
01 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A formal approach for network security policy validation / Valenza, Fulvio; Su, Tao; Spinoso, Serena; Lioy, Antonio;
Sisto, Riccardo; Vallini, Marco. - In: JOURNAL OF WIRELESS MOBILE NETWORKS, UBIQUITOUS COMPUTING AND
DEPENDABLE APPLICATIONS. - ISSN 2093-5374. - STAMPA. - 8:1(2017), pp. 79-100.
[10.22667/JOWUA.2017.03.31.079]

Original

A formal approach for network security policy validation

Publisher:

Published
DOI:10.22667/JOWUA.2017.03.31.079

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2659302 since: 2021-01-28T11:33:14Z

Innovative Information Science & Technology Research Group (ISYOU)



A formal approach for network security policy validation

Fulvio Valenza1, 2*, Tao Su1, Serena Spinoso1, Antonio Lioy1, Riccardo Sisto1, and Marco Vallini1
1Politecnico di Torino, Dip. di Automatica e Informatica, Torino, Italy

2CNR-IEIIT, c.so Duca degli Abruzzi 24, Torino I-10129, Italy
{first.last}@polito.it

Abstract

Network security is a crucial aspect for administrators due to increasing network size and number
of functions and controls (e.g. firewall, DPI, parental control). Errors in configuring security con-
trols may result in serious security breaches and vulnerabilities (e.g. blocking legitimate traffic or
permitting unwanted traffic) that must be absolutely detected and addressed. This work proposes a
novel approach for validating network policy enforcement, by checking the network status and con-
figuration, and detection of the possible causes in case of misconfiguration or software attacks. Our
contribution exploits formal methods to model and validate the packet processing and forwarding
behaviour of security controls, and to validate the trustworthiness of the controls by using remote
attestation. A prototype implementation of this approach is proposed to validate different scenarios.

Keywords: network security policy, policy conflict analysis, policy validation, remote attestation.

1 Introduction

In recent years, the adoption of server virtualization, Network Function Virtualization (NFV), and cloud
computing techniques has brought several advantages such as service provisioning and deployment de-
pending on user’s requests. This approach enables elastic capacity to add or remove services reducing
hardware cost. Although these techniques have several benefits, the management complexity of the en-
tire system increases. During the last ten years, several approaches (in the field of Policy-Based Network
Management, PBNM) have been proposed to automatically configure services and applications. This
typically provides automatic configuration of applications and services from scratch by defining high-
level policies. Although this permits automatic provisioning of resources, by hiding refinement process
details, these approaches typically do not support the management of enforced configurations, that is a
crucial and complex task in production environments (e.g. data center). It requires high accuracy (e.g. to
identify and perform precise modification on configuration settings) and it must limit service downtime.
Although the automatic deployment of an application instance is a common feature of recent virtualiza-
tion platforms, on the other side, the monitoring and management of its configuration is currently not
well addressed. A typical provisioning system does not periodically check the configuration settings of
a instance. Often, this operation is performed manually, by an administrator, in case of failure or mis-
behaviour. Think, for example, of updates to a firewall configuration. This approach has at least two
drawbacks. First of all, it is an error-prone and expensive task because it is performed by humans. For
example, the administrator manually adds a new rule on a firewall that shadows another existing rule,
modifying the resulting policy in an unexpected way. Second, it does not address misconfigurations that
do not affect service operation. For example, an attacker could add a rule on a firewall to mirror traffic to
another system. In this case, the service operates correctly but its configuration is altered and the attack

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 8:1 (Mar. 2017), pp. 79-100
*Corresponding author: Politecnico di Torino, Dip. di Automatica e Informatica, Corso Duca degli Abruzzi, 24, 10129

Torino , Tel: +39-(0)11-090-7192

79



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

Figure 1: Policy validation workflow and the involved components.

succeeds. Therefore, to detect and avoid these situations, especially for complex scenarios (e.g. data
centre), automatic monitoring and analysis of service configurations is mandatory.

Commonly resources are virtualised (e.g. a virtual machine, VM, rather than a physical machine)
and run on a specific platform, namely the hypervisor on a dedicated node or as part of a cloud com-
puting environment. However, this additional software layer increases the attack surface: for example,
an attacker could modify a software component to change its behaviour (e.g. to steal information from
a virtual resource). Also in this case, these software changes do not affect the service operation, thus
an automatic approach is needed. Nevertheless, also a configuration or a software component that runs
on a virtual machine could be tampered to change its behaviour. Therefore, also these threats must be
addressed for the correct management of these architectures.

In order to evaluate the trustworthiness of these systems, the Trusted Computing techniques must be
considered. In particular, the Remote Attestation (RA) technique makes it possible to verify the integrity
of binaries and their configurations, although with some limitations.

This paper builds upon a preliminary work [1, 2] to propose a novel formal model for the valida-
tion and analysis of security policies, and a new approach, based on Trusted Computing techniques, to
evaluate the trustworthiness of the security applications deployed into the network to enforce the policies.

The paper is organized as follows: Section 2 presents the approach, Section 3 describes the model for
monitoring the policy enforcement, Section 4 describes the model for policy conflict analysis, Section 5
defines the approach used to attest the trustworthiness of security controls, and Section 6 contains the
implementation details of our prototype and the related results. Finally, Section 7 discusses some related
works on policy monitoring, conflict analysis, and remote attestation.

2 Approach

In this paper, we present a unified approach to evaluate the enforcement of security requirements, ex-
pressed by a set of security policies. This evaluation enables the possibility to guarantee an adequate
security level in the network, since functional configuration of each deployed security control is checked
to be consistent with the defined requirements. The presented approach consists of on-line policy en-

80



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

forcement validation by using monitoring and remote attestation. In case of failure, an off-line detection
of the causes is performed. Possible causes of failure in policy enforcement can be derived from: (i)
errors in manual changes of the configuration rules for a security function, that can alter the application
behaviour or introduce policy anomalies; (ii) untrustworthiness of the security functions deployed into
the network (e.g. modifying a software binary code to modify its behaviour).

In order to perform a comprehensive monitoring of the enforced security controls’ 1 configurations,
first of all, we defined a High Level Security Policy Language (HSPL), useful to define security require-
ments by using an abstract and high-level approach. This clearly simplifies the policy authoring task
for network administrators, because they can define the security requirements as a set of sentences close
to natural language, e.g. “do not access gambling sites”, “allow Internet traffic
from 8:30 to 20:00 for employees”. In particular, the elements of a sentence (subject, ob-
ject, etc.) can be selected by the administrator from a predefined set and implemented in an editor as
different lists. This approach is transparent for administrators (avoiding them to learn a new language)
and makes it possible to map each element of a sentence to the related HSPL component. This approach
is also flexible enough to enable administrators to customize some elements of a sentence, e.g. to specify
timing constraints or URLs.

Starting from a set of HSPL statements, we designed a policy validation framework, composed of
several components, and its three-phases validation workflow. As depicted in Figure 1, two out of three
phases are performed on-line (i.e. the involved processes work at run-time, when the network is en-
abled), while the third phase is performed off-line (i.e. it is triggered regardless of the network state). In
particular, the framework includes:

• Policy monitoring to periodically check the enforced HSPLs. In case of wrong enforcement, the
process triggers another service to perform further analysis to detect the causes;

• Conflict analysis, triggered by the monitoring service to perform an exhaustive detection of
anomalies among the configuration rules installed into the security functions;

• Remote attestation to verify the trustworthiness of the network functions and the other compo-
nents involved in the validation process.

As depicted in Figure 1, the monitoring process is performed by the Monitor component, which
checks, by exploiting refinement techniques, if security functions are configured to enforce the HSPLs.
This component relies on sender and receiver modules, deployed in the network. These nodes (depicted
in Figure 1 respectively as “S” and “R”) are transparent functions that generate, forward and monitor
packets, without modifying them, and collect information for the Monitor.

When the Monitor detects wrong enforced HSPLs, it triggers the conflict analysis service to identify
the causes of the misbehaviour. This service is implemented by another component, named Analyser,
which exploits formal techniques for detecting anomalies of configurations. By means of First Order
Logic and Boolean modeling, the Analyser is able to detect when an anomaly is triggered by one or
more configuration rules. In case of anomaly, the administrator is notified by a report of the detected
anomalies and related configuration rules.

The workflow also includes a third component, the Verifier, to attest the trustworthiness of the net-
work by using remote attestation. The Verifier works simultaneously with the Monitor, as an on-line ser-
vice. This component, thus, is in charge of verifying the trustworthiness of all the elements involved in
the workflow, i.e. the network functions and the newly introduced components (and their sub-elements).
If the remote attestation fails, the Verifier immediately sends an alert to the administrator, specifying the
causes.
1In this paper, we use interchangeably the terms security controls (or controls) and security functions (or functions).

81



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

In particular, in our validation workflow (Figure 1), the Analyser is triggered only in case of wrong
enforced HSPLs and positive attestation result. Therefore conflict analysis is not performed when there
is at least one untrusted element. This choice has been proposed to avoid the overhead required by the
analysis module and to increase the overall performance.

Having described an overview of the whole framework, we can move to present each of its compo-
nents and their processes.

2.1 Policy Monitoring

The policy monitoring process is in charge of verifying enforced HSPLs. The Monitor, initially, receives
the security requirements (expressed as set of HSPLs) and computes the set of network packets that
should be generated to check the policy correctness. Then it configures sender and receiver nodes (named
Senders and Receivers) by delegating to them a sub-set of packets per-security control.

In details, the Senders receive periodically a set of packet parameters from the Monitor and generate
the network traffic for a specific security control. Depending on the type of security control, a sender node
can generate different types of traffic (e.g. HTTP, SMTP, FTP). The Receivers, instead, are transparent
functions, which observe the packets coming out by security controls to produce a summary for the
Monitor. By this design choice, it is possible to place a Receiver directly into a security control or
external to it2. On the other hand, when every Receivers summaries are collected, the Monitor analyses
and checks the policy correctness: in case of errors, it triggers the components in charge of detecting the
causes of the misconfiguration (i.e. the Analyser).

The definition of the network packets for a security control is based on a formal model that adopts the
same approach of the refinement [3]. The input are the HSPLs and the output are the type of traffic that
each Sender must generate and the expected traffic that each Receiver should collect from the associated
security control. When the Monitor receives the summary, by the Receivers, it analyses whether a HSPLs
is correctly enforced.

2.2 Conflict Analysis

Once the Monitor detects which policies are not enforced and, in turn, which controls are not correctly
configured, the goal of conflict analysis is to identify whether the deployed configuration rules are anoma-
lous. This process is performed offline, within the Analyser component (Figure 1).

As discussed before, security policies are described by using the HSPL statements, however security
controls typically have low-level specific format. Therefore, in order to perform its goal, the Analyser
has to collect and transform the installed configuration rules into an internal formalism. This formal-
ism is an intermediate format between the HSPL and the low-level configuration rules: it is the Policy
Implementation (PI) data-structure.

The Analyser exploits formal models for modelling both the configuration rules (expressed in form
of the Policy Implementation data-structure) and the anomalies to check. In particular, anomalies are
expressed in form of detection rules, which are FOL formulas that can be satisfied by one or more
configuration rules. The goal of conflict analysis is in fact to check which detection rules are triggered
by the received input (i.e., the PI set): each detection rule that is satisfied represents a conflict in the
configuration rules installed in the network. At the end of the analysis, the end-user (e.g., network
administrator) is alerted by a report, where the detected anomalies and the configuration rules that have
triggered those anomalies are indicated.

2Senders and Receivers do not require any particular hardware resource (e.g., CPU, memory): Sender nodes need to support
traffic generator tools such as Scapy, netsniff-ng or packet sender, while Receiver nodes must support monitoring tools like
Wireshark, Packetyzer and Ostinato.

82



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

2.3 Remote Attestation

In this framework the remote attestation is implemented by the verifier component (hereafter Verifier)
compliant with the trusted computing standards published by Trusted Computing Group (TCG)3. Re-
mote attestation is able to provide hardware-based authentic evidence of the attesting platform (hereafter
Attester) integrity state with the help of a special designed hardware chip called Trusted Platform Mod-
ule (TPM), which has been installed in most business class laptops, desktops and servers. In virtualised
environments, where direct access to the hardware chip is limited or missing, a virtualised TPM (vTPM)
running in a difference virtual domain can be adopted to provide the same functionalities but with less
security guarantees [4]. However, vTPM solution currently is only available in Xen4.

The primary goal of the Verifier is to periodically attest the nodes hosting security applications in the
framework and cooperates with the conflict analyser, which analyses anomalies of the applied policies
only when security controls are in trusted state. Furthermore, it can even attest every other components
(e.g. Senders, Receivers) to ensure the whole framework is in trusted state, implying the genuineness
of the test result. The integrity state of a security control ensures that: (i) the system is booted with all
known components in a predefined order, which implies the system is running in a trusted state without
any bootkit attack; (ii) the services running in the application layer of each host are loaded with legitimate
executables and known service configurations with reference to a well formed database, which implies
the services are running in trusted state to deal with their inputs correctly. In case of compromised node,
either because of remote attacks or wrong service configurations, the Verifier alerts the administrator of
this integrity state change.

3 Policy Monitoring Service

In this section we start to describe more in depth the first component of our validation framework, that
is the Monitor, which implements the policy monitoring in our solution. We recall that the monitoring
process is performed by sending a set of packets (potentially also a single packet) to each security control
that enforces a HSPL and checking if such controls forward or discard properly the probe-packets, with
respect to the HSPL. This means that the Monitor needs a set of HSPL as input and it must implement a
strategy to calculate the set of probe-packets to forward from the received HSPLs.

3.1 High Security Policy Language

As discussed before, the administrator specifies the security requirements with the HSPL. Starting from
previous works [3], we designed HSPL as an authorization language that follows the subject-action-
object-attribute paradigm (also referred to as target-effect-condition) [5]. More precisely, a generic HSPL
h of the whole set of HSPLs (h ∈ H) is defined as the following n-tuple:

h = {s,a,o, f}

• s is the subject of the policy, that can be a single user, a group or all the users (e.g. employees,
guests, administrators);

• a indicates an action that specifies whether a subject s is (or not) authorized to access a resource,
to send or to receive packets. In our model, this field takes as value: “authorize access”,
“not authorize access”, “authorize to send”, “not authorize to send”,
“authorize to receive” or “not authorize to receive”;

3https://www.trustedcomputinggroup.org
4http://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)

83

https://www.trustedcomputinggroup.org
http://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)


A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

• o represents the object controlled by the action a and it supports different types of traffic, that are
“Internet traffic”, “DNS traffic”, “VoIP traffic” and “all traffic”;

• f is an optional set of conditions useful to specify the scope of an object (e.g. a specific URL).

With regard to the f element of a HSPL, this is composed by a set of conditions defined on header
fields of a packet, where each condition is a pair <type, value>. Thus, a generic f has the following
structure, where tn represents the type of the field and vn is its value:

f = { (t1,v1), ... , (tn,vn)}

The supported field types are: (i) time restricts the application of HSPL by imposing timing con-
ditions (e.g. specific date or range, single day of the week, type of days like the weekend or vacation);
(ii) URI limits the policy considering a specific URI or URL (e.g. www.facebook.com); (iii) content
type defines specific types of content in the packet, such as illegal content, gambling, explicit sexual
content, etc.; (iv) traffic target specifies a particular stakeholder that is generating the traffic flow.
The possible stakeholders are defined by the end-user ( e.g. corporate network or user).

For the sake of simplicity, in this paper, we have considered only HSPLs related to the traffic filtering
and content inspection. This means that, in our validation framework in general and in our monitoring
process in particular, we only use a subset of actions, objects and fields of the whole set supported by the
HSPL language. However, the model can be easily extended to support the entire set of the HSPL.

3.2 Traffic flow generation model

We recall that the Monitor is in charge of configuring the Senders with a set of packets to generate. To
represent traffic, our approach models a packet p (p∈ P) by defining of a set of conditions imposed on the
header of the packet. Such conditions are grouped considering network layers, following this structure:

p = {L3,L4,L7}

In details, L3 supports source/destination IP addresses and protocol type (e.g. IPv4). At layer 4
(L4), we consider the source and destination port numbers and protocol (e.g. 22/TCP). At application
layer (L7), the model considers the application protocol (e.g. HTTP), method (e.g. GET) and URI (e.g.
www.facebook.com). Thus the layers have the following structure:

L3 = {IPsrc, IPdst , IPprot} L4 = {Psrc,Pdst} L7 = {Aprot ,M,U}

In order to generate the proper set of packets to check the well-enforcement of HSPLs, we compute
the probing packets by using the function v(hi). The function receives a HSPL hi and outputs one or more
packet-sets ei. Each packet-set ei indicates a sub-set of the whole set of packets (P) that can be generated
in the network. Thus, v(hi) identifies the set of conditions to check the HSPL hi and it is defined as:

v(hi) = {e1,e2, ...,en} where: ei = {p1, p2, ..., pn} ∀ei ⊆ P

Let us consider an example of HSPL h1 defined as “The employees are not authorized to access
Internet {(specific uri, www.facebook.com)}”. The function v(h1) will identify the probe-packet p1
structured as follows:

v(h1) = {e1}= {(p1)}, p1 = (L7{Aprot = http,U = www.facebook.com})

84



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

Another example is h2 that is defined such as “The employees are not authorized to access Internet
{(type of content, social networks)}”. Here, the function v(h2) identifies a set of n packets, one for each
website in the black list of social networks, i.e.:

v(h2) = {e2}= {p1, p2, ..., pn}

In this paper, we denote the whole set of probe-packets as V = v(h1),v(h2), ...,v(hn). Using the
set cover problem, we compute the Minimal Hitting Sets (MHSs) of packets that correctly enforce all
HSPLs. In particular, a set s is said to be a Hitting Set (HS) of V if and only if:

HS(P,V ,s)↔ s⊆ P∧∀v∈V ∃e∈v : s∩ e 6= /0

A set s is said to be a Minimal Hitting Set (MHS) of V if and only if:

MHS(P,V ,s)↔ HS(P,V ,s)∧ 6 ∃s′ ⊂ s : HS(P,V ,s′)

Even though, in literature several approaches to solve the MHS problems have been presented, we ex-
ploit the solution proposed in [6] within our monitoring service. After the computation of MHS(P,V ,s),
according the network topology N, we can configure Senders by generating the matrix MS. This matrix
indicates that the j-th Sender (S j) must generate the probe-packet pi j to check the i-th HSPL (hi). Thus
MS is structured as follows5:

MS =


Sj

p1,1/0 · · · p1, j/0

hi
...

. . .
...

pi,1/0 · · · pi, j/0

,hi ∈ H∧S j ∈ N

3.3 HSPL enforcement validation

Before checking if the security controls really enforce the HSPLs, the Monitor has to configure the
Receivers. In order to enable Receivers to collect data about incoming traffic, we predict how a security
control should process (and forward) the probe-packets. This functional behaviour of a security control
is modelled by means of a matrix. The matrix Mck(t) represents how the security control ck processes
the incoming packets at time t. The matrix Mck is, in fact, time-dependent, because a security control
can change its processing over time (e.g., administrator changes its configuration), and it is structured as
follows:

Mck(t) =


pj

±1/0 · · · ±1/0

hi
...

. . .
...

±1/0 · · · ±1/0

,hi ∈ H∧ p j ∈ P

The i j-th element of the matrix can take as value: 1, if the HSPL hi defines to forward the packet p j

to the next hop (i.e., the Receiver associated to ck); -1, if the HSPL hi defines to block the packet p j or hi

is not supported by the security control ck; 0, if the HSPL hi is not related to the packet p j.
In order to reduce the complexity of checking if the security control is correctly enforcing the HSPLs,

we calculate the equivalent policy of the security control ck from its behavioural matrix Mck(t). The
equivalent policy is the result of a resolution strategy applied on Mck . The resolution strategy adopted in
this paper is the First Order Matching. Thus, the equivalent policy of a security control is expressed by

5Conventionally, we put a zero value in the position i j if the Sender S j must not generate a packet to verify the HSPL hi.

85



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

an array Ack(t) structured as follows, where the j-th element is equal to the first non-null element of Mck

in the j-th column:

Ack(t) =
[ pj
−1/1 · · · −1/1

]
, p j ∈ P

We denote with Mc the matrix that collects the Ack for any security control ck. The Mc matrix, thus,
summarizes, the packet forwarding and processing of the whole network and it is defined as follows:

Mc(t) =

Ac1(t)
...

Acn(t)

=


pj

−1/1 · · · −1/1
...

...
...

−1/1 · · · −1/1


Having modelled the expected forwarding and processing behaviour of a security control, we can de-

scribe how Receivers collect information about the received probe-packets from the associated controls.
In particular, we recall that a Receiver is associated to one or more security controls and for each of them
it checks if the controls are forwarding (or dropping) the probe-packets as the Receiver has expected by
means of the equivalence policy Ack of that control. A Receiver rk, thus, collects information about the
received packets in the time interval T in an array Ark(T ). This array is structured as follows, where
the j-th element can take as value 1, if the packet p j has been forwarded to the Receiver rk during the
interval T , otherwise it is -1:

Ark(T ) =
[ pj

1/−1 · · · 1/−1
]
, p j ∈ P

We denote with Mr the matrix that collects the Ark for any Receiver rk. The Mr matrix, thus, summa-
rizes, the data collected by every Receiver in the network and it is defined as follows:

Mr(T ) =

Ar1
...

Arn

=


pj

1/−1 · · · 1/−1
...

...
...

1/−1 · · · 1/−1


Finally the validation of the enforced HSPLs in the interval T is performed by the Monitor by doing

the difference between Mc and Mr. If the Monitor returns a null result, this means that the HSPLs have
been correctly enforced, otherwise there is at least one non-well enforced HSPL in the network.

Furthermore, thanks to the proposed matrix-based model,t is possible to check whether a security
control is not correctly configured and which packet is not correctly processed. In this case, a further
analysis is required in order to detect the causes of such misconfiguration. The next section presents the
component in charge of performing a conflict analysis.

4 Conflict Analysis Service

We now move to present the conflict analysis approach, by focusing on how the installed configuration
rules are modelled and how the anomalies are detected against those rules. We recall that the Analyser
is triggered by the Monitor , only in case the Verifier does not detect any untrusted state in the network.
When the Analyser, instead, detects some anomalous configuration that lead to conflicts, it alerts the
administrator indicating the configuration rules that trigger an anomaly and also the triggered anomalies.

86



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

4.1 Policy Implementation Model

The Analyser relies on a formal model for representing both the configuration rules and the anomalies.
In order to perform a conflict detection, we have identified four elements to distinguish traffic flows and
all the required information to describe a network behaviour and the network conditions under which an
anomaly arises. The analysis model, thus, includes the following elements, which are:

• network fields, atomic elements to identify the main data that a configuration rule of a security
control should track, like packet headers, network node ID, traffic label, cipher algorithm and
many other that depends on the particular instance of the security control (i.e, firewall rather than
deep packet inspection);

• policy actions, atomic elements that represent a real action performed by a security control and all
the information that characterized it (e.g., algorithm, technologies, protocols to use). For example
a firewall that is configured to perform a drop action in case a packet matches with a firewall rule;

• Policy Implementations (PIs), data-structures to pinpoint in a formal and abstract way the con-
figuration rules enforced by a security control. In particular, PI has a structure composed of a
sequential set of network fields (n) and a set of policy actions (a). From now on, we use the no-
tation nin to indicate the n-th network field in the i-th PI pii, while aim is the m-th action of pii.
Hence a PI pii can be represented as follows:

pii = (ni1,ni2, ...,nin,ai1,ai2, ...,aim)

• Detection Rules (DRs), sets of conditions that distinguish the possible anomalies among PIs. The
model is flexible enough to support a set of pre-defined detection rules, that have been indicated
by the literature as well-known anomalies in the policy analysis domain, but also it allows admin-
istrators to define their own set of anomalies, and, in turn, detection rules.

4.2 Network Field and Policy Action Relations

For what concerns the detection of anomalies against the PIs, the model needs to support a set of relations
R among the network fields and policy actions of the PIs to define the detection rules to be checked (i.e.,
to detect the anomalies). In detail, the proposed model supports four relations R between network fields:

• equivalence (=) two network fields are equivalent (or equal) if they have exactly the same value
(e.g., nik = 8080∧n jk = 8080 =⇒ nik = n jk);

• dominance (�): a network field dominates another one if it is a generalization of the latter. For
example, let us consider two IP addresses nik and n jk, if nik = 1.1. ∗ .∗ and n jk = 1.1.1.∗, then
nik � n jk;

• correlation (∼): two network fields are correlated if they share some common values, but none of
them includes (or dominates) the other one. For example, if nik and n jk are ranges of port numbers
and nik = [1,75], while n jk = [50,100], then ni j ∼ n jk because the range [50, 75] is shared by both
fields;

• disjointness (⊥): two network fields are disjoint if they do not share any value. Considering the
previous example about ranges of port numbers, if nik = [1,70] and n jk = [71,100], then nik ⊥ n jk.
On the other hand, if a network field is equivalent, correlated or dominates another one, those fields
are non-disjointed (nik 6⊥ n jk).

87



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

A certain relation can be applied to a network field (or a policy action) depending on the type of
the network field value (e.g., integer, IP address, boolean, enumeration and more). For example, a port
number can be equal to another one, but it cannot dominate a range of port numbers. Instead a range of
port numbers can dominate a single value of port number. With respect to the policy actions of a PI, the
same relations can be defined for the actions.

The proposed set of relations allows a flexible definition of conditions on the PI elements, of which
the value types are not known a-priori. In fact when the PI structure is established for a certain security
control and, in turn, the network field types, it is possible to understand which relation R is supported by
a field (or action). In this way, the model achieves high-level flexibility and generality in order to: (i) not
be limited to a single security control; and (ii) enrich the set of anomalies by allowing administrators to
define their own set.

4.3 Policy Anomaly and Detection Rules

Policy anomalies (A) are defined in form of detection rules, which, in turn, are expressed by a set of
relations R among the network fields and policy actions. In particular, a detection rule can contain
conditions that involve network fields and actions of one or more PIs.

We model a detection rule as a First Order Logic (FOL) formula, expressed using Horn clauses. Horn
clauses are frequently encountered in model theory because they exhibit a simple and natural rule-like
form. Also, these clauses can be easily translated into many different logic programming languages, such
as Prolog, or generic programming language such as C or Java. In particular, Horn clauses can be simply
used to represent all the axioms used in the proposed model, expressed in the form of positive conditions
implying an assertion:

C1∧C2∧·· ·∧Cn⇒ A

In our model, also, every clause is the relation between network fields (e.g., nk) or policy actions (e.g.,
ak) of one or more PIs (e.g., pii and pi j), like this example:

C1 := nik R nih, C2 := nik R n jh, C3 := aik R aih, C4 := aik R a jh

where, we recall, nik and n jh (or aik and a jh) identify two generic network fields (or policy actions) in the
PI structure. Hence possible detection rules can take a form like the following, but they are not limited
to this structure:

niq R n jq ∧ ...∧ nik R n jh ∧ ...∧ aik R a jh ⇒ A

In order to simplify the understanding of this model (i.e, its elements and the supported relations)
and how to define detection rules, we can consider the filtering configuration rules that can be installed
in a generic firewall as use case, which is presented in the next section.

4.4 Filtering Policies Use Case

Filtering rules are generally used in a single- or multi-firewall environment to defend networks by filter-
ing unwanted or unauthorized traffic from or to the secured network. In order to define the PI model for
representing filtering rules, we have extrapolated the main network fields and actions needed to distin-
guish the filtering conflicts that may arise in firewall configurations.

In particular, we have considered as PI elements: a firewall identifier ( f ) to distinguish in which
order a packet is processed by a firewalls chain in the network; a filtering rule identifier (r), valid within
the firewall f ; the source and destination IP addresses of the traffic (ip src and ip dst); the protocol

88



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

type t (we have considered a sub-set of the possible protocol types, that is TCP, UDP and * - don’t
care); source and destination port number ranges (p src and p dst); and finally the filtering action (a)
performed by the firewall f in case the received packet matches with the current set of fields (we consider
accept or deny as possible action value). Hence we have structured a filtering PI as:

pi f p = ( f ,r, ip src, ip dst, t, p src, p dst,a)

In this use case, the relations R supported by the aforementioned filtering PI structure are: fi and ri

in pii can be equal to or can dominate their counterpart in pi j (e.g., fi � f j, if fi is equal to 6, while f j is
equal to 3); ip srci, ip dsti, p srci and p dsti can be equal, disjointed or can dominate the relative fields
of pi j; finally, ai and ti can be equal or disjointed respectively to a j and t j.

Filtering anomalies As example of detection rules for our use case, we can consider the anomaly
classification proposed in [7]. In this case, we show the detection rules of two examples of anomalies
that the Analyser can detect. Those detection rules follow the aforementioned definition of filtering PI
and are:

• Intra-Firewall Shadowing anomaly arise when pii and pi j match the same traffic, but they enforce
different actions (e.g., one PI drops the traffic, while the other policy allows it):

fi = f j ∧ r j � ri∧ ip srci � ip src j ∧ ip dsti � ip dst j ∧ ti � t j

p srci � p src j ∧ p dsti � p dst j ∧ai 6= a j⇒ Shadowing(pii,pi j)

• Inter-Firewall Redundancy anomaly occurs when two PIs installed in different firewalls have the
same filtering behaviour, This means that they match the same traffic and apply same action of
blocking to it:

f j � fi∧ ip srci � ip src j ∧ ip dsti � ip dst j ∧ ti � t j∧ (1)

p srci � p src j ∧ p dsti � p dst j ∧ai = a j = deny⇒ Redundacy(pii,pi j)

It is interesting noting that only the administrator can decide which anomaly is a real unwanted
network behaviour, and when it is needed to re-adapt the set of filtering anomalies for his network.
Another interesting feature of the proposed framework could be an automatic resolution of the detected
anomalies by applying administrator-defined decision strategies. However we leave this interesting topic
to be investigated as future work.

Next section focuses on the last part of the framework, that is the Verifier. This component takes
care of checking periodically the trustworthiness of the network and, in case of failure, it alerts the
administrator.

5 Remote Attestation Service

This section presents the details of remote attestation technique, in order to allow readers to understand
its functionality and how it is used in our policy validation framework.

5.1 Background

Remote attestation is the main feature provided in trusted computing technology. The overall scheme
proposed by TCG for using trusted computing is based on a step-by-step extension of trust, called a

89



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

chain of trust. It uses a transitive mechanism: if the first execution step can be trusted and each step
correctly measures the next executable software for integrity, then the overall system integrity can be
evaluated. Thus, during the loading of each piece of software, the content of each piece of software is
measured and stored inside a log. Later, at the request of an external party, the attester can present this
log, signed with a unique asymmetric key of the platform, to the other party to prove the platform identity
and integrity state of platform.

From the chain of trust extension point of view, any component that needs to be loaded is considered
an adversary and it must be measured before it is loaded. The base case for the extension of the chain
of trust is called the root of trust for measurement, it encompasses the minimal combination of hardware
and software elements that a remote verifier needs to trust in order to validate the entire chain of trust.
It is recommended to use hardware device in combination with software components to create a strong
unforgeable identity and provide safer storage of evidence. Therefore the main components of the Root
of Trust for Measurement are: (i) a specialised hardware component to store the log and measurements
away from the software access, (ii) an initial isolated component that is able to measure the first non–
trusted software, which will be then trusted to measure the next stage software.

When using a TPM as root of trust, measures of the software stack are stored in special on-board
Platform Configuration Registers (PCRs). There are normally a small number of PCRs (at least 16) that
can be used for storing measurements. For security reasons, it is not possible to directly write to a PCR;
instead measures must be stored using a special operation called extend. The extend operation can update
a PCR by producing a global hash of the concatenated values of the previous PCR value with the new
measurement value, such as the following:

PCRnew = SHA-1(PCRold ||measurement)

This approach brings two benefits. First, it allows for an unlimited number of measures to be captured
in a single PCR, since the size of the values is always the same and it retains a verifiable ordered chain
of all the previous measures. Second, it is computationally infeasible for an attacker to calculate two
different hashes that will match the same resulting value of a PCR extend operation.

Besides strong isolated storage, the TPM also provides a unique key whose private part never leaves
the TPM. This key is called Endorsement Key (EK) that is injected when the TPM is manufactured.
To preserve the privacy of a platform identity, Attestation Identity Keys (AIKs) are generated and used
in remote attestation process instead of the EK. The AIK is an alias of EK, whose private part never
leaves the TPM which generates it. However, binding the EK and the AIKs of a TPM must be done in
conjunction with a third party Privacy Certificate Authority (PrivacyCA) who is trusted to not reveal the
real platform identity, but to act as an intermediary.

When a platform receives a remote attestation request, it needs to send back an integrity report
which comprises the values stored in the PCRs and their digital signature computed with an AIK. Since
the private parts of the AIK is never released from the TPM, thus the authenticity and integrity of the
integrity reports are guaranteed.

To be more specific, the operation to get signed PCR values from a TPM is called quote. This oper-
ation is simple from both the verifier’s and the attester’s point of view. The verifier wishing to validate
the integrity state of the attester sends a remote attestation request specifying an AIK for generating the
digital signature, the set of PCRs to quote, and a nonce to ensure the freshness of the digital signature.

After the TPM receives the remote attestation request, it validates the authorisation to use the AIK,
fills in a structure with the set of PCRs to be quoted and generates a digital signature on the filled in
structure with the specified AIK. Then it returns the digital signature to the verifier.

In general, the verifier, after receiving the digital signature, validates the integrity of the PCR values
received using the public portion of the AIK. Then if the PCR values are intact, then the verifier assesses

90



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

{PCR0,PCR1,…,PCR23}
+

Sig{AIK,{NONCE+PCRs}}

WhiteList
database

verifier
PCR

compare
module

compare

NONCE

TPM

HOST	OS

PCR0
PCR1
…

attester

NONCE sign

Figure 2: Remote attestation process.

the attester’s trustworthiness in reference to a whitelist database (Fig. 2).

5.2 Trusted boot

Trusted boot is used to ensure the platform is booted into a trusted state, it can be achieved by storing
digests of the component loaded in booting phase into different PCRs. The following list describes which
PCR registers can be used during a trusted boot process:

• PCRs 00-03: for use by the CRTM (Initial EEPROM or PC BIOS)

• PCRs 04-07: for use by the Bootloader stages

• PCRs 08-15: for use by the booted base system (e.g. compartmentalisation system, hypervisor)

As shown above, the PCR values are fixed if and only if the same components are loaded in a pre-
fixed order. Thus, when a verifier receives a set of authentic PCR values, it can be sure the platform is
booted by loading trusted components, and the operating system is running in a trusted state.

5.3 Service measurement

Once the operating system is booted into a trusted state, it further measures each application loaded
through a measurement module such as Linux Integrity Measurement Architecture (IMA) [8]. These
measures are stored in a Stored Measurement Log (Fig. 4), with each one extended into a PCR in the
TPM (Fig. 3). Thus the integrity of the log is implicit authenticated by the TPM. Later, the measures in
log will be used during remote attestation protocol, as evidence to prove the integrity state of the loaded
services.

For instance in Fig. 4, we chose four IMA measures of the most concern to a security application
host as an example. /usr/sbin/iptables is the iptables executable loaded by the system kernel.
/etc/iptables-initial is the initial configuration of iptables when the system is booted. SSH
is used to access the security application host remotely, with /usr/sbin/sshd is the executable and
/etc/ssh/sshd config is the configuration file. The filedata-hash column shows the hash value
(i.e. measure) of the file, it will be extended into PCR 10 in the TPM in a way illustrated in Fig. 3.

91



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

IMA	log	file

IMA	measure

IMA	measure

IMA	measure

IMA	measure

00000000…00000000 TPM

PCR	7

PCR	8

PCR	9

PCR	10

PCR	11

PCR	12

hash

PCR10

hash

PCR10

hash

PCR10

…

…

Figure 3: Extend operations for IMA measures.�
PCR# template-hash template filedata-hash filename-hint
10 fc465...848ee ima e4092...732e6c /usr/sbin/iptables
10 48327...9fed4 ima f7655...43f45c /etc/iptables-initial
10 bd57b...e45b3 ima 810cf...f821d6 /usr/sbin/sshd
10 94ea2...eff6b ima 960f7...a9728a /etc/ssh/sshd_config� �

Figure 4: Example of IMA measurements in ASCII format.

5.4 Verification

When an integrity report is received by the verifier, the verifier first checks the digital signature of the
report with the public part of the AIK. Then it compares the received PCR values to a whitelist database in
order to check the boot phase of the attester is trusted. Afterwards, the verifier distils the IMA measures
from the integrity report, and recomputes the final value following the extend operations illustrated in
Fig. 3. If the final value equals the PCR value in the received integrity report, this proves the IMA
measurement list is intact. Finally, the verifier queries the IMA measures to a well-formed database with
whitelisted custom configurations. In the case that the received PCR value does not match the whitelist
or there is an unknown measure, the verifier can alert the system administrator that the node is not booted
in a trusted state or certain service in the application layer is compromised.

6 Implementation and Result

In order to validate our approach, we have implemented a prototype for each involved service. In this
section, we present the implementation details and the results achieved in the evaluation phase, performed
in terms of validation time under different network scenarios.

Policy Monitor We implement the Sender and Receiver nodes by using Scapy6, a tool to generate
network packets. More precisely, the Monitor instructs each Sender by passing the Scapy commands to

6http://www.secdev.org/projects/scapy/

92

http://www.secdev.org/projects/scapy/


A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

generate the required packets. Then, each Receiver sends to the Monitor the summary of the received
packets (captured by using Scapy).

The formal models exploited by the Monitor are developed by using Java 1.7 and several Java-based
open-source frameworks, which are: (i) Drools7, an expert system based on a rule-based approach,
where a single rule is composed of conditions (checked against the input data) and consequential actions
(performed when the conditions are matched); (ii) MOEA8, a Java library for developing multi-objective
evolutionary algorithms; (iii) the Apache Commons Mathematics Library (ACML)9.

In particular, the Monitor exploits Drools and MOEA to infer and optimize the set of packets that
matches (i.e. verifies) each HSPL policy, while the ACML is used to program Receiver nodes. Here, we
report an example of Drools rule (Listing 1) for generating DNS packets (i.e. the action part of the rule),
in case of an HSPL that refers to DNS traffic (i.e. the conditional part of the rule):

rule "DNS_traffic"
when
h: Hspl(h.getObject.compareTo(DNS_TRAFFIC)==0)
s: SetPacket()
then
new p Packet()
p.setTransport_protocol("UDP");
p.setDestinationPort(53);
p.setApplication_protocol("DNS");
s.addPacket(p);
end

Listing 1: example of Drools rule

Conflict Analyser The prototype implementation of the conflict analysis is based on an ontology, by
exploiting the OWL2 language10. In particular, the Analyser has an OWL2 class for each network field
and policy action of the PI and one for representing the PI. The relation among network fields or actions
is instead represented by a set of object property assertions that connect the different classes of that
network fields (or actions).

For what concern the PI anomalies, these are established by defining the object property assertion
that links the PI classes involved into the anomaly. Then the detection rule that triggers that PI anomaly
is expressed in the SWRL language 11. We took this design choise because the SWRL language allows
us to specify detection rules in a way similar to the Horn clauses.

Let us consider the example of the PI anomaly defined in formula 1. In this case we are considering
the case of a Redundancy anomaly where two firewall rules match the same traffic and enforce the same
action. This kind of anomaly can be detected by a detection rule, expressed in the SWRL language as
follows (Listing 2).

In the first part of the rule, we specify a set of conditions to check if a OWL object (either a network
field or an action), belongs to a policy implementation (e.g., inFw(?pi1,?f1) checks that the PI pi1
contains the firewall identifier f1). The second part of the rule checks the relations among those fields
and actions, like Dom(?f1,?f2) that returns true if the firewall identifier f1 dominates f2.

7http://www.drools.org/
8http://moeaframework.org/
9http://commons.apache.org/proper/commons-math/
10https://www.w3.org/TR/owl2-profiles
11https://www.w3.org/Submission/SWRL/

93

http://www.drools.org/
http://moeaframework.org/
http://commons.apache.org/proper/commons-math/
https://www.w3.org/TR/owl2-profiles
https://www.w3.org/Submission/SWRL/


A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

inFw(?pi1,?f1),hasSrc(?pi1,?s1),hasDst(?pi1,?d1), hasType(?pi1,?t1),hasPSrc(?pi1,?ps1),
hasPDst(?pi1,?pd1),hasAct(?pi1,?a1),inFw(?pi2,?f2),hasSrc(?pi2,?s2),hasDst(?pi2,?d2),
hasType(?pi2,?t2),hasPSrc(?pi2,?ps2),hasPDst(?pi2,?pd2), hasAct(?pi2,?a2),
Dom(?f1,?f2),DomEq(?s1,?s2),DomEq(?d1,?d2),DomEq(?t1,?t2),DomEq(?ps1,?ps2),
DomEq(?pd1,?pd2),Eq(?a1,?a2),Eq(?a1,Deny)->Redundancy(?pi1)

Listing 2: example of SWRL rule

Remote Attestation Verifier The remote attestation framework used is OpenAttestation SDK (OAT)12,
an open source project initiated by Intel. We largely extended it to include IMA measures in the integrity
report by following the specification released by TCG. Meanwhile, in order to verify the received IMA
measures, we used our previous work [9], a set of python scripts to query the IMA measures to a well-
formed cassandra13 database.

When the verifier starts a remote attestation process (RA), the following six steps must be performed
before the verdict can be issued (Fig. 5).

In order to minimise performance loss and attack surface of the attesting platform, the RA agent
of OAT does not accept incoming attestation requests from third parties, rather it periodically polls the
verifier (specifically registered at setup for this task) at a predefined interval (step 1). Once a RA request
is present, the agent issues a quote operation to the TPM (step 2) for getting the PCR values and uses the
result plus the recorded IMA measures to create the IR (step 3). The time to perform a quote operation
is about 2 s while the time to prepare the IR is proportional to the number of IMA measures because
each measure must be encoded in base64 and then appended to the XML template defined in the TCG
specifications. Thus the size of the IR is also proportional to the number of IMA measures and so is
the time needed to transmit the IR from the attester to the verifier (step 4). When the IR is received, the
verifier checks the digital signature of the quote output against the public-key certificate of the attester,
stored when the host machine was registered. Next the consistency of the IMA measurement list is
checked against the PCR values, as previously shown in Fig. 3 (step 5). When these steps are completed,
the measurement list is passed to the IMA verification script to verify them against the reference database
(step 6). At this point, the verifier is able to return the integrity verification result.

verifierattester

TPM

IMA 
measurement

list

OAT 
agent

1

2

3

4

signature 
and PCR 

verification

IMA 
measures 
verification

5

6

Figure 5: Overview of the operations in a remote attestation request.

6.1 Implementation results

To perform our test, we have instantiated our Monitor and Conflict Analyser prototypes in a workstation
equipped with Intel i7-3630QM @ 2.4 GHz and 16 GB RAM.

12https://github.com/OpenAttestation/OpenAttestation/tree/v1.7
13http://cassandra.apache.org/

94

https://github.com/OpenAttestation/OpenAttestation/tree/v1.7
http://cassandra.apache.org/


A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

Each test was run on several network scenarios, which have been automatically generated. These
scenarios differ for number of HSPLs and security controls (i.e., from 1 to 10), and, in turn, a variable
number of configuration rules. Also we have adopted security controls that implement packet filters (i.e.,
netfilter/iptables) and application layer firewall (i.e., squid). The achieved data from these scenarios have
been averaged over 50 test-runs.

With respect to the HSPL enforcement monitoring, we have performed two kinds of tests. First, we
have kept the number of security controls fixed, increasing the number of HSPL policies (ranged from 1
to 50). Then, we have increase the number of security controls from 1 to 10, keeping constant number
of HSPLs. In both cases, the Monitor achieves reasonable validation time, because it is able to check the
well enforcement of 50 HSPLs into 10 security controls in the order of seconds (i.e., about 5 seconds).

For what concerns conflict analysis, even though it is a complex task, our Analyser prototype has
achieved scalable results in detecting anomalies among filtering configuration rules. In particular, in the
generated network scenarios we use, a variable number of configuration rules (derived from the HSPLs).
This means that the Analyser has to manage a variable number of Policy Implementations (PIs), that
was ranged from 50 to 500, 40% of which trigger an anomaly. Under these conditions, the Analyser has
achieved a reasonable detection time of no more than 45s for checking 500 PIs.

Finally, the global performance of remote attestation process in concern mainly is the time needed to
accomplish one remote attestation request. As described in Sec. 6, the most influential part is the time
to prepare an integrity report in the attester and to verify the IMA measures to a reference database in
the verifier. Both of them grow linearly with the number of IMA measures. Fortunately, because the
security application host only needs a limited set of services, the number of IMA measure is only several
hundreds, e.g. with CentOS7 distribution kernel 3.10.0-123.20.1.el7, the number of IMA measure is
around 300. With this number, the time needed to prepare the integrity report costs about 3.5 s (including
the time to get quote output from the TPM, which is about 2 second). And the time needed to query
the IMA measures to a reference database hosted in the same machine costs about 1 second. Hence, the
overall time required to attest a single security control is about 4.5 s. In order to test the performance in
an intense scenario, we created a node which has 4500 IMA measures. The test result shows the time
spent in the attester is 6.56 s and the time spent in the verifier is 2.35 s. Thus the overall time is 8.91 s
that we deem a good result weighting the integrity guarantee provided by our solution.

In the case of attesting multiple security controls simultaneously, the total time should be smaller
than the time needed to attest each one of them sequentially. Thanks to the parallel mechanism adopted,
the time needed for getting quote output from each node is overlapped, thus improving the efficiency of
attesting multiple nodes.

7 Related Work

This section gives an overview of the current state of the art about the three services available in the pro-
posed framework. In particular, we present some of the approaches related to policy monitor and conflict
analysis, with special focus on the considered use case (i.e., filtering policies). with regard to remote
attestation, this section should help the reader to better understand proposed attestation approaches.

Policy Monitoring Firewall monitoring generally falls into the category of firewall testing. It consists
in generating a set of packets to evaluate firewall decisions that are known a priori. If the firewall decision
is the same decision as it was expected, the firewall configuration is correct, otherwise there are some
errors. In literature many works are based on a firewall testing approach with different testing methods.

Hoffman [10] presented a framework to generate packet streams by using covering arrays, production
grammars, and replay of captured TCP traffic. This framework, namely “Blowtorch” also supports packet

95



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

timing, traffic capture and replay and it is useful to check handshaking.
Jürjens [11] proposed a method for specification-based testing, enabling to formally model a firewall,

surrounding network and to mechanically derive test cases to check for vulnerabilities.
El-Atawy [12] introduced a firewall testing technique by using policy-based segmentation of the

traffic address space. This can adapt the traffic generation test considering potential erroneous regions in
the firewall input space.

Senn [13] presented an approach to test the conformance of firewalls to a given security policy.
The main contributions are: a language for the formal specification of network security policies, the
combination of different methods for generating abstract test cases, and an algorithm for generating
concrete test cases from the policy.

Conflict Analysis Concerning conflict analysis in the context of filtering domain, the main work was
presented by Al-Shaer et al. who focus on anomalies occurring in a distributed firewall [7]. In spite of our
approach, authors treat anomalies between pairs of rules, overlooking the case of anomalies generated
by one or more than two rules. Moreover, they perform the anomaly detection by checking the packet
header fields, without dealing with external information (e.g., algorithms, timestamps, etc...).

Khakpour et al. [14] have proposed a completely different approach to detect filtering anomalies
based on a query engine system. However, this query-based approach does not find all the anomalies,
as it checks only the scenarios specified by the administrator. In this approach, the impact of the human
factor is very significant in the selection of the correct set of queries: an anomaly can be overlooked
because it was not selected.

Other works, which take Al-Shaer et al. works as reference, were presented in literature. Basile et al.
[15, 16, 17] extended the Al-Shaer’s conflict classification, by relying on a geometrical representation of
the model. The set of all packet header fields (namely the ”selectors”) generate an hyper-space, where
the policy rules can be represented. Here, an anomaly is seen as the intersection of the space of two or
more rules. Even though the authors fill the limitations of the Al-Shaer’s work, they do not represent the
anomalies generated by a single rule.

On the other hand, Garcia-Alfaro et al. [18] detect and resolve filtering anomalies thought the use
of specific algorithms in distributed system, where NIDSs, VPN routers and other security controls are
considered. However this is a radical different approach from our model, since rule-based inferential
systems (formal ontologies, rule-based systems, SMT solver, etc...) do not use algorithms to detect
anomalies.

Remote attestation Remote attestation has gained a lot of attention recently with the growing pop-
ularity of distributed systems. Taking advantage of the features provided by the hardware TPM, more
advanced remote attestation techniques have been proposed in literature.

Property-based attestation was initially proposed by Sadeghi et al. [19] and generalised by Poritz
[20]. The authors introduced property profiles to be mapped to system/service configurations with the
help of proof-carrying code, to determine a set of specific properties is achieved by a set of specific
configurations. Model-based behavioural attestation was proposed by Li et al. [21] and later generalised
by Alam et al. [22]. In this approach, an additional component is required to collect system behaviour
measures (e.g. as part of Linux Security Module) and extend them into the TPM. Afterwards, the ver-
ifier re-generates the system behaviour model and confronts it against a policy to assess the attester’s
trustworthiness.

One of the most influential work to enable remote attestation in virtualisation environment was pro-
posed by Berger et al. [4]: it permits each virtual machine to have its own virtual TPM instance by
simulating the hardware TPM’s functionality. Along the same vein, Goldman et al. [23] adopted the

96



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

previous solution to manage a large amount of virtual machines. However, these two solutions cannot
provide the same strong integrity guarantees as a hardware TPM. Alternatively, Garfinkel et al. [24]
and Schiffman et al. [25] tried to modify the hypervisor to monitor the internal behaviour of virtual
machines. Although interesrting, this approach brings significant performance loss and the direct link to
the hardware TPM is still missing.

8 Conclusions

In this paper we have proposed a unified framework to validate network policy enforcement in a produc-
tion environment by exploiting formal methods and remote attestation techniques.

The approach is extremely useful in many ways: for example, it can be used to detect errors and
anomaly both in firewall implementation and firewall management. Our contribution is a formal ap-
proaches to: (1) identify/generate the traffic flow and to verify the enforced high-level policies; and (2)
detect the causes of wrong enforced policies. We have designed and validated our approach by imple-
menting a prototype of the whole validation framework, that is composed of different components (i.e.
Monitor, Verifier and Analyser). The experimental results demonstrate that the approach is effective and
has good performance, therefore our model can be effectively used to analyse real infrastructures. Cur-
rently, the approach has been implemented only for a limited set of policies, mainly related to filtering
requirements (stateful packet filters and L7 filters). However, for the future, we plan to extend the ex-
pressivity of our model by adding the support for new types of security controls, such as VPN, proxy,
IDS and IPS. Furthermore, we are planning to perform other empirical assessments in order to evaluate
whether our tool can help administrators to reduce the number of anomalies in real-world scenarios.

Acknowledgments

The research described in this paper is part of the SHIELD project, co-funded by the European Commis-
sion (H2020 grant agreement no. 700199).

References
[1] F. Valenza, M. Vallini, and A. Lioy, “Online and Offline Security Policy Assessment,” in Proc. of the 8th ACM

CCS International Workshop on Managing Insider Security Threats (MIST’16), Vienna, Austria. ACM,
October 2016, pp. 101–104.

[2] F. Valenza, S. Spinoso, C. Basile, R. Sisto, and A. Lioy, “A formal model of network policy analysis,” in Proc.
of the 1st IEEE International Forum on Research and Technologies for Society and Industry Leveraging a
better tomorrow (RTSI’15), Torino, Italy. IEEE, September 2015, pp. 516–522.

[3] C. Basile, A. Lioy, C. Pitscheider, F. Valenza, and M. Vallini, “A novel approach for integrating security
policy enforcement with dynamic network virtualization,” in Proc. of the 1st IEEE Confernece on Network
Softwarization (Netsoft’15), London, United Kingdom. IEEE, April 2015, pp. 1–5.

[4] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn, “vTPM: Virtualizing the Trusted
Platform Module,” in Proc. of the 15th ACM Symposium on USENIX Security (USENIX’06), Vancouver,
Canada. ACM, July 2006, pp. 305–320.

[5] S. Godik, A. Anderson, B. Parducci, E. Damiani, P. Samarati, P. Humenn, and S. Vajjhala, “eXtensible Access
Control Markup Language (XACML) Version 3.0,” January 2013, https://www.oasis-open.org/committees/
tc home.php?wg abbrev=xacml [Online; Accessed on March 1, 2017].

[6] N. Cardoso and R. Abreu, “MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting Set Search Algo-
rithm,” in Proc. of the International Conference on Multicore Software Engineering, Performance, and Tools
(MUSEPAT’13), St. Petersburg, Russia, ser. Lecture Notes in Computer Science, vol. 8063. Springer Berlin
Heidelberg, August 2013, pp. 25–36.

97

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml


A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

[7] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classification and analysis of distributed firewall
policies,” IEEE Journal Selected Areas in Communications, vol. 23, no. 10, pp. 2069–2084, October 2005.

[8] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and implementation of a TCG-based Integrity Mea-
surement Architecture,” in Proc. of the 13th USENIX Security Symposium (SSYM’04), San Diego, California,
USA. ACM, August 2004, pp. 223–238.

[9] E. Cesena, G. Ramunno, R. Sassu, D. Vernizzi, and A. Lioy, “On scalability of remote attestation,” in Proc.
of the 6th ACM workshop on Scalable Trusted Computing (STC’11), Chicago, Illinois, USA. ACM, October
2011, pp. 25–30.

[10] D. Hoffman and K. Yoo, “Blowtorch: A framework for firewall test automation,” in Proc. of the 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE’05), Long Beach, California,
USA. IEEE, November 2005, pp. 96–103.

[11] J. Jürjens and G. Wimmel, “Specification-based testing of firewalls,” in Proc. of the 4th International An-
drei Ershov Memorial Conference on Perspectives of System Informatics (PSI’01), Novosibirsk, Russia, ser.
Lecture Notes in Computer Science, vol. 2244. Springer Berlin Heidelberg, July 2001, pp. 308–316.

[12] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer, “Policy segmentation for intelligent firewall testing,”
in Proc. of the 1st IEEE Workshop on Secure Network Protocols (NPSEC’05), Boston, Massachusetts, USA.
IEEE, November 2005, pp. 67–72.

[13] D. Senn, D. Basin, and G. Caronni, “Firewall conformance testing,” in Proc. of the 17th International Con-
ferencen on Testing of Communicating Systems (TestCom’05), Montreal, Canada, ser. Lecture Notes in Com-
puter Science, vol. 3502. Springer Berlin Heidelberg, May 2005, pp. 226–241.

[14] A. R. Khakpour and A. X. Liu, “Quantifying and querying network reachability,” in Proc. of the 30th IEEE
International Conference on Distributed Computing Systems (ICDCS’10), Genova, Italy. IEEE, June 2010,
pp. 817–826.

[15] C. Basile, A. Cappadonia, and A. Lioy, “Network-Level Access Control Policy Analysis and Transforma-
tion,” IEEE/ACM Transactions on Networking, vol. 20, no. 4, pp. 985–998, August 2012.

[16] C. Basile, D. Canavese, A. Lioy, and F. Valenza, “Inter-technology conflict analysis for communication
protection policies,” in Proc. of the 9th International Conference Risks and Security of Internet and Systems
(CRiSIS14), Trento, Italy, ser. Lecture Notes in Computer Science, vol. 8924. Springer Berlin Heidelberg,
August 2015, pp. 148–163.

[17] C. Basile, D. Canavese, A. Lioy, C. Pitscheider, and F. Valenza, “Inter-function anomaly analysis for correct
SDN/NFV deployment,” Networks, vol. 26, no. 1, pp. 25–43, January 2016.

[18] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete analysis of configuration rules to guarantee
reliable network security policies,” International Journal of Information Security, vol. 7, no. 2, pp. 103–122,
April 2008.

[19] A.-R. Sadeghi and C. Stüble, “Property-based attestation for computing platforms: caring about properties,
not mechanisms,” in Proc. of the 2004 ACM Workshop New Security Paradigms, (NSPW’04), Nova Scotia,
Canada. ACM, September 2004, pp. 67–77.

[20] J. A. Poritz, “Trusted in Computing, Signed Code and the Heat Death of the Internet,” in Proc. of the 2006
ACM Symposium on Applied Computing (SAC’06), New York, New York, USA. ACM, April 2006, pp.
1855–1859.

[21] X.-Y. Li, C.-X. Shen, and X.-D. Zuo, “An efficient attestation for trustworthiness of computing platform,”
in Proc. of the International Conference on Intelligent Information Hiding and Multimedia (IIH-MSP’06),
Pasadena, California, USA. IEEE, December 2006, pp. 625–630.

[22] M. Alam, X. Zhang, M. Nauman, T. Ali, and J.-P. Seifert, “Model-based behavioral attestation,” in Proc. of
the 8th ACM Symposium on Access Control Models And Technologies (SACMAT’08), Estes Park, Colorado,
USA. ACM, June 2008, pp. 175–184.

[23] K. Goldman, R. Sailer, D. Pendarakis, and D. Srinivasan, “Scalable integrity monitoring in virtualized envi-
ronments,” in Proc. of the 5th ACM workshop on Scalable Trusted Computing (STC’10), Chicago, Illinois,
USA. ACM, October 2010, pp. 73–78.

[24] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a virtual machine-based platform
for trusted computing,” in Proc. of the 19th ACM Symposium on Operating Systems Principles (SOSP’03),

98



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

Bolton Landing, New York, USA. ACM, October 2003, pp. 193–206.
[25] J. Schiffman, H. Vijayakumar, and T. Jaeger, “Verifying System Integrity by Proxy,” in Proc. of the 5th

International Conference on Trust and Trustworthy Computing (TRUST’12), Vienna, Austria, ser. Lecture
Notes in Computer Science, vol. 7344. Springer, Berlin, Heidelberg, June 2012, pp. 179–200.

——————————————————————————

Author Biography

Fulvio Valenza received the M.Sc. degree (summa cum laude) in computer engineer-
ing in 2013 from the Politecnico di Torino, where he is currently a third year PhD
student. He is working as a Researcher with the Institute of Electronics, Information
Engineering, and Telecommunications, National Research Council of Italy, Torino,
Italy. His research activity focuses on network security policy, with particular empha-
sis on policy conflict analysis, resolution, comparison, refinement and optimization.

Tao Su received his BS in Telecommunication Engineering and MS in Computers
and Communication Network Engineering both from Politecnico di Torino (Italy),
where he is currently working toward his PhD degree as a research assistant in the
TORSEC research group. His research interests include distributed system security,
mobile computing system security, and trusted computing.

Serena Spinoso received her M.Sc.Degree (summa cum laude) in Computer Engi-
neering in 2013 from Politecnico di Torino, Turin, Italy. She is currently a Ph.D
student in Computer and Control Engineering in the same university. Her research in-
terests include techniques for configuring network functions in NFV-based networks
and formal methods applied to verify forwarding correctness of SDN-based networks.

Antonio Lioy is full professor at the Politecnico di Torino, where he leads the TORSEC
research group active in information system security. His research interests include
network security, policy-based system protection, and electronic identity. Lioy re-
ceived a M.Sc. in Electronic Engineering (summa cum laude) and a Ph.D. in Com-
puter Engineering, both from the Politecnico di Torino.

99



A formal approach for network security policy validation Valenza, Su, Spinoso, Lioy, Sisto, Vallini

Riccardo Sisto received the M.S. degree in Electronic Engineering in 1987, and the
Ph.D. degree in Computer Engineering in 1992, both from Politecnico di Torino,
Torino, Italy. Since 1991 he has been working at Politecnico di Torino, in the Com-
puter Engineering Department, first as a Researcher, then as an Associate Professor
and, since 2004, as a Full Professor of Computer Engineering. His main research
interests are in the area of formal methods, applied to software and communication
protocol engineering, distributed systems, and computer security. He has authored

and co-authored more than 100 scientific papers. Dr. Sisto is a Senior Member of the ACM.

Marco Vallini received his M.Sc. in Computer Engineering and Ph.D. in Information
and System Engineering from the Politecnico di Torino. He is a research assistant
in TORSEC group at the Department of Control and Computer Engineering of Po-
litecnico di Torino. His research interests include policy-based system protection,
allocation and optimization of security applications and critical infrastructure protec-
tion.

100


	Introduction
	Approach
	Policy Monitoring
	Conflict Analysis
	Remote Attestation

	Policy Monitoring Service
	High Security Policy Language
	Traffic flow generation model
	HSPL enforcement validation

	Conflict Analysis Service
	Policy Implementation Model
	Network Field and Policy Action Relations
	Policy Anomaly and Detection Rules
	Filtering Policies Use Case

	Remote Attestation Service
	Background
	Trusted boot
	Service measurement
	Verification

	Implementation and Result
	Implementation results

	Related Work
	Conclusions

