homogeneous beam was considered as first assessment. Then, a single fiber-matrix cell was analysed. Last,

a multilayered beam was considered in which various fiber-matrix cells were included. Material properties

are shown in Table 1. Three isotropic materials were used. The first one was adopted in the homogeneous

case and for layers. The other two materials were used to model fibers and matrix, respectively. For each

material, failure coefficients are reported for tension, compression, and shear. The aim of the following

numerical examples is to evaluate the capabilities of the CW models in the evaluation of integral quantities in

fiber/matrix cells, with particular attention given to local effects. The choice of the loading and geometrical

characteristics was carried out to shed light on these aspects. The analysis of more realistic cases should be a

task for future developments. In fact, such CW cells could be used as Representative Unit Cells in multiscale

analyses or used as local, micro refinements in complex macro structures.

The results were validated in terms of strain energies via 3D finite element models from commercial codes. A

detailed validation campaign related to FI fields was carried out in [32].
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4.1 Homogeneous beam

As a preliminary assessment, a homogeneous cell was considered as a cantilever beam, and MAT 1 used. The

length of the beam is 1 mm. The cross-section is square; the height is 0.1 mm. The CW model has one L9

element above the cross-section. A solid model was used for comparison purposes, and 20-nodes element were

used. Figure 9 shows the CW and solid models. Four forces were applied on the free tip of the beam, F1 =

F2 = F3 = F4 = 0.025 N. Ten, equally long sub-volumes were considered along the axis of the beam. Table

2 shows the strain energy in each sub-volume and the total energy. The first column provides the CW model

results, whereas the second column shows the results from the solid model. The results suggest that

• Perfect agreement was found between the two models. The agreement is good at global and local level.

In fact, the total strain energy and the energies of each sub-volumes matched perfectly.

• The total amount of DOFs of the 1D models is three times smaller than the solid model.

• As expected, the distribution of the strain energy has a maximum in the proximity of the clamped

region.

4.2 Single cell

This section deals with the analysis of a fiber/matrix cell. The cross-section is square, h = 0.1 mm, and L/h

= 10 where L is the longitudinal length of the structure and h is the cross-section height. The fiber diameter

(d) is 0.08 mm. 20 L9 elements were used along the cross-section. The structure is clamped at y = 0. Two

loading configurations were considered, as shown in Figure 10. In a first case study, four bending force were

applied at the free tip, cell corners, F = 0.025 N each. Then, pure torsion was considered using two opposite

forces, F = 0.05 N, at [-h/2, L, 0] and [h/2, L, 0].

First, analogously to the previous section, two and five sub-volumes along the beam axis were considered.

Table 3 shows the results regarding strain energy. E indicates the total strain energy, Eax indicates the axial

strain energy, and Es the shear energy. The subscript i was used to indicate the energy in the i-th sub-volume.

Bold characters indicate the maximum value of energy. Table 4 shows the energy distributions along the fiber

and matrix portions of each sub-volume for the bending case. The torsion case is shown in Table 5. Table

6 shows the integral failure indexes computed via the Maximum Stress and Tsai-Wu criteria. Failure index

distributions for both criteria at the clamped cross-section are shown in Fig. 11 for the bending case.

Another volume subdivision was considered and focused on the matrix in the proximity of the free tip of the

beam, as shown in Fig. 12. Volumes 1-8 were placed from 0.8 to 0.9 mm, whereas 9-16 were placed along

the last 10% of the beam length. Table 7 shows the results in terms of ratios between the strain energy of a

given sub-volume and the strain energy in all the matrix region along the last 20% of the beam. Moreover,

the integral failure index is reported. The results suggest the following:

• The local effects on the energy distributions can be evaluated via the present CW modeling.
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• Local effects due to mechanical and geometrical boundary conditions influence the strain distribution.

However, the influence on shear terms is much greater than on axial terms.

• The presence of point forces causes peaks of strain energy in the matrix cells. Although it must be

underlined how the present structural and loading configurations are not necessarily realistic, the present

analysis shows the capabilities of the CW in the prediction of local effects. Such effects can be accurately

predicted along the axis and above the cross-section.

• The proposed integral failure index can qualitatively identify those areas with major stress and strain

distributions. However, an appropriate choice of the sub-volume distributions is required. In partic-

ular, distributions above the cross-section involving single components should be preferred. Such a

choice enables the accurate evaluation of local effects and the avoidance of homogenization of material

properties.

• The quantitative interpretation of the integral failure index remains an open issue. In fact, the results

suggest that there is no correspondence between the numerical values of the point-wise indexes and the

integral ones.

4.3 Laminated structure

This section deals with a more complex configuration with three layers. The beam is cantilevered, and the

stacking sequence is [0/90/0]. The height (h) and the width (b) are 0.6 mm and 0.8 mm, respectively; L/h

= 10. Each layer is 0.2 mm thick. Figures 13, 14 show the first CW model adopted. A fiber/matrix cell

was inserted into the bottom layer. The cell cross-sectional dimensions are like those of the previous section.

The cell center is at 11b
16 . Two loading cases were considered. The bending case is given by a force, F = 5 N,

applied at the free tip cross-section center. The torsion case has four forces, 1 N each, applied at the free tip

cross-section corners.

Table 8 presents the total strain energy computed via the present CW model and a solid model. DOFs of

each model are shown as well. Table 9 shows the strain energy in each layer and the entire beam. Table 10

reports the strain energy in the fiber/matrix cell. In particular, the fiber and matrix energy shares are given.

Table 11 shows the integral failure indexes in the cell. The maximum stress criterion was used.

A second CW model was then considered as shown in Fig. 15. Eight fiber/matrix cells were considered along

the bottom layer of the beam. The bending loading case was considered. Table 12 presents the total strain

energy computed via the present CW model and a solid model. DOFs of each model are shown as well. Table

13 shows the strain energy in each lamina and the entire laminate. Furthermore, the contributions from the

axial and shear terms are given. Table 14 focuses on the eight fiber/matrix cells. The strain energy is given

for each fiber and all the matrix. Table 15 shows the integral failure index in each fiber and matrix cells. The

results suggest the following:
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• A good match between the CW models and the solid models was found. The CW DOFs are some ten

times fewer than those of the solid model.

• As expected, the outer, zero degree layers have the highest shares of the strain energies due to the axial

terms. Shear terms are predominant in the inner layer in the case of bending load. As far as torsion is

concerned, shear contributions are predominant and equally distributed between layers.

• The CW modeling of the single fiber/cell matrix has highlighted the different energy share mechanism

between fiber and matrix. As expected, fibers dominate the energy absorption in bending. Whereas,

the matrix has a predominant role for shear and in torsion.

• As in the previous case, the integral failure index provides a qualitative estimation of the most critical

areas of the structure.

5 Conclusions

This paper has presented results on the static analysis of fiber-reinforced composite structures via the

Component-Wise approach (CW). The CW formulation, derived through the 1D Carrera Unified Formu-

lation (CUF) structural models, can be used to model laminates, laminae, fibers and matrices separately;

that is, different scale components can be modeled by using the same 1D formulation. Single fiber-matrix

cells and layered structures have been considered, and the results evaluated in terms of integral quantities,

such as strain energy and integral failure indexes. Comparisons with solid finite element models have been

provided. Global and local effects were evaluated.

Numerical results suggest that:

• The CW results match solid model ones with good accuracy but lower computation costs. In fact, the

total amount of DOFs of the 1D models is about three to four times smaller than the solid model.

• The CW can detect 3D local effects. Moreover, the avoidance of homogenization techniques enhances

the prediction capabilities of the CW models at the fiber and matrix level.

• Integral failure indexes can qualitatively identify those areas with major stress and strain distributions.

However, an appropriate choice of the sub-volume distributions is required. In particular, distributions

above the cross-section involving single components should be preferred. Such a choice enables the

accurate evaluation of local effects and the avoidance of homogenization of material properties. The

quantitative interpretation of the integral failure index remains an open issue. In fact, the results suggest

that there is no correspondence between the numerical values of the point-wise indexes and the integral

ones.
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• CW models can be used to model single cells are Repetitive Unit Cells or to model entire portions of

the structure up to the micro level.

Future extensions should deal with the analysis of more complex structures, the extension to progressive

failure analysis, and impact problems.
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Tables

MAT 1 MAT 2 MAT 3

Material Properties
E (GPa) 127.6 250.6 3.252
ν [-] 0.3 0.2456 0.355

Maximum Stress (MPa)
XT 1730 3398.1 66.5
XC 1045 2052.6 255
SL 95.1 186.8 74

Table 1: Material properties and failure coefficients.

E × 104 mJ

Vol CW Solid
1 1.030 1.023
2 0.853 0.854
3 0.665 0.665
4 0.500 0.500
5 0.359 0.360
6 0.242 0.242
7 0.148 0.148
8 0.077 0.077
9 0.030 0.030
10 0.013 0.015
Tot 3.917 3.914

DOFs 1647 4557

Table 2: Strain energy distribution along the sub-volumes of the homogenous beam.
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Bending Torsion

Vol Ei/E Eax,i/Eax Es,i/Es Ei/E Es,i/Es
1/2 0.846 0.874 0.308 0.138 0.415
2/2 0.154 0.126 0.692 0.862 0.585

1/5 0.469 0.484 0.177 0.055 0.168
2/5 0.289 0.298 0.089 0.055 0.166
3/5 0.149 0.153 0.082 0.055 0.163
4/5 0.055 0.056 0.083 0.056 0.169
5/5 0.038 0.008 0.568 0.778 0.334

E × 103 mJ Eax × 103 mJ Es × 105 mJ E × 104 mJ Es × 105 mJ
Total 3.448 3.331 3.257 1.150 3.775

Table 3: Strain energy in beam sub-volumes, single cell.

Fiber Matrix

Vol Efi /E
f Efax,i/E

f
ax Efs,i/E

f
s Emi /E

m Emax,i/E
m
ax Ems,i/E

m

1/2 0.873 0.874 0.591 0.509 0.872 0.046
2/2 0.127 0.126 0.409 0.491 0.128 0.954

1/5 0.483 0.484 0.326 0.275 0.488 0.039
2/5 0.298 0.298 0.180 0.171 0.293 0.005
3/5 0.153 0.153 0.167 0.088 0.151 0.004
4/5 0.057 0.056 0.164 0.033 0.056 0.008
5/5 0.009 0.008 0.162 0.423 0.012 0.945

Ef × 103 mJ Efax × 103 mJ Efs × 105 mJ Em × 104 mJ Emax × 104 mJ Ems × 105 mJ
Total 3.201 3.186 1.569 2.468 1.449 1.688

Table 4: Strain energy in fiber and matrix sub-volumes, single cell, bending.

Fiber Matrix

Vol Efi /E
f Efs,i/E

f
s Emi /E

m Ems,i/E
m
s

1/2 0.501 0.506 0.006 0.042
2/2 0.499 0.494 0.994 0.958

1/5 0.200 0.202 0.002 0.028
2/5 0.200 0.203 0.002 0.014
3/5 0.200 0.203 0.002 0.000
4/5 0.200 0.202 0.003 0.032
5/5 0.199 0.190 0.989 0.925

Total Ef × 105 mJ Efs × 105 mJ Em × 105 mJ Ems × 106 mJ
3.069 3.035 8.436 7.399

Table 5: Strain energy in fiber and matrix sub-volumes, single cell, torsion.

18



Bending Torsion

Fiber Matrix Fiber Matrix
Vol FI* TW FI* MS FI* TW FI* MS FI* TW FI* MS FI* TW FI* MS

0.070 0.124 0.010 0.050 0.073 0.095 0.008 0.009

1/2 0.097 0.163 0.006 0.063 0.074 0.096 0.000 0.003
2/2 0.044 0.086 0.014 0.036 0.073 0.094 0.016 0.014

1/5 0.129 0.190 0.007 0.077 0.074 0.096 0.000 0.003
2/5 0.082 0.153 0.006 0.058 0.074 0.096 0.000 0.003
3/5 0.058 0.119 0.003 0.042 0.074 0.096 0.000 0.003
4/5 0.043 0.089 0.001 0.025 0.074 0.096 0.000 0.004
5/5 0.039 0.069 0.032 0.046 0.072 0.092 0.041 0.029

Table 6: Integral failure indexes, single cell.

Bending Torsion

Vol ID Emi /E
m Ems,i/E

m FI* MS Emi /E
m Ems,i/E

m FI* MS
1 0.004 0.006 0.030 0.000 0.003 0.012
2 0.004 0.006 0.030 0.000 0.003 0.011
3 0.003 0.003 0.027 0.006 0.014 0.035
4 0.003 0.003 0.045 0.006 0.014 0.032
5 0.004 0.006 0.065 0.000 0.003 0.012
6 0.004 0.006 0.065 0.000 0.003 0.011
7 0.003 0.003 0.045 0.006 0.014 0.035
8 0.003 0.003 0.027 0.006 0.014 0.032
9 0.079 0.123 0.140 0.003 0.013 0.029
10 0.079 0.123 0.140 0.003 0.013 0.030
11 0.164 0.117 0.294 0.241 0.220 0.246
12 0.164 0.117 0.163 0.241 0.220 0.190
13 0.079 0.123 0.166 0.003 0.013 0.029
14 0.079 0.123 0.166 0.003 0.013 0.030
15 0.164 0.117 0.163 0.241 0.220 0.246
16 0.164 0.117 0.294 0.241 0.220 0.190

Table 7: Local effects on matrix, single cell.

Model E × 101 mJ DOFs

CW 5.798 17202
Solid 5.946 155403

Table 8: Strain energy for the laminated beam with one fiber/matrix cell via the CW and a solid model.

Bending Torsion

Lamina Ei/E Eax,i/Eax Es,i/Es Ei/E Eax,i/Eax Es,i/Es
1 0.451 0.499 0.116 0.353 0.508 0.319
2 0.099 0.003 0.772 0.302 0.021 0.358
3 0.450 0.499 0.113 0.345 0.471 0.323

E × 101 mJ Eax × 101 mJ Es × 102 mJ E × 102 mJ Eax × 104 mJ Es × 102 mJ
Total 5.798 5.077 6.833 7.330 9.671 6.071

Table 9: Strain energy in each layer of the laminated beam.
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Bending Torsion

Ei/E Eax,i/Eax Es,i/Es Ei/E Eax,i/Eax Es,i/Es
Matrix 0.026 0.015 0.741 0.875 0.008 0.883
Fiber 0.974 0.985 0.259 0.125 0.992 0.117

E × 102 mJ Eax × 102 mJ Es × 104 mJ E × 103 mJ Eax × 105 mJ Es × 103 mJ
Total 2.322 2.289 3.432 2.582 2.977 2.515

Table 10: Strain energy distribution in the fiber/matrix cell in the laminated beam.

FI* - MS

Bending Torsion
Matrix 0.055 0.147
Fiber 0.266 0.190
Cell 0.182 0.173

Table 11: Integral failure index over the fiber, matrix and entire cell.

Model E × 101 mJ DOFs

CW 5.949 21033
Solid 6.004 386085

Table 12: Strain energy for the laminated beam with eight fiber/matrix cells via the CW and a solid model.

Lamina Ei/E Eax,i/Eax Es,i/Es

1 0.462 0.493 0.295
2 0.096 0.003 0.610
3 0.442 0.504 0.095

E × 101 mJ Eax × 101 mJ Es × 102 mJ
Total 5.949 5.052 8.616

Table 13: Strain energy distribution in each layer of the laminated beam with eight fiber/matrix cells.

Fiber Ei/E
∗ Eax,i/E

∗
ax Es,i/E

∗
s

1 0.113 0.053 0.005
2 0.113 0.053 0.006
3 0.114 0.053 0.006
4 0.114 0.053 0.006
5 0.114 0.053 0.006
6 0.114 0.053 0.006
7 0.113 0.053 0.006
8 0.113 0.053 0.005

matrix 0.093 0.579 0.953

E∗ × 101 mJ E∗ax × 101 mJ E∗s × 102 mJ
Fibers + matrix 2.029 1.836 1.930

Table 14: Strain energy distribution in the eight fiber/matrix cells.
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FI* - MS

Cell Fiber Matrix
1 0.293 0.441 0.070
2 0.310 0.469 0.071
3 0.315 0.476 0.074
4 0.312 0.469 0.077
5 0.312 0.469 0.077
6 0.315 0.476 0.074
7 0.310 0.469 0.071
8 0.293 0.441 0.070

Table 15: Integral failure index over the eight fiber/matrix cells.
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Figure 1: Integral sub-domains for the evaluation of failure parameters in composite structures.
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Figure 4: L9 element distribution above a cross-section undergoing local loads.
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Figure 5: Classical and LE modeling strategies with respect to the 3D geometry.
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The three layers of the structure
are the components of the CW

The top and middle layers, the
fibers and matrix of the bottom

layer are the components of the
CW approach

The middle layer, the fibers and
matrix of the top and bottom
layers are the components of

the CW approach

Only one fiber-matrix cell is
embedded in the CW model

Figure 6: CW strategies for a fiber-reinforced structure.
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Figure 7: Stiffness matrix assemblage schemes.
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Figure 8: Examples of sub-volume distributions for a fiber reinforced composite plate.

Figure 9: CW and Solid models for the homogeneous case.
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(a) Bending loading case

(b) Torsion loading case

Figure 10: Single cell loading cases and L9 distribution.
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Figure 11: Maximum Stress (MS) and Tsai-Wu (TW) failure indexes over the single cell, clamped cross-section,
bending loading.

Figure 12: Single cell matrix subvolumes near the free tip.
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Figure 13: Three-layer beam with a fiber/matrix cell and bending load.

Figure 14: Cross-section discretization of the three-layer beam with a fiber/matrix cell and torsional load, 41
L9.
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Figure 15: Cross-section discretization of the three-layer beam with eight fiber/matrix cells, 184 L9.
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