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Summary

This Thesis concerns the development of numerical macromodels of digi-

tal Integrated Circuits input/output buffers. Such models are of paramount

importance for the system-level simulation required for the assessment of Sig-

nal Integrity and Electromagnetic Compatibility effects in high-performance

electronic equipments via system-level simulations.

In order to obtain accurate and efficient macromodels, we concentrate on

the black-box modeling approach, exploiting system identification methods.

The present study contributes to the systematic discussion of the IC mod-

eling process, in order to obtain macromodels that can overcome strengths

and limitations of the methodologies presented so far. The performances of

different parametric representations, as Sigmoidal Basis Functions (SBF) ex-

pansions, Echo State Networks (ESN) and Local Linear State-Space (LLSS)

models are investigated. All representations have proven capabilities for the

modeling of unknown nonlinear dynamic systems and are good candidates too

be used for the modeling problem at hand. For each model representation,

the most suitable estimation algorithm is considered and a systematic analy-

sis is performed to highlight advantages and limitations. For this analysis,

the modeling process is applied to a synthetic nonlinear device representative

of IC ports, and designed to generate stiff responses.

The tests carried out show that LLSS models provide the best overall

performance for the modeling of digital devices, even with strong nonlinear

dynamics. LLSS models can be estimated by means of an efficient algorithm

providing a unique solution. Local stability of models is preconditioned and

verified a posteriori.

The effectiveness of the modeling process based on LLSS representations

is verified by applying the proposed technique to the modeling of real devices

involved in a realistic data communication link (an RF-to-Digital interface

used in mobile phones). The obtained macromodels have been successfully

used to predict both the functional signals and the power supply and ground

fluctuations. Besides, they turn out to be very efficient, providing a signifi-

cant simulation speed-up for the complete data link.
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Chapter 1

Introduction

Present and future high-performance electronic equipments must satisfy higher

and higher design requirements imposed by performance and technology con-

straints. The consequence for the designers is to perform a large number of

Signal Integrity (SI) and ElectroMagnetic Compatibility (EMC) assessments.

Such assessments are of paramount importance in order to detect and cir-

cumvent those sensitive effects like crosstalk, simultaneous switching noise,

immunity and radiation [1] that may seriously compromise the achievement

of the design objectives. This, in turn, implies an increase of the simulations

of the complete system for the prediction of the signals propagation on the

interconnects.

In order to perform such simulations, the combination of propagation ef-

fects with possibly very complex geometry and with the nonlinear behavior

of the active devices makes a direct full-wave approach not feasible. There-

fore, a feasible strategy must subdivide the propagation path into separate

and well-defined sub-systems typically found along the signal propagation

paths, i.e., active devices, transmission-line interconnects, and interconnects

with a complex 3D geometry such as vias and connectors. Each sub-system

is separately characterized by a macromodel, i.e., a set of equations that

are able to reproduce with sufficient accuracy the electrical behavior of the

sub-system. The macromodels are then implemented in a code suitable for

commercial solvers, e.g., SPICE-like, Analog-Mixed-Signal (AMS). Finally,

the simulation of the complete system (i.e., system-level simulation) as a

chain of cascaded blocks is performed within the same environment. The

1



1 – Introduction

obtained voltage or current signals along the propagation paths or the eye-

diagrams and possible other frequency domain figures like the Power Spectral

Density (PSD) are computed and used by the designer to evaluate the system

performance.

It is well known that such analysis is very challenging, since a broadband

characterization of all the sub-systems must be taken into account. Besides,

macromodels have to be efficient in order to require a limited amount of

simulation time and CPU memory. Specifically, the numerical models repre-

senting the active devices play a key role, since they are shaping the signals on

the system interconnections. For the linear interconnects (lumped and dis-

tributed) there are results and well-established methods already published

in literature which lead to accurate and efficient macromodels [2, 3]. On the

contrary, nowadays macromodeling of active devices is a challenging task that

motivates this research activity. The traditional way for devices amounts to

using macromodels based on the internal physical description. Those models

are appropriate to system-level simulation and provide a good result accu-

racy. Unfortunately, the complexity of many devices (e.g., huge number of

variables, unknown nonlinear effects) as well as the lack of information on

their internal structure often makes difficult the development of traditional

physical models. Moreover, whether available, physical models disclose the

Intellectual Property (IP) of the devices and, furthermore, they lead to high

time-consuming simulations demanding a large amount of CPU memory.

In order to overcome the previous limitations, our attention is focused on

the development of Black-Box i.e., behavioral models via system identifi-

cation methods [4]. The behavioral modeling of a system means to look for

a mathematical relation among all the relevant external system variables on

the basis of the external observation of the system response to suitable stim-

uli. No knowledge of the system internal structure is required. Application

examples can be easily found in several other areas of interest. The control

of industrial plants or complex mechanical systems as well as the prediction

of economic phenomena demand the availability of such models. It is worth

to remark that suitable strategies must be devised for modeling devices of

different categories. In this Thesis, we concentrate on the macromodels of

ports of digital Integrated Circuits (ICs), for which the representations based

on nonlinear parametric models are selected. Such an approach has been

2



1 – Introduction

already successfully applied to ICs [2, 5, 6, 7, 8]. Nevertheless, the avail-

able results are rather preliminary and many relevant issues are still open.

Mainly, model stability cannot be easily imposed a-priori or even during

the estimation process without impacting on model accuracy. Furthermore,

higher order dynamical effects may not be readily represented by these mod-

els and model estimation for real devices with multiple ports is troublesome

and affects the quality of the estimated models. As an example, the gen-

eration of device port models including the effects of the neighboring ports

suffers from the increase of complexity of the approximation problem.

Finally, it is worth to mention a complementary activity (not reported in

this Thesis) developed during the triennium of studies. This activity has been

related to the study of macromodels of Radio Frequency (RF) devices [9].

For this research topic, three months were spent at the Wireless Circuits &

Systems Group of Instituto de Telecomunicações, Aveiro (Portugal) where a

methodology for obtaining low-pass equivalent behavioral models of Power

Amplifiers (PAs) has been developed. The results of such an activity are

reported in [10].

The activity of this Thesis mainly contributes to the open issues of the

modeling process for ICs. Specifically

• We investigate the performances of different parametric representation

whose capabilities of modeling unknown nonlinear systems have been

proven by the system identification theory. In particular, such repre-

sentations have been applied for the first time to the IC modeling.

• For each model representation, suitable estimation algorithm are con-

sidered and their advantages and drawbacks are analyzed.

• Finally, the modeling stability issue is addressed.

Outline of the thesis

The structure of this thesis is as follows.

Chapter 2 deals with the general problem of IC ports modeling and

outlines possible modeling approaches.

3



1 – Introduction

Chapter 3 deals with the approach we mainly discuss in this Thesis:

the behavioral modeling via black-box identification. Here we describe the

step-by-step for IC ports by means of parametric models.

Chapter 4 describes and compares possible parametric model representa-

tions suitable for modeling ICs, such as Sigmoidal Basis Functions (SBF) ex-

pansions, Echo State Networks (ESN) and Local Linear State-Space (LLSS)

models.

Chapter 5 reports the systematic study of the performances of the pro-

posed parametric representations to the modeling of a synthetic nonlinear

dynamic one-port test device. From this test, the parametric representation

providing the best overall performance is selected.

Chapter 6 discusses the impact of the proposed macromodel represen-

tation to the system-level simulation of data-link for mobile applications.

Finally, Chapter 7 provides the main conclusions that can be drawn

from the results of this Thesis.

4



Chapter 2

IC macromodels

2.1 Introduction

This Chapter outlines possible modeling approaches for the development of

macromodels of ICs suitable for system-level simulation. As an example,

Figure 2.1 shows the typical block diagram of a digital IC, mainly composed

of the internal logic core and the input/output buffers driving and loading

the interconnects themselves. Since digital ICs are complex systems, contain-

ing a very complex logic core and a high number of pins (several hundreds

for modern microprocessors), there is no hope to effectively model both the

IC internal logic and the input/output ports. For this reason and for the

prediction of waveforms on interconnects, we require effective and accurate

macromodels of digital IC ports. Since digital input/output buffers are non-

linear dynamic devices, we are interested in the development of macromodels

described in the time-domain.

logi

ore
vdd

vi1vi2 vo1ii1ii2 io1in1in2 out1
Figure 2.1. Block diagram of a generic digital IC.
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2 – IC macromodels

In order to be effective for system-level simulation, IC macromodels must

fulfill the following requirements

(i) Intellectual Property (IP) protection: macromodels should not disclose

the information on the internal structure and technology of devices, in

order to discourage any attempts of reverse engineering.

(ii) Accuracy: macromodels must provide responses in agreement with re-

spect to the reference device , in particular for the prediction of higher

order effects.

(iii) Efficiency: macromodels involved in system-level simulation have to

consume as less simulation time as possible, as well as a limited amount

of CPU memory.

(iv) Implementation in any commercial simulator: macromodels must be

easily translated in code for each platform being used.

It is worth to remark that the development of macromodels meeting all

the above mentioned requirements is a very challenging task. Basically,

macromodels can be classified in two classes: physical models and behav-

ioral models. Specifically, a physical model is based on the reconstruction of

the internal structure of the device, whereas behavioral model is defined as

a set of port characteristic equations (or the equivalent circuit of such equa-

tions) obtained from external (possibly virtual) measurements. In the next

Sections we discuss the basic approaches belonging to the two methodologies,

by highlighting their strengths and limitations.

2.2 Transistor-level models

The traditional way for IC ports modeling amounts to describe the device

behavior by means of a detailed physical model based on internal structure.

This is the so-called transistor-level description. As an example, Figure 2.2

shows the circuit of a typical 4-stages CMOS 1.2 µm output buffer, whose

output terminals are (a) and (b) [11]. In this circuit, vi denotes the buffer

input voltage (i.e., the output of the logic core of the IC), v and i are the

buffer voltage and current at the output pin, respectively, and Vcc and Vss

indicate the power supply voltages.

6



2 – IC macromodels

LpkgCpkg
V


Vss (a)(b)vi vi

Figure 2.2. Example circuit for a typical 4-stages 1.2 µm CMOS output
buffer [11].

This transistor-level model is the most accurate solution, and usually

it is considered as the reference for the device. Unfortunately, the model

completely discloses the internal details of the device, unless the developer

releases an encrypted version of the transistor-level. In addition transistor-

level descriptions are generally large in size and their effect is to slow down

the simulation. Finally, they can not be easily plugged in any simulator,

since they are usually written for a specific simulator in particular when the

encryption holds.

2.3 Simplified equivalent circuits

In order to overcome the transistor-level limitations, behavioral modeling

appears to be effective. The most common approach to behavioral modeling

is via simplified equivalent circuits. A port model is defined by a suitable

equivalent circuit, whose parameters can be estimated from input/output

data. The information on the IC technology is used to devise the equivalent

circuit, i.e., the model structure. An important example of the equivalent

circuit approach to behavioral modeling is the widely adopted Input/output

Buffer Information Specification IBIS). IBIS is a set of rules defining and

formatting data, from which IC port models based on simplified equivalent

circuits can be developed [12]. IBIS offers high numerical efficiency, large data

library and commercial software tools handling models and complex modeling

problems. However, the equivalent circuit approach to behavioral modeling

has also inherent limitations. Mainly the estimation of model parameters is

easy only by virtual measurements, i.e., from transistor-level models of the

7



2 – IC macromodels

devices, and the physical effects taken into account by the model are decided

a priori, when the equivalent circuit defining the model is selected.

b

Vcc

fH(v)

fL(v) Ccomp

Rpkg Lpkg

Cpkg

i

v

b b b

b b

Figure 2.3. IC output port equivalent circuit assumed by IBIS.

As an example, Figure 2.3 shows the simplified equivalent circuit as-

sumed by IBIS for the output port of a generic digital IC like the one shown

in Figure 2.2. In this simplified circuit, the electric equivalent of the pack-

age is composed of the Rpkg, Lpkg, Cpkg elements and the silicon output port

capacitance is assumed linear and modeled by Ccomp. Finally, the voltage-

controlled current source fH and fL account for both static characteristics

when the port is driven either in LOW or HIGH output state and the dy-

namics during state switching. Data provided by IBIS, in accordance to

the assumed equivalent circuit, must be translated into an executable model

(IBIS model) in order to be used in circuit simulation environments.

2.4 Parametric models

A second possible approach to behavioral modeling, the one we mainly ad-

dress in this Thesis, is via parametric models and system identification meth-

ods [4]. Such an approach amounts to the selection and estimation of a

suitable nonlinear dynamic parametric model from the waveforms that can

be measured at the IC ports. As an example, a general parametric model

description of the IC output port in Figure 2.2 writes

i(t) = F (Θ , v(t) , d/dt) (2.1)

8



2 – IC macromodels

where F is a suitable mathematical representation depending on the para-

meters collected in vector Θ.

In this approach, the modeled device is considered as a Black-Box, i.e.,

in principle, no knowledge of the internal structure is required and the mod-

eling information is completely contained in the device external responses.

Owing to this feature, parametric models do not disclose any IP information

and can be effectively estimated from measured transient responses or from

simulated responses computed for detailed reference transistor-level models.

Parametric models offer high accuracy and an acceptable numerical efficiency.

Furthermore, since the model structure is selected by the estimation process

itself, parametric models automatically take into account all the physical ef-

fects relating input and output data. In addition, they can be effectively

translated in any commercial simulator. For such motivations, parametric

models would enable any user to easily model sample devices and to simulate

critical interconnect structure to assess sensitive SI/EMC effects.

2.5 Summary

Parametric modeling by means of Black-Box identification techniques ap-

pears to be appealing for the modeling of IC ports. This is also motivated

by the system identification theory, that provides methodologies for develop-

ing effective parametric models of any unknown nonlinear systems. In fact,

several results have been published on the identification of systems in the

control automatic and mechanical area [4, 13]. Indeed, parametric modeling

has been recently applied to ICs with good results [2, 5, 6, 7, 8]. Nevertheless,

the modeling process still presents many open research issues. Some of them

are addressed in the next Chapters.

9



Chapter 3

Parametric modeling

3.1 Introduction

In this Chapter we describe the step-by-step procedure for developing para-

metric model of ICs. For the sake of simplicity, in the following general

description we focus on an IC port with external voltage and current v and i

respectively, as shown in Figure 3.1 (the extension to multiport case is trivial

and does not modify the results presented in the next sections).

IC
v(t)

i(t)

Figure 3.1. Example of IC port under modeling

The parametric modeling procedure of an IC port can be divided into five

steps described in the following sections.

(1) Model selection: the starting point amounts to selecting the functional

form of model equation, referred to a model representation.

(2) Identification signals: the port needs to be driven by specific signals

in order to obtain transient voltage and current signals carrying infor-

mation on its behavior. The excitation (input) and response (output)

signals involved in this step are named identification signals. It is worth

10



3 – Parametric modeling

to notice that the identification setup can be reproduced by using either

the real device or its detailed transistor-level model.

(3) Model estimation: this step amounts to the numeric computation of the

model parameters so that the model responses mimic well the identifi-

cation signals.

(4) Model validation: once the model has been estimated, an assessment

of the accuracy of the model to reproduce the responses to different

excitations, is needed.

(5) Model implementation: finally, the translation of the obtained model

in a standard circuit simulation environment is performed.

3.2 Model selection

The selection of the parametric model representation is the crucial point of

the modeling process, since good models arise only when the model represen-

tation is suitable for the system being modeled. The model representation

suitable for an IC port is searched within the class of discrete-time para-

metric models. This is mainly due to the large availability of resources for

the estimation of this class of models [4]. Besides, this is the natural choice

when the raw data, i.e., the external responses of the IC port, are known as

sampled waveforms. A very general and compact equation of a discrete time

parametric model for the IC port in Figure 3.1 is

i(k) = F (Θ ; v(k)) (3.1)

where k is the discrete time variable, F is the nonlinear mapping describing

the model and Θ is the vector collecting the parameters. Equation (3.1)

describes a unified framework to handle a large number of discrete-time

parametric representations. In particular, system identification literature

provides a large number of available representations for F that could be

applied to the modeling of unknown nonlinear dynamic systems. Typical

examples are neural networks based on radial, sigmoidal or spline basis func-

tions, wavelet decomposition, kernel estimators, fuzzy models [13], support

11



3 – Parametric modeling

vector machines [14], composite local-linear models [15], Wiener or Volterra

polynomials [16], Wiener-Hammerstein models [17].

It is worth to remark that the model for IC ports can be also represented

as a sum of a nonlinear static part and a nonlinear dynamic part [18], e.g.,

i(k) = Fs(v(k)) + Fd (Θ ; v(k)) (3.2)

where Fs and Fd are the possible static and dynamic parts of the model,

respectively. The splitting of static and dynamic contributions is justified

in Appendix A. The static part can be easily obtained from measurements,

whereas parametric representation of the form (3.1) can be used for Fd. In the

following, denoting splitted structures or models, we refer to equation (3.2),

and using fully nonlinear terminology we refer to equation (3.1). It is of

worth to note that the splitted representation turns out to have practical ad-

vantages in some applications, since it facilities the estimation of Fd [19] and

may contribute to better models for some critical ports exhibiting strongly

nonlinear dynamics.

3.3 Identification signals

Once the model representation F is chosen, the next step of the modeling

process amounts to driving the IC port to obtain transient voltage and cur-

rent signals carrying information on its behavior. The excitation (input) and

response (output) signals involved in this step are named identification sig-

nals. As an example, Figure 3.2 shows the typical setup for collecting the

identification signals for an IC port. The voltage source vs(t) is connected

to the port via a resistor Rs in order to obtain a non-stiff transient test. In

this case the recorded port voltage v̄(t) corresponds to the excitation and the

recorded port current ı̄(t) corresponds to the response.

As a general rule, the driving waveforms (input identification signals)

must be carefully designed in order to excite every possible dynamic behav-

ior of the port [4]. For linear systems, this is easily accomplished by using

input identification signals with a frequency content that spans the frequency

interval containing the system poles; generally white noise or pseudo-random

binary signals are used. For the nonlinear case, unfortunately, only qualita-

tive guidelines are available for the design of the input identification signals.

12



3 – Parametric modeling

IC
ı̄(t) Rs

vs(t)v̄(t)

Figure 3.2. Typical identification setup for the IC port of Figure 3.1

Such signals should contain large steps with rise times short enough to ex-

cite the fast dynamic behaviors of the system and flat levels allowing the

system to approach steady state operations on several operating points. A

superimposed small noise signal usually improves the ability of such signals

to excite the system dynamics. The final results are multilevel signals with

superimposed small noise as the one reported in Figure 3.3.

t

vs(t)

0

VDD

Figure 3.3. Example of a typical multilevel signals with superimposed
noise used for vs in Figure 3.2. In this case the voltage level VDD is referred

to the value of the power supply voltage for the IC under modeling.

Of course the rise times of the steps and the durations of the flat parts

must be tuned on the fastest and slowest time constants that can be observed

in the system responses, and, as a further rule of thumb, the number of

different levels should increase, as the nonlinearity of the static characteristic

becomes stronger. Again, the design of the input identification signals is a

matter of repeated estimation experiments. Specific guidelines required for

the generation of identification signals for the modeling of IC buffers are

provided in [5]. In addition a systematic study of the effects of estimation

13



3 – Parametric modeling

signals on the quality of IC buffer models is reported in [19].

3.4 Parameters estimation

The parameter estimation is obtained by means of standard methods, and

amounts to fitting the response of the model to the identification signals

recorded in the previous step. The simplest fitting approach is to look for Θ

minimizing the mean square error between the model and the port responses.

This means to find

Θ |min

{

1

N

N
∑

k=1

( ı̄(k) − i(k) )2

}

(3.3)

where ı̄(k) = ı̄(kTs) is the sampled output identification signal, Ts is the

sampling period, N is the total number of samples and i(k) is the response

of model (3.1) to the sampled input identification signal v̄(k). The sampled

identification signals must contain all the information of the original iden-

tification signals. Therefore the sampling period Ts must be smaller than

the sampling time TN defined by the Nyquist frequency of the identification

signals. On the other hand, the sampling time should not be too small, in

order to avoid oversampling and consequent numerical problems in the min-

imization of (3.3). As a rule of thumb, the ratio TN/Ts should be on the

order of 2 ÷ 6.

The minimization of (3.3) amounts to solving a nonlinear least squares

problem. For this task, iterative algorithms are proven to be particularly

effective. Nonlinear optimization literature provides specific algorithms de-

pending on the choice of the representation F . Typical resources are gradient-

based methods [20], genetic algorithms [21], extended Kalman algorithm [22],

simulated annealing [23]. It is worth to remark that the problem (3.3) is

nonconvex and the solution obtained by means of the iterative algorithm is a

local minima. Thereby, a good initial estimate of the model is of paramount

importance, since the initial starting point determines in which local minima

the algorithm will end up.
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3 – Parametric modeling

3.5 Model validation

The estimation procedure previously described yields, along with the best

values of the model parameters, the error of the model in reproducing the

output identification signal. Such an error is the first indication of the model

quality, because large errors at this stage imply the failure of the modeling

process. However, the performances of such models must be further assessed

by checking their response to an input signal different to the one used for the

identification. In fact, models that reproduce well the identification signal

may still exhibit strange behaviors when the input signal is changed. Specif-

ically, model validation addresses the following issues: (i) accuracy i.e., the

error between the validation reference response and model response; (ii) effi-

ciency i.e., speed-up of the computation of the model response; (iii) stability

i.e., model response should not account for spurious dynamic behaviors (e.g.,

oscillation, saturation) not present in the modeled device.

It is worth to remark that unstable models must be avoided, even if they

reproduce the reference responses well. In fact, numerical simulation of these

models for different signal and load conditions may lead to possible unstable

behavior. When dealing with nonlinear model, stability analysis is not a triv-

ial issue [24]. In particular the formulation of a general stability requirement

is a challenging task. The application of a global stability criterion seems to

be too complicate and likely too restrictive. On the other hand, a stability

study based on a limited class of excitations and load conditions would be

suitable. Nevertheless, this approach would not provide an exhaustive valida-

tion of the model. In order to devise a useful and feasible stability criterion,

we study the local stability of the parametric model, as suggested in [25].

This methodology seems to be the simplest and it is readily extended from

the linear case. Local stability analysis relies on the linearization of the model

over each time step of the transient validation test. Each linearized model is

then represented in the equivalent state-space form and the eigenvalues of the

matrix mapping the states are computed (see more details in Appendix B).

The parametric model is considered locally stable if the computed eigenval-

ues lie within the unitary circle for each time step. However, several test

carried out have shown that the presence of some instants of time in which

the eigenvalues lie outside the unitary circle does not significantly affect the
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final performance of the model. The percentage of points of the validation

set having at least one eigenvalue outside the unitary circle over the total

number of points can be used as a confidence measure for the stability of the

model. This ratio can be used as a criterion to assess the local stability of

the obtained model. The smaller the ratio the smaller the probability that

the model will become unstable during its operational evolution. Therefore

model generation should aim obtaining models not showing any eigenvalue

outside the unitary circle.

3.6 Macromodel implementation

The last part of the modeling process is the synthesis of the estimated

discrete-time parametric model defined by (2.1) as an equivalent circuit to

be implemented in standard simulation environments. For the sake of con-

ciseness, and without loss of generality, we concentrate on the description of

the following synthetic nonlinear discrete time parametric model

i(k) = a1i(k − 1) + b0e
−c0v(k) + b1v(k − 1) (3.4)

where a1, b0, c0 and b1 are the parameters. For the implementation of the

above model as macromodel, it is useful to convert equation (3.4) into a

continuous-time state-space realization [5], as described in the following.

Equation (3.4) is rewritten into the discrete-time state-space form


















x1(k) − x1(k − 1) = a1x1(k − 1) + b0e
−c0v(k−1) + b1x2(k − 1)+

−x1(k − 1)

x2(k) − x2(k − 1) = v(k) − x2(k − 1)

i(k) = a1x1(k) + b0e
−c0v(k) + b1x2(k)

(3.5)

where x1(k) = i(k − 1) and x2(k) = v(k − 1). The difference operator

in (3.5) is then approximated with a differential one, (e.g., (d/dt)z(t) ∼=

(1/Ts) (z(k) − z(k − 1))). In this way, the time variable t is restored and the

final equivalent continuous-time state-space representation arises






















d

dt

[

x1(t)

x2(t)

]

=
1

Ts

[

a1x1(t) + b0e
−c0v(t) + b1x2(t) − x1(t)

v(t) − x2(t)

]

i(t) = a1x1(t) + b0e
−c0v(t) + b1x2(t)

(3.6)
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In order to use models expressed by (3.6) for the numerical system-level sim-

ulations, two practical choices are available: 1) convert the equations into

circuit equivalents and exploit a SPICE circuit simulator [26]; 2) directly

implement their expressions in analog mixed-signal (AMS) simulation envi-

ronments, like Verilog-AMS [27] and VHDL-AMS [28, 29], that accept and

solve differential-algebraic equations.

The conversion of differential-algebraic equations into circuit equivalents

and their implementation as SPICE subcircuits is a standard procedure [5].

To do this, the first two rows of (3.6) can be implemented by simple equiv-

alent circuits with voltage controlled sources and the third one by a current

controlled source only. As an example, Figure 3.4 shows the circuit synthesis

of the second equation of (3.6). The circuit synthesis of the first equation is

obtained by properly replacing the controlled source. The complete equiva-

lent circuit of (3.6) can be easily coded as a SPICE-like subcircuit, as shown

in Figure 3.5.

v(t)

R

C x2(t)

Figure 3.4. RC equivalent circuit for d
dt

x2(t) = 1
Ts

[v(t) − x2(t)], Ts = RC.

3.7 Open issues

Nowadays, the parametric modeling process described in this Chapter presents

several issues that have not been fully investigated yet. In particular, re-

ferring to the five steps outlined in the Introduction of this Chapter, the

following issues need consideration.

(1) Model selection: properties, advantages/disadvantages and applicabil-

ity range of a comparative analysis of different parametric represen-

tation need to be investigated; in particular, their suitability for IC

modeling has still to be determined.
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.subckt macromodel v ref

+ PARAMS:

* sampling time Ts=Rx*C (Rx=1, C=Ts)

+ Rx = 1

+ Ts = ...

* model parameters

+ a1 = ... b0 = ... b1 = ... c0 = ...

* dx1/dt={y-x1/Ts}

Cx1 x1 0 {Ts}

R1 x1 z1 {Rx}

Ex1 z1 0 value={V(y)}

* dx2/dt={v-x2/Ts}

Cx2 x2 0 {Ts}

R2 x2 z2 {Rx}

Ex2 z2 0 value={V(v,ref)}

* output controlled current source i(t)

Gy v ref value={V(y)}

* model representation/structure

EF y 0 value={a1*V(x1)+b0*EXP(-1*c0*V(v,ref))+b1*V(x2)}

RF y 0 {Rx}

.ends

Figure 3.5. SPICE implementation of the parametric model (3.4), via the
representation (3.6).

(3) Model estimation: for each representation, estimation algorithms and

the assessment of their performances require further investigations.

(4) Model validation: a thorough stability analysis of models is required.

No extra efforts are planned for step (2) because, so far, multilevel signals

seem to be appropriate for the IC modeling. However, a study of possi-

ble improvements provided by excitations of different shape can surely be

an interesting topic for future work. Finally, also step (5) does not need
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further consideration since the macromodel implementation is essentially a

well-established technicality.

The aim of the following Chapters is the development of studies and

contributions related the outlined open issues.
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Chapter 4

Model representations

4.1 Introduction

In this Section we investigate possible parametric model representations for

the modeling of ICs by means of the process described in Chapter 3. For

the sake of simplicity, our discussion deals with the approximation of the

constitutive relations of the IC port described by an external voltage v and a

current i, as shown in Figure 3.1. Even if unknown, the constitutive relation

of the IC port can be described by an arbitrary continuous-time state-space

representation involving external measurable variables and internal nonmea-

surable state variables, as follows

{

ẋ(t) = g (x(t) , v(t))

i(t) = f (x(t) , v(t))
(4.1)

where x is the vector of internal state variables, and g and f are multivariate

nonlinear mappings.

For the approximation of the input-output behavior of (4.1), the identifi-

cation literature provides many parametric model representations [13, 14, 16,

17, 30]. Such models show the so-called universal approximation capability,

i.e., for a sufficiently large size of the model an arbitrarily small modeling

error can be achieved. According to Section 3.2, the typical parametric to

be considered are discrete-time relations. Specifically, such models can be

represented by a Nonlinear Input-Output (NIO) description or alternatively

by a Nonlinear State-Space (NSS) description. Both classes have strengths
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4 – Model representations

and limitations, as well as the methods available in literature for the estima-

tion of their parameters. For the modeling problem at hand, it is not clear

what the real benefits of using NIO rather than NSS models are. Therefore,

a systematic study of the two classes is needed.

In this Chapter, the two representations are introduced and discussed in

details. In particular, the next sections present the mathematical structure of

the models, their general strengths (well known from the literature and from

the application of these models to real problems) and the available methods

for parameter estimation. All the models considered are good candidates for

the IC modeling. It is worth to remark that in the following section we focus

on widespread model representations available in literature, that have been

proven to provide good results in applications, other than the one addressed

in this Thesis. A systematic comparative study for the selection of the best

model representation is deferred to Chapters 5 and 6.

4.2 Classification: NIO and NSS models

In this section we present and discuss the features of the NIO and NSS

parametric model classes.

Most single-input single-output NIO parametric models can be written

as [13]

{

i(k) = F ( Θ ; ϕ(k) )

ϕ(k) = [ i(k − 1) , . . . , i(k − r) , v(k) , . . . , v(k − r) ]T
(4.2)

where k refers to the discrete-time variable, i(k) is the output sequence of

the model, v(k) is the input sequence, F is a nonlinear mapping defining the

model representation, and Θ is the vector of model parameters. Vector ϕ(k)

is named the vector of regressors collecting the past r samples of the output

and the present and past r samples of the input, r being the dynamic order of

the model. As outlined in [13], equation (4.2) provides a unified framework

to handle models from both system identification area and from other areas

like neural networks, wavelets and fuzzy systems.

On the other hand, a generic single-input single-output NSS parametric
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model writes
{

z(k) = F1 ( Θ1 ; z(k − 1) , v(k − 1) )

i(k) = F2 ( Θ2 ; z(k) , v(k) )
(4.3)

where i(k) and v(k) are the output and input sequence, and

z(k) = [z1(k) , . . . , zn(k)]T (4.4)

is the virtual state vector. The state vector (4.4) is not necessarily an estimate

of the real internal state x of (4.1), even if ideally it could be but, a priori,

z and x are not even correlated. Model (4.3) is defined by the multivariate

nonlinear mappings F1 and F2 depending on the vectors of parameter Θ1

and Θ2 respectively.

Although the model representations (4.2) and (4.3) can be related to each

other [30], the two classes exhibit different features.

NIO models have been successfully applied to real modeling of nonlin-

ear systems with nonmeasurable states in the area of automatic controls.

They involve only the input and output measurable variables and reduce

the dependence on the nonmeasurable states to a direct dependency on the

output dynamics. Furthermore, the estimation of such a class of models can

be done by means of well-established methods. All these motivations have

driven the interest in NIO models as good candidates for IC modeling. NIO

models have been recently proven to accurately reproduce the behavior of

a wide class of commercial devices [5, 6, 7]. In particular, they turn out to

be very compact, thus leading to models with a very small size. Owing to

this, the estimated models, implemented in a simulation environment, are

very efficient and allow simulation speed-ups on the order of 10 ÷ 1000 with

respect to the transistor-level descriptions of devices. Nonetheless, NIO re-

lations have shown inherent limitations. Mainly: (i) model estimation for

real devices with multiple ports is troublesome and impacts on the quality of

estimated models; (ii) higher order dynamical effects may not be readily rep-

resented by these models; (iii) model accuracy depends on the initial guess

of parameters and on local minima of the cost function; (iv) local stability

of models can not be easily imposed a-priori or even during the training

process without impacting on model accuracy. It is worth to remark that,

according to Section 3.5, locally unstable models must be avoided, even if
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they well reproduce the reference responses used in the model estimation. In

order to address the previous limitations, NSS models appear to be a use-

ful alternative. A state-space model is the most natural representation of a

dynamic system. Besides, NSS models have been widely used in the area

of automatic controls and system theory to model actual nonlinear systems

such as industrial plants or power electric machines. The specificity of NSS

modeling arises from the fact that the internal state variables gives more

flexibility with respect to NIO models. However, NSS models have a compli-

cate structure due to the presence of a larger number of degrees of freedom.

Moreover, the related estimation methods are still under study.

As outlined in Section 4.1, in this activity we concentrate on different

example representations belonging to both NIO and NSS classes. All the

considered representations have potential strengths and need to be further

investigated for our problem. In particular, the representations considered

in the systematic study carried out in this thesis are the following

(i) Representations of the NIO class. A general way to define nonlinear

mappings F of NIO models (4.2) is to exploit sums of nonlinear func-

tions of regressors [13]. Many different basis functions can be used,

giving rise to model representations with significantly different proper-

ties. In the PhD thesis [8], macromodels based on Gaussian Radial Ba-

sis Function (RBF) expansions [13] have been studied and successfully

applied to the macromodeling of the ports of digital ICs [5, 6]. Such

models offer remarkable advantages. Mainly, they are robust and have

a regular and smooth behavior outside the fitting domain and the es-

timation of model parameters relies on simple and efficient algorithms.

However, for the problem at hand, macromodels based on Sigmoidal

Basis Functions (SBF) expansion turned out to be more effective [7].

SBF models show properties that are more suitable for fitting the ac-

tual constitutive relations of IC ports and usually lead to simpler (more

efficient) macromodels than those based on RBF. Furthermore, the al-

gorithms themselves for the estimation of SBF models, even if require

more complex and fully nonlinear procedures, allow for more accurate

estimates. This points to exploiting only the SBF models within the

NIO class; Section 4.3 provides further details on SBF models.
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(ii) Representations of the NSS class. Discrete-time NSS models have been

recently studied in literature for the identification of nonlinear dynamic

systems and only preliminary results are available [17, 25, 30, 31, 32,

33, 34, 35]. Within the available options, in this study we concentrate

on two representations that seem to be attractive: the Echo State Net-

works (ESN) [34, 36] and the Local-Linear State-Space (LLSS) mod-

els [35, 37].

4.3 Sigmoidal Basis Functions (SBF)

Models based on SBF describe F in equation (4.2) as an expansion of sig-

moidal functions. The general input-output relation of a SBF model writes

i(k) =

p
∑

j=1

αjΦ
(

aT
j ϕ(k) + bj

)

(4.5)

where Φ is the sigmoidal mother function. In this study Φ = tanh. In

equation (4.5), p is the number of basis functions (size of the model) αj

are linear coefficients, and aj and bj are the nonlinear parameters of the

sigmoidal function. In a different and equivalent perspective, the above model

is a recurrent neural network with one hidden layer and a linear output

unit [13, 38, 39].

The estimation of the parameters of model (4.5) requires the solution of

the nonlinear problem defined by (3.3). Within the many possible estimation

algorithms we found good results with the well-known Levenberg-Marquardt

(LM) based methods [40] in conjunction with the pseudo-random procedure

for the selection of the initial guess of parameters, as suggested in [41]. Specif-

ically, we consider two different implementations of the above algorithm, re-

ferring to the two schemes most diffused in literature for the estimation of

NIO models. The first version is called Static LM (SLM) [42]. This procedure

refers to the most common scheme for the estimation of static feedforward

neural networks [38]. In fact, this method solves a nonlinear static problem

i.e., the past samples of the model output accounted in ϕ(k) are forced to

be the samples of the output identification sequence. On the contrary, the

second version called Recurrent LM (RLM) [43] solves the problem consider-

ing the recurrent nature of the model i.e., ϕ(k) accounts for the feedback of

24



4 – Model representations

the model output. The mathematical details of both versions applied to NIO

structures are reported in Appendix C. It is worth to notice that neither

SLM nor RLM version of the algorithm address the model stability issue.

Therefore, SBF model stability can be only verified a-posteriori without any

guarantee of obtaining a local stable model.

The starting point of the estimation procedure for SBF models is to define

completely the model representation by setting the size parameters i.e., the

dynamic order r and the number of basis functions p. The dynamic order

is rather a property of the device under modeling and can be determined

a priori from the device responses [44] or simply postulated and verified a

posteriori. In order to decide the most suitable size p, each estimation run

consists of a comparison of models with increasing p value (e.g., 1÷10), with

respect to the estimation accuracy. As a rule of thumb, good p values are

the smallest ones leading to a good reproduction of the identification signals.

Suitable statistical indexes help the selection of p [4].

4.4 Echo State Networks (ESN)

This Section briefly discusses the main features of ESN modeling. This class

of models has been recently presented in the literature and provides very

good results for the modeling of the complex dynamic behavior of real sys-

tems [34, 36, 45]. A comprehensive discussion of ESN can be found in [34]

and references therein. This model belongs to the discrete-time NSS class.

As an example, for the system in (4.1), an ESN parametric representation

writes
{

z(k) = F1 (Az(k − 1) + bv(k − 1))

i(k) = cTz(k) + c0v(k)
(4.6)

where vector z = [z1,...,zn]T collects the n internal state variables. Typical

values of n are in the range [20, 500] and the nonlinear multivariate mapping

F1 consists of the collection of sigmoidal functions. In this study, F1 =

[ tanh , . . . , tanh ]T . The parameters of the model are the square matrix

A, vectors b and c, and the scalar c0.

It is worth noting that the estimation of (4.6) would in principle require

the solution of a nonlinear optimization problem. This limitation, along with

the large number of unknown parameters involved in a state-space equation,
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would limit this approach for the identification of complex nonlinear dynam-

ical systems. In order to address the previous limitations, the methodology

proposed in [34] amounts to adapt only the weights of the network-to-output

connections, i.e., the vector c and the scalar c0, yet leading to the solution of

a linear least squares problem. The other parameters, i.e., matrix A and vec-

tor b, are defined a-priori in a way that allows the inclusion in the model of

a large number of randomly generated dynamics, possibly including those of

the original system under modeling. Matrix A is chosen to satisfy the “echo

state” property, which means that for each input sequence, model (4.6) must

present a unique sequence of state variables. In order to fulfill the “echo

state” requirement, the square matrix A is chosen to have a spectral ra-

dius ρ (i.e., the largest magnitude of the eigenvalues) smaller than one (e.g.,

ρ = 0.7 ÷ 0.99). It can be easily proven that the above assumption, along

with the choice of the tanh function in the nonlinear mapping F1, leads to lo-

cally stable ESN models. Within the many possible choices for A, that have

not been completely investigated yet, a possible solution is proposed in [34].

In the above paper, matrix A is generated as a sparsely and randomly con-

nected matrix, whose elements are independent random variables that have

a certain (high) probability to be zero (e.g., 95%), and the complementary

probability, labeled as connectivity (e.g., 5%), to be ±a, where a is real pos-

itive number. The number a is then computed to enforce the spectral radius

ρ to the desired value. This choice satisfies a sufficient and hence restrictive

condition for the “echo state” property. Better solutions allowing a higher

number of degrees of freedom exist and are currently under investigation [46].

The details on the criteria used for the initialization of the model and for the

estimation algorithm are reported in [34]. Basically, the only size parameter

to be tuned during the estimation, is the size n of the state vector. Roughly

speaking, a suitable value of n can be selected by performing several model

estimation runs with increasing n (e.g., n = 20 , 50 , 100 , . . .) and then

selecting the lowest value of n providing a sufficient estimation accuracy.

4.5 Local Linear State-Space (LLSS)

The idea underlying the LLSS modeling methodology is the approximation

of the complex dynamic behavior of a nonlinear dynamic system by means
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of the composition of local linear models [15]. The whole operating range

of the system is partitioned into smaller operating regions where the system

behavior is approximated by a linear state-space equation. Even if this idea

has been already investigated in the literature, the implementation presented

in [35, 37] has several strengths, including the nice feature of providing the

automatic computation of local linear models as well as the generation of

the weights for the local models from input-output system responses only.

Furthermore, the special structure of LLSS models facilitates the estimation

procedure. As an example, for the system (4.1) a LLSS model is defined by

the following discrete-time NSS representation























z(k) =

p
∑

j=1

ρj (s(k − 1)) ( Ajz(k − 1) + bjv(k − 1) + oj )

i(k) =

p
∑

j=1

ρj (s(k))
(

cT
j z(k) + djv(k) + qj

)

(4.7)

where p is the number of local-linear models, vector z = [z1 , . . . ,zn]T collects

the n internal states and ρj(·) is the weighting coefficient of the j-th local

model. Each local model is defined by the state matrix Aj and by vectors

bj , oj and cj and by scalars dj and qj . The argument of the weights, i.e.,

the scheduling vector s(k), corresponds to the operating point of the system

and is in general a function of both input and state variables. Among the

possible choices for s(k), a common solution in local linear modeling (also

used in [35, 37]) amounts to collecting the present and past samples of the

input sequence v(k) only. This writes

s(k) = [ v(k) , v(k − 1) , . . . , v(k − r) ]T (4.8)

where r refers to the chosen number of past input variable samples.

It is common practice in local linear modeling to use normalized radial

basis functions for the weights ρj(s(k)) i.e., each weight varies between zero

and one and their sum is forced to be one at each operation point of the

system. Therefore the j-th weight writes

ρj(s(k)) =
φj(s(k))
p

∑

i=1

φi(s(k))

(4.9)
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where φj(·) is the j-th radial basis function defined as

φj(s(k)) = exp

(

−
‖s(k) − tj‖

2

β2
j

)

(4.10)

Each radial basis function (4.10) is defined by its position in the space of the

scheduling vector (center tj) and by its spreading (scale parameter βj).

For the computation of model parameters, i.e., the local model parame-

ters in (4.7) and the parameters defining the weights in (4.10), we perform the

solution of the nonlinear optimization problem by applying the LM method

for NSS structures (see details in Appendix C). In particular, the LM ver-

sion proposed in [35, 37] is called Projected LM (PLM). The basic version of

the LM algorithm has been suitably modified to handle the non-uniqueness

of a state-space representation that may cause ill-conditioning of matrices

during model estimation. In addition, parameter initialization is carried out

by means of a deterministic procedure, thus avoiding the dependence of the

estimated model to the initial guess of parameters. Roughly speaking, the

gradient direction search in the PLM algorithm is modified to avoid the di-

rections in the parameter space that do not change the cost function due to

a similarity transformation of model matrices (see details in [35, 37]). The

initial guess of the parameters defining the local models are set equal to

the matrices of a single global stable linear model. The parameters of the

global linear model are computed by means of the application of an efficient

subspace identification method of the 4SID class [47]. The latter subspace

method also provides the automatic computation of the number n of internal

state variables, i.e., the size of vector z in (4.7) and the initial condition of

the state variables. Besides, the initial radial weighting functions ρj(·) are

distributed uniformly over the range of the input sequence. Using linear mod-

els for initialization is a nice feature that has been proposed and motivated

in [48]. It is worth to remark that the initialization by means of 4SID method

provides a bounded-input, bounded-output stable initial model. As pointed

out in [35, 37], the proposed PLM algorithm likely leads to the identification

of models that are locally linear stable. This is due to the choice of the

normalized weights along with the form of the scheduling vector accounting

for present and past samples of the input sequence only. Nevertheless, no

additional constraints are included to enforce stable models during training

and local stability can only be verified a posteriori.
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The number of local linear models p and the number of input past samples

accounted by the scheduling vector r must be selected before the estimation.

Again, we can choose those values by comparing models with increasing p

and r values, with respect to the estimation accuracy. Obviously, good p

and r values are the smallest ones leading to a good reproduction of the

identification signals.

4.6 Summary

In this section, we briefly compare the general strengths and limitations

of the model representation described throughout this Chapter. Table 4.1

summarizes the performances related to the estimation time, model size and

stability for the three different models under consideration. An up-arrow

“↑” means a positive feature, conversely a down-arrow “↓” means a negative

feature.

model
estimation

time
model
size

local
stability

SBF ↓ ↑↑ ↓ (a-posteriori)
ESN ↑ ↓ ↑ (a-priori)
LLSS ↓ ↑ ↑ (a-posteriori)

Table 4.1. Comparison of the features of the model representations con-
sidered.

From the figures in Table 4.1 it is clear that we cannot choose a-priori the

best candidate for model representation. A systematic study of the model

performances for IC ports must be carried out. This is done in Chapter 5.
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Chapter 5

Assessment of models

5.1 Introduction

In this section, we assess the performances of the model representations de-

scribed in Chapter 4 by applying the modeling process proposed in Chapter 3

to the port voltage-current relation of a synthetic nonlinear dynamic one-port

test device relation. The reference model is the ODE (Ordinary Differential

Equations) description of the test device driven by a real voltage source. The

reference model is used to compute the responses needed for the model iden-

tification and for model validation. At the end of the analysis, we select the

model representation that is most feasible for the modeling of IC ports.

5.2 Test device

This section describes and discusses the structure of synthetic nonlinear dy-

namic one-port test device being modeled. Figure 5.1 shows the circuit

schematic of the test device, where the external port voltage and current

are v and i respectively. This device is designed in order to be represen-

tative of the IC input/output buffers such as drivers and receivers. It is

composed by a cascade connection between the two-port element represent-

ing a realistic package of an IC and the one-port element representing the

nonlinear functional part of the active device. The common port connecting

the package and the nonlinear functional part is identified by the voltage v1

and current i1. The package is modeled by a lumped network of elements
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Rpkg, Lpkg and Cpkg, whose values are those tabulated for the standard pack-

age TSSOP48. The nonlinear functional part is mainly characterized by the

voltage-controlled current source f1(v1), which defines the type of device op-

eration. When f1 = 0, the test device addresses a receiver input port. On

the contrary, when f1 6= 0 the test device represents the output port of a

driver in a fixed logic state with f1 as the port static characteristic. In either

receiver or driver configuration, the voltage-controlled current source f2(v2)

attempts to mimic the typical mechanism of ESD (ElectroStatic Discharge)

protection of silicon devices. In particular, f2 is described by a nonlinear sta-

tic characteristic that works decreasing the output current i1 whenever the

port voltage v1 is larger than a threshold set by the battery VDD. Finally,

the capacitor C represents the equivalent port capacitance of the functional

part and R and L account for the bonding wire link between VDD and f2.

Cpkg

Rpkg Lpkg

C f1(v1)

f2(v2)

L

R

VDD

i(t) i1(t)

v(t) v1(t)

v2(t)

Package Functional part

b

b

b

b

b

b

Figure 5.1. Schematic of the one-port test device under modeling.

For the design of the device in Figure 5.1, our goal is to set the circuit

elements in a way to obtain a stiff modeling benchmark. In particular, we

carefully design the nonlinearity of f2 and we choose the value of L, since such

parameters mainly influence the nonlinear dynamic behavior of the device.

We consider the case of driver operation in a fixed logic state with a voltage

threshold for the activity of f2 fixed by VDD = 1 V. The characteristic of

the voltage-controlled current sources f1 and f2 are chosen in order to be

representative for the typical nonlinearities of silicon devices. In particular,

for the characteristic of f1 we select the parametric equation

f1(v1) = a1 − a2e
−a3v1 − a4v1 (5.1)
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whereas for the characteristic of f2 we select the parametric equation

f2(v2) = b1e
b2(v2−VDD) (5.2)

The tuning of parameters a1, a2, a3 and a4 in equation (5.1) is done in

order to fit the typical current range of the most common technologies of

digital IC drivers, with respect to the chosen value of VDD. Conversely, the

parameters b1 and b2 of equation (5.2) are devised to observe a pronounced

activity of f2 whenever the voltage v2 is larger than zero. The final shape of

the characteristics (5.1) and (5.2) are reported in Figure 5.2.
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Figure 5.2. Characteristics of the voltage-controlled current sources of the
one-port test device in Fig. 5.1: f1(v1) described by the equation (5.1) (top

panel) and f2(v2) described by the equation (5.2) (bottom panel).

The tuning of the value of inductance L is performed in order to observe

a different dynamic behavior between the situation in which f2 provides a

significant amount of current and the situation in which f2 provides a neg-

ligible amount of current. Table 5.1 groups the values of the parameters in

equations (5.1) and (5.2) and of the passive components in the circuit of

Figure 5.1.
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Element Value

a1 70 mA
a2 10 mA
a3 1.35 V−1

a4 30 mΩ−1

b1 550 A
b2 12 V−1

Rpkg 0.5 Ω
Lpkg 3 nH
Cpkg 0.1 pF
R 0.1 Ω
C 5 pF
L 1.5 nH

Table 5.1. Values of the parameters in equations (5.1) and (5.2) and of
the passive components composing the test device of Figure 5.1.

5.3 Modeling setup

In this Section we briefly review the application of the modeling process de-

scribed in Chapter 3 to the test device in Figure 5.1, by means of parametric

models. In particular for each step, we highlight the main elements and

features impacting on the performances of the obtained model. The next

subsections address the following steps of the process

(1) Model selection

(2) Identification signals

(3) Model estimation

(4) Model validation

Step (5), related to the model implementation in a circuit simulator, is

skipped since it is not relevant for the application at hand.

5.3.1 Model selection

As outlined in Section 3.2, the first step concerns the selection of model for

the test device. Among all possible choices, we select three main classes (see
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Chapter 4 for details)

(i) Sigmoidal Basis Functions (SBF)

(ii) Echo State Networks (ESN)

(iii) Local Linear State-Space (LLSS)

For each representation, the model structure must be selected according to

the two different choices presented in Section 3.2 (fully nonlinear or splitted,

details in Appendix A).

5.3.2 Identification signals

In this step, the collection of the identification signals is addressed. This is

done by applying a real voltage source to the one-port test device in Fig. 5.1

and by recording the corresponding port voltage and current by means of

a transient simulation. Such an experiment is described by the test setup

in Figure 5.3 where the port of the test device is driven by an excitation

composed of a voltage source vs and a series-resistor Rs.

one-port
test

device
v(t)

i(t)Rs

vs(t)

Figure 5.3. Modeling setup for the one-port test device in Fig. 5.1.

For achieving the transient simulation, the continuous-time ODE descrip-

tion of the test setup in Figure 5.3 is selected as the reference model. Such

an ODE description is formulated in the canonical form

{

M (x) ẋ = h (x,u)

y = cTx + dTu
(5.3)
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where y is the output variable corresponding to the port current i, x =

[ v , i1 , v1 , v2 ]T is the vector collecting the state variables, and u = [ vs , VDD ]T

is the input vector accounting for the time-varying and fixed voltage sources.

The first row of the formulation (5.3) is a nonlinear differential equation

describing the state evolution. This equation involves the nonlinear state-

dependent so-called mass matrix

M (x) =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
df2(v2)

dv2















(5.4)

and the nonlinear functional depending on the state and input vectors

h (x,u) =





































1

Cpkg

(

−
v

Rs

+ i1 +
vs

Rs

)

1

Lpkg

(−v − Rpkgi1 + v1)

1

C
(f1(v1) − f2(v2) − i1)

1

L
(v1 − v2 − VDD − Rf2(v2))





































(5.5)

The second row of the formulation (5.3) is a linear algebraic equation de-

scribing the output variable from the state and input vectors by means of

the vectors c = [ 1/Rs , 0 , 0 , 0 ]T and d = [ −1/Rs , 0 ]T. The identification

signals v and i are obtained by simulating the test setup of Figure 5.3 by

solving an initial value problem for the ODE formulation (5.3). The solution

is numerically calculated by means of Matlab ODE functions [49].

According to the guidelines outlined in Section 3.3, the driving voltage

source vs is a multilevel signal with superimposed small noise. Such a signal

must be devised in order to obtain identification signals rich of information

on the device behavior, i.e., the signal vs must excite the dynamic behavior

of the device for values within all possible operating voltages, even extend-

ing outside the power supply rails. For this test, we select a series-resistor

Rs = 50 Ω and a voltage source vs composed of thirty levels spanning the

35



5 – Assessment of models

range of operating voltage [0 V , VDD + ∆], where ∆ = 0.5 V is the accepted

overvoltage. As outlined in Sec. 3.3, the design of a multilevel stimulus re-

quired by the identification of nonlinear dynamical systems is a matter or

repeated experiments. For the modeling of digital devices we performed a

systematic set of experiments which confirms that the quality of the esti-

mated models is weakly sensitive to the parameters defining the multilevel

signals [19]. As an example, a number of levels within the range between

five to some tens is sufficient for leading to accurate models reproducing the

original system response well. The superimposed noise is of gaussian type

with a selected standard-deviation of 0.1 mV. The flat parts of vs last 6 ns,

i.e., a sufficient duration to allow the port to reach steady state operation.

The duration of level transition is set to 200 ps, i.e., a typical value for the

switching time of modern high-speed devices. The sampling period used to

discretize the signals is Ts = 10 ps. Figure 5.4 shows the multilevel voltage

sources previously described and the corresponding identification signals as

result of the numerical transient simulation of the test setup of Figure 5.3.
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Figure 5.4. Waveforms for the identification test computed for the setup of
Figure 5.3. Noisy multilevel voltage source vs(t) (top panel), identification

signals v(t) (middle panel) and i(t) (bottom panel) are shown.
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5.3.3 Model estimation

In this step, the unknown parameters defining the model are estimated from

the identification signals collected in the previous step. As pointed out in

Section 3.4, the parameters are evaluated by minimizing a suitable error

function by means of a specific algorithm based on the type of mathematical

representation describing the model. In order to evaluate how an estimated

model is good in the reproduction of the identification signals, we compute

the Mean Squared Error (MSE), defined as

MSE =
1

N

N
∑

k=1

(ȳ(k) − y(k))2 (5.6)

where ȳ(k) is the sample of the reference response (in this case the port cur-

rent of the test device) and y(k) is the sample of the model response. When

dealing with SBF and LLSS models, their estimation relies on the application

of LM-based iterative algorithms. In this case, the estimation ends when an

iteration decreases the MSE of an amount below a small threshold, a priori

defined (e.g., 1e-8).

5.3.4 Model validation

According to Section 3.5, accuracy, local stability and efficiency of the es-

timated model are addressed at this point. The accuracy of the models is

quantified by computing the MSE between the model and the test device,

for a validation test. The validation test consists in the transient simulation

of the test setup of Figure 5.3 based on the ODE formulation (5.3), where vs

is again a multilevel voltage source but different from the one used for the

collection of the identification signals and shown in Figure 5.4. In this case,

the voltage source vs is composed of ten levels in the same range spanned

by the voltage source depicted in Figure 5.4. The standard-deviation of the

superimposed noise and the duration of flat parts are kept to 0.1 mV and

6 ns respectively, whereas the duration of level transition is set to 100 ps.

The sampling period used to discretize the signals is Ts = 10 ps. Figure 5.5

shows the multilevel voltage sources and the corresponding validation signals

computed for the test setup of Figure 5.3.

As discussed in Section 3.5, the local stability is assessed by computing
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Figure 5.5. Waveforms for the validation test computed for the setup of
Figure 5.3. Noisy multilevel voltage source vs(t) (top panel), validation

signals v(t) (middle panel) and i(t) (bottom panel) are shown.

the eigenvalues of the respective linearized model equations [25] (see Ap-

pendix B). The eigenvalues are computed for each point explored by the

voltage and current responses of the models recorded during the transient

simulations of the validation test. With respect to a specific instant of time,

some of the eigenvalues may lie outside the unitary circle. The percentage of

eigenvalues that lie inside the unitary circle can be used as an indicator of

the model stability, for the test at hand. Finally, the efficiency is addressed

by quantifying the simulation time required by the different models, for the

validation test.

5.4 Model performances

This section describes the effects of the modeling process previously described

on the estimation and validation performances of the obtained models. In

particular, we investigate the influence of the model representation and of its

estimation algorithm.
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5.4.1 SBF model

Several tests carried out on the test device under modeling have demonstrated

that the performance of SBF models are the same for both fully nonlinear

and splitted structures. Therefore, for the sake of simplicity, the following

discussion focuses only on the fully nonlinear structure. For this application,

the dynamic order of the SBF model (see equations (4.2) and (4.5)) is set to

r = 3, since we verified that larger values do not lead to better models.

run # p
MSE of

estimation
phase

MSE of
validation

phase

CPU time
for model

estimation s

Local
stability
index %

1 6 2.02e-8 3.32e-7 22.0 99.7
2 10 5.46e-9 1.97e-6 15.3 99.8
3 6 5.85e-9 1.12e-5 1.7 96.8
4 7 2.65e-9 3.01e-6 3.0 99.1
5 6 1.81e-8 9.90e-7 1.4 98.3
6 9 2.93e-8 6.19e-7 15.1 99.9
7 7 2.45e-8 1.91e-6 20.2 99.1
8 7 2.17e-9 9.50e-7 3.6 99.7
9 8 5.96e-9 1.22e-6 5.0 99.5
10 9 3.58e-9 9.36e-7 2.8 98.4

Table 5.2. SBF model performances: model size, estimation and valida-
tion accuracy, model estimation time and local stability for ten different

runs by means of the SLM algorithm [42].

Table 5.2 collects the main figures related to the performances of SBF

models estimated by means of ten runs of the static version of the LM al-

gorithm (SLM) [42]. Each row is referred to a specific run and defines the

selected model size (p, column 2), the MSE achieved in estimation and vali-

dation phases (column 3 and 4), the CPU time required for the estimation of

the model (column 5) and the local stability index defined as the percentage

of the explored eigenvalues that are inside the unitary circle in the complex

plane (column 6). The figures in Table 5.2 highlight that the random initial-

ization of the SLM algorithm does not affect the estimation accuracy of SBF

models, since all the run provide comparable values of MSE in the estimation

phase. In particular, the MSE level achieved is proven to be satisfactory, as
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Figure 5.6. Identification port current response. Reference (solid line),
and SBF model (dashed line) estimated by the SLM algorithm with the

run # 8.

shown in Figure 5.6, that compares the identification port current with the

response of the model with the best MSE value (run # 8 in Table 5.2). The

responses of the other models are not reported since they are very similar

to the best model response. On the contrary, the column of validation MSE

indicates how the pseudo-random initialization affects the accuracy of the

models when they are excited by a signal different from the one used for the

estimation. This remark is confirmed by the validation curves of Figure 5.7,

that compares the reference output port current response and the response

of all the SBF models listed in Table 5.2. From this comparison it is worth

noting that different models provide a quite large variability of response, but

the best model (run # 1 in Table 5.2) provides very good results. The last

column of Table 5.2, that collects the percentage of model eigenvalues outside

the unitary circle, highlights that all the estimated models exhibit a poten-

tial local instability during transient simulation. This is also confirmed in

Figure 5.8, showing the unitary circle in the complex plane and the position

of the eigenvalues explored during the validation test by the best model (run

#1). Besides, it is also clear that all the estimated models are very compact,

i.e., they are composed by a very limited number of basis functions in the
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range 6 ÷ 10 (see the second column of Table 5.2).

run # p
MSE of

estimation
phase

MSE of
validation

phase

CPU time
for model

estimation s

Local
stability
index %

1 10 2.07e-8 1.70e-4 88.4 12.9
2 10 1.77e-8 2.86e-5 181.5 96.5
3 7 2.22e-8 1.26e-6 157.6 99.8
4 10 8.56e-8 3.47e-6 91.1 37.7
5 4 2.00e-8 3.58e-6 59.1 98.8
6 6 2.81e-8 1.55e-6 83.2 99.7
7 10 1.56e-8 1.62e-6 186.8 99.5
8 9 1.80e-8 1.49e-6 175.0 98.6
9 7 1.90e-8 7.49e-7 67.2 99.4
10 5 5.22e-8 1.02e-6 70.3 76.6

Table 5.3. SBF model performances: model size, estimation and valida-
tion accuracy, model estimation time and local stability for ten different

runs by means of the RLM algorithm [43].

Similarly, Table 5.3 collects the same comparison for ten runs of the

application of the recurrent version of the LM algorithm (RLM) [43]. Similar

comments hold for the MSE during estimation, the model size and the local

stability. On the contrary, the estimated models exhibit a larger variability,

depending on the initial guess of parameters as shown in Figure 5.9. Finally,

from the comparison of the two estimation algorithm (SLM and RLM) it is

clear that the RLM method is less efficient and requires a larger CPU time

for the computation of the model parameters than the static version of the

method (compare the 5th column of Tables 5.2 and 5.3).

5.4.2 ESN model

Unlike the SBF case, the modeling with ESN representation has been proven

to be accurate only by using the splitted structure. Therefore, the fully

nonlinear structure is not considered hereafter. The ESN representation used

for modeling the problem at hand has been proven to be accurate enough by

selecting the state vector size n = 100 (see equation (4.6)).
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Figure 5.7. SBF model validation: port current response of ten different
models obtained by means of the SLM estimation algorithm. Solid line:

reference, dashed line: best model (#1), dotted lines: other models.

run # n
MSE of

estimation
phase

MSE of
validation

phase

CPU time
for model

estimation s

Local
stability
index %

1 100 5.51e-6 9.19e-6 1.4 100

Table 5.4. ESN model performances: model size, estimation and valida-
tion accuracy, model estimation time and local stability for one run by

means of the estimation algorithm [36].

Table 5.4 collects the main figures related to the performances of the ESN

model estimated by means of the algorithm [36]. The performance indexes are

the same as those for the SBF case. However, we report the result of a unique

estimation run since we verified that the suggested initialization procedure

does not affect the quality of the obtained model. The local stability of the

model enforced a-priori is verified. As a confirmation, Figure 5.12 shows the

eigenvalues of the linearized ESN model for each point explored during the

transient validation test. From Table 5.4 we see that the value of the CPU

time required for the estimation is very small, since the estimation relies on

a linear least squares algorithm. Finally, Figure 5.11 shows the validation
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Figure 5.8. Eigenvalues of the linearized SBF model providing the best
prediction accuracy shown in Fig. 5.7. The linearization is computed for

each point explored during the transient validation test.

curves, thus highlighting a good accuracy of the estimated ESN model. This

is also confirmed by the MSE value in Table 5.4.

5.4.3 LLSS model

The modeling of the test device by means of LLSS representation has been

proven to be accurate by using either the fully nonlinear or splitted struc-

ture. Therefore, as reported for the SBF case, for conciseness we discuss

only the performance of the fully nonlinear structures. For this application,

the scheduling vector of the LLSS model is composed by using r = 0 (see

equations (4.7) and (4.8)), since we verified that larger values do not lead to

better models.

Table 5.5 collects the main figures related to the performances of the

LLSS model estimated with one run by means of the PLM algorithm [37].

The performance indexes are the same as those for the SBF and ESN case.

We perform only one run of the estimation since the initialization with the

4SID method [47] is unique and deterministic. In addition, the initialization

also provides the dimension of the state vector of each local model, that is

n = 4 for this case. The reached MSE in estimation has been proven to be
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Figure 5.9. SBF model validation: port current response of ten different
models obtained by means of the RLM estimation algorithm. Solid line:

reference, dashed line: best model (#9), dotted lines: other models.

run # p
MSE of

estimation
phase

MSE of
validation

phase

CPU time
for model

estimation s

Local
stability
index %

1 5 4.68e-8 3.24e-7 64.2 100

Table 5.5. LLSS model performances: model size, estimation and vali-
dation accuracy, model estimation time and local stability for one run by

means of the PLM estimation algorithm [37].

sufficient for a model composed of p = 5 local linear models, thus providing

a model with a compact size. Besides, Figure 5.13 confirms also the good

accuracy of the model in reproducing the validation signals. From Table 5.5,

we see how the CPU time required for the estimation is comparable with the

one recorded for the SBF models by means of RLM algorithm. Finally, the

local stability of the obtained LLSS model is effectively verified a-posteriori,

according to the eigenvalues shown in Figure 5.14.

44



5 – Assessment of models

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

real

im
a
g
in

a
ry

Figure 5.10. Eigenvalues of one of the linearized SBF models providing the
best prediction accuracy shown in Fig. 5.9. The linearization is computed

for each point explored during the transient validation test.

5.4.4 Efficiency comparison

As a final comparison, Table 5.6 compares the efficiency between the ref-

erence ODE model of the one-port test device and the different parametric

model representations for the computation of the curves reported in Fig-

ure 5.7, 5.9, 5.11 and 5.13. We can clearly observe how both SBF and LLSS

models provide a significant speed-up with respect to the reference model.

On the contrary, ESN model does not exhibit a significant speed-up, due to

the large size of the model.

model
simulation

time
speed-up

reference 40 s x1
SBF 0.2 s x200
SBF 0.2 s x200
ESN 16 s x2.5
LLSS 0.8 s x50

Table 5.6. Model efficiency performances: Matlab model simulation time
and related speed-up for the validation test.
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Figure 5.11. ESN validation: port current response of the model obtained
by means of the estimation algorithm [36]. Solid line: reference, dashed

line: model.

5.5 Summary

This section reports the final comparison on the performance of the selected

parametric model representations for the approximation of the constitutive

relation of the test device in Figure 5.1. Table 5.7 compares the performances

of accuracy, local stability and efficiency, using the same symbols of Table 4.1.

model accuracy
local

stability
efficiency

SBF ↓ ↓ ↑
ESN ↓ ↑ ↓↓
LLSS ↑ ↑ ↑

Table 5.7. Comparison of the features of the model representations for
the test device of Figure 5.1.

From Table 5.7, it is clear that for the problem at hand, the LLSS para-

metric representation is the one providing the best overall behavior. There-

fore, this class is adopted for the modeling of real devices involved in a mobile

data-link, as reported in Chapter 6.
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Figure 5.12. Eigenvalues of the linearized ESN model providing the pre-
diction shown in Fig. 5.11. The linearization is computed for each point

explored during the transient validation test.
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Figure 5.13. LLSS validation: port current response of the model obtained
by means of the PLM estimation algorithm [37]. Solid line: reference,

dashed line: model.

.
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Figure 5.14. Eigenvalues of the linearized LLSS model providing the pre-
diction shown in Fig. 5.13. The linearization is computed for each point

explored during the transient validation test.
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Chapter 6

Application example

6.1 Introduction

The aim of this section is to discuss the impact of device macromodels on the

accuracy of signal integrity and performance predictions for critical data link

of high-performance electronic equipments. Specifically, the LLSS parametric

representation is addressed for the development of macromodels of an output

buffer (i.e., driver) and an input buffer (i.e., receiver) composing a real data-

link for mobile phone application. In the following we present the structure

and the operating features of the mobile data-link being simulated. Finally,

we conclude by presenting the results on the accuracy and the efficiency of the

predictions of both the functional signals and the power supply and ground

noise.

6.2 Mobile data-link

The example under study is a data-link for mobile applications1. Such a

data-link represents the RF-to-Digital interface. Figure 6.1 shows the struc-

ture under test, which is composed of a driver (left side) and a receiver

(right side) communicating via an interconnect, and energized by a common

power supply network. A high-speed Nokia CMOS single-ended transceiver

(VDD = 1.8 V) is used in place of the driver and receiver. The interconnection

between driver and receiver is a 3 cm-long MCM land, which is modeled from

1Courtesy of Nokia Research Center, Radio Technologies laboratory, Helsinki (Finland).
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the geometrical details as an ideal transmission line with a characteristic im-

pedance Zc = 100 Ω and a p.u.l. capacitance C = 5 pF/m. The power supply

network considered is modeled by a lumped equivalent, but no transition or

junctions are included in the transmission path, for the sake of simplicity.

The reference for this structure is the Eldo [50] simulation in which the driver

and the receiver are represented by their transistor-level models. For both

devices, specialized macromodels based on LLSS representation are derived

from the response of such transistor levels by following the modeling process

described in Chapter 3 and applied to the test device in Chapter 5. The

macromodels are implemented in Eldo subcircuits. The macromodel related

to the driver describes the output and power-supply port behavior, whereas

the macromodel related to the receiver describes the input and power-supply

port behavior. Further details of the model structure of the devices can be

found in Appendix D. The simulation of the data-link is carried out by using

an input data pattern composed of a 50 bit-long sequence with 5 ns bit time

and 500 ps rise time. Our goal for this application is to provide the compar-

ison between the waveforms computed by using the transistor-level models

and the waveforms computed by using the macromodels. Two items are ad-

dressed. The first consist of the comparison of the functional signals as the

driver output voltage v21 and the receiver input voltage v12. The second is

related to the prediction of the power-supply and ground noise by comparing

the voltage fluctuations v31 and v41.

31

21

41

32

12

42

power supply net (VDD)

communication line

ground net b

b

logic
core

DATA

Figure 6.1. Structure setup of the mobile data-link investigated. The
relevant blocks and the nodes of interest are reported.
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6.3 Results

Figure 6.2 and 6.3 show the reference and predicted waveforms of the voltage

v21 and v12 respectively, within the interval time between 30 ns and 165 ns. A

very good correlation among the different curves, especially during the tran-

sition, indicates that LLSS macromodels are capable of providing accurate

timing information. In fact, the timing error on v21 and v12, computed as the

maximum delay between the reference and the predicted waveforms at 0.9 V

level, turns out to be always less than 2% of bit time for v21 and 3% for v31,

evaluated over the entire bit sequence.
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Figure 6.2. Driver output voltage waveforms v21 for the simulation of the
setup in Figure 6.1. Solid line: reference; dashed line: LLSS macromodels.

Figure 6.4 and 6.5 show the reference and predicted fluctuations of the

voltage v31 and v41 respectively, within the interval time between 35 ns and

75 ns. As for the comparison in Figure 6.2 and 6.3, the accuracy of the LLSS

macromodels is confirmed, and the timing errors turn out to be on the order

of less than 3% of the bit time over the entire bit sequence for both v31 and

v41.

Finally, Table 6.1 shows a comparison of the CPU time required by Eldo

simulation of the reference 50 bit-long transmission of the setup in Figure 6.1

and the corresponding time of the simulation using LLSS macromodels. The
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Figure 6.3. Receiver input voltage waveforms v12 for the simulation of the
setup in Figure 6.1. Solid line: reference; dashed line: LLSS macromodels.

speed-up factor is on the order of 30.

Macromodel (Eldo) Simulation time

Transistor-level 36 min 26 sec
LLSS 1 min 45 sec

Table 6.1. Time comparison for the simulation of the setup in Figure 6.1
(see text for details).
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Figure 6.4. Driver power-supply voltage fluctuations v31 for the simula-
tion of the setup in Figure 6.1. Solid line: reference; dashed line: LLSS

macromodels.
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Figure 6.5. Driver ground voltage fluctuations v31 for the simulation of the
setup in Figure 6.1. Solid line: reference; dashed line: LLSS macromodels.
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Chapter 7

Conclusions

The activity carried out in this Thesis concerns the development of numerical

macromodels of digital IC ports. Such models are of paramount importance

for the assessment of SI/EMC effects in high-performance electronic equip-

ments via system-level simulations.

In order to obtain accurate and efficient macromodels, among the avail-

able resources, we concentrate on the black-box modeling approach via sys-

tem identification methods. Such an approach, that has been recently applied

to ICs, amounts to selecting and estimating a suitable nonlinear parametric

model from device responses. Parametric models and system identification

methods provide an effective modeling tool yielding good IC models. The ob-

tained models allow to accurately reproduce sensitive effects like crosstalk or

radiation, can be easily obtained either from simulated or measured transient

port signals only and that can be readily implemented in any commercial tool

as SPICE subcircuits or AMS descriptions.

In spite of these advantages, the parametric relations used so far have

some inherent limitations. Mainly, model stability cannot be easily imposed

a-priori or even during the estimation process without impacting on model

accuracy. In addition, since the estimation relies on an iterative algorithm,

the quality of the obtained model depends on the initial guess of parameters.

Furthermore, higher order dynamical effects may not be readily represented

by these models and model estimation for real devices with multiple ports is

troublesome and impact on the quality of the estimated models.

The present study contributes to the systematic discussion of the open
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research issues of the IC modeling process to obtain macromodels overcom-

ing the limitations of the representations and methodologies considered so

far. Specifically, the performance of different parametric representations as

Sigmoidal Basis Functions (SBF) expansions, Echo State Networks (ESN)

and Local Linear State-Space (LLSS) models are investigated. All the rep-

resentations have proven capabilities for the modeling of unknown nonlinear

dynamic systems and are good candidates to be used for the modeling prob-

lem at hand. However, the latter two representations have never been applied

to the IC modeling and they worth to be investigated. For each model rep-

resentation, the most suitable estimation algorithm is considered and a sys-

tematic analysis is performed to highlight advantages and limitations. For

this analysis, the modeling process is applied to a synthetic nonlinear de-

vice representative for the IC port class, designed to obtain a stiff modeling

benchmark.

The tests carried out show that LLSS models provide the best overall

performance for the modeling of digital devices, even with strong nonlinear

dynamics. LLSS models can be estimated by means of an efficient estima-

tion algorithm that provides a unique solution. Local stability of models is

preconditioned and verified a-posteriori.

The effectiveness of the modeling process based on LLSS representations

is verified by applying the proposed technique to the modeling of real devices

involved in a realistic data communication link. The link considered is a RF-

to-Digital interface used in a mobile phone. The obtained macromodels have

been successfully used to predict both the functional signals and the power

supply and ground fluctuations. Besides, they turn out to be very efficient,

providing a significant speed up of the simulation of the complete data link.

Future work

We are currently working to further explore the features and capabilities of

LLSS representation. In particularly, we are interested to formulate a tighter

criteria to analyze and enforce the model stability during the estimation

of model parameters. Besides, the modeling methodology presented in this

study need be extended to account for the enhanced features of devices and

applications. In particular, current models do not account for incomplete
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state-transitions and cannot be employed for the system-level simulations

overclocked systems. Besides, other relevant effects like the Electromagnetic

Immunity (EMI) of devices has not been completely investigated and thus

included in the present IC models yet.
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Appendix A

Model structures

This Appendix justifies the splitting of a device port equation into the sum

of a static and a dynamic contribution, and the representation of the latter in

terms of a nonlinear parametric equation. In general, a constitutive relation

of a nonlinear dynamic system can be described by an arbitrary state-space

representation involving external measurable variables and internal nonmea-

surable state variables, as follows

{

ẋ(t) = g (x(t),u(t))

y(t) = f (x(t),u(t))
(A.1)

where y is the output variable, x is the vector of internal state variables,

u is the vector of input variables, and g and f are multivariate nonlinear

mappings. If we designate by fs(u) the above nonlinear mapping in static

conditions, (A.1) can be recast in the following form

{

ẋ(t) = g (x(t),u(t))

y(t) = fs(u(t)) + [f (x(t),u(t)) − fs(u(t))]
(A.2)

where the output equation turns out to be interpreted as the sum of a static

and a dynamic part, i.e.,

y(t) = fs(u(t)) + fd (x(t),u(t)) (A.3)

where fd (x,u) = [f (x,u) − fs(u)] is a new mapping such that fd (x,u) = 0

for constant u(t).
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Local stability analysis

B.1 Introduction

For the case of nonlinear discrete-time parametric models, local stability

analysis can be easily verified by linearizing model equation. For both NIO

and NSS structures described in Chapter 4, the procedure amounts to rep-

resenting both models as state-space relations. It is worth to remark that

NSS are native state-space models, whereas the alternate NIO can be easily

converted in a state-space form as suggested in [52]. Then, the first-order

Taylor approximation of the equation updating the state vector is computed

for each time-sample. For the k-th sample, this writes

x(k) + ∆x = x(k) + A∆x + . . . (B.1)

where x(k) is the state vector at the current time sample, ∆x is a generic

incremental vector and A is the square matrix describing the first-order term.

Then, in the second step the computation of the eigenvalues of A in (B.1) is

performed. The model is local (asymptotically) stable if all the eigenvalues

of A have magnitude smaller than one, i.e., on the complex plane all the

eigenvalues lie inside the unitary circle.

In the following, the mathematical steps for the computation of the lin-

earization (B.1) for both the NIO and the NSS representations are reported.

For the sake of simplicity, the discussion is focused on single-input single-

output model where y and u are the output and input variables, respectively.
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B.2 Nonlinear input-output model

According to equation (4.2), the general relation for a NIO model writes

{

y(k) = F ( Θ ; ϕ(k) )

ϕ(k) = [ y(k − 1) , . . . , y(k − r) , u(k) , . . . , u(k − r) ]T
(B.2)

In order to apply the above local stability criterion, we must convert model (B.2)

into an equivalent state-space form [52]. This writes
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(B.3)

where x(k) = [ y(k) , . . . , y(k − r + 1) ]T is the equivalent state vector. With

respect to the representation (B.3), the matrix A of equation (B.1) is ex-

pressed as

A =













a1 a2 . . . ar

1 0 . . . 0
...

. . .
. . . 0
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



(B.4)

where the i-th term of the first row of (B.4) is computed as

ai =
∂F ( Θ ; ϕ(k) )

∂y(k − i)
(B.5)

B.3 Nonlinear state-space model

According to equation (4.3), the general form of a NSS model writes

{

x(k) = F1 ( Θ1 ; x(k − 1) , u(k − 1) )

y(k) = F2 ( Θ2 ; x(k) , u(k) )
(B.6)
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where x = [x1 , . . . , xn]T. Since (B.6) is a state-space representation, we can

directly evaluate (B.1). In this case matrix A is described as

A =
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Levenberg-Marquardt method

C.1 Introduction

In this Appendix, the widely used Levenberg-Marquardt algorithm [40] for

the computation of the parameters of a nonlinear discrete-time paramet-

ric model is presented. This algorithm, that is a gradient-based iterative

method, has been proven to be particularly effective and numerically effi-

cient. A large number of application exist in the nonlinear optimization,

system identification and neural network literature [13, 20].

For the sake of simplicity, the following discussion is based on a single-

input single-output system, with input ū and output ȳ. In general, as al-

ready outlined in Chapter 3, the unknown parameters defining a parametric

model are estimated from transient responses of the device under model-

ing (referred to as the estimation data set). For the single-input single-

output case, the estimation data set is composed by an input excitation

vector ū = [ ū(1) , . . . , ū(N) ]T and by the vector collecting the system re-

sponse ȳ = [ ȳ(1) , . . . , ȳ(N) ]T. The model parameters are then computed

by minimizing a suitable error function of the estimation data set and of the

responses of the model y. The vector collecting the model response will be

indicated as y = [ y(1) , . . . , y(N) ]T hereafter.

The estimation problem can be stated as the standard nonlinear opti-

mization form

min
Θ

C(Θ) (C.1)

where C : R
L → R is a nonlinear cost function, Θ = [ θ1 , . . . , θL ]T being the
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vector of parameters. Specifically, for our problem the cost function in (C.1)

is defined as

C(Θ) = eT(Θ)e(Θ) (C.2)

where e(Θ) = ȳ − y, Θ being embedded within y.

As suggested in [40], the procedure that updates the model parameters

Θ at the i-th iteration is defined by the following rule

Θ(i+1) = Θ(i) −
[

JT(Θ(i))J(Θ(i)) + µ(i)I
]

−1
JT(Θ(i))e(Θ(i)) (C.3)

where µ(i) is the LM regularization parameter, I is the identity matrix and J

is the jacobian matrix of the cost function over the parameters, defined as

J(Θ) = −
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(C.4)

In the following we briefly report the mathematical details related to the

computation of the elements of matrix (C.4) for both the NIO and the NSS

classes of model representations.

C.2 Nonlinear input-output model

NIO representation is described in Chapter 4. For this class of model, the

computation of the element of the jacobian matrix (C.4) depends on the

strategy adopted for the evaluation of the model response y(k) to the dataset

input ū(k). There are basically two versions.

The first way is referred to the Static LM (SLM). For this method, the

model response writes

{

y(k) = F ( Θ ; ϕ(k) )

ϕ(k) = [ ȳ(k − 1) , . . . , ȳ(k − r) , ū(k) , . . . , ū(k − r) ]T
(C.5)
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where past samples of the model output in ϕ(k) are replaced by the cor-

responding samples of the estimation dataset output. For this version, the

evaluation of each element of matrix (C.4) writes

∂y(k)

∂θi

=
∂F ( Θ ; ϕ(k) )

∂θi

(C.6)

In particular, when dealing with NIO model expressed as sigmoidal expansion

(SBF), SLM method represents the typical scheme used for the estimation

of static feedforward neural networks [42, 38].

The second way is referred to the Recurrent LM (RLM). This version

computes the model response as

{

y(k) = F ( Θ ; ϕ(k) )

ϕ(k) = [ y(k − 1) , . . . , y(k − r) , ū(k) , . . . , ū(k − r) ]T
(C.7)

where the recurrent nature of the model is effectively accounted within ϕ(k).

Unlike the SLM method, the computation of each element of matrix (C.4) is

evaluated by means of the following dynamic equation

∂y(k)

∂θi

=
∂F ( Θ ; ϕ(k) )

∂θi

+

r
∑

j=1

∂F ( Θ ; ϕ(k) )

∂y(k − j)

∂y(k − j)

∂θi

(C.8)

When the NIO model is expressed as sigmoidal expansion (SBF), the RLM

method belongs to the scheme adopted for the estimation of recurrent neural

networks [43].

C.3 Nonlinear state-space model

According to Chapter 4, the response of a NSS model to the dataset input

ū(k) writes
{

x(k) = F1 ( Θ1 ; x(k − 1) , ū(k − 1) )

y(k) = F2 ( Θ2 ; x(k) , ū(k) )
(C.9)

where x(k) = [x1(k) , x2(k) , . . . , xn(k)]T. In this case we have Θ =
[

ΘT
1 ,ΘT

2

]T
.

The computation of each element of matrix (C.4) relies on the evaluation of

68



C – Levenberg-Marquardt method

the following state equation
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∂xj(k)

∂θi

=
∂F1,j ( Θ1 ; x(k − 1) , ū(k − 1) )

∂θi

+
n

∑

l=1

∂F1,j ( Θ1 ; x(k − 1) , ū(k − 1) )

∂xl(k − 1)

∂xl(k − 1)

∂θi

∂y(k)

∂θi

=
∂F2 ( Θ2 ; x(k) , ū(k) )

∂θi

+

n
∑

j=1

∂F2 ( Θ2 ; x(k) , ū(k) )

∂xj(k)

∂xj(k)

∂θi

(C.10)
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Appendix D

Review of basic macromodels

D.1 Introduction

The parametric identification approach has been initially applied to the

macromodeling of input and output ports of single-ended CMOS ICs. This

Appendix shortly reviews the model representations used for these basic mod-

eling problems. A complete discussion of input and output port modeling

as well as several modeling examples involving commercial devices of dif-

ferent classes and starting from both transistor-level simulations and actual

measurements are reported in [5, 6, 19].

D.2 Receivers

This Section discusses the macromodeling of the input port of receivers, like

the one shown in Figure D.1. The modeling of an uncoupled input port is

conceptually simple, since it amounts to looking for an approximation of the

constitutive relation between the port voltage and current variables.

As the behavior of the port in the range of the power supply voltage is

mainly linear and dynamic, and since it becomes strongly nonlinear for volt-

ages outside the power supply voltage range, we use a model representation

defined by

i(k) = il(Θl ; v(k)) + inl(Θnl ; v(k)) (D.1)

where i and v denote the port current and voltage variables, respectively,

defined by associate reference directions (see Figure D.1). Here we assume
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v

i

Vdd

Vss
b

Figure D.1. Generic structure of an input port and its relevant electric
variables. Vdd and Vss indicate the power supply voltages.

that the current i splits into the sum of two contributions, of which il is

a linear parametric model defined by an Auto Regressive with eXtra input

model (ARX) scheme [4], and accounting for the linear behavior of the port;

inl is a nonlinear parametric model accounting for the port behavior in the

voltage range where the effects of protection circuits take place.

It is ought to remark that, in spite of its simplicity, the modeling of input

ports may be a challenging problem, because the linear region may have high

dynamic order and the onset of the nonlinear regime my be abrupt and may

introduce additional and slow time constants. In spite of the above criti-

cal points, model representation (D.1) and a careful tuning of the modeling

process allow to obtain good models for most cases of practical interest.

D.3 Drivers

Figure D.2 shows the typical structure of a digital driver made of cascaded

stages. The electrical variables relevant for the model, i.e., the voltage and

current of the output and of the power supply ports (denoted by v, i, vdd and

idd) are defined in Fig D.2, as well.

Parametric macromodels of digital driver exploit the so-called two-piece

representation. As an example, for the output port the model writes

i(k) = wHFH(ΘH ; v(k) , vdd(k))

+ wLFL(ΘL ; v(k) , vdd(k))
(D.2)

where wH and wL are switching signals accounting for the device state tran-

sitions and playing the same role of the signal vi in Figure D.2, FH and FL
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vi v

vdd

i

idd

b b

b b

b

Figure D.2. Typical structure of a driver circuit and its relevant (output
and power supply) port electrical variables.

are nonlinear parametric models accounting for the device behaviour in fixed

logic HIGH and LOW states, respectively [5, 7]. The same model structure is

assumed also for modeling the power supply port. Piecewise models similar

to (D.2) occur also in conventional modeling approaches (e.g., IBIS [12]). The

representation (D.2) yields models that are inherently accurate for operation

in fixed logic states, because in that condition only one of the two submodels

is active. In particular, the use of parametric nonlinear submodels allows

to reproduce also complicated device behaviors [7]. Nevertheless, possible

inaccuracies arise during state transitions, where (D.2) must mimic the be-

havior of the modeled device by using FH and FL, that contain information

on fixed logic state operation only. The study of model descriptions that

can overcome the previous limitation represents an interesting research area.

Recently, some preliminary results on this topic have been already published

in [51].
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posed methodology is based on the estimation of composite local linear state-

space models from device port responses. These models help to overcome

some limitations of traditional parametric macromodels and are readily im-
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