understanding and monitoring
cloud services

idilio drago
|

Understanding and Monitoring
Cloud Services

Idilio Drago

Graduation Committee:

Chairman: Prof. dr. ir. Anton J. Mouthaan
Promoter: Prof. dr. ir. Boudewijn R. Haverkort
Assistant promoter: Dr. ir. Aiko Pras

Prof. dr. Marco Mellia Politecnico di Torino, Italy

Dr. Ramin Sadre Aalborg University, Denmark

Prof. dr. ir. Filip De Turck Ghent University, Belgium

Prof. dr. Jiirgen Schonwalder Jacobs University Bremen, Germany
Prof. dr. ing. Paul J. M. Havinga University of Twente, The Netherlands
Prof. dr. Hans van den Berg University of Twente, The Netherlands

Prof. dr. Jos van Hillegersberg University of Twente, The Netherlands

CTIT Ph.D. thesis Series No. 13-279
I I I Centre for Telematics and Information Technology
c P.O. Box 217, 7500 AE

Enschede, the Netherlands

ISBN: 978-90-365-3577-9

ISSN: 1381-3617 (CTIT Ph.D. thesis Series No. 13-279)
DOI: 10.3990/1.9789036535779
http://dx.doi.org/10.3990/1.9789036535779

Typeset with N TEX. Printed by Ipskamp Drukkers B.V.

@oce

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

http://dx.doi.org/10.3990/1.9789036535779
http://creativecommons.org/licenses/by-nc-sa/3.0/

UNDERSTANDING AND MONITORING
CLOUD SERVICES

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof. dr. H. Brinksma,
volgens besluit van het College voor Promoties,
in het openbaar te verdedigen
op vrijdag 13 december 2013 om 14.45 uur

door

Idilio Drago

geboren op 30 maart 1980
te Colatina-ES, Brazilié

Dit proefschrift is goedgekeurd door:
Prof. dr. ir. Boudewijn R. Haverkort (promotor)
Dr. ir. Aiko Pras (assistent-promotor)

Acknowledgments

First of all, I would like to sincerely thank my supervisor, very soon a new
Professor at the University of Twente, Dr.ir. Aiko Pras and my promoter
Prof.dr.ir Boudewijn R. Haverkort. Since our first contact, when I was invited
for an interview in Enschede, until the very last comments on the Appendix, it
was an enormous pleasure to work with both of them. This thesis would not be
possible without their continuous support and guidance.

I would also like to thank the members of my graduation committee, for
accepting the invitation to join the committee, and for their effort in reviewing
the thesis.

I would like to thank all co-authors of papers I wrote, or helped to write,
during my Ph.D. Fortunately, the research of a Ph.D. student is by no means
the work of a single person. The collaboration of such a distinguished group
of researchers not only helped me to achieve the outcomes presented in this
thesis, but also resulted in a strong admiration and friendships. I also express
my gratitude to all students that I advised, formally or informally. Working
with students is certainly the greatest joy in academia. Thank you all!

Special thanks go to my colleagues at DACS. Working at DACS was always
gratifying thanks to the people that form the group. Finally, I am extremely
thankful for the encouragement I found in my family and friends, both those
I left behind in Brazil and those I met during my time in the Netherlands.
Their warmth and closeness, despite the physical distance in some cases, were
undoubtedly the best fuel to kept me going on.

This research would not be possible without the financial support received
from several sources. Firstly, I would like to thank the Dutch Ministry of
Economic Affairs, Agriculture and Innovation for the support via its agency
Agentschap NL and its IOP GenCom project SeQual. Secondly, this work has
been partly funded by the Network of Excellence project Flamingo (ICT-318488)
and the EU-IP project mPlane (n-318627). Both projects are supported by the
European Commission under its Seventh Framework Programme. Finally, I
would like to thank the European Commission for the grant received in the con-
text of the TMA COST Action IC0703 for a short-term research mission in the
Politecnico di Torino in Italy in 2011/2012.

Abstract

Cloud services have changed the way computing power is delivered to cus-
tomers, by offering computing and storage capacity in remote data centers on
demand. The advantages of the cloud model have fast resulted in powerful in-
ternational providers. However, this success has not come without problems.
Cloud providers have repeatedly been related to reports of major failures, in-
cluding outages, performance degradation and loss of users’ data. Similarly,
privacy of cloud services is of huge concern for exposing users to providers and,
more alarmingly, to foreign governments. The alleged existence of national
surveillance programs that rely on information collected from cloud providers
indicates privacy threats are real, and they put in check the advantages of using
cloud services.

We argue that these issues will drive the developments around cloud ser-
vices in two directions. Firstly, dependability concerns will impel enterprise
customers to require assurances and independent monitoring of their services
in the cloud. Secondly, privacy issues will prompt new players to offer services
that combine the strengths of cloud computing with both stronger privacy and
protection against foreign governments. Indeed, initial signs of both trends can
already be mentioned, such as companies starting to offer independent tools to
monitor cloud performance and regional players entering the cloud market while
worldwide firms hesitate to trust international providers.

This thesis has two objectives. Firstly, we investigate simple and scalable
methods for monitoring the performance of cloud services from the users’ point
of view, aiming to provide means for customers to monitor services in the cloud
easily and independently. Secondly, we study how cloud services are imple-
mented and the implications of their design and usage for the Internet, aiming
to foster the development of new services. We focus primarily on cloud storage,
because, as we will show, it is a popular application already accounting for a
significant share of Internet traffic.

Our main contributions are the following: (i) we introduce a novel method
to monitor the performance of cloud services, which relies on flow measurements
collected from network vantage points without providers’ interference; (ii) we ap-
ply our method and present the first in-depth characterization of cloud storage,
revealing its typical usage and possible performance bottlenecks; and (iii) we

viii

evaluate the implications of design choices for both users and the Internet, by
comparing different providers in a series of benchmarks.

Our analyses show that cloud services can be monitored from outside, using
information normally collected from customers’ networks. Our results make
clear that cloud storage is data-intensive and understanding its usage is essential
for building well-performing services that wisely use the Internet. Moreover, our
comparisons of providers demonstrate that design differences that seem minor
at first can result in surprisingly costs and serious performance bottlenecks.

Our contributions are valuable for companies outsourcing to the cloud as
well as for engineers developing solutions and provisioning resources for cloud
storage. Overall, our analyses, algorithms and datasets are a great asset to an-
ticipate the impact of a massive adoption of such services, and can assist private
and national cloud providers to develop a next generation of well-performing
cloud storage services.

1 Introduction
1.1 Cloud Services
1.2 Goals, Approach and Research Questions
1.3 Thesis Organization
1.4 List of publications

I Generic Cloud Services

2 Understanding Flow Data Sources
2.1 Related Work
2.2 Background on Flow Monitoring
2.3 Measurement Methodology
2.4 The Impact of Parameter Settings
2.5 Measurement Errors
2.6 Conclusions

3 Monitoring Cloud Services using NetFlow
3.1 Method,
3.2 Case Study 1: Popular Cloud Services . .
3.3 Case Study 2: the WikiLeaks Cablegate .
3.4 Lessons Learned
3.5 Related Work
3.6 Conclusions

II Cloud Storage Services

4 Dropbox Usage and Performance
4.1 Dropbox Overview
4.2 Datasets and Methodology
4.3 Popularity of Different Storage Providers
4.4 Dropbox Performance

Contents

15

17
............. 18
............. 19
............. 24
............. 25
............. 28
............. 36

39
............. 40
............. 49
............. 52
............. 56
............. 57
............. 58

CONTENTS

4.5 Service Usage and Workload
4.6 Conclusions

5 Comparing Cloud Storage Services

5.1 Methodology,
5.2 System Architecture
5.3 Crowd-Sourced Files
5.4 Cloud Service Capabilities
5.5 Client Performance
5.6 Conclusions

IIT Conclusions

6 Conclusions

6.1 Summary and Findings
6.2 Contributions oL
6.3 Future Work,

Appendices

A Estimating Connection Status using NetFlow

A.1 Dataset and Methodology
A.2 Non-Sampled Data
A.3 Packet-Sampled Data

B Dropbox Storage Traffic in Details

B.1 Typical Storage Flows
B.2 Tagging Storage Flows
B.3 Number of Chunks
B4 Duration.

Bibliography
Acronyms

About the author

CHAPTER 1

Introduction

Cloud services have changed the way computing power is delivered to customers.
Cloud services abstract away the complexity of system management, by offering
computing and storage capacity in remote data centers on demand. In ret-
rospective, this advent can be seen as a natural step in the evolution of the
Internet [9]. The extreme growth of Web services popularity in the early 2000’s
led providers, such as Amazon, Google and Microsoft, to invest both in data
center provisioning for their own services and in the development of scalable
software solutions [9]. Even though the later conversion of this infrastructure
into a utility may have involved major technical challenges, the way for a new
computing model was certainly starting to be paved.

The success of this new model can be demonstrated by the increasing traffic
to the biggest cloud providers. Labovitz et al. [94] — in a measurement study
covering around 25 % of the Internet inter-domain traffic between 2007 and
2009 — showed that a very small number of networks is involved in most Inter-
net traffic. Among more than 30,000 Autonomous Systems (ASs), only 30 are
responsible for around 30 % of all inter-domain exchanges. The top 150 ASs
are already involved in more than 50 % of the transfers. Major cloud providers
are topping the list, with Google being responsible for around 5 % of the traffic
and others, like Microsoft and Akamai, among the ones with fastest growth.

Other works [58, 66] report a similar strong concentration (in 2012) when
measuring from edge networks, with up to 65 % of the HTTP and HTTPS traffic
going to the top 10 providers. We illustrate this trend in Figure 1.1. The remote
IP addresses of all flows crossing the University of Twente (UT) border routers
are translated into IP owners using the MaxMind GeolP Organization [106]
dataset. The top organizations exchanging traffic with the UT are then calcu-
lated. Two datasets are plotted: the first (Sept 2008, in Figure 1.1(a)) shows a
flat distribution of traffic among several Internet Service Providers (ISPs); the
second, captured four years later (Oct—Dec 2012, in Figure 1.1(b)), shows that
the traffic at the UT has become much more concentrated around a few remote
organizations, including the ones offering cloud services, such as Google, Akamai
and Amazon.

2 INTRODUCTION

Total HTTP/HTTPS

% bytes

(a) 2 weeks in Sept 2008

Total HTTP/HTTPS

% bytes

(b) Oct—Dec 2012

Figure 1.1: Top organizations exchanging traffic with the UT.

It is not surprising that many companies are considering to migrate services
to the cloud [80]. Outsourcing to the cloud is deemed advantageous given the
gains obtained from the reduced costs, flexible provisioning and high scalability.
However, this migration also has several drawbacks. Cloud providers have been
repeatedly related to reports of major failures [31]. Similarly, privacy of cloud
services has been the center of an intense debate, owing to the possibility of
direct access to users’ private data by providers and, more alarmingly, foreign
governments [7, 75].

1.1. CLOUD SERVICES 3

In our view, potential dependability problems of cloud services will impel
enterprise customers to look for assurances and validation of the performance
promised by cloud providers. Hence, our first objective is to study simple and
scalable methods for monitoring performance of cloud services, such that cus-
tomers could monitor their services easily and independently. Privacy issues,
on the other hand, will prompt the appearance of private and national cloud
providers, and new players need knowledge about existing services to compete
with international providers. Therefore, our second objective is to understand
the implications of the design and usage of cloud services for the Internet, aiming
to foster the development of new services.

This chapter is further organized as follows. Section 1.1 introduces the back-
ground on cloud services and motivates our scope. Section 1.2 details our goals,
approach and research questions. Finally, Section 1.3 presents the thesis outline,
whereas Section 1.4 lists the publications serving as basis for this thesis.

1.1 Cloud Services

This section introduces the fundamentals of cloud services. We start by present-
ing a definition for cloud services (Section 1.1.1), followed by their key charac-
teristics (Section 1.1.2) and two examples (Section 1.1.3). After that, we provide
examples of both Service Level Agreements (SLAs) offered by major providers
and recent cases of dependability problems (Section 1.1.4) in order to illustrate
that customers are in a weak position when migrating to the cloud. Finally,
we analyze possible social and privacy issues related to the adoption of cloud
services (Section 1.1.5).

1.1.1 Definition

Cloud computing and, by consequence, cloud services have been interpreted
in several manners. For example, the services offered by cloud providers have
been categorized according to what is delivered (e.g., infrastructure, platform
or software), the deployment model (e.g., public, private or hybrid), among
others. Multiple terms in the form XaeaS — standing for X as a Service — can
be found in the literature [123]. More often, Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS) are used to clas-
sify the different cloud offers [9, 54, 84, 144, 150], but some works go further,
including even Human as a Service (HuaaS) [98] as a cloud service.
Simultaneously, cloud computing has become a hype. Thanks to this com-
bination of a diversity of meanings with a business hype, a significant number
of people does not recognize any novelties in the concept. For example, Richard
Stallman has been quoted for his strong opinion against cloud computing [10]:

4 INTRODUCTION

I think that marketers like cloud computing because it is devoid of
substantive meaning [...] Perhaps the term “careless computing”
would suit it better.

We agree that the terms cloud computing and cloud services are overused as a
business strategy to advertise technical solutions that have been mature already
for a long time. Because of that, and to clearly delineate the scope of this thesis,
we follow the conservative point of view of Armbrust et al. [9], and assume that
cloud computing is simply the combination of software delivered as a service over
the Internet (i.e., SaaS) with wutility computing. Utility computing is, in turn,
the model of offering computing resources on demand, with customers being
charged based on utilization [150]. Based on these concepts, a cloud service can
be defined as follows:

Definition 1 A cloud service is any application that relies on utility computing
to be delivered on demand over the Internet.

This thesis focuses on studying the performance of cloud services from the
customers’ perspective, as illustrated in Figure 1.2. The figure depicts how
Definition 1 is reflected into the relation between providers and customers. In
this example, an IaaS or PaaS Provider offers utility computing (i.e., either as
infrastructure or as a development platform) to a SaaS Provider. Customers,
which can be either enterprises outsourcing their applications or ordinary end
users, pay the SaaS Provider in some form' for the services they use via the
Internet. Note that we employ the term cloud provider throughout the thesis
always referring to SaaS providers, except if the opposite is explicitly stated.

i <---- Our scope ----> !
! 1
; Cust '
TaaS or. PaaS 5 SaaS Provider |-- u§ omers !
Provider . Enterprises/end users 1
1
! 1
Utility computing Cloud service

Figure 1.2: Providers and customers in a cloud environment (based on [9]).

1.1.2 Key Characteristics of Cloud Services

This section summarizes properties assigned to cloud services by recent sur-
veys [9, 54, 144, 150], aiming to have a concise set of properties that characterize

1 For example, customers may pay indirectly by receiving advertisements.

1.1. CLOUD SERVICES 5

a cloud service. Naturally, we list only the ones meaningful given Definition 1.
Five aspects can be considered key characteristics of cloud services:

e Shared resources or multi-tenancy: resources are shared among sev-
eral customers in a cloud environment. In contrast, customers of conven-
tional data centers normally do not share the same pool of resources.

e Scalability, elasticity or dynamic provisioning: users can allocate
resources on-the-fly, without providers’ assistance. For example, in a cloud
storage service, customers can increase their storage space by requesting
it from the pool of resources. Some authors refer to this property as “the
appearance of infinity computing resources” [9)].

e Abstract infrastructure or virtualization: cloud customers do not
know the details of the infrastructure and systems providing the services,
but instead, control them using well-defined interfaces. Note that abstrac-
tion and virtualization do not necessarily mean that virtual machines are
in place — e.g., as it is the case when a platform is offered as a service.

e Pay-per-use or utility-based pricing: although the units used to
charge customers vary greatly, cloud services adopt the pricing model of
a utility, with customers paying based on usage.

e Connectivity, ubiquitous accesses or Internet centric: by defini-
tion, cloud services are delivered via the Internet. As a consequence,
private enterprise systems are not considered cloud services in this thesis.

Some works (e.g., [144, 150]) list the existence of SLAs between customers
and providers as a characteristic of cloud services. We do not agree with this.
In fact, we align with Durkee [54] and Habib et al. [79] and argue that the lack
of well-specified and comprehensive SLAs, which could be independently moni-
tored and properly validated, limits the adoption of cloud services. Section 1.1.4
will provide examples of SLAs offered by popular providers.

1.1.3 Examples of Cloud Services

Cloud services are normally on-line alternatives to native applications. The most
prominent case by the time of writing is cloud storage (e.g., Dropbox [48] and
Microsoft SkyDrive [110]), which can be considered a type of networked file sys-
tem. In the particular case of Dropbox, for example, Amazon [4] provides utility
computing, by means of the Amazon Elastic Compute Cloud (Amazon EC2)
and the Amazon Simple Storage Service (Amazon S3), while Dropbox acts as
the SaaS provider. It is easy to see that cloud storage is a typical cloud service

6 INTRODUCTION

satisfying all properties listed in Section 1.1.2. This thesis uses cloud storage as
a case study, because, as it will be shown later, it is a popular application that
already accounts for a major share of Internet traffic.

Similarly, cloud-based office suites seem to have all characteristics of a cloud
service. Google Docs [71], which competes with the native Microsoft Office
suite, is a well-known offer. However, since both computing power and the final
service are controlled by the same organization, some of the properties listed in
Section 1.1.2 are not immediately visible. It is hard to know, for example, how
tenants share resources and how elasticity is supplied in Google Docs.

These examples show that, from the user’s perspective, the differences be-
tween cloud services and conventional Web services are small. In fact, cloud
services are a new way of offering services to end users via the Internet — i.e.,
they are Web services offered as a utility. As more critical applications are pro-
vided in the cloud, however, issues of the cloud model become evident. The
following sections discuss issues that motivate our research.

1.1.4 The Dependability of Cloud Services

Cloud providers have been involved in numerous performance incidents. A re-
cent survey of media articles [31] reveals evidence of 49 outages in 20 providers
worldwide (10 SaaS) during the 6 year period ending in 2011. The causes are
various, ranging from power outages to software updates. Since the study has
taken into account only events that received media attention, the frequency of
problems is likely to be much higher. Moreover, such problems impact much
more people than similar outages in private data centers, since many customers
share resources in the cloud environment. New cases reported since then rein-
force the findings. A variety of basic mistakes continue to appear among the
causes, going as far as programming errors related to the leap year in 2012 [69].
Although it is often assumed that customers are backed by SLAs, current
SLAs of cloud services are weak at best and, in general, written to protect the
providers. Table 1.1 exemplifies the SLAs of some cloud offers. With this list,
we do not aim at a comprehensive survey, but instead, we show how customers
have very little protection when accepting the standard contracts of powerful
providers. For illustration, we include examples of TaaS, PaaS and SaaS prod-
ucts, even though we focus only on the latter in the remainder of the thesis.
The table shows that some providers do not offer any guarantees. In turn,
others include terms to make it harder for customers to request refunds. Ama-
zon calculates violations on a monthly basis and only refunds a customer when
(i) the customer has instances in more than one Availability Zone;? and (ii) all

2 Availability Zones are independent and physically isolated parts of the

Amazon Web Service (AWS) infrastructure.

1.1. CLOUD SERVICES 7

Table 1.1: SLAs of some popular cloud offers.
Provider Promise Violation Policy
The service is unavailable if all cus-
Amazon EC2|99.95 % availability | tomer’s instances have no connectivity
in more than one Availability Zone.
Uptime is accounted in minutes per

Google Apps | 99.9 % uptime month. A service is down if it has 5 %
of “user error rate” in 1 min.
Windows Each functionality has its own policy,

Azure Per product with specific metrics.

Dropbox Best effort None

customer’s instances in at least two Availability Zones have no external connec-
tivity. Google has a similar strict policy, accounting downtime only if the service
has more than 5 % of “user error rate” (which is poorly defined in the contract)
in a 1-minute interval. Furthermore, most contracts specify that customers must
claim refunds. For example, in Microsoft’s SLA it is written:

In order to be eligible to submit a Claim [...] the Customer must
first have notified Customer Support of the Incident [...] within five
business days following the Incident.

While these terms might not be a problem to individuals who use the cloud for
non-critical tasks, enterprise customers need assurances before migrating any
essential application. Such contracts certainly do not offer enough guarantees.
Moreover, customers do not always have technical means to validate the qual-
ity levels of a service without providers’ interference. This motivates the first
objective of this thesis (see Section 1.2).

1.1.5 Privacy and Social Implications

The biggest advantages of cloud services, such as the previously cited reduced
costs and high scalability, are direct consequences of the multiplexing of cus-
tomers’ demands in a cloud environment. This concentration creates a central-
ized architecture, in contrast to the distributed origins of the Internet, which
gives power to cloud providers and, eventually, results in gains of scale.

Paradoxically, the biggest issues surrounding cloud services are also out-
comes of this concentration of power. Taking a social perspective, a cloud

8 INTRODUCTION

environment can be compared to the Panopticon,® used by Foucault [62] as a
metaphor to describe how power and discipline are imposed in modern societies.
The Internet has already been compared to a new Panopticon [6, 17], because
ISPs, Service Providers and, ultimately, governments are able to observe and
control people’s activity without being noticed. Recent cases of privacy viola-
tions are clear examples of the Internet being used as a Panopticon, such as the
alleged use of the Internet by the Chinese central government to control citi-
zens and local governments [7] or the infamous data collection program of the
United States National Security Agency (NSA) (known as PRISM [75]) that is
alleged to receive information directly from American ISPs and cloud providers.
As in [57], we argue that cloud services push the Internet even further toward
the panopticism, because companies and individuals are more and more entrust-
ing their data to cloud providers, seduced by widely publicized advantages, but
without any technical or legal means to safeguard their privacy and maintain a
balance of power with providers. First signs that privacy violations can change
these relations of power already start to appear, such as regional players en-
tering the cloud market [95, 119] to offer both stronger privacy and protection
against foreign governments, while worldwide firms hesitate to trust interna-
tional providers [145]. This motivates our second objective (see Section 1.2).

1.2 Goals, Approach and Research Questions

1.2.1 Objectives

Enterprise customers outsourcing to the cloud are exposed to dependability
problems. These customers will naturally look for guarantees before migrating
any essential applications, which should include not only comprehensive con-
tracts, but also methods for monitoring the services. Although some initial
developments can be cited [32, 33, 79, 135], independent methods for customers
to monitor performance of cloud services are still lacking. Therefore, the first
objective of this thesis is:

Objective 1: to investigate simple and scalable methods for monitoring perfor-
mance of cloud services from the users’ point of view, thus providing means for
customers to monitor services in the cloud easily and independently.

3 The Panopticon [11] is a structure conceived to allow someone in a position of authority
to observe, at any time, all inmates in a prison (or in any other hierarchical organization). The
inmates, on the contrary, are not able to know whether they are being observed or not. This
“state of conscious and permanent visibility” [62] ensures power and discipline automatically.

1.2. GOALS, APPROACH AND RESEARCH QUESTIONS 9

The high public interest in cloud services, together with the demand for
alternative providers, already push new providers to enter the cloud market
(e.g., see [95, 119]). However, cloud services are relatively new, and very little
is known about the workload they have to face, typical performance bottlenecks
and, most of all, implications of different design choices. New players need such
knowledge to compete with established providers in a timely manner. Therefore,
our second objective is:

Objective 2: to understand how cloud services are implemented and the impli-
cations of their design and usage for the Internet, thus providing guidelines for
the development of new, well-performing cloud services.

1.2.2 Approach

We follow a measurement-based approach founded primarily on the analysis of
data passively collected from the network. As in any measurement-based study,
(i) what is measured; and (ii) how the measurements are taken are the main
ingredients of the approach. Both are described in the following.

What to Measure?

Each type of cloud service may be implemented and used differently and, there-
fore, may have its own peculiarities. Among the several cloud offers, we use
cloud storage as a main case study. Cloud storage has been selected because it
is becoming more and more popular, bringing cloud computing to people’s daily
routine and already generating a significant share of Internet traffic.

Furthermore, despite the many possible performance aspects that could be
monitored, we study primarily availability and responsiveness, since those are,
according to standards [146], the aspects perceived by end users. Availabil-
ity is equally defined for any services, whereas responsiveness is application-
specific [146]. Because of that, the thesis is divided into two parts: the first
part concentrates on Objective 1 and studies a method for monitoring availabil-
ity of generic cloud services. The second part, instead, extends our method to
application-specific metrics (Objective 1) and provides an in-depth analysis of
the design and implementation of cloud storage services (Objective 2).

How to Measure?

The use of passive measurements is a natural choice because our two objectives
require information about real service usage. Alternative active methods, in-
stead, rely on the injection of artificial requests [21]. Active experiments will,

10 INTRODUCTION

however, complement our analyses particularly when evaluating guidelines for
the development of cloud storage services.

Since we search for simple and scalable passive monitoring methods, this
thesis investigates to what extend cloud services can be monitored using flow
measurements [19, 28, 138]. As Chapter 2 will discuss, devices for measuring
flows are widely deployed and have been successfully employed in a variety of
applications that require scalable and privacy-preserving ways for collecting data
in high-speed networks [131].

Two other options for collecting passive measurements have been considered
and discarded. Firstly, server instrumentation is out of scope since providers and
customers are assumed to have conflicting interests in our scenario and, thus,
providers cannot be trusted to be the only source of measurements. Indeed,
when cloud services suffer from performance degradations, cloud monitoring
applications often become unavailable as well [31]. Secondly, client instrumen-
tation has been discarded because we are looking for methods that are scalable
and easy to deploy. The complexity of installing client-side monitoring agents
is increasing as “the era of personal computers installed with a large number of
different applications is coming to an end” [129]. Therefore, instrumenting client
devices tends to become harder, or at least less convenient, than measuring at
fewer network vantage points.

1.2.3 Research Questions

Our two objectives together with the chosen approach lead to the research ques-
tions addressed in this thesis.

Firstly, a strong motivation for using flow measurements to monitor cloud
services is the pervasiveness of devices with flow export capabilities — i.e., flow-
based methods could be immediately deployed, relying on equipment already
in place for other applications. Our first research question, therefore, aims to
investigate whether popular measurement devices are suitable for our goals:

1. Are popular flow-based measurement devices suitable for serving as data
source for monitoring cloud services?

Secondly, although the idea of employing flow measurements to monitor
cloud services is intuitively appealing when compared to alternatives such as
client instrumentation, taking a flow-based approach implies the use of approx-
imations, since flow measurements are known to be unrelated to high-level met-
rics usually employed to report the performance of applications [151]. With
the next research question, we aim at both developing a systematic method to
monitor performance of cloud services and evaluating the suitability of such a
flow-based approach:

1.3. THESIS ORGANIZATION 11

2. Are flow measurements suitable to monitor cloud services? What are the
limiting factors for such an approach?

The remaining research questions are directly related to Objective 2 and the
selection of cloud storage as our case study. Firstly, we apply the method de-
veloped while answering the previous question to understand typical usage and
performance bottlenecks of Dropbox — the most popular cloud storage provider
by the time of writing:

3. What are the typical usage and performance characteristics and bottlenecks
of Dropbox?

Finally, we complement our study of cloud storage services with a series
of active experiments, in which we compare how different providers implement
cloud storage, highlighting implications of design choices:

4. How do different providers implement cloud storage services and what are
the implications of the design choices for client performance?

1.3 Thesis Organization

This thesis is organized in two parts. We start from a broad scope, evaluating
the use of flow measurements to monitor generic cloud services, and move to
an in-depth analysis of cloud storage services. The chapters in each part are
depicted in Figure 1.3 and summarized in the following.

Part I — Generic Cloud Services

Part T will focus on Objective 1 only, and evaluate the use of popular flow
export technologies to monitor generic cloud services. This part is divided into
two chapters as follows.

Chapter 2 — Understanding Flow Data Sources — will study whether pop-
ular flow measurement devices are suitable to monitor performance of cloud ser-
vices, thus answering Research Question 1. Literature study is combined with
active experiments to determine the consequences of different implementations
and measurement artifacts on flow datasets. Results in Chapter 2 are a refer-
ence on how flow measurement devices should be evaluated prior to their usage
in any flow-based application.

Chapter 3 — Monitoring Cloud Services using NetFlow — will introduce
a simple method to monitor availability of cloud services using NetFlow, the
most popular technology for measuring flows by the time of writing. The method

12 INTRODUCTION

Chapter 1
Introduction
(Chapter 2
Understanding
Flow Data Sources
. Partl .
Generic Cloud Services
(Chapter 3 h
Monitoring Cloud
K Services using NetFlow
N J
Y
(s N
Chapter 4
Dropbox Usage
and Performance

Part 11 .
Cloud Storage Services v
(Chapter 5)
Comparing Cloud
\ L Storage Services)

Y
Chapter 6
Conclusions

Figure 1.3: Thesis organization.

is prepared to cope with both sampled and non-sampled NetFlow data and,
therefore, it targets high-speed networks. Two case studies are then used to
evaluate the flow-based approach, partly answering Research Question 2.

Part IT — Cloud Storage Services

Part II will present an in-depth analysis of cloud storage services. This part is
also composed of two chapters as follows.

Chapter 4 — Dropbox Usage and Performance — will provide the re-
sults of the first comprehensive characterization of usage and performance of
Dropbox. First, the chapter extends our method for monitoring cloud services
to application-specific metrics, complementing our answer for Research Ques-

1.4. LIST OF PUBLICATIONS 13

tion 2. Then, flow data collected in different countries by mean of specialized
devices are used to evaluate typical workloads and performance bottlenecks of
Dropbox (Research Question 3).

Chapter 5 — Comparing Cloud Storage Services — will analyze how cloud
storage services are implemented and study the impact of different designs
on performance (Research Question 4). This is achieved by (i) introducing a
methodology to study both system architecture and client capabilities of cloud
storage services; and (ii) executing a series of benchmarks. Chapter 5 con-
tributes with guidelines on how well-performing cloud storage services should
be implemented.

Finally, Chapter 6 — Conclusions — concludes the thesis, summarizes our
contributions and lists future works.

1.4 List of publications

The complete list of papers published during the four years of my Ph.D. can be
found in the appendices (see “About the Author”). Among those, the following
publications have been used as basis for this thesis:

e Drago, I. and Pras, A. 2010. Scalable Service Performance Monitoring. In
Proceedings of the 4th International Conference on Autonomous Infras-
tructure, Management and Security, AIMS’10. 175-178. Chapter 1.

e Hofstede, R., Drago, I., Sperotto, A., Sadre, R., and Pras, A. 2013. Mea-
surement Artifacts in NetFlow Data. In Proceedings of the 14th Inter-
national Conference on Passive and Active Measurement, PAM’13. 1-10.
Best Paper Award of PAM 2013. Chapter 2.

e Drago, 1., Hofstede, R., Sadre, R., Sperotto, A., and Pras, A. 2013. Mea-
suring Cloud Service Health using NetFlow/IPFIX: the WikiLeaks Case.
Journal of Network and Systems Management. Accepted for publication.
Chapter 3.

e Drago, I., Mellia, M., Munafo, M. M., Sperotto, A., Sadre, R., and Pras, A.
2012. Inside Dropbox: Understanding Personal Cloud Storage Services. In
Proceedings of the 12th ACM Internet Measurement Conference, IMC’12.
481-494. Awarded with an IETF/IRTF Applied Networking Re-
search Prize 2013. Chapter 4.

e Drago, 1., Bocchi, E., Mellia, M., Slatman, H., and Pras, A. 2013. Bench-
marking Personal Cloud Storage. In Proceedings of the 13th ACM Internet
Measurement Conference, IMC’13. Chapter 5.

14

INTRODUCTION

Part 1

(Generic Cloud Services

CHAPTER 2

Understanding Flow Data Sources

Flow export technologies, like Cisco NetFlow [27] and the standardization ef-
fort IPFIX [126], are already widely deployed. They owe this success to their
widespread integration into network devices. The pervasiveness of these tech-
nologies has resulted in their use in a variety of application areas that go far
beyond simple network monitoring, such as flow-based intrusion detection [131]
and traffic engineering [35]. Using existing flow data sources to monitor cloud
services is a natural next step that could immediately assist organizations that
want to monitor services that are outsourced to the cloud.

Flow export is a complex process that includes the real-time ag-
gregation of information about packets into flows and the periodic ex-
port of flow records. Although there exist standards defined by the
Internet Engineering Task Force (IETF) to export flow information from net-
work devices (i.e., IPFIX), the IETF has intentionally avoided the specification
of flow exporters, in order to broaden the applicability of the standardized pro-
tocols [138]. Moreover, flow exporters are known to be affected by measurement
artifacts [139], which can reduce the quality of flow data substantially. Both the
peculiarities of different flow exporters and possible measurement artifacts need
to be taken into account when performing any flow-based analysis.

The main goal of this chapter is to study whether popular flow measurement
devices are reliable for serving as data source for monitoring cloud services. We
achieve this goal in two steps. Firstly, we document how changes on parameter
settings of flow exporters impact flow data. For answering this question, we
revisit the IPFIX Request for Comments (RFCs), summarizing the standard
recommendations for measuring and exporting flows. We then complement the
literature survey with active experiments, testing several measurement setups
and highlighting effects on the obtained datasets. Secondly, we analyze to what
extend measurement errors of popular devices would harm the monitoring of
cloud services. We answer this second question by means of a case study. Active
experiments and flow data analysis are combined to assess whether our own flow
exporters would provide data of sufficient quality to our monitoring goals.

18 UNDERSTANDING FLOW DATA SOURCES

The knowledge gained by answering these questions helps to understand
whether differences in flow data are caused by (i) normal variations of mea-
surement settings; or (ii) measurement errors. While the former needs to be
compensated for before using the data, the latter may impair the analysis per-
manently. The lessons learned from this chapter are valuable as guidelines on
the design of flow-based applications and assist in determining whether or not
a particular data source is appropriate for the specific monitoring task.

This chapter is organized as follows. Section 2.1 discusses related work.
Section 2.2 provides background on flow monitoring. Section 2.3 describes the
measurement methodology used to answer both questions. Section 2.4 studies
how different settings of flow export parameters affect flow data. Section 2.5
evaluates the quality of our flow exporters in a case study, assessing their suit-
ability for monitoring cloud services. Finally, Section 2.6 concludes the chapter.

2.1 Related Work

This chapter provides both the background on flow-based monitoring and a
case study on how to assess the suitability of flow exporters for a particular
application. Flows have already been used in a variety of applications: network
security, intrusion detection and application identification are some examples
intensively researched in recent years [39, 44, 102]. Each of these applications has
its own requirements and may react differently when exposed to measurement
artifacts. Our methodology to evaluate the quality of flow exporters is generic
and, therefore, can be applied to any other flow-based applications as well.

Some works present a general discussion about the importance of calibrating
measurement devices [21, 90, 117]. The recommended calibration steps include
checking for clock inaccuracies and for data loss during the several monitoring
stages. Focusing on the use of flows for monitoring cloud services, this chapter
performs such steps, highlighting the implications of both common measurement
errors and normal variations of parameter settings.

Other works focus on measurement artifacts found in particular situations.
In [34], Juniper exporters are shown to suffer from problems when routing up-
dates are performed. Time intervals in which no flows are measured can be
observed in flow time series during these events. Artifacts resulting from the
interception of packets via port mirroring are described in [149]. Similarly, the
limitations of using commodity hardware for capturing packets are analyzed
in [65]. Even though some of these artifacts may occur in specific devices only,
researchers and operators need to be aware of them to anticipate impacts and
build robust analysis applications. Our work goes in a similar direction, shed-
ding light on new artifacts found in widely deployed flow exporters.

2.2. BACKGROUND ON FLOW MONITORING 19

2.2 Background on Flow Monitoring

Flow-based monitoring originates from the need for measurement systems able
to provide a detailed view on network traffic [19, 138]. In comparison, flow
measurements have a finer granularity than what is normally obtained with the
Simple Network Management Protocol (SNMP), but a higher aggregation than
full packet captures. Because of this aggregation, flow monitoring requires less
processing and storage than full packet captures. Hence, flow monitoring is
more scalable and can be performed at higher network speeds.

The deployment of flow monitoring technologies started in the 1990’s with
both the Real-time Traffic Flow Measurement (RTFM) protocol [18, 20] (which
is based on SNMP) and the introduction of various proprietary systems, like
Cisco NetFlow [27]. As noted in [19], however, the ideas of flow monitoring
also had been presented in academic works (e.g., [26]). In the early 2000’s, the
IPFIX Working Group was formed in the IETF, to standardize protocols to
export IP flows. While originally targeting some key applications [122, 151],
such as accounting and traffic profiling, flow data have proven to be use-
ful for several network management activities, going as far as being used for
Voice over IP (VoIP) [5, 37] and DNS [38] traffic monitoring, among others.

We summarize the essential background on flow monitoring in the following.
Using the IPFIX RFCs as a reference, we first introduce the definition of a
flow and the basic terminology in Section 2.2.1. The IPFIX architecture for
monitoring flows is summarized in Section 2.2.2, in which we also position our
contributions. After that, Section 2.2.3 discusses general IPFIX guidelines on
measuring flows. Finally, Section 2.2.4 compares IPFIX and widely used versions
of Cisco NetFlow.

2.2.1 The Definition of a Flow
This thesis assumes the definition of a flow as established by the IETF in [28]:

A Flow is defined as a set of IP packets passing an Observation Point
in the network during a certain time interval. All packets belonging
to a particular Flow have a set of common properties.

Some key concepts complement the definition. Observation points are the
places in the network where packets are intercepted, such as network interfaces
of a router, optical splitters or shared Ethernet media. Observed packets are
grouped into flows by means of a (variable) set of properties, called the flow key.
Flow keys can include (i) any fields in the packet headers up to the application
layer — e.g., IP addresses and port numbers; (ii) characteristics of the packets

20 UNDERSTANDING FLOW DATA SOURCES

IP]?IX . - Application 1
Device 1 T -7
Collector 1 -7

/
/

/

, /,{ Collector m }\\
{ IPFIX } Jo- T { Application k }

Device n

Figure 2.1: IPFIX reference architecture (source [126]).

— e.g., payload sizes; or (iii) the outcome of processing the packets — e.g., next
hop IP addresses and application identifiers [29].

A flow record carries the observed properties of a flow. These properties
are called information elements and encompass both key and non-key fields.
As for the flow key, non-key fields can also include information from sev-
eral protocol layers (e.g., TCP flags), packet characteristics (e.g., number of
MPLS labels) etc. The basic list of information elements is maintained by the
Internet Assigned Numbers Authority (IANA) in the IANA IPFIX Information
Element Registry [88]. Enterprise-specific information elements can be defined
too, allowing new fields to be specified without any alterations to the protocol
or to the TANA’s registry. Flow record formats (i.e., the list of information
elements) are exchanged by different components of the IPFIX architecture (de-
scribed next) through standardized templates.

2.2.2 Flow Monitoring Architecture

A reference architecture for measuring flows is presented in [126] and depicted
in Figure 2.1. Three main components are part of this architecture:

e [PFIX devices measure flows and export the corresponding records. IPFIX
devices include at least one exporting process and, normally, observation
points and metering processes.

Metering processes receive packets from observation points and maintain
flow statistics. Exporting processes encapsulate flow records and control
information (e.g., templates) in IPFIX messages, and send the IPFIX
messages to flow collectors.

2.2. BACKGROUND ON FLOW MONITORING 21

e (ollectors receive flow records and control information from IPFIX devices
and take actions to store or further process the flows.

e Applications consume and analyze flows — e.g., the previously mentioned
intrusion detection systems are typical flow-based applications.

Figure 2.1 shows that IPFIX devices, collectors and applications exchange
data with multiple peers. The decoupled architecture of IPFIX provides scala-
bility gains for flow-based applications, since data are processed and aggregated
at each stage. Typically, each component in Figure 2.1 is hosted independently,
with IPFIX devices being installed directly inside routers, switches, or dedicated
probes placed nearby network edge nodes. IPFIX devices are also called flow
exporters — e.g., when only exporting processes are present. We employ the
terms flow exporter and IPFIX device indistinguishably throughout this thesis.

The main contributions of this thesis are in the use of flows for monitoring
cloud services. Our work assumes that flow records are the primary source of
information and focuses on the last part of the IPFIX architecture, i.e., on
new analysis applications. Since any flow-based application requires flow data
of good quality to perform its tasks satisfactorily, it is essential to understand
how flows are measured in practice. The next section describes general IPFIX
recommendations related to flow exporters.

2.2.3 IPFIX Devices

Figure 2.2 illustrates the typical tasks of an IPFIX device [126]. Firstly, pack-
ets are captured in an observation point and timestamped by the metering
process. Then, the metering process can apply functions to sample or filter
packets. Sampling and filtering techniques are specified in the context of the
Packet SAMPling (PSAMP) protocol [152]. Filters select packets determinis-
tically based on a function applied to packet contents. Samplers, in contrast,
combine such functions with techniques to randomly select packets.

Sampling and filtering play a fundamental role in flow monitoring because of
the continuous increase in network speeds. By reducing the amount of packets to
be examined by metering processes, sampling and filtering make flow monitoring
feasible under higher network speeds. On the other hand, these techniques might
imply loss of information, which restrict the usage of flow data substantially. The
effects of sampling and filtering will be summarized in Section 2.4.2.

Packets that pass the sampling and filtering stages update entries in the flow
cache, according to predefined templates. Flow records are held in the cache
until they are considered expired, following the reasons described next. Expired
records are made available by the metering process to exporting processes, where
they are combined into IPFIX messages and sent out to flow collectors.

22 UNDERSTANDING FLOW DATA SOURCES

Packets coming into
the observation point

—

—

-

R
Flow

Metering process

Packet
capturing

)

Time-

stamping

Sampling

)

Filtering

-

)

cache

Figure 2.2: Functions performed by an IPFIX device (based on [126]).

Flow Expiration

Flow records are usually expired from the flow cache by metering processes based
on given timeout parameters or when particular events are detected. IPFIX
standards, however, do not mandate precise cases in which records need to be
expired and exported. IPFIX does provide, instead, guidelines on how metering
processes should expire flow records [126]:

1. Idle timeout: No packet belonging to a flow has been observed for a spec-

ified period of time;

2. Active timeout: The flow has been active for a specified period of time.
Therefore, the active timeout helps to report the activity of long-lived

flows periodically;

2.2. BACKGROUND ON FLOW MONITORING 23

3. Lack of resources: Special heuristics can be used to expire flow records
prematurely in case of resource constraints in the IPFIX device. For ex-
ample, IPFIX devices can change timeout parameters at run-time when
facing high network loads, to prevent the flow cache from being exhausted.

Other reasons to expire records can be found in practical implementations of
flow exporters. Cisco NetFlow exporters often rely on heuristics to determine the
end of a flow — e.g., packets with FIN or RST flag set terminate TCP flows before
the idle or the active timeouts are triggered [27]. Some Cisco NetFlow exporters
also rely on special timeout parameters, called fast aging, to expire short flows
faster. The impact of expiration policies on flow data will be evaluated in
Section 2.4.1.

2.2.4 Relation to NetFlow

IPFIX and popular versions of NetFlow differ in the used flow export formats.
NetFlow version 5 (v5) provides fixed flows — i.e., flow fields cannot be changed.
The fixed format considerably limits the applicability of NetFlow v5, since no
protocol evolution is possible. NetFlow v5, for example, cannot be used to
monitor IPv6 traffic. However, several references (e.g., [39, 115]) suggest that
NetFlow v5 is still the most widely deployed flow export protocol by the time
of writing and, therefore, it is an important source of flow information.

NetFlow v9 overcomes the limitations of NetFlow v5 by allowing flexible flow
configuration via templates. IPFIX design has started from NetFlow v9 [97].
Both IPFIX and NetFlow v9 support the export of generic fields (i.e., informa-
tion elements). IPFIX, however, adds new functionalities, such as structured
data formats for information elements [30], the reliable transport of flow records
between exporters and collectors etc. Major differences on protocol messages
are also found when comparing IPFIX to NetFlow v9. Although relevant for
the development of flow exporters and collectors, these differences will not be
discussed further, since they are not important in our context.

We emphasize that this comparison refers only to export protocols, and not
to particular products. When considering how flows are defined by particular
exporters, other differences can be cited. Cisco NetFlow v5 exporters, for exam-
ple, rely on a constant flow key, composed of 7 attributes: source and destination
IP addresses and port numbers, IP protocol number, IP type of service and in-
put interface index. Newer Cisco exporters support the export of configurable
NetFlow v9 records, but without allowing flow keys to be freely defined. Such
capabilities have been included in recent Cisco exporters under the label IO0S
Flexible NetFlow, in contrast to what Cisco nowadays calls Original NetFlow.
10S Flexible NetFlow exports flexible flows using either NetFlow v9 or IPFIX.
Interested readers can find a comparison of Cisco exporters in [24].

24 UNDERSTANDING FLOW DATA SOURCES

Cisco Catalyst 6500 Control server

NetFlow v9
SNMP
NetFlow v9
SNMP
pcap

: pcap

INVEA-TECH

Sub-network FlowMon Probe

Legend:
—— Production traffic

- -+ Mirrored traffic

""" Measurements
Test computer

Figure 2.3: Infrastructure to study flow data quality.

2.3 Measurement Methodology

Figure 2.3 depicts the setup we use to study flow data quality as well as to
illustrate the behavior of flow exporters under different parameter settings —
note the line marks in the figure. The measurement environment is operational
in our network. It is composed of 2 flow exporters (i.e., a device from the Cisco
Catalyst 6500 series and a dedicated INVEA-TECH FlowMon Probe), 1 control
server that collects measurements from other devices and 1 test computer.

The monitored network is connected to the Internet via a Cisco
Catalyst 6500.! This device is particularly representative, because the Cisco
Catalyst 6500 is one of the most widely deployed switching platforms [61], found
in many service provider, enterprise and campus networks. Several departmen-
tal networks are directly connected to the Cisco Catalyst 6500. The traffic
of one of these sub-networks is also mirrored to an INVEA-TECH FlowMon
Probe. Finally, a test computer is used to inject traffic in the network in active
experiments, which are observed at both flow exporters.

1 Qur specific device is configured with the WS-SUP720-3B (PFC3B, MSFC3) hardware mod-
ules and the I0S 12.2(33)SXI5 operating system.

2.4. THE IMPACT OF PARAMETER SETTINGS 25

Measurements are collected from both flow exporters and from the test com-
puter by a single control server. The two flow exporters send NetFlow v9 records
to a flow collector (NFDUMP [78]) installed in the control server. Management
information is collected from both flow exporters as well, by means of SNMP
agents. Finally, packet headers (i.e., pcap files) can be captured in both the
INVEA-TECH FlowMon Probe and in the test computer.

The environment is used in two sets of experiments. Firstly, Section 2.4
illustrates the effects of parameter settings of flow exporters, aiming to document
the normal variations that analysis applications should expect on flow datasets.
Secondly, Section 2.5 evaluates the quality of flow data exported under realistic
traffic conditions, unveiling measurement errors found in the devices deployed
in our environment. More details about the experiments are provided next,
together with the respective results.

2.4 The Impact of Parameter Settings

The IPFIX recommendations (see Section 2.2.3) suggest that typical flow ex-
porters will allow at least the following to be configured:

e Flow templates, defining the list of exported flow properties;

e Flow expiration policies, including active and idle timeouts and, depending
on the implementation, special heuristics to expire flows faster;

e Sampling and filtering functions, including filtering rules, sampling algo-
rithms, and related parameters (e.g., the sampling probability).

Indeed, both exporters in our measurement environment provide such options,
even though they are not compliant to IPFIX. Since NetFlow v5 is still the most
widely used protocol to export flows [39, 115] and we aim at reusing flow data in
Part T of the thesis, we only consider the basic fields also found in NetFlow v5.

The impact of other parameters is illustrated by means of off-line exper-
iments, in order to test several flow export settings. We capture a dataset
of packet headers in our dedicated FlowMon Probe during 24 hours (see Fig-
ure 2.3).2 We then use YAF [89] to convert the packet headers to flow records
under different setups. YAF is a flow exporter that can be easily installed and
customized. We have extended YAF to allow us to control how flow records are
expired and whether sampling is used. Moreover, IPFIX-specific functionalities
in YAF, such as bidirectional flow export [137], have been disabled. The effects
of expiration policies as well as sampling and filtering mechanisms are discussed
in Section 2.4.1 and Section 2.4.2, respectively.

2 Only TCP traffic is analyzed, since most cloud services are built on top of TCP [64, 94].

26 UNDERSTANDING FLOW DATA SOURCES

50 ; ; ; 50 ‘ ‘ ‘
Idle timeout --k-- Idle timeout --k--
40 | Active timeout —X— 40 | Active timeout —x—
: N
8 30 € 30 i
= =20 R
: : = —
=10 g = 10 X
0 0

1 10 20 30 40 50 60 1 10 20 30 40 50 60
Timeout (s) Timeout (s)
(a) Without checking TCP flags (b) Checking TCP flags

Figure 2.4: Impact of expiration policies on the number of exported flow records.

2.4.1 Expiration Policies

Expiration policies control the period of time that flow records are kept in the
flow cache. Because flow exporters might implement different policies, or even
change settings at run-time to cope with high network loads, it is important to
understand the consequences of varying expiration policies.

Figure 2.4 depicts the total number of exported flow records after YAF
processes our dataset. Different heuristics to expire flows are tested. In Fig-
ure 2.4(a), flow records are expired only by means of timeout parameters — i.e.,
either idle or active timeout. In Figure 2.4(b), instead, TCP flags are also used
to expire flows, as in Cisco exporters — i.e., besides the expiration by timeouts,
a packet with FIN or RST flag set causes the flow record to be expired. The
effects of varying idle and active timeouts are shown in separate lines in both
figures. For each case, we vary the respective timeout while the expiration by
the other timeout parameter is disabled.

By comparing Figure 2.4(a) to Figure 2.4(b), we can see that using flags to
expire flow records results in slightly more records. Moreover, both figures allow
us to conclude that the number of flow records varies considerably when either
the idle or the active timeout is changed. Using larger timeout values results
in a higher aggregation of packets into flow records — i.e., less flow records are
exported when timeouts are increased. For example, the number of exported
records decreases around 35 % when the idle timeout is increased from 10 s to
50 s in Figure 2.4(a). Note also the sharp increase in the number of records
when timeout parameters are lower than 10 s.

Although exporting less flow records is generally positive, to reduce the usage
of both the network and flow collectors, larger timeout values increase flow
cache utilization in the exporter. Figure 2.5 illustrates the maximum number

2.4. THE IMPACT OF PARAMETER SETTINGS 27

25 : ‘ :
Max cache utilization -->K--

20

S
15 o

10 *—’ =

Flow records (k)

1 10 20 30 40 50 60

Idle timeout (s)

Figure 2.5: Maximum flow cache utilization for different idle timeouts.

of flow records in YAF cache when our dataset is processed under different idle
timeouts — all other expiration policies are disabled in this example. We see
that the maximum number of active flows increases with the idle timeout. YAF
reports a maximum of 5,990 active flows in its cache when the idle timeout
is 10 s, but the number more than doubles (15,257) when the idle timeout is
changed to 50 s. Section 2.5 will show that high flow cache utilization may
lead to measurement errors. Moreover, as the utilization approaches the cache
capacity during peaks of traffic in the network, the flow exporter might change
expiration policies automatically to prevent the cache from being exhausted.
Such automatic changes, however, are usually not informed to flow collectors
and to analysis applications.

These results show that the same traffic stream can result in different flow
records, depending on expiration policies. Chapter 3 will study methods to
monitor availability of cloud services. Intuitively, one could assume that a sharp
change in the number of flow records could be an indication of either service
problems or measurement errors. Figures 2.4 and 2.5 demonstrate that such
changes might simply be a consequence of flow exporters adapting expiration
policies at run-time, as a reaction to high cache utilization. Flow-based applica-
tions, therefore, cannot trust raw flow records blindly. They need to normalize
the data to compensate for the effects of expiration policies, in order to be robust
against different export settings.

2.4.2 Sampling and Filtering

The effects of sampling and filtering are well-documented [152]. Because filters
are deterministic, their consequences can easily be understood: only a well-

28 UNDERSTANDING FLOW DATA SOURCES

defined subset of the original packets are measured. If filters are applied to flow
keys, the relation is even more explicit, with only a part of the original flows
being measured. Filtering will be used in several experiments in this thesis to
isolate a subset of packets for specific analyses — e.g., as in Figure 2.4, in which
we isolate only the TCP traffic in the dataset.

Sampling, on the other hand, selects a random subset of packets for flow
accounting, thus impacting not only the number of flow records, but also all
flow properties (e.g., observed packets, bytes and TCP flags). For the sake
of brevity, we do not present the results of combining expiration policies with
sampling, since similar conclusions to those in the previous section would be
obtained — i.e., as in the non-sampled case, raw packet-sampled flow records are
not appropriate for monitoring cloud services.

Methods to estimate the original number of flows, packets and bytes from
packet-sampled flow records have been described extensively in [49, 50, 51, 52].
If packets are sampled independently with probability p = 1/N, some properties
of the original data stream (e.g., the number of packets) can be estimated by
rescaling the measured quantities by a factor N. More elaborate estimators,
which make use of the observed TCP flags, are required for estimating the orig-
inal number of flows. Chapter 3 will rely on the previous work to post-process
flow datasets and compensate for the effects of sampling while monitoring cloud
services. However, these methods are effective only if flow exporters are not
affected by measurement errors, as we will discuss next.

2.5 Measurement Errors

We now discuss the experience acquired while calibrating our flow exporters.
This thesis assumes only two basic requirements for considering a flow data
source appropriate for monitoring cloud services:

1. The flow exporter reports all flows in the network or, if sampling and
filtering are applied, it adheres to setup parameters. As such, we assume
that possible variations in flow datasets are solely an outcome of parameter
settings of flow exporters;

2. We assume that flow properties represent the information observed in
the original packets correctly. For example, flow records usually report
information about the TCP flags and the number of packets seen in the
network. We assume that packet counters are precise, and all flags of the
original packets are taken into account and reported in flow records.

2.5. MEASUREMENT ERRORS 29

Based on these two assumptions, the remaining chapters will focus on meth-
ods to map the low level flow measurements into performance metrics that are
meaningful at higher protocol layers.

The goal of the experiments in this section is to verify whether the mea-
surement devices in our network satisfy these requirements. Our exporters are
tested for the first requirement in Section 2.5.1. The second requirement is an-
alyzed in two parts. Section 2.5.2 checks whether exported time information is
accurate. Section 2.5.3 discusses problems found in the remaining flow fields.

Both device documentation and personal communication with operators and
vendors have been used to understand the causes of the identified problems.
Note that the list of measurement errors presented in this section is by no means
comprehensive, since errors are load- and configuration-dependent. The results
in the following, instead, illustrate the importance of checking prerequisites
before employing flows in any flow-based application.

2.5.1 Missing Flows

Our first experiment checks whether all flows in the network are reported by
the flow exporters. All results in this section have been obtained by collect-
ing SNMP measurements and flow records while the devices were handling the
traffic of our production network (see Figure 2.3). We use both proprietary
Management Information Bases (MIBs) to monitor the status of flow caches
and standard MIBs to monitor the number of packets in the network. The
SNMP measurements are then compared to the information in flow records.

Our measurements reveal that both exporters miss flows. However, while
the dedicated INVEA-TECH FlowMon Probe misses flows rarely, because of
well-known problems such as packet loss in the monitored link, the Cisco
Catalyst 6500 presents a serious measurement artifact, related to how the device
handles high cache utilization. Both problems are described and compared in
the following.

Cache Utilization and Flow Learn Failures

Our Cisco Catalyst 6500 fails to monitor all flows when its flow cache utilization
is high. In such situations, several time intervals in which no flows are measured
(gaps) can be observed. This happens because active flows are stored in a cache
of limited size in the Cisco Catalyst 6500 (128 k entries in our equipment). The
position of flows in the cache is determined by hashing flow keys. This Catalyst
model supports a maximum of two hash collisions, and colliding hashes are
stored in a second cache of 128 entries — i.e., only two flows with different keys
leading to the same hash value can be accommodated simultaneously, up to a

30 UNDERSTANDING FLOW DATA SOURCES

4 : 12

Flow records

= Flow learn failures

2z 3 9

&)

o 7]

S5 6 @

3 Ol IRV

E VANV AV RV TAVY 2

S 1| 3 &

=4

)

07:20 07:30 07:40 07:50

0 L

0 v
Figure 2.6: Impact of flow learn failures on flow time series.

maximum of 128 collisions. When a packet belonging to a new flow cannot be
accommodated, a flow learn failure happens. The total number of flow learn
failures can be monitored using Cisco’s proprietary MIBs.

We use the Cisco’s MIBs to monitor flow learn failures and describe how
the artifact is manifested in flow data. Such results can help to understand
whether the artifact is present in a dataset, without having access to adminis-
trative interfaces or SNMP agents of exporters. Our experiments show that the
first packets of flows are more likely to be subject to flow learn failures, since
subsequent packets of flows already in the cache are matched until a record is
expired. Therefore, smaller flows are more frequently missed, while larger flows
might have only their first packets missed. Moreover, initial control packets
(e.g., TCP SYN packets) more likely evade the monitoring. As we will show in
the coming chapters, such packets are very important for our monitoring goals.

Figure 2.6 shows a time series of the number of flow records exported by
our Cisco Catalyst 6500 in intervals of 100 ms. These data have been collected
early in the morning, when the device normally starts to run out of flow cache
capacity because of the increase in traffic during business hours in our network.
A constant stream of flow records without gaps can be observed until around
7:25 AM, when the number of records increases (see the left-hand y-axis). Si-
multaneously, flow learn failures (right-hand y-axis, in packets/s) start to be
reported by the SNMP agents, and short gaps appear in the time series of flow
records — i.e., the time series of flow records reaches zero in several short time
intervals. Note that the two time series in the figure are slightly out of phase
because the SNMP measurements are reported in a 5 min granularity only.

Interestingly, the gaps caused by flow learn failures are periodic, especially
when the network load causes the flow cache utilization to be constantly close

2.5. MEASUREMENT ERRORS 31

150 : ‘ ‘
® NDellly —
120 [et
Q \
T 90
E“
£ 60
30 +
0
0 0.25 0.5 0.75 1

Frequency (Hz)

Figure 2.7: Fourier transform of the time series of flow records exported by our
Cisco Catalyst 6500.

to the cache capacity. When analyzing data of this device for 2 weeks, we
observe that the distribution of the time between gaps is strongly concentrated
around multiples of 4 s. Moreover, the gaps are not bigger than 2 s in 95 %
of the cases. The periodicity can be further confirmed by applying the Fourier
transform to the time series of the number of flow records exported per time
interval — 500 ms bins are used for illustration. Figure 2.7 shows the frequency
components for both diurnal and nocturnal traffic. The traffic of each day in our
2-week dataset is processed separately, and the obtained spectra are averaged
to improve visualization [16]. Spikes at the frequency corresponding to 4 s
(i.e., 0.25 Hz) and at sub-harmonics (e.g., 0.125 Hz) can be observed in the
diurnal traffic, when flow learn failures are very common — see the mark (p)
in Figure 2.7. The same behavior is, on the other hand, not seen in nocturnal
traffic. This periodic pattern suggests that the gaps are an outcome of a cyclic
process, responsible for expiring flow records from the cache.

The behavior of an exporter under high flow cache utilization is naturally
dependent on the way the exporter is implemented. When the same analysis
is performed with our INVEA-TECH FlowMon Probe, other artifacts emerge.
This device also locates flows in the cache by hashing flow keys, but hash col-
lisions are handled in software using linked lists. As such, the device is not
subject to flow learn failures. Under high load, the device releases cache space
by exporting flow records earlier, i.e., by ignoring timeout parameters. Since all
packets are still reported, this artifact can be compensated for by analysis appli-
cations, as we will show in Chapter 3. Under very extreme conditions, however,
the device may suffer from the effects of packet loss, which are described next.

32 UNDERSTANDING FLOW DATA SOURCES

1.2

Flow records —

0.9

0.6

Records / 100 ms (k)

03 LTI mww aa Ak it
09:00 09:10 09:20 09:30

Figure 2.8: Impact of NetFlow packet loss on flow time series.

Packet Loss

Flows can also be missed because of packet loss between exporters and collectors,
packet loss in the monitored link etc. In contrast to flow learn failures, these
problems tend to occur randomly, resulting either in a homogenous reduction
in the number of flow records or in short non-periodic gaps.

Figure 2.8 illustrates this effect by plotting a time series of flow records ex-
ported by the INVEA-TECH FlowMon Probe, during a period in which the
collector has been intentionally overloaded with data-intensive tasks. The infor-
mation collected via SNMP agents confirms that more than 5 % of the NetFlow
packets have been lost by the collector during this interval. Several short peri-
ods with a reduced number of flow records can be seen (marked with circles),
but without any strong patterns in this case.

The loss of NetFlow or IPFIX packets can be identified at the collector
side directly, using the sequence numbers present in both NetFlow and ITPFIX
packet headers. As such, collectors and analysis applications can check whether
the data are complete. Packet loss in the monitored link, on the other hand, is
more harmful: it is equivalent to applying sampling without an explicit choice
of the sampling strategy [50, 51]. If the loss rate is high while using flows
to monitor performance, problems can stay undetected, leading to erroneous
conclusions.

2.5.2 Timing Errors

Previous studies [2, 60] exemplify that the response time of popular Web services
ranges from several milliseconds to a few seconds. This raises the question of
whether flow data provide time information with sufficient accuracy for monitor-

2.5. MEASUREMENT ERRORS 33

Cisco Catalyst 6500 Dedicated probe
1 T T T 1 T T T
0.8 1 r 0.8 1 r
r 06 7 r 0.6 1 r
®
0.4 - r 0.4 A r
0.2 1 r 0.2 1 r
0 . L i 0 ! |
-2 -1.5 -1 -0.5 0 2 -1.5 -1 -0.5 0
Difference (s) Difference (s)

Figure 2.9: CDF of the difference between flow start times measured at the test
computer and at the flow exporters.

ing typical services. NetFlow exports timestamps with millisecond resolution.
IPFIX exporters, in turn, can use special information elements to report up to
nanoseconds. However, the fact that a time attribute is exported in a specific
precision does not guarantee that the information has such an accuracy [117].

The existence of timing errors in flow measurements has already been dis-
cussed in [92, 139]. Two types of errors were described: (i) a cyclic error origi-
nating in the design of NetFlow v9; and (ii) errors that are dependent of the flow
exporter implementation, such as clock skew and export delays. The combina-
tion of these errors results in a surprisingly poor accuracy. Indeed, time fields
exported with NetFlow v9 have an accuracy of seconds only. Although this er-
ror can be fixed at the collector side, popular collectors, such as NFDUMP [78§],
normally process and archive time fields as they are exported, turning the mil-
lisecond information unusable.

An example of the poor accuracy of NetFlow v9 is provided in Figure 2.9. We
use the test computer (see Figure 2.3) to inject traffic and create several flows in
the network, which are observed at both flow exporters as well. Flow start times
are then recorded at the different devices. Figure 2.9 reports the CDF of the
difference between the start time of each flow measured at the test computer and
at the flow exporters. Since the Round Trip Time (RTT) between the devices
is very low, one expects only a small time difference between the measurements
of a single flow, because of clock synchronization, for example. However, Fig-
ure 2.9 shows a high error in both devices, almost uniformly distributed on the
interval [-1, 0] s, as expected given the conclusions in [92, 139]. These results
make clear that, independently of the flow exporter, raw timestamps exported
by NetFlow v9 do not have accuracy appropriate for our monitoring goals.

34 UNDERSTANDING FLOW DATA SOURCES

20
15 Py,
10 WWWW

Difference (ms)

Ve
%M’”‘uw
5 F M"“Www

-10

0 100 200 300 400 500

Reference start time (s since experiment start)
(a) INVEA-TECH FlowMon Probe
80

60 r

iy o i M i

0 100 200 300 400 500

Reference start time (s since experiment start)

(b) Cisco Catalyst 6500

Difference (ms)

Figure 2.10: Corrected start times compared to values measured at the test
computer. Note the y-axes.

Other NetFlow versions as well as IPFIX do not suffer from this cyclic error.
However, implementation-specific problems cannot be overlooked. Figure 2.10
presents results of repeating the active measurements with our test computer
after implementing and deploying a method for correcting the NetFlow v9 cyclic
error in our collector (see [139]). The figure depicts time series of the differences
in flow start times observed during the first 500 s of the experiment.

We can see in Figure 2.10(a) that the dedicated probe exports stable time
information, which slowly drifts away from the reference clock at the test com-
puter. This behavior can be ignored in our case because the error caused by
the clock drift is negligible — i.e., only few milliseconds per minute would be
added to reported time fields. Figure 2.10(b), on the other hand, shows a ran-
dom error of around 60 ms on the Cisco Catalyst 6500, confirming the results

2.5. MEASUREMENT ERRORS 35

of [139]. Such error is indeed higher than some quantities we will evaluate in
the remaining chapters (e.g., the response times of some cloud storage services)
and, thus, it turns this Cisco Catalyst 6500 inappropriate for our analyses.

2.5.3 Imprecise Flow Fields
Flag Information

Flow records normally include a summary of the flags observed in TCP flows.
The analysis of records exported during the active experiments discussed in the
previous section reveals a simple, but serious, measurement error in our Cisco
Catalyst 6500.

The Cisco Catalyst 6500 implements two mechanisms to decide how packets
are forwarded in the network [25]. Most packets are processed by specialized
hardware to improve the system performance when taking forwarding decisions
(i.e., packets are hardware-switched). When forwarding decisions cannot be
taken in hardware, the packets are processed in software by the generic CPU of
the device (i.e., packets are software-switched). Software decisions are consid-
ered exceptions and happen, for example, when packets with expired time-to-live
counters or IP packets with header options are processed.

The NetFlow exporter in our Catalyst 6500, however, does not measure flag
attributes when packets are hardware-switched. Software-switched packets are,
instead, rightly measured. Since most packets are hardware-switched, this arti-
fact implies that only few TCP flows are exported with flag information. Even
more, in contrast to what is specified in the documentation of this device [25],
TCP flags do trigger the expiration of flow records, precisely as discussed in Sec-
tion 2.2.3. As such, TCP flags are observed and considered in the flow expiration
process, even though they are not reported in all flow records.

The lack of flag information is problematic for several applications. For
example, many works rely on flags for inferring statistics from packet-sampled
flows [50, 51, 76]. Chapter 3 will present our method to handle packet-sampled
flows, which also relies on TCP flags to track the status of cloud services. None of
these applications can be deployed when TCP flags are not properly measured.

Byte Counters

By injecting packets of several sizes using our test computer and evaluating the
byte counters of obtained flow records, we observe that the Cisco Catalyst 6500
also exports wrong byte counters for hardware-switched flows. This problem
happens because the NetFlow exporter does not strip the padding bytes of

36 UNDERSTANDING FLOW DATA SOURCES

small IP packets that are transported as Ethernet payload. The problem affects
all frames that carry less than 46 bytes.?

The impact of this artifact depends on the fraction of Ethernet frames that
carry less than 46 bytes. Using the packet header traces captured at the dedi-
cated FlowMon Probe (see Section 2.4), we verify the potential damage caused
by this problem. Our results show that, although 20 % of the frames carry less
than 46 bytes, the exporter would report only around 0.2 % more bytes than the
correct numbers, in total. Therefore, the practical consequences of the artifact
can be neglected in most cases.

Other Artifacts

Other artifacts observed in our devices are described in [85] and include: (i) the
imprecise implementation of flow expiration by active and idle timeouts; and
(ii) inconsistencies in non-TCP flow records, which are sometimes exported
with TCP flags set. The first artifact is harmless for our work, since its ef-
fect is identical to varying timeout parameters of flow exporters at run-time
(see Section 2.4). The second artifact may lead to misconceptions and errors
— e.g., if an application uses only flag information to filter specific TCP flows,
non-TCP flows can be wrongly filtered. Since the remaining chapters will only
evaluate TCP flows, this artifact can also be safely ignored in our context.

2.6 Conclusions

The first part of this thesis aims at using flow data to monitor generic cloud
services. A major motivation for that is the widespread deployment of network
devices with flow export capabilities: flow measurements are, therefore, readily
available. However, it is crucial to understand whether such data have sufficient
quality for the intended analysis. In this landscape, the contributions of this
chapter are twofold.

Firstly, we revisited the basic background on flow monitoring and highlighted
the implications of varying parameter settings of flow exporters. Using packet
traces collected in our network, we showed that flow datasets can differ con-
siderably, even when no measurement errors are present. For instance, IPFIX
standards suggest exporters to change timeout parameters at run-time when
facing high loads. Such changes may result in an unpredictable number of flow
records. Thus, analysis applications need to be prepared to compensate for that,
in order to handle data exported under different conditions.

3 Ethernet payloads should have a minimum size of 46 bytes. If an IP packet is smaller
than 46 bytes, padding bytes are added to the frame (see [85, 92]).

2.6. CONCLUSIONS 37

Secondly, using our own flow exporters in a case study, we identified and
analyzed measurement errors occurring in flow data. The errors are related to
missing flows, wrongly measured properties and inaccurate time information.

While our dedicated exporter (an INVEA-TECH FlowMon Probe) was
shown to report flows of sufficiently good quality, the second analyzed device (a
specific device from the Cisco Catalyst 6500 series) had proven inappropriate for
our analysis. Our Cisco Catalyst 6500 presents a residual timing error higher
than what we expect for the response time of some typical services. Moreover,
it does not export all required information for handling packet-sampled flows,
and misses most flows when the network traffic load exceeds a certain limit.

Such results show that, although flow data are indeed readily available, not
all flow data sources are appropriate for advanced applications. Operators and
researchers, therefore, must carefully check and calibrate their data sources be-
fore deploying any new flow-based application.

38

UNDERSTANDING FLOW DATA SOURCES

CHAPTER 3

Monitoring Cloud Services using NetFlow

The advantages of cloud services, such as reduced costs, easy provisioning and
high scalability [9, 54], attract more and more enterprise customers. We see an
increasing interest from organizations in migrating services like file storage or
e-mail to cloud providers [80]. However, such migration also has its drawbacks.
Cloud services have been repeatedly related to major failures [31], including
data center outages, loss of connectivity and performance degradation. Enter-
prise customers have, therefore, a vital need to monitor cloud services that are
essential for their businesses, both to identify and report problems to providers
and to validate whether promised quality levels are indeed satisfied.

The goal of this chapter is to investigate to what extend the performance of
cloud services can be monitored using only NetFlow. As discussed in Chapter 2,
flow measurements have been successfully employed in a variety of applications
that require scalable ways to collect data in high-speed networks, such as to
detect network intruders [131], to perform traffic engineering [35] and to discover
connectivity problems in production networks [68, 128]. NetFlow, in particular,
is a widely deployed technology for measuring flows [39, 115], often available
at enterprise and campus networks [132]. Therefore, NetFlow seems to be an
alternative to provide immediate and scalable means for customers to monitor
their services in the cloud, without the burdens of instrumenting end user devices
and, more importantly, without any interference from cloud providers.

However, although the use of NetFlow to monitor cloud services is intuitively
appealing, NetFlow measurements are known to be unrelated to high-level met-
rics usually employed to report the performance of applications [151], such as
availability and response time. Moreover, our results in Chapter 2 showed that
flow datasets can be affected seriously by changes of parameter settings of flow
exporters. For example, enabling packet sampling or tuning timeout parameters
is often necessary, in order to cope with the traffic loads of high-speed networks,
and such changes considerably affect the exported flow data. Both systematic
methods for calculating performance metrics from NetFlow records and — more
importantly — an assessment of such a flow-based approach are still lacking.

40 MONITORING CLOUD SERVICES USING NETFLOW

This chapter studies the use of NetFlow to monitor cloud services by propos-
ing a method that (i) normalizes NetFlow data exported under different settings;
and (ii) calculates a simple performance metric to indicate the availability of
cloud services. We then evaluate the method by means of two case studies.
First, non-sampled flow data collected in our network during 10 consecutive
weeks are used to analyze performance anomalies in popular services. Second,
packet-sampled flows collected at an international backbone are used to ver-
ify whether targeted services have been affected by the cyber-demonstrations
organized during the WikiLeaks Cablegate [105].

Note that we restrict our scope to availability problems in this chapter be-
cause our goal in Part I of the thesis is to look for solutions that are generic,
instead of application-specific. For the same reason, we refrain from considering
any application-specific knowledge while developing our method in this chapter.
Other performance aspects will be considered in Part II, when studying cloud
storage services.

This chapter is further organized as follows. Section 3.1 describes our pro-
posed method. Section 3.2 presents our first case study, in which performance
anomalies in popular services are evaluated using non-sampled flow data. Sec-
tion 3.3 presents our second case study, in which packet-sampled flows related to
the WikiLeaks Cablegate are analyzed. Section 3.4 discusses the lessons learned
from the two case studies, which will serve as guidelines for extending our
method in Part II. Related work is described in Section 3.5 and Section 3.6
concludes the chapter.

3.1 Method

Assuming that a set of routers is exporting flow records while handling the traffic
from a group of end users, we aim to use these data to monitor cloud services. A
deployment scenario is depicted in Figure 3.1. Such setup is already very com-
mon, thanks to the popularity of network devices with flow export capabilities.
In this example, users in an enterprise network interact with two cloud services
(i.e., Service A and B in the figure). The link between the enterprise network
and the Internet is monitored by a flow exporter. The exporter processes the
traffic mirrored from the network and forwards flow records to collectors, from
where the records are accessible to analysis applications.! This example makes
clear that a single enterprise does not have access to all traffic related to the
services, but it can still observe a significant fraction, generated by its own users.

1 See Chapter 2 for the background on flow monitoring, including details of the flow
monitoring architecture standardized in IPFIX.

3.1. METHOD 41

Service B
\ @ Flow exporter Flow collector
@ \ % >§' >§'ﬂowrecoras
Service A ~ E
@ Internet — §
=)2
. S \ ‘/—/

Figure 3.1: Envisaged deployment scenario for our method.

Similarly to [68, 128], we assume that users trying to contact unavailable
services will generate traffic with particular characteristics that can be exploited
to reveal the status of the cloud services. We call such traffic unhealthy. Then,
we propose a method to estimate a health index, which we define as the fraction
of healthy traffic to a service in a given time interval. Our method is summarized
in Figure 3.2. It receives batches of NetFlow records from flow collectors and
outputs the health index for selected services by performing the following steps:

e The traffic related to the services is filtered using either predefined lists of
server IP addresses or names of IP owners, as determined by the MaxMind
GeolP Organization [106].

e The data are normalized to remove the effects of parameter settings of flow
exporters — e.g., the effects of packet sampling and flow expiration policies
(see Section 2.4). This is achieved by estimating the total number of TCP
connections n and the number of healthy TCP connections n;, for each
service. We perform the mapping of flow records up to the transport layer,
instead of the application layer, because this chapter aims to be generic.?
We consider a TCP connection healthy if it could exchange transport layer
payload — i.e., if the connection has a complete TCP handshake.

Given the major differences between non-sampled and packet-sampled flow
records, different steps are followed by our method in each case. These
steps will be described in Section 3.1.1 and Section 3.1.2, respectively.

e The health index is determined as the fraction of healthy TCP connections
in the network — i.e., = is returned for each service.

2 Other transport layer protocols are not evaluated because previous work [64, 94] already
showed that TCP is the predominant transport protocol used in cloud services.

42 MONITORING CLOUD SERVICES USING NETFLOW

filter traffic

flow records - - - -

normalize data

is sampling
enabled?

I
I

I

I

I

|

|

|

|

|

see see :
Section 3.1.1 Section 3.1.2 |
I

I

I

|

|

|

|

calculate
health indezes

Figure 3.2: Measuring the health index from NetFlow data.

The health index is correlated to the service availability as follows. When
a service is fully available, client TCP connections are expected to be normally
established, making the index to approach 1; when the service becomes partially
or fully unavailable, failed client connection attempts decrease the index. Note
that this definition provides an upper bound for determining the actual service
status. The health index decreases only if a service is unavailable. A high index,
however, does not guarantee that a service is operating, since the method does
not take application layer errors into account.

Next, we describe how the method handles non-sampled and packet-sampled
flows in Section 3.1.1 and Section 3.1.2, respectively. After that, Section 3.1.3
describes the prototype that will be used in the case studies later in this chapter.

3.1.1 Non-Sampled Flow Data

When packet sampling is disabled, all packets are taken into account, and flow
records provide a summary of the observed TCP flags. Since different TCP
connections, normally, are not reported in a single flow record, it is possible
to monitor the status of TCP connections by identifying the flow records that
belong to each connection [130]. Hence, our method executes two steps to
normalize non-sampled flow data: (i) records that report information about the
same TCP connection are aggregated; (ii) the information about TCP flags are
evaluated to determine n and ny.

3.1. METHOD 43

Aggregating Flow Records

We rely on an extension of the heuristic presented in [130]: flow records with
identical keys — 4.e., sharing the same IP addresses and port numbers — are
merged until the original TCP connection is considered complete. Since NetFlow
is usually unidirectional, flow records from both traffic directions are also aggre-
gated. The critical step for the heuristic is to determine when a TCP connection
is complete, such that later records sharing the same key start a new connection.
In [130], a TCP connection is complete if: (i) an idle timeout has elapsed; and
(ii) records with TCP FIN flag set have been observed from both end-points and
a short timeout has elapsed.

Figure 3.3 illustrates how the heuristic aggregates flow records. In Fig-
ure 3.3(a), two TCP connections between the same end-points generate four
flow records — note the TCP flags. After sorting the records by start time,
the heuristic aggregates the first two records. Because the remaining records
start after an idle timeout has elapsed, they become part of a new connection.
Figure 3.3(b) illustrates the second rule: in this case, records with FIN flag
set are seen from both end-points, thus signaling the connection termination.
Therefore, the new records sharing the same key are part of a new TCP con-
nection, even if the time interval between the TCP connections is shorter than
the previous timeout parameter.

This heuristic is shown to produce good results in general, but the authors
of [130] also show that it does not count TCP connections precisely when appli-

end-points Time
A.B.C.D:12345 -> E.F.G.H:80 | record 1: SYN ACK record 3: SYN ACK
(..............)
timeout
E.F.G.H:80 -> A.B.C.D:12345 ’ record 2: SYN ACK FIN] record 4: SYN ACK
e ¥y Qe
connection 1 connection 2

(a) An idle timeout has elapsed

end-points Time
A.B.C.D:12345 -> E.F.G.H:80 |record 1: SYN ACK FIN‘ record 3: SYN ACK ‘ ’ record 5: ACK ‘
E.F.G.H:80 -> A.B.C.D:12345 record 2: SYN ACK FIN] ’ record 4: SYN ACK ‘
S
connection 1 connection 2

(b) FIN flags observed

Figure 3.3: Aggregating flow records (based on [130]).

44 MONITORING CLOUD SERVICES USING NETFLOW

cations reuse sockets immediately. For example, in Figure 3.3(a), the two TCP
connections would be wrongly merged if the interval between them is smaller
then the selected timeout.

These problems, however, seem possible to be avoided by taking other TCP
flags into account when aggregating the records. Indeed, inspired by the TCP
analyzer implemented in Bro [116],> we improve the heuristic by extending the
cases in which TCP connections are marked as complete. For example, we close
an active connection if flow records indicate that the end-points have performed
a new TCP handshake. Furthermore, we consider a TCP RST packet in either
traffic direction sufficient for reducing the timeout that stops the aggregation
of records. These two cases are depicted in Figure 3.4(a) and Figure 3.4(b),
respectively.

end-points Time

A.B.C.D:12345 -> E.F.G.H:80 record 1: SYN I

record 2: SYN ACK FIN ‘

E.F.G.H:80 -> A.B.C.D:12345 ’ record 3: SYN ACK FIN I

Lrrmmmmnnnennaaaany rrrrrr e Y

connection 1 connection 2

(a) Failed attempt (record 1) followed by a successful handshake (records 2 and 3)

end-points Time
A.B.C.D:12345 -> E.F.G.H:80 I record 1: SYN ‘ I record 3: SYN ACK FIN ‘
E.F.G.H:80 -> A.B.C.D:12345 ’ record 2: RST I ’ record 4: SYN ACK FIN I
T »
connection 1 connection 2

(b) Rejected connection (records 1 and 2)

Figure 3.4: Extensions to the heuristic to aggregate flow records.

Note that, analogous to [130], timeouts are still involved in the aggregation
of flow records. We again rely on the reasoning of Bro [116], in which different
timeouts are in place for (i) idle connections — e.g., connection 1 in Figure 3.3(a);
(ii) complete connections — e.g., connection 1 in Figure 3.3(b) and Figure 3.4(b);
and (iii) attempts without a reply — e.g., connection 1 in Figure 3.4(a).

3 Bro is a stateful network monitor that contains a module for analyzing TCP connections.
By considering complete TCP headers, Bro is able to follow the TCP state-machine and
determine final connection states precisely.

3.1. METHOD 45

Evaluating the Aggregated Records

The total number of TCP connections n as well as the number of healthy con-
nections ny can be trivially counted from the aggregated flow records. More
precisely, all TCP connections are counted as healthy, except for:

e Failed attempts — i.e., when clients send a TCP SYN packet and do not
obtain any reply — see connection 1 in Figure 3.4(a);

e Rejected TCP connections — i.e., when servers reset connections without
completing the handshake — see connection 1 in Figure 3.4(b).

We refer to Appendix A for results showing that the steps to normalize non-
sampled flow records presented in this section are consistent in several flow
export scenarios — i.e., the aggregated records match with the original TCP
connections even if settings of flow exporters are changed.

3.1.2 Packet-Sampled Flow Data

Our method normalizes flow data exported under sampling as follows. Firstly,
it estimates the total number of TCP connections n and the number of healthy
TCP connections 7, directly from the raw packet-sampled flow records. Owing
to sampling, those numbers are realizations of random variables. In order to
compare the quantities in a meaningful way, confidence intervals are determined
and taken into account: if the intervals overlap, or if nj, > 7 by chance, there is
not enough evidence of unhealthy TCP connections in the network — therefore,
we make ny, < n and the index is reported to be 1; otherwise, the health index
is calculated using n and ny,.

Estimating the Number of Connections

Methods to estimate the original number of TCP connections from raw packet-
sampled flows are described in [52]. If packets are sampled independently with
probability p = 1/N, f = Nkg, where kg is the number of observed records
with SYN flag set, is proven to be an unbiased estimator for the number f of
TCP flows, under the assumption of one single SYN packet per TCP connection.

We rely on a similar reasoning to estimate the number of healthy TCP con-
nections. Because healthy connections must have a complete TCP handshake,
we assume that:

e Healthy TCP connections have exactly one SYN packet from both origina-
tors and responders;

46 MONITORING CLOUD SERVICES USING NETFLOW

o Unhealthy TCP connections have exactly one SYN packet from originators,
but none from responders.

Let korig and kycqp be the number of observed flow records with SYN flag set from
originators and responders, respectively, in a time interval. Then, # = Nkopig
and np, = Nkycsp are unbiased estimations of the total number of TCP connec-
tions n and of the number of healthy TCP connections ny in that time interval.

Calculating the Confidence Intervals

The expected values of n and ny; are equal if a service is available. However,
a system can only be considered unhealthy if the difference between n and 7y
is statistically significant. We evaluate the difference between n and n; by
estimating the probability distributions of n and ny. If confidence intervals for
a given level of significance show a high probability that ny < n, then n and 7y,
are returned. Otherwise, we make 7, < 7 and the service is considered healthy.

The basic idea is that we can only observe a flow record with SYN flag
set if a SYN packet has been sampled. Sampling SYN packets forms a finite
sequence of Bernoulli trials with success probability p = 1/N. If n TCP
connections occur within a fixed time interval, the number k,.;; of sampled
records with SYN flag set from originators follows the Binomial distribution
f(kln,p) = (Z)pk(l —p)" k. If ny, < n TCP connections are healthy in the
interval, the number k,.,, of sampled records with SYN flag set from responders
follows the Binomial distribution B(k|np,p).

Given a series of observations Korig = (Korig,1,Korig,2, s Korig,r) and
Kresp = (Kresp.1s Kresp,2, -y kresp,r) Over r time intervals, the parameters n and
ny of the Binomial distributions can be estimated using the method presented
in [45]. The method assumes that n and nj, are constant over r consecutive
time intervals. In our context, this is a reasonable approximation for highly
loaded services in short time intervals. Given the success probability p and the
observations Korig, the posterior distribution of n is determined by:

T

F(n[korig, p) o< (1= p)"™ fo(n) [|

i=1

n!
(Tl - korig,i)! ’ (31)
where fo(n) is a prior distribution of n. If no prior knowledge about n is
available, the uniform distribution is used. The mode of f(n|korig,p) is a biased
estimation for n, with maximum likelihood. The confidence interval for n can
be calculated numerically [134], for instance, by computing f(n|korig,p) for
n =maz(Korigi), - .-, M such that, for a given value 6, f(n > M |korig,p) < 9.
After that, the probabilities of neighbor values of the mode are summed up until
the total probability is higher than the specified significance level. The same

3.1. METHOD 47

120 90 + :
p=0.001 healthy R
p= 0.01 30 total m— |
£ 100 1 p= 0.1 m— =
g £
5 g0 " 70
) 2 60
B Z
g £ 50
3 g .
g £ 40 0TI
& & fatose
20 30
0 T T 20 + T T
09:00 10:00 11:00 12:00 0.001 0.01 0.1 1
Time Sampling probability (p)
(a) Intervals for n when applying different p (b) Intervals for a fixed pair n and ny

Figure 3.5: The effects of varying the sampling rate.

steps are taken to calculate the posterior distribution of nj, from the observations
Kresp, and, based on that, the confidence interval for ny,.

Since Equation (3.1) requires the calculation of large factorials, approxima-
tions may be necessary. Depending on the values of n and p, the Normal or
Poisson approximations for the Binomial distribution can be used. A practi-
cal usage example of the Normal approximation can be found in [133]. As for
the previous section, we refer to Appendix A for results validating that the
procedure in this section provides reliable estimations of n and ny,.

Example

We provide an example of how the method operates with packet-sampled flows.
The sampling probability p, set in the flow exporter, is the most critical variable
in this case, because confidence intervals calculated by Equation (3.1) depend
on p. Sampling less packets implies wider intervals, which makes it harder to
conclude that the difference between 7 and 7, is significant.

Figure 3.5(a) shows the effect of the changing the sampling probability p. We
use part of the packet header dataset captured for the experiments in Chapter 2
(see Section 2.4) to illustrate intervals estimated by Equation (3.1). Three ex-
periments are performed. In each of them, the packet headers are processed
under a different sampling probability p,* thus producing three datasets of
packet-sampled flow records. Confidence intervals for n are calculated using
Equation (3.1) with a significance level of 95 % and r = 1. Figure 3.5(a) shows
that, as expected, the intervals are wider for lower p values.

4 As in Chapter 2, we convert the packet headers into flow records using YAF [89].

48 MONITORING CLOUD SERVICES USING NETFLOW

Figure 3.5(b) illustrates how the wider intervals make the decision about
unhealthy traffic harder. The figure plots the confidence intervals when varying
p for an arbitrary pair n and nj; — note the logarithmic x-axis. Similar shapes
would be obtained for other n and ny as well. For each point in the figure, 10
random samples of B(k|n,p) and B(k|np,p) are taken and confidence intervals
for n and ny, are calculated using Equation (3.1) with significance level of 95 %
and 7 = 10 to improve visualization. In this example, our method would re-
port an unhealthy service when p > 0.002 (approximately). For lower p values,
however, the intervals overlap, preventing the difference between n and 7y, from
being considered significant, even if only two thirds of the connections (i.e.,
40,000 out of 60,000) are healthy. Therefore, in order to compensate for the
sampling process, the method is more conservative under lower p values.

3.1.3 Prototype

In order to analyze cloud services in practice, we have integrated the method
depicted in Figure 3.2 in an open source plug-in for NfSen [78]. NfSen is a Web
interface for the NFDUMP collector. The decision of building our prototype on
top of NfSen is motivated by the fact that (i) NFDUMP and NfSen are readily
available on several Linux distributions; (ii) NFDUMP and NfSen are already
widely deployed for other flow monitoring activities (e.g., at our own network).
Figure 3.6 summarizes the architecture of our prototype, which follows the
NfSen plug-in architecture [77]. NFDUMP collects flow records from several
sources and passes on batches of data to our application periodically. Our pro-
totype is embedded in a back-end NfSen plug-in. It receives the flow data and
performs the steps illustrated in Figure 3.2 — i.e., (i) flow records related to
targeted services are filtered by means of parametrized IP address lists or the
MaxMind GeolP Organization [106] database; (ii) the flow data are normal-
ized; and (iii) the health indexes are calculated for predefined services. The
back-end NfSen plug-in saves partial information in binary files between execu-
tion rounds — e.g., the connections that are not yet complete according to the
heuristic described in Section 3.1.1. The calculated indexes are then archived
in Round-Robin Databases (RRDs), together with other basic traffic statistics.
The periodicity that the prototype evaluates batches of flow records and out-
puts health indezes needs to be set in a practical deployment. Since we assume
the method will be deployed next to the existing monitoring infrastructure, this
parameter has to adhere to other flow export settings. The delay of collectors
in saving and forwarding flow records to analysis applications determines the
parameter — e.g., NFDUMP uses 5 min by default. Hence, since the method
is executed only when a new batch of flow records is available, the information
about cloud services is updated every few minutes in a typical deployment.

3.2. CASE STUDY 1: POPULAR CLOUD SERVICES 49

NfSen back-end

Post-process the flow records

NFDUMP

(see Figure 3.2)

IP addresses &
MaxMind [106]

NfSen
front-end

a
ko
)
[}
&
]

Figure 3.6: Cloud Monitor (based on the NfSen plug-in architecture [77]).

The status of cloud services can be graphically monitored using a front-end
plug-in for NfSen. The design and implementation of this front-end plug-in will
not be described in this thesis. Interested readers can find more information
in [112], and download the source code of our prototype, named Cloud Monitor,
from http://www.simpleweb.org/wiki/Cloud_Monitoring.

3.2 Case Study 1: Popular Cloud Services

This section validates our method using non-sampled flow data. Similar analysis
will be performed in Section 3.3 using packet-sampled flows. Section 3.2.1 de-
scribes our dataset and methodology. The health of popular services is analyzed
in Section 3.2.2. Finally, Section 3.2.3 summarizes the obtained results.

3.2.1 Dataset and Methodology

The prototype plug-in for NfSen described in the previous section is deployed
at our university network. All flow data exported by edge routers (non-sampled
NetFlow v9) are processed, and statistics of the aggregated records are archived
in 1-min bins. This section evaluates the data collected by our prototype in the
first 10 weeks of 2013.

Four organizations are analyzed: Dropbox, Twitter, Google and Facebook.
These organizations have been selected because their services are highly popular
in our network. We have documented all IP addresses serving Dropbox, and
the MaxMind databases are used to filter flows to/from Twitter, Google and
Facebook. Note that some content related to these organizations is hosted by
third-parties (e.g., Facebook’s static content is hosted by Akamai). Our results
do not include this traffic.

http://www.simpleweb.org/wiki/Cloud_Monitoring

50 MONITORING CLOUD SERVICES USING NETFLOW

1 ‘ | u\\ 25 ‘ ‘ Abnorl‘nal —
. Total ------
0.8 A‘ M n\'v'w lfmh E) i Unhealthy ----
s W oy 3 i [
2 06 - I < X
5 I
& 04 205 | i
E '
0.2 o] !
Waw
0 Dropbox 0 ‘I,‘“uj"__,,»f
00:00 04:00 08:00 12:00 16:00 20:00 00:00 00:00 12:00 00:00 12:00 00:00
Time Time
(a) Blacklisted clients: Mar 7, 2013 (b) Jan 10-11, 2013

Figure 3.7: Monitoring Dropbox within the UT network.

The most serious performance anomalies in this dataset have been analyzed
manually and will be discussed in the following. Furthermore, the official chan-
nels in which Dropbox [47], Twitter [142] and Google [70] report the status of
their services are used to understand how our prototype reacts to different per-
formance anomalies. Facebook is left out of this last analysis because no historic
information about its services could be found.

3.2.2 Health Analysis

Our results show an index normally close to 1, with fluctuations during the peri-
ods in which few users are interacting with the services — i.e., late in the nights.
The fluctuations happen because any connection failures have a significant im-
pact on the index, since the total number of connections in these periods is very
low. However, several abnormal situations can also be noticed during business
hours. Figure 3.7(a) depicts a 1-day example of the health index for Dropbox.
We can see that the index constantly fluctuates in our network, indicating that
many clients are unable to access the service. By manual inspection, we have
identified that the fluctuations are caused by abandoned Dropbox clients, which
are sometimes blacklisted by the university firewall. Such clients keep trying to
contact Dropbox servers, increasing the number of unhealthy TCP connections.
Even though the root cause of the problem is in our own network, the prototype
correctly points to an unhealthy service.

After removing blacklisted clients, few abnormal intervals remain. The index
for the selected organizations is lower than 0.8 in 524 min (0.52 % of the 1-min
bins) and lower than 0.7 in 285 min (0.28 % of the 1-min bins), for instance. For
validating these results, all cases in which the index stays below 0.7 for more
than 5 consecutive minutes have been evaluated. These thresholds have been

3.2. CASE STUDY 1: POPULAR CLOUD SERVICES 51

chosen in order to limit the time consuming manual analysis to the most severe
cases. In total, 8 (non-overlapping) intervals with a total duration of 201 min
have been manually analyzed, distributed among Dropbox (7) and Twitter (1).

Dropbox reported problems twice in the period. Abnormal intervals (5 in
total) appear in our dataset in both cases. Figure 3.7(b) depicts examples
seen on Jan 10-11: three periods in which the amount of unhealthy traffic to
Dropbox increases can be seen in the figure (see gray regions). By inspecting
the remaining 2 abnormal intervals, which do not coincide with official reports
from Dropbox, we conclude that only a non-essential part of the service has
been affected,’ suggesting that the seven most serious cases reported by our
prototype are all correct alerts.

The abnormal intervals in Figure 3.7(b) also illustrate a consequence of ig-
noring application layer protocols while processing the flow records. In all three
periods marked in gray in the figure, we can see that the total number of TCP
connections to Dropbox increases significantly. A close look into the flows re-
veals that not only the number of unhealthy connections increases, but also the
number of healthy connections, suggesting errors at the application layer. Since
the proportion of unhealthy connections is high, the problems are detectable,
as depicted in the figure. However, this example clearly demonstrates that our
metric is an approximation — i.e., application layer protocols need to be taken
into account for identifying all unhealthy traffic.

The abnormal interval related to Twitter (see Figure 3.8(a)) does not co-
incide with official reports. However, a simultaneous increase on the number
of unhealthy TCP connections to several destinations can be seen in our data.
Hence, our prototype seems to correctly point to a problem in our network,
although the root cause is unclear in this case.

Twitter officially reported problems 6 times in the period. None of these
reports passes the threshold set to this experiment. However, two of them are
clearly visible in our dataset. Figure 3.8(b) shows an example: the interval with
an increased number of unhealthy TCP connections coincides with a Twitter’s
announcement of site problems — note the decrease also in the total number of
connections. Twitter also reported site problems affecting part of its users on
Jan 17 and Jan 31. These 2 cases are not visible in our data, and it is not
clear whether our users experienced problems. The remaining 2 cases involved
a malfunction and a bug of specific site functionalities, which are not expected
to be detected by our prototype, since they are application layer errors.

Finally, Google reported 5 problems in the period, including longer response
times and errors with attachments on Gmail. None of the issues prevented users

5 The problem has affected only servers that collect run-time statistics from Dropbox
clients. Details of the Dropbox service will be provided in Chapter 4.

52 MONITORING CLOUD SERVICES USING NETFLOW
1 ! ‘ Total j—
= o8 Unhealthy --»-- |
0.8 g ‘w\‘)
5 = b A
2 06 < 06 i %M;
3 5 04 M At t
1o I o e
02 0t |
Twitter W
0 T T T 0 -+

00:00 02:00 04:00 06:00 08:00 10:00 12:00

Time

(a) 12 hours on Feb 26, 2013

Time

(b) Feb 27, 2013

Figure 3.8: Monitoring Twitter within the UT network.

from accessing the services. The method proposed in this chapter, as expected,
does not report these problems.

3.2.3 Summary

The analyzed companies reported 13 incidents in the studied 10-week interval.
Among those, 7 cases are out of our target, since they involve application layer
errors. Moreover, 2 incidents might not have affected our network. The re-
maining 4 cases are detectable in our data, even though the services were still
partially accessible. Our method also identified anomalies that either were not
officially reported or affected only our own network. Overall, the case study
shows the applicability of flow measurements to monitor cloud services.

Note that, while we have analyzed the drops in the health index manually
in this section, a more user friendly alert system requires an automatic post-
processing of the output of our prototype. The design of such a system is out
of the scope of this chapter.

3.3 Case Study 2: the WikiLeaks Cablegate

We now show the applicability of our method using packet-sampled flow data.
The case study in this section is the series of cyber-demonstrations promoted
by a group of hacktivists named Anonymous after the release of U.S. embassy
cables by the WikiLeaks in 2010. As a reaction to those leaks, several compa-
nies retracted their business support to WikiLeaks. Anonymous reacted to this
boycott by coordinating denial-of-service attacks against MasterCard, PayPal,

3.3. CASE STUDY 2: THE WIKILEAKS CABLEGATE 53

among others. Some of the targets were reported to be inaccessible during the
cyber-demonstrations [105], although this has never been confirmed.

Anonymous used a tool named LOIC against the targets. LOIC has been orig-
inally developed for stress testing on servers and, as such, does not implement
any sophisticated attack method. The tool uses standard libraries for estab-
lishing TCP connections to a remote server and sending user-defined payloads.
Hence, LOIC generates regular traffic at the transport layer. For these cyber-
demonstrations, the tool was extended to obtain configuration parameters from
IRC servers — i.e., hacktivists voluntarily joined a botnet.

Section 3.3.1 describes our dataset and methodology. Section 3.3.2 evaluates
the health of several targets. Finally, Section 3.3.3 summarizes the results.

3.3.1 Dataset and Methodology

Packet-sampled NetFlow records (with sampling probability p = 0.01) collected
at an international backbone are used in this analysis. The following services
involved in the WikiLeaks Cablegate are analyzed: PayPal’s payment services,
MasterCard’s website, Moneybookers’ website, the website of Senator Liberman
and PayPal’s blog. We give particular attention to the case of PayPal, since the
data indicate that active attack containment measures have been taken. Our
decision to focus on these targets is motivated exclusively by the amount of
traffic to each target in our dataset. Several other organizations and politicians
have been targeted by Anonymous. A complete description of the WikiLeaks
Cablegate, including all targets and Anonymous’ motivations for attacking each
specific website, is presented in [105, 120].

The method in Section 3.1.2 estimates the number of TCP connections as
well as the number of healthy connections for each target. Confidence intervals
for a significance level of 95 % and parameter r = 10 (see Equation (3.1)) are
calculated for time bins of 1 min — i.e., all results are calculated considering 10
consecutive measurements to reduce the effects of outliers and to alert only for
the most serious problems. In order to provide a better insight into our method
to sampled flows, this section shows the computed confidence intervals for the
estimated number of connections, instead of the health index.

3.3.2 Health Analysis

PayPal’s payment service was targeted by hacktivists on Dec 9, 2010. Fig-
ure 3.9(a) shows the obtained intervals for the number of TCP connections to
PayPal’s service. Whenever the confidence intervals do not overlap, a possi-
ble degradation of the service has occurred. We observe that the intervals do
not overlap for more than one hour around 15:00 and for almost two hours

54 MONITORING CLOUD SERVICES USING NETFLOW

8 : P
Total | Incoming —»—
= 6 | Healthy I Outgoing ------
£ 4 il 8
S 24 PR Pt 29
D I B
é 1.2 VMWL,JA §
153 =
2038 Vi z s
S 04 14 - |
| " Pay i amin ol
0 ek FoRapen | LA o FLL LU BUgEP D VATV L AL T L
12:00 14:00 16:00 18:00 20:00 22:00 00:00 14:00 14:20 14:40 15:00 15:20
Time Time
(a) Health analysis (b) Firewall regulating a hacktivist

Figure 3.9: PayPal’s service on Dec 9. Note the discontinuity in the y-axis.

after 22:30, which is an evidence of wunhealthy traffic and, possibly, perfor-
mance anomalies. For other periods, there are no clear signs that the cyber-
demonstrations caused any damage or health degradation.

For the periods in which the confidence intervals do not overlap, there are
indications that hacktivists were being blocked by a firewall. The analysis of
LOIC source code reveals that the tool implements a very inefficient stress testing
strategy. LOIC submits a new request only if a response from the servers is
received or a timeout interval is elapsed — i.e., targets could easily slow down
the attack by deploying a firewall close to their servers. Figure 3.9(b) suggests
that PayPal has adopted such a solution. The figure shows the number of
raw flow records from/to one potential hacktivist: incoming traffic occurred
periodically, which is a typical behavior of gray-listing firewalls. The way LOIC
is implemented explains the peaks of outgoing records every time servers started
responding again. Since the service can be considered unhealthy from the point
of view of this hacktivist, our method produces correct results also for this case.

Figure 3.10 depicts the analysis for other targets. Figure 3.10(a) shows
two clearly different phases regarding MasterCard’s website on Dec 8: until
around 17:00, the number of healthy TCP connections was consistently lower
than the total number of TCP connections, although the difference cannot be
considered significant in all time intervals; after that, there were almost no
responses from servers anymore. During the first phase, it is likely that the
service was experiencing problems, but it was still able to handle a portion of
the traffic. In the second phase, hacktivists were likely blocked, as in the case of
PayPal. Note that this backbone normally does not transport significant amount
of requests to MasterCard and, therefore, the observed traffic may have been
generated mostly by hacktivists. Overall, our method points to an unhealthy

3.3.

CASE STUDY 2: THE WIKILEAKS CABLEGATE

55

1

Total

(a) MasterCard’s website on Dec 8

Total

Healthy E ﬂ 2.4 { Healthy
= =
£ 08 U\ £ \ »
2 06 ! 2
@ 1t @
g 2
z 04 ! /It , 4 S
g ! g
5 g
S 02 - G S
0 | 2
12:00 14:00 16:00 18:00 20:00 22:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00
Time Time

(b) Moneybookers’ website on Dec 10

0.6 5 -
Total m—

o 05 1 a4 Healthy
El El
S 04 A =
S =3
oo g
£ 52 4
g 02 g
= =
o o 1
] 0.1 o

0~ T T T T T T t 0 T T T T

01:10 01:20 01:30 01:40 01:50 02:00 02:10 02:20 20:20 20:40 21:00 21:20 21:40 22:00

Time Time

(¢) Senator Lieberman’s website on Dec 8 (d) PayPal’s Blog on Dec 10

Figure 3.10: Several Anonymous’ targets. Note the discontinuity in the y-axis.

service in several intervals, even though most of the client requests seem to
come from possible hacktivists.

The same comments are valid for the website of Moneybookers (Fig-
ure 3.10(b)). However, the website was healthy almost all the time, until it
stopped handling hacktivists’ requests completely (around 10:30). Finally, Fig-
ure 3.10(c) and Figure 3.10(d) show that both the website of U.S. Senator Lieber-
man and PayPal’s blog were not affected by the cyber-demonstrations during
the analyzed time intervals.

3.3.3 Summary

Our method identifies a large amount of unhealthy traffic to targeted services
during the analyzed periods. However, most unhealthy traffic seems to be a
consequence of firewalls blocking hacktivists. The predictable behavior of LOIC
makes it easy to identify LOIC traffic in flow datasets. By manually analyzing

56 MONITORING CLOUD SERVICES USING NETFLOW

the data, it can be concluded that most TCP connections in the attack days are
from few sources producing an abnormally high number of requests that match
with LOIC behavior. This pattern is, on the other hand, not observed on other
days in the same network. These results suggest that, although Anonymous
claimed that some targets were off-line [105], targeted services have been only
marginally affected by these cyber-demonstrations.

3.4 Lessons Learned

This section discusses some lessons learned from the case studies. These lessons
are important because they illustrate general limitations of using NetFlow to
monitor cloud services and provide us with guidelines for extending our method
in the next chapter.

The need for better traffic identification methods.

The method evaluated in this chapter filters traffic based on IP addresses and
IP owners. Our case studies show that the method performs well if flow records
are filtered properly. However, this methodology to filter traffic has proven
inconvenient and ineffective. Indeed, some Anonymous’ targets (e.g., Visa) are
not analyzed in our second case study because the traffic from/to those services
could not be identified in our dataset. The problem happens because cloud
providers host several services simultaneously. Neither IP addresses nor popular
methods to indicate IP owners — e.g., the MaxMind databases — provide hints
on how customers are allocated in the providers’ address space.

The first lesson learned, therefore, is the need for methods to identify flows
generated by an application. In particular, the limited information normally
exported by NetFlow makes it hard to isolate the traffic of cloud services in flow
datasets. Part IT will overcome this limitation by augmenting flow measurements
with other information that can be passively observed in the network as well.

Can application layer semantics be ignored?

Motivated by our goal of building a generic monitoring system, application layer
protocols are not analyzed in this chapter. Our results show that our proposed
method is informative to reveal the most severe availability problems, in which
clients cannot establish communication with providers. However, both case
studies also demonstrate that it is very common that servers are still able to
handle part of users’ requests when suffering performance degradation. In such
situations, a mix of healthy traffic, unhealthy traffic at the transport layer, and
unhealthy traffic at the application layer can be observed in the network — e.g.,
see the discussion about Figure 3.7(b) in Section 3.2.2.

3.5. RELATED WORK 57

Hence, the second lesson learned from the case studies is that application-
specific knowledge has to be taken into account as well, if the precise identifica-
tion of all availability problems is necessary. Such advanced monitoring requires
flow exporters that can measure and export customized information per appli-
cation. Part II will extend our method by relying on a specialized flow exporter
that collects more than 100 metrics about the flows.

Other performance problems are common.

This chapter introduces a simple metric that helps to reveal the status of cloud
services based on NetFlow data. As illustrated in our first case study (see
Section 3.2), however, other equally important performance problems might be
even more frequent and cannot be monitored by means of this metric. The next
chapter will extend the analysis to other performance problems, by restricting
our scope to cloud storage services.

3.5 Related Work

This chapter discusses how to monitor problems in cloud services. Several
works rely on active measurements to analyze the performance of services or
to benchmark cloud providers [93, 99, 101]. Other works [108, 109] focus on
measuring the performance of the infrastructure providing the services. In some
cases [87, 147], a particular cloud service or provider is analyzed in detail. Our
work differs from those in several aspects. Firstly, the increasing variety of
client platforms — e.g., mobile devices — motivates our decision to monitor at
the network. Secondly, we do not focus on a specific service, but instead, we
propose a generic method applicable to a variety of cloud services. Lastly, we
take a passive approach to cloud monitoring because the active alternatives lack
the ability to capture the impact of problems on actual end users. Active ap-
proaches are, however, complementary to ours, since they provide another view
of the services. For example, in contrast to active methods, our method can
only identify problems in a cloud service if end users are interacting with it.

The use of NetFlow for measuring the availability of a remote service is
central to our method. A similar approach is proposed in [68, 128] to assist
operators in identifying connectivity problems and outages. Incoming/outgoing
flow records are matched and alerts are triggered when the number of records
without a match increases. Our work differs from those in two aspects: firstly,
when dealing with non-sampled data, our method uses all information available
on flow records to determine whether TCP connections are healthy or not. Sec-
ondly, [68, 128] assume non-sampled flow data, while our method also provides
support to packet-sampled flows.

58 MONITORING CLOUD SERVICES USING NETFLOW

When dealing with non-sampled data, we rely on a technique for aggregat-
ing flow records that is based on [130]. The authors of [103] use an opposite
approach: timeout parameters of flow exporters are tuned for approximating
flow records to TCP connections in a better way. Our work diverges strongly
from [103], since we normalize the flow data, thus removing the effects of timeout
parameters. For post-processing packet-sampled flows, we follow the theoretical
framework presented in [52]. The authors of [52] show how to estimate several
properties of the original data stream, such as the flow length distribution, using
packet-sampled flow records only. We use a similar reasoning to estimate the
distributions of the number of TCP connections per health state.

Finally, this chapter contributes with a practical implementation of our
method as a plug-in for NfSen. Several works propose extensions for
NfSen [15, 86, 121]. Among those works, Nfsight [15] has goals closest to ours.
Nfsight also implements a heuristic to post-process flow records, identifying orig-
inators and responders of TCP connections and calculating connection statistics.
However, in contrast to our method, Nfsight focuses on intrusion detection.

3.6 Conclusions

The main contribution of this chapter is a simple method for monitoring the
availability of cloud services that relies solely on NetFlow. Our method has
the distinct characteristic of being able to cope with both non-sampled and
packet-sampled flow data. Hence, it explicitly targets high-speed networks.
The method first isolates traffic related to a service and normalizes the data to
remove the effects of parameter settings of flow exporters. Then, it estimates
the fraction of healthy traffic to indicate the status of the monitored service.

Results of two case studies showed that our method can help customers to
monitor performance of generic cloud services, by means of flow data that are
normally available in current networks. Our first case study revealed problems
in popular services, even if we measured in a somehow short time interval, thus
providing evidences of availability problems in cloud providers. The applicability
of our method was further confirmed by studying packet-sampled flow data
collected during the WikiLeaks Cablegate. We concluded, for example, that
targeted services were only marginally affected by the cyber-demonstrations,
thus contradicting Anonymous’ claims.

The experience acquired with these two case studies highlighted limiting
factors for the use of NetFlow to monitor cloud services. These factors include
the difficulties for filtering traffic and the need for more information in flow
records. The lessons learned will guide the definition of our methodology to
monitor performance of cloud storage services in the next chapter.

3.6. CONCLUSIONS 59

Determining the health of a remote service solely from flow measurements is
challenging. The method proposed in this chapter is by no means a comprehen-
sive solution to all monitoring needs of cloud customers. However, by focusing
on serious performance problems and by relying on flows exported by a widely
deployed technology, it delivers an essential and immediate first layer of mon-
itoring to cloud customers, while being applicable to a wide-range of services
and scalable to high-speed networks.

Finally, our prototype has been integrated into NfSen and is available to the
public at http://www.simpleweb.org/wiki/Cloud_Monitoring.

http://www.simpleweb.org/wiki/Cloud_Monitoring

60

MONITORING CLOUD SERVICES USING NETFLOW

Part 11

Cloud Storage Services

CHAPTER 4

Dropbox Usage and Performance

Cloud storage services allow to synchronize local folders with servers in the
cloud. They have gained popularity, with companies offering remote storage for
free or accessible prices. More and more people are being attracted by these
offers, saving personal files, synchronizing devices and sharing content with great
simplicity. This high public interest pushed various providers to enter the cloud
storage market. Services like Dropbox and SkyDrive are becoming pervasive
in people’s routine. Dropbox, the best known offer by the time of writing in
2013, has been active since since 2007 and is used by over 175 million users, who
upload more than 1 billion files on daily basis [48]. Considering its continuous
growth in popularity, it is to be expected that cloud storage will soon be one of
the top applications generating Internet traffic.

Although cloud storage has attracted massive attention, very little is known
about typical workload and performance bottlenecks of such services. This
understanding is essential, firstly, for organizations interested in outsourcing file
storage systems, both to guide their decision on a possible migration and to
help monitor already migrated services. Secondly, as social and privacy issues
impel the appearance of alternative providers, such knowledge becomes more
and more important for the design of new, well-performing services.

The main goal of this chapter is to provide a comprehensive characteriza-
tion of cloud storage services. We analyze flow measurements collected from
two university campuses and two Points of Presence (POPs) in a large ISPs for
42 consecutive days. We first extend our general methodology to monitor per-
formance of cloud services, devising methods for both isolating cloud storage
traffic and calculating application-specific performance metrics. We then focus
on Dropbox, which we show to be the most widely-used cloud storage service
in our datasets. Dropbox already accounts for about 100 GB of daily traffic
in one of the monitored networks — i.e., 4 % of the total traffic or around one
third of the YouTube traffic in the same network. We focus first on the service
performance characterization, highlighting possible bottlenecks and suggesting
countermeasures. Then, we detail user habits, thus providing an extensive char-
acterization of the workload the system has to face.

64 DROPBOX USAGE AND PERFORMANCE

To be best of our knowledge, we are the first to provide an analysis of
Dropbox usage on the Internet. The authors of [87] compare Dropbox, Mozy,
Carbonite and CrashPlan, but only a simplistic active experiment is provided to
assess them. The authors of [148] note the existence of performance bottlenecks
in Dropbox, but the root causes of the problem are not clearly identified, as we
will do in this chapter. In [113], the possibility of unauthorized data access and
the security implications of storing data in Dropbox are analyzed. We follow a
similar methodology to dissect the Dropbox proprietary protocols in Section 4.1,
but focus on a completely different problem.

Considering storage systems in general, [81, 82| study security and privacy
implications of the deployment of data deduplication — the mechanism in place in
Dropbox for avoiding the storage of duplicate data. Some works explicitly con-
sider cloud architecture designs [98], while others present a comparison among
different cloud providers [101, 147]. By running benchmarks, these works focus
on the achieved performance of different providers, but focusing only on server
infrastructure, missing the characterization of both the typical usage of a cloud
service and the impact of user behavior on cloud storage applications. Similarly,
[12] presents a performance analysis of the AWS in general, but does not provide
insights into cloud storage. Finally, several works characterize popular services,
such as social networks [67, 111] or YouTube [23, 60]. Our work goes in a similar
direction, shedding light on Dropbox and possibly other related systems.

This chapter will show that cloud storage applications are data hungry and
user behavior deeply affects their network requirements. Our results are useful
for the research community, ISPs and companies interested in outsourcing, to
understand the impact of a massive adoption of such solutions. Similarly, our
analysis of the Dropbox performance is a reference for engineers designing pro-
tocols and provisioning data centers for similar services, with valuable lessons
about bottlenecks introduced by some design decisions.

The remainder of this chapter is organized as follows. Section 4.1 describes
the methodology we use to reverse-engineer the Dropbox protocols, and pro-
vides a short description of Dropbox architecture and its client functioning.
Section 4.2 describes our data collection. Section 4.3 studies the traffic vol-
ume generated by several cloud storage services, evaluating the popularity of
well-known providers in the analyzed networks and characterizing the overall
workload of cloud storage. Section 4.4 presents a characterization of Dropbox
performance and possible bottlenecks of the system. User habits and the gener-
ated workload are presented in Section 4.5. Finally, Section 4.6 concludes this
chapter and lists our main contributions.

4.1. DROPBOX OVERVIEW 65

Table 4.1: Domain names used by different Dropbox services. Numeric suffixes
are replaced by ‘X’.

sub-domain Data center | Description
client-1b/clientX | Dropbox Meta-data
notifyX Dropbox Notifications
api Dropbox API control
WWW Dropbox Web servers
d Dropbox Event logs
dl Amazon Direct links
dl-clientX Amazon Client storage
dl-debugX Amazon Back-traces
dl-web Amazon Web storage
api-content Amazon API Storage

4.1 Dropbox Overview

4.1.1 The Dropbox Client

The Dropbox native client is implemented mostly in Python, using third-party
libraries such as librsync. The application is available for Microsoft Windows,
Apple OS X and Linux.! The basic object in the system is a chunk of data
with size of up to 4 MB. Files larger than that are split into several chunks,
each treated as an independent object. Each chunk is identified by a SHA256
hash value, which is part of the meta-data descriptions of files. As Chapter 5
will explain in details, Dropbox reduces the amount of exchanged data by using
delta encoding when transmitting chunks. It also keeps locally in each device
a database of meta-data information (updated via incremental updates) and
compresses chunks before submitting them. In addition, the client offers the
user the ability to control the maximum download and upload speed.

Two major components can be identified in the Dropbox architecture: the
control and the storage servers. The former are under direct control of Dropbox
Inc., while Amazon EC2 and Amazon S3 are used as storage servers. In both
cases, sub-domains of dropbox.com are used for identifying the parts of the
service offering a specific functionality (see Table 4.1). HTTPS is used to access
all services, except the notification service, which runs over HTTP.

I Mobile device applications (i.e., running on iOS and Android) access Dropbox on demand
using Application Programming Interfaces (APIs); those are not considered here.

66 DROPBOX USAGE AND PERFORMANCE

client P time

e

4 °> time

<«———Dropbox———><— Amazon —<—— Dropbox ——
client/client-1b dl-client client/client-1b

server

Figure 4.1: An example of the Dropbox protocol.

4.1.2 Understanding Dropbox Internals

In order to calculate performance metrics that are meaningful at the application
layer and characterize the usage of the service from passive measurements, we
first need to gain an understanding of the Dropbox client protocol. We have
performed several active experiments to observe what information is exchanged
after a particular operation. For instance, among others, we have documented
the traffic generated when adding or removing files on local folders, when down-
loading new files and when creating new folders. During these experiments,
Dropbox was distributing its client version 1.2.52 as the stable version.

Since most client communication is encrypted with
Transport Layer Security (TLS) and very little public information is re-
leased by Dropbox, we set up a testbed equipped with an intercept proxy.
We use a Squid proxy server, extended with the module SSL-bump [124], to
terminate TLS/SSL connections and save decrypted traffic flows. The Dropbox
client needs to be instructed to trust the self-signed proxy certificate. Because
trusted certificate authorities are hard-coded in the Dropbox client, we use
debugging tools (e.g., GDB) to manipulate the memory heap in our testbed. The
memory area where trusted certificate authorities are stored can be modified
at run-time to replace a trusted certificate by the self-signed one of the proxy
server. By means of this setup, we were able to observe and to understand the
Dropbox client communication.

Figure 4.1 illustrates the messages we observe while committing a
batch of chunks. After registering with the Dropbox control center via
a clientX.dropbox.com server, the list command retrieves meta-data up-
dates. As soon as new files are locally added, a commit_batch com-
mand (on client-1b.dropbox.com) submits meta-data information. This
can trigger store operations, performed directly with Amazon servers (on

4.1. DROPBOX OVERVIEW 67

dl-clientX.dropbox.com). Each chunk store operation is acknowledged by
one OK message. As we will see in Section 4.4, this acknowledgment mecha-
nism might originate performance bottlenecks. Finally, as chunks are success-
fully submitted, the client exchanges messages with the central Dropbox servers
(on client-1b.dropbox.com) to conclude the transactions. Note that messages
committing transactions might occur in parallel with newer store operations.

A complete description of the Dropbox protocols is outside the scope of this
thesis, since protocols are likely to change in the future. We, however, exploit
this knowledge both (i) to filter the passively observed TCP flows with the likely
commands executed by the client; and (ii) to derive meaningful performance
metrics from network flows passively collected from operational networks, even
if we have no access to the content of the (encrypted) connections. In the
following, we describe the protocols used to exchange data with the Dropbox
control servers and with the storage servers at Amazon.

4.1.3 Client Control Flows

The Dropbox client exchanges control information mostly with servers managed
directly by Dropbox Inc. Three sub-groups of control servers can be identified:
(i) notification servers; (ii) meta-data administration servers; and (iii) system-
log servers. System-log servers collect run-time information about the clients,
including exception back-traces (via Amazon, on d1-debug.dropbox.com), and
other event logs possibly useful for system optimization (on d.dropbox.com).
Since flows to those servers are not directly related to the usage of the system
and do not carry much data, they are not considered further. In the following,
we describe the key TCP flows to the meta-data and notification servers.

Notification Protocol

The Dropbox client keeps open a TCP connection to a notification server
(notifyX.dropbox.com), used for receiving information about changes per-
formed elsewhere. In contrast to other traffic, notification connections are not
encrypted. Delayed HT'TP responses are used to implement a push mechanism:
a notification request is sent by the local client asking for possible changes; the
server response is received periodically about 60 s later in case of no change;
after receiving it, the client immediately sends a new request. Changes on the
central storage are instead advertised as soon as they are performed.

Each device linked to Dropbox has a unique identifier (host_int). Unique
numeric identifiers (called namespaces) are also used for each shared folder. The
client identifier is sent in notification requests, together with the most updated
list of namespaces. Devices and shared folders can, therefore, be identified

68 DROPBOX USAGE AND PERFORMANCE

in network traces by passively watching notification flows, thus representing
a privacy threat. Finally, different devices belonging to a single user can be
inferred as well, by comparing namespace lists.

Meta-Data Information Protocol

Authentication and meta-data administration are handled by a separate set of
servers, (client-1b.dropbox.com and/or clientX.dropbox.com). Typically,
synchronization transactions start with client messages to meta-data servers,
followed by a batch of either store or retrieve operations through Amazon’s
servers. As data chunks are successfully exchanged, the client sends messages
to meta-data servers to conclude the transactions (see Figure 4.1). Due to an
aggressive TCP connection timeout handling, several short TLS connections to
meta-data servers can be observed during this procedure.

Server responses to client messages can include general control parameters.
For instance, our experiments in the testbed reveal that the current version of
the protocol limits the number of chunks to be transferred to at most 100 per
transaction. That is, if more than 100 chunks need to be exchanged, the opera-
tion is split into several batches, each of at most 100 chunks. Such parameters
shape the traffic produced by the client, as it will be analyzed in Section 4.4.

4.1.4 Data Storage Flows

As illustrated in Figure 4.1, all store and retrieve operations are handled
by virtual machines in Amazon EC2. More than 500 distinct domain names
(d1-clientX.dropbox.com) point to Amazon servers. A subset of those aliases
are sent to clients regularly. Clients rotate in the received lists when executing
storage operations, distributing the workload.

Typically, storage flows carry either store commands or retrieve commands.
This permits storage flows to be divided into two groups by checking the amount
of data downloaded and uploaded in each flow. By means of the data collected
in our test environment, we documented the overhead of store and retrieve com-
mands and derived a method for labeling the flows. Furthermore, we identified
a direct relationship between the number of TCP segments with the PSH flag set
in storage flows and the number of transported chunks. For the sake of brevity,
we present more details about our methodology in Appendix B, along with some
results validating that the models built in our test environment represent the
traffic generated by real users satisfactorily. We use this knowledge in the next
sections, in combination with a specialized flow exporter, for characterizing the
system performance and workload.

4.2. DATASETS AND METHODOLOGY 69

4.1.5 Web Interface and Other Protocols

Content stored in Dropbox can also be accessed through Web interfaces. A
separate set of domain names are used to identify the different services and
can thus be exploited to distinguish the performed operations. For exam-
ple, Uniform Resource Locators (URLs) containing dl-web.dropbox.com are
used when downloading private content from user accounts. The domain
dl.dropbox.com provides public direct links to shared files.

In addition, a protocol for synchronizing machines in the same LAN is avail-
able in the Dropbox client. The protocol operation is twofold: (i) UDP broad-
casts are sent out containing the namespaces of a device — other devices can,
therefore, form a list of possible pairs for future synchronizations; (ii) peer-to-
peer connections are established when a notification of changes in previously
announced namespaces is received. Users with several folders in common can
make use of the protocol, with a positive impact on network traffic. The per-
centage of users potentially profiting from this protocol will be analyzed in
Section 4.5.

4.2 Datasets and Methodology

4.2.1 Methodology

We rely on passive flow measurements to analyze the Dropbox traffic in opera-
tional networks. In contrast to the first part of the thesis, we use a specialized
flow exporter in this chapter, since we aim at an advanced analysis of Dropbox.
We rely on Tstat [59] to collect data. Tstat is a passive sniffer and flow exporter
that monitors each TCP connection, exposing information about more than 100
metrics,? including client and server IP addresses, the amount of exchanged
data, retransmitted segments, RT'T and the number of TCP segments that have
each TCP flag set [107].

Specifically targeting this analysis, we implement several additional features.
Firstly, given that Dropbox relies on HTTPS, we extract the TLS/SSL certifi-
cates offered by the server by means of Deep Packet Inspection (DPI), and ex-
port the information as an extra field in the flows. Our analysis shows that the
string *.dropbox.com is used to sign all communications with the servers. Sec-
ondly, we augment the exposed information by labeling server IP addresses with
the original Fully Qualified Domain Name (FQDN) the client requested to the
DNS server [13]. Both extensions are key to reveal information on the server
that is being contacted (see Table 4.1) and allow us to identify each specific

2 See http://tstat.tlc.polito.it for details.

70 DROPBOX USAGE AND PERFORMANCE

Table 4.2: Datasets overview (total traffic over 42 days).

Name Type IP Addresses | Volume (GB)
Campus 1 | Wired 400 5,320
Campus 2 | Wired/Wireless 2,528 55,054
Home 1 | FTTH/ADSL 18,785 509,909
Home 2 ADSL 13,723 301,448

Dropbox functionality from the passively collected flows. Thirdly, Tstat is in-
structed to expose the list of device identifiers (host_int) and folder namespaces
exchanged with the notification servers. Finally, using the knowledge presented
in Section 4.1 and Appendix B, we calculate extra performance metrics specific
to Dropbox, as we will describe below.

4.2.2 Datasets

We installed Tstat at 4 vantage points in 2 European countries and collected
data from Mar 24, 2012 to May 5, 2012. This setup provided a valuable pool
of datasets, allowing us to analyze the use of cloud storage in different environ-
ments, which vary in both the access technology and the typical user habits.
Table 4.2 summarizes our datasets, showing, for each vantage point, the access
technologies present in the monitored network, the number of unique client TP
addresses, and the total amount of data observed during the whole period.
The datasets labeled Home I and Home 2 consist of ADSL and
Fiber to the Home (FTTH) customers of a nation-wide ISP. Customers are pro-
vided with static IP addresses, but they might use Wi-Fi routers at home to
share the connection. Campus I and Campus 2 are collected in academic en-
vironments: Campus I monitors wired workstations in research and adminis-
trative offices of the Computer Science Department of a European university.
Campus 2 accounts for all traffic at the border routers of a second university,
including campus-wide wireless access points and student houses. NAT and
HTTP proxy-ing are very common in this latter scenario, and DNS traffic is
not exposed to the probe. For privacy reasons, we cannot provide further in-
formation about the networks where the data have been collected. Similarly, to
protect users’ privacy, our probes export only flows and the extra fields described
in the previous section. Payload data are discarded directly in the probe.
Dropbox overall traffic in our datasets is summarized in Table 4.3, where
we can see the number of flows, data volume, and devices linked to Dropbox in
the monitored networks. Our datasets account for more than 11,000 Dropbox
devices, uniquely identified by their device identifiers (host_int). The traffic
generated by the Web interface and by Dropbox public APIs is also included. In

4.3. POPULARITY OF DIFFERENT STORAGE PROVIDERS 71

Table 4.3: Total Dropbox traffic in the datasets.

Name Flows | Volume (GB) | Dropbox devices
Campus 1| 167,189 146 283
Campus 2 | 1,902,824 1,814 6,609
Home 1 1,438,369 1,153 3,350
Home 2 693,086 506 1,313
Total 4,204,666 3,624 11,561

total, more than 3.5 TB were exchanged with Dropbox servers during our 42-day
capture. To evaluate the performance implications of a protocol improvement
announced by Dropbox, a second dataset was collected in Campus 1 in Jun/Jul
2012, after the release of Dropbox version 1.4.0.

4.3 Popularity of Different Storage Providers

We compare the popularity of storage services and characterize the overall traffic
volume to cloud storage in our datasets. We explicitly consider the following
services: Dropbox, Google Drive, Apple iCloud and Microsoft SkyDrive. Other
services (e.g., Amazon Cloud Drive, Wuala and SugarSync) are aggregated into
the Others group. We rely on both the TLS server name and DNS FQDN to
classify flows as belonging to each service.

We first study the popularity of the different services in terms of unique
clients. We use the Home 1 dataset because IP addresses are statically assigned
to households and, therefore, are a reliable estimation of the number of installa-
tions. Figure 4.2(a) reports® the number of distinct IP addresses that contacted
a storage service at least once in a given day. iCloud is the most accessed
service, with about 2,100 households (11.1 %), showing the high popularity of
Apple devices. Dropbox comes second, with about 1,300 households (6.9 %).
Other services are much less popular (e.g., 1.7 % for SkyDrive). Interestingly,
Google Drive appears immediately on the day of its launch (April 24th, 2012).
More importantly, these results can be directly correlated to statistics of search
queries published by the Google Trends [74], suggesting that the usage of cloud
storage services in our datasets is in-line with the global trend.

Figure 4.2(b) reports the total data volume for each service in Home 1.
Dropbox tops all other services by one order of magnitude (note the logarithmic
y-scale), with more than 20 GB of data exchanged every day. iCloud volume
is limited despite the higher number of devices, because the service does not

3 A probe outage is visible on April 21, 2012.

72 DROPBOX USAGE AND PERFORMANCE

2400

_g PRVIEN X ,X‘s..\" FRuk > ~ /.,\..—X\ . PR SEN

B S ;

g l6004 T m |

% JET o B A e . e ...A.

;’é 800 1 L -
PNRSNEY SN SN

z5 0 ‘_‘,_.|_--.:,"4-_._.‘_~_¢1 _____

24/03 31/03 07/04 14/04 21/04 28/04 05/05

iCloud --%- SkyDrive -@- Others —+
Dropbox M- Google Drive ——

(a) IP addresses

100G
.. S m .)

10G A Y A *, ;

% AN y ,L'/ /N, /)‘/)(- \‘*{\ ',\é
Il AL LT I . W

g 1G A / ‘*_. \/ ¥ o ,«\ N K ‘\:\/'.
M /'\.’ \‘,\._ -RERNE et “a !

100M o

10M T T T T

24/03 31/03 07/04 14/04 21/04 28/04 05/05

iCloud -- SkyDrive -@- Others —+—
Dropbox M- Google Drive —4—

(b) Data volume

Figure 4.2: Popularity of cloud storage in Home 1 (in 2012).

allow users to synchronize arbitrary files, but only pre-define files, such as users’
contacts, calendar etc. SkyDrive and Google Drive show a sudden increase in
volume after their public launch in April. Plots in both Figure 4.2(a) and Fig-
ure 4.2(b) are relatively stable during the 42 days of observations, which suggests
that usage and network requirements of cloud storage services are relatively pre-
dictable. Such findings are important for the provision of resource for similar
services, and will be evaluated further in Section 4.5.

Figure 4.3 compares the Dropbox and YouTube share of the total traffic
volume in Campus 2. Apart from the variation reflecting the weekly and holiday
pattern, a high fraction is seen for Dropbox daily. Note that in this network
the traffic exchanged with Dropbox is close to 100 GB per working day: that is
already 4 % of all traffic, or a volume equivalent to about one third of YouTube
traffic in the same day!

4.4. DROPBOX PERFORMANCE 73

YouTube -
Dropbox -

% total traffic
S o
. .

W
L

24/03 31/03 07/04 14/04 21/04 28/04 05/05
Date

Figure 4.3: YouTube and Dropbox in Campus 2 (in 2012).

These findings highlight an increasing interest for cloud storage services,
showing that people are eager to make use of remote storage space. Cloud-
based storage is already popular, with 6-12 % of home users regularly accessing
one or more of the services. We restrict our attention to Dropbox only in the
following, since it is by far the mostly used service in terms of traffic volume at
the moment. Other providers will be evaluated in Chapter 5 by means of active
experiments, while discussing the performance implications of design choices.

4.4 Dropbox Performance

4.4.1 Traffic Breakdown: Storage and Control

To understand the performance of the Dropbox service, we first study the
amount of traffic handled by the different sets of servers. Figure 4.4 shows
the resulting traffic breakdown in terms of traffic volume and number of flows.
From the figure, it emerges that the Dropbox client application is responsible
for more than 80 % of the total Dropbox traffic volume in all vantage points,
which shows that this application is highly preferred over the Dropbox Web
interfaces for exchanging data. A significant portion of the volume (from 7 % to
10 %) is generated by direct link downloads and the main Web interface (both
represented as Web in Figure 4.4). In home networks, a small but non-negligible
volume (up to 4 %) is seen to the Dropbox API, which is used by mobile devices.
Finally, the data volume caused by control messages is negligible in all datasets.

The breakdown of the number of flows confirms that the Dropbox native
client is the mostly used interface of the service. Client control servers are the
major contributors: more than 80 % of the flows, depending on the dataset. The
difference on the percentage of notification flows — around 15 % in Campus 2,
Home 1 and Home 2, and less than 3 % in Campus 1 — is caused by the differ-

74 DROPBOX USAGE AND PERFORMANCE

3
i
259%
X
58
s

%
358
%
3
5%
5%
,
X2
%
5%
358
o
2
22
5
0%
%

%3

s

X
o
5
70
%
X

%
%5
28

8
%
St
%
S
%

o

5%
s
R

%
%

0%

5%
5%
%

X
2%

3
S
o5
S8
%
3

55

2
5
5
o2t
S
9%
e

B Web
RREEEZ N\ eb (storage) N
NN
0.8 B KR8 API (storage)
R B g
. R I SRS
B =
B8 RS RO K CI 1
BEEE RERE B28 & lent (contro
BERE B B Notify (control) Z
rososss Jrssscssscosglsiossrassrsslbtetoretoses
= Jieose RN, RSB R 3
1 EERE RS RRRES- K Web trol
o . R B 55 KIS €D (contro.
R BID REEEEE KK
= RS BR335SR KRS 77
R0 BIRs 8ES [sessesd Svystem log (all) 7
Q RRE4303638 B33053385 8588 KKK ‘U
IS5 RIS 80 Raseses]
< RIS RIS SIS0 R
— ER3050305050 BR300 KIS RRsesesesss] OthCI'S X
rosatesatsrsditoratoratordllisetetetatooalloses S0l
&) b R RIS LRSS+ R
. Jrosasesatssaiitorstoratordllisetatetetooalloses 2ol R
Jrosssosssossgiiessstesstordilrtesstesotesllises ool Potstorstess?
8 KRR RSRSE Ky B
B RIS a8 RS RS
5
s
5
oy
8
oy
5
oy
5
4

RS
5 5 35
RS IRBREB8 RASsss. B %
[B
. R RIS 88
BSES Rsss [R88
s s
B85 st
s B
B 55
e %%
B 5
0 RIS, 8

ence in the typical duration of Dropbox sessions in those networks, which will
be further studied in Section 4.5.4. Overall, the higher number of control and
notification flows when compared to the storage ones exemplifies the signaling
costs of using different servers for each specific functionality (see Table 4.1).

4.4.2 Server Locations and RTT

We showed in previous sections that the Dropbox client protocol relies on dif-
ferent servers to accomplish typical tasks such as file synchronization. Dropbox
distributes the load among its servers both by rotating IP addresses in DNS
responses and by providing different lists of DNS names to each client. In the
following, we want to understand the geographical deployment of this architec-
ture and its consequences on the perceived RTT.

Server Locations

Names in Table 4.1 terminating in a numerical suffix are normally resolved to a
single server IP address* and clients are in charge of selecting which server will
be used in a request. For instance, meta-data servers are currently addressed
by a fixed pool of 10 IP addresses and notification servers by a pool of 20 TP
addresses. Storage servers are addressed by more than 600 IP addresses from
Amazon data centers. Figure 4.5 shows the number of contacted storage servers
per day in our vantage points. The figure points out that clients in Campus 1

4 Meta-data servers are addressed in both ways, depending on the executed command, via
client-1b or clientX.

4.4. DROPBOX PERFORMANCE 75

1000 ‘ ‘
Campus 1 -

4 800 Campus 2 -—>—-

3

s 600

e]

5 400 N

> : s

g f |

“ 200 o
0+ : - "
24/03 31/03 07/04 14/04 21/04 28/04 05/05

Date

Figure 4.5: Number of contacted storage servers.

and Home 2 do not reach all storage servers daily. In both Campus 2 and
Home 1, more servers are instead contacted because of the higher number of
devices on those vantage points. Routing information shows that the control
servers contacted from the monitored networks are all located in the U.S. West
Coast (likely in California), while storage servers are in the U.S. East Coast (in
Amazon’s Northern Virginia data centers).

Storage and Control RTT

A deeper analysis of the RTT at our four vantage points reveals more details of
the physical implementation of the Dropbox architecture. Section 4.4.4 will show
that the RTT has a major impact on the service performance. Figure 4.6 shows,
separately for storage (left) and control flows (right), the CDF of the minimum
RTT in flows where at least 10 RTT samples could be obtained (see [107]). The
figure accounts only for the RTT between our probes and the servers, to filter
out the impact of the access technologies (e.g., ADSL).

The RT'Ts to storage servers at Amazon remained stable during our measure-
ments, meaning that no significant changes in the network topology happened.
The differences in RTTs among the vantage points are related to the countries
where the probes are located. This constant RTT during our 42 days of mea-
surements is another strong indication that a single data center is used by all
users in our vantage points.

The RTTs to the control servers are more variable. In both Campus 1 and
Home 2, the curve presents small steps (less than 10 ms). We assume that they
are caused by changes in the IP route, since the same behavior is not noticeable
in all probes. Finally, it is interesting to note the high difference in the RTT
between control and storage data centers, which is likely caused by the physical
distance between them inside the U.S.

76 DROPBOX USAGE AND PERFORMANCE

Storage Control
1 T 7 1 Y
H :'ﬂ"] 'l,
0.8 L 0.8 Lt
] I.' i
m 0.6 p 0.6 (
5 | |]
04 i -'l.' 04 1 Campus 1 -
o : ; Campus 2 -—
02 : ,,/ 02 1+ j { Homel — |
H ey i 4./ Home2 --
0 +— 0+ — ‘
80 90 100 110 120 140 160 180 200 220
Time (ms) Time (ms)

Figure 4.6: Minimum RTT of storage and control flows. Note the z-axes.

These results suggest that Dropbox is, as for now, a service centralized in
the U.S. Considering that more than half of the Dropbox clients are outside the
U.S.[48], and the high amount of traffic observed in our vantage points, the traf-
fic exchanged between the clients and the data centers is likely to be already very
relevant in the core network. In order to verify the Dropbox setup worldwide and
compare it to alternative designs, Chapter 5 will perform active measurements
using the PlanetLab. The remainder of this section concentrates on understand-
ing the implications of Dropbox architecture for users in our datasets.

4.4.3 Store and Retrieve Flows
Flow Size

As shown in Figure 4.4, most Dropbox traffic is generated by file storage opera-
tions. Figure 4.7 depicts the CDF of the flow size for storage operations. Since
TLS/SSL is used, we observe a minimum flow size of approximately 4 kB. The
flows have a maximum size of approximately 400 MB because of current run-
time parameters of Dropbox: batches are limited to a maximum of 100 chunks,
each smaller than 4 MB, as described in Section 4.1.

From Figure 4.7 it emerges that a significant percentage of flows (up to 40 %
in some cases) exchange less than 10 kB, meaning that they are composed mostly
of TLS/SSL handshake messages and a small amount of user data. A very high
percentage of flows (varying from 40 % to 80 %) consist of less than 100 kB. We
conjecture that two factors are causing this behavior: (i) the synchronization
protocol sending and receiving file deltas as soon as they are detected; (ii) the
primary use of Dropbox for synchronization of small files, instead of periodic
(large) backups. Chapter 5 will investigate this conjecture further by means of
an experiment with volunteering Dropbox users.

4.4. DROPBOX PERFORMANCE 77

Store Retrieve
1 ::‘..W—' 1
0.8 i 0.8
SoE f
J
o 06 5 ! 0.6
a !
© 04 A 04
L St Campus 1 oo
o if . Campus2 -—-—- |
0.2 ¥ 0.2 s Home 1
4 / Home2 -----
0 0 T T T T
1k 10k 100k 1M 10M100M 1G 1k 10k 100k 1M 10M100M 1G
Flow size (bytes) Flow size (bytes)

Figure 4.7: Distribution of TCP flow sizes of file storage for the Dropbox client.

Comparing the CDFs for the store and retrieve operations, we can see that
retrieve flows are normally larger than the store ones. This is particularly visible
in Campus 1, Campus 2 and Home 1 datasets. For instance, while 60 % of store
flows in Home 1 have no more than 100 kB, the percentage is about 40 % for
retrieve flows in the same network. This can be partially explained by the first
batch synchronization happening when sessions are started. Besides that, we
observe a high number of devices using Dropbox only for downloading content.
This usage will be analyzed further in the coming sections.

We also highlight a remarkably discrepancy in the CDF for store flows in
Home 2. A single device submitted chunks in consecutive TCP connections
during several days in our capture. This causes the CDF to be biased toward
the maximum chunk size used by Dropbox (4 MB). The traffic characteristics
suggest that chunks submitted by this device have never been acknowledged
by Dropbox servers, pointing to an isolated problem manifested in this single
device. This example illustrates the level of details that can be achieved using
solely flow measurements to monitor cloud services, provided that application
protocols are known and the network is properly instrumented.

Chunks per Batch

Figure 4.8 depicts the CDF of the estimated number of chunks per flow. The
curves show that most batches are composed of a small number of chunks.
Storage flows have no more than 10 chunks in more than 80 % of the cases
in all datasets. The Home 2 distribution diverges because of the single client
behaving abnormally described in the previous section. These distributions
reinforce our conjecture about the dominance of deltas and small files in Dropbox
usage habits: most flows are very small and composed of few chunks. Most of
the remaining flows have the maximum allowed number of chunks per batch

78 DROPBOX USAGE AND PERFORMANCE

Store Retrieve
1 e L I 1
L-- ,;:i}m'/—’ =
0.8 o 0.8 ‘;/
s P
0.6 = 0.6
29 2
3] .é"""/ f///
0.4 0.4 Campus 1 -~ r
Campus 2 -—-—
0.2 0.2 Home | —— [
Home?2 -----
0 0 :
1 10 100 1 10 100
Number of Chunks Number of Chunks

Figure 4.8: Distribution of the estimated number of file chunks per TCP flow.

and, as such, are strongly shaped by the protocol design of Dropbox. Cloud
storage developers should, therefore, design protocols that are efficient to handle
workloads with these characteristics. Next, we evaluate the responsiveness [146]
of Dropbox, represented by the system throughput.

4.4.4 Storage Throughput

Our measurements in Section 4.4.2 indicate that Dropbox relies on centralized
data centers for control and storage. This raises the question on the service
performance for users located far from those data centers. The throughput of
storage operations is certainly a good metric to indicate to the responsiveness
of cloud storage services, since it is related to both the latency (i.e., it is also
affected by the locality) and the size of storage operations.

Figures 4.9 and 4.10 depict the throughput achieved by each storage flow in
Campus 1 and Campus 2, respectively. The figures show separate plots for the
store and retrieve operations. Home 1 and Home 2 are left out of this analysis
since the access technology (ADSL, in particular) is a bottleneck for the service
in those networks. The z-axis represents the number of bytes S transferred in
the flow, already subtracting the typical TLS/SSL overheads, while the y-axis
shows the throughput 6 calculated as the ratio between transferred bytes S
and duration At of each flow — i.e., § = S/At (note the logarithmic scales).
The duration At is accounted as the time between the first TCP SYN packet
and the last packet with payload in the flow, ignoring connection termination
delays. Flows are represented by different marks in the figure according to their
number of chunks. We refer to Appendix B for more details on our methodology
to calculate the storage throughput.

Overall, the throughput is remarkably low. The average throughput (marked
with dashed horizontal lines in the figures) is not higher than 462 kbits/s for store

4.4. DROPBOX PERFORMANCE 79

10M :
|
M b M 4
z I z
£ 100k t £ 100k 1
5 B
o =%
= =
2 10k t EXT
o =]
= =
E E
1k 2- 5 r 1k 4
6- 50 - B8 40 6- 50 -
50-100 - 47 51-100 -
100 T T T T T T T T T 100 — T T T T T T T
256 1k 4k 16k 64k 256k IM 4M 16M64M 400M 256 1k 4k 16k 64k 256k IM 4M 16M64M 400M
Upload (bytes) Download (bytes)
(a) Store (b) Retrieve
Figure 4.9: Throughput of storage flows in Campus 1.
10M ; 10M ;
M A IM s,
2 2
£ 100k - < 100k A
5 5
= =
= =
2 10k | EXT
2 2
= =
= E
Ik 1k
% 6- 50 -
d 51-100 -
100 -t 100 oo
256 1k 4k 16k 64k 256k IM 4M 16M64M 400M 256 1k 4k 16k 64k 256k IM 4M 16M64M 400M
Upload (bytes) Download (bytes)
(a) Store (b) Retrieve

Figure 4.10: Throughput of storage flows in Campus 2.

flows and 797 kbits/s for retrieve flows in Campus 2 (359 kbits/s and 783 kbits/s
in Campus 1, respectively). In general, the highest observed throughput (close
to 10 Mbits/s in both datasets) is only achieved by flows carrying more than
1 MB. Moreover, flows achieve lower throughput as the number of chunks in-
creases. This can be seen by the concentration of flows with high number of
chunks in the bottom part of the plots for any given size.

TCP start-up times and application layer sequential acknowledgments are
two major factors limiting the throughput, affecting flows with a small amount
of data and flows with a large number of chunks, respectively. In both cases,
the high RTT between clients and data centers amplifies the effects. In the
following, those effects are detailed.

80 DROPBOX USAGE AND PERFORMANCE

TCP Start-up Effects

Flows carrying a small amount of data are limited by TCP slow start-up mecha-
nism. This is particularly relevant in the analyzed campus networks, since both
data link capacity and RTT to storage data centers are high in these networks.
Figures 4.9 and 4.10 show the maximum throughput 6,,, = S/L for completing
the transfer of a specific amount of data S, assuming that flows stay in the TCP
slow start phase. We compute the latency L for completing the transfer using
the following formula [53]:

init_cund C

where S in the formula is again the flow size, C' is the bottleneck network link-
rate and v = 1.5, since delayed acknowledgments are assumed. Moreover, the
initial congestion window (init_cwnd) is set to 3, and the total latency of a
flow is adjusted to include constant overheads — e.g., the 3 RTTs of TLS/SSL
handshakes in the Dropbox setup observed during our data capture (see Ap-
pendix B).

Figures 4.9 and 4.10 show that 6 approximates the maximum throughput
satisfactorily. This is clearer for flows with a single chunk, which suffer less
from application layer impediments. The bound is less tight for retrieve flows,
because their latency includes at least 1 server reaction time. Note that the
throughput can still be limited by other factors, such as the explicit user selection
of transfer limits or possible network congestion. However, when considering
only flows with a single chunk, more than 99 % of the store flows and around
95 % of the retrieve flows in Campus I have no TCP retransmissions. These
percentages are lower in Campus 2 (88 % and 75 %) because of the wireless
access points. Single-chunk flows with no retransmissions experience throughput
close to the theoretical limit 6,,° confirming that the TCP slow-start is their
main bottleneck.

L= [mg7 <S(7_1) + 1)} « RTT + 2 (4.1)

Sequential Acknowledgments

The wuse of sequential acknowledgments at the application layer by
Dropbox 1.2.52 (see Figure4.1) is a major bottleneck for flows with more than 1
chunk. The mechanism forces clients to wait one RTT (plus the server reaction
time) between two storage operations. Naturally, flows carrying a large number
of small chunks suffer relatively more from this impediment than flows with
large chunks. Figure 4.8 shows that more than 40 % of the flows have at least
2 chunks and are potentially affected.

5 The average throughput of store flows in Campus 1 is only 17 % lower than what would
be obtained if each flow would have experienced the maximum theoretical throughput.

4.4. DROPBOX PERFORMANCE 81

10m —
o
2m 1 -~ e I
T, L. —.—— ~
g 30s 1 S »
S5 A T —— aet Chunks
A U S o
Is 1 - L
6- 50 -+
51-100 -+
0.1s T T T T ‘ ‘ T

1k 4k 16k 64k 256k 1M 4M 16M 64M 400M
Upload (bytes)

(a) Store - Campus 2

10m S
2m A T
= 30s 1 .\'O‘".."‘.._.-"..—.—.'\-"""‘-"...'.,Aﬂ“" |
5 308 o TR T pes
E 58 1 - S T i Chunks
1s 4 2- 5 L
6- 50
51-100 -«
0.1s T T T T T T T

1k 4k 16k 64k 256k 1M 4M 16M 64M 400M
Download (bytes)

(b) Retrieve - Campus 2

Figure 4.11: Minimum duration of flows with diverse number of chunks.

Flows with several chunks are also affected by the previously described fac-
tors. Besides that, the Dropbox client keeps storage connections open for a
short interval after transferring a chunk, waiting for new chunks. Therefore,
some flows in Figures 4.9 and 4.10 might have a longer duration because they
are reused during this idle interval. To remove these effects and highlight the im-
pact of sequential acknowledgments, we divide the z-axis of Figure 4.10 in slots
of equal sizes (in logarithmic scale) and, for each slot, select the flow with max-
imum throughput in each of the four groups shown in the figure. Figure 4.11
depicts the duration of these representative flows. Flows with more than 50
chunks, for instance, always last for more than 30s, regardless of their size.
Considering the RTT in Campus 2 (around 100 ms), up to one third of these
30 s (5-10 s, since 1 RTT is waited between chunks) is wasted while application
layer acknowledgments are transiting the network. The remaining duration is
mainly caused by the server and the client reaction times between chunks.

82 DROPBOX USAGE AND PERFORMANCE

4.4.5 Implications

Our measurements clearly indicate that the application layer protocol in com-
bination with large RTT penalizes the service performance. We identify three
possible solutions to remove the identified bottlenecks:

1. Bundling smaller chunks, thus increasing the amount of data sent per
storage operation. Dropbox 1.4.0, announced in April 2012, implements a
bundling mechanism, which is analyzed in the following;

2. Using a delayed acknowledgment scheme in storage operations, thus
pipelining chunks to remove the effects of sequential acknowledgments;

3. Bringing storage servers closer to customers, thus reducing the latency
and, by consequence, improving the overall throughput.

Note that the first two countermeasures target only the application layer
bottleneck. The third one, while valid for any on-line service, would have the
extra positive impact of removing storage traffic from the core of the Internet.

Improvements in Dropbox 1.4.0

Dropbox 1.4.0 adds new protocol commands, allowing several chunks to be sub-
mitted in a single application layer operation. We use the extra data captured
in Campus 1 during Jun and Jul 2012 to quantify the effects of this mechanism
on the service performance.

Table 4.4 compares flow size and throughput distributions before and after
the deployment of Dropbox 1.4.0. The increase in the median flow size shows
that flows are bigger in this version, because small chunks can be accommodated
in a single TCP connection. The averages are less affected, since only small flows
profit from the mechanism. Both the median and the average throughput, on
the other hand, are dramatically improved. The average throughput of retrieve
flows, for instance, is around 65 % higher in the newest dataset!

Since both the new batch commands and the old single-chunk commands are
still executed sequentially, there seems to exist further room for improvement in
the protocol. Overall, these results show the importance of protocol design to the
performance of cloud storage. The lessons learned are important for engineers
building new cloud storage services. The next chapter will complement the
analysis of storage protocols by comparing the design of Dropbox to that of its
competitors.

4.5. SERVICE USAGE AND WORKLOAD

83

Table 4.4: Campus 1 before and after the deployment of a bundling mechanism.

Mar/Apr Jun/Jul
Median Average | Median Average
Flow size
Store 16.28 kB 3.91 MB | 42.36 kB 4.35 MB
Retrieve | 42.20 kB 8.57 MB | 70.69 kB 9.36 MB
Throughput (kbits/s)
Store 31.59 358.17 81.82 552.92
Retrieve 57.72 782.99 109.92 1293.72

4.5 Service Usage and Workload

After studying the Dropbox architecture and revealing several performance bot-
tlenecks from its protocol design, we turn our attention to the service usage. This
section describes several characteristics about Dropbox traffic, aiming to pro-
vide a reference on typical workloads, which can help to model and dimension
the infrastructure for similar services.

Section 4.5.1 studies Dropbox users’ behavior, revealing typical usage scenar-
ios and their consequences in terms of network traffic. After that, Section 4.5.2
and Section 4.5.3 study the distributions of devices per household and shared
folders per user. Section 4.5.4 and Section 4.5.5 characterize Dropbox session
duration and usage seasonality, respectively. While all these sections focus on
the Dropbox client software, Section 4.5.6 discusses the (less popular) Dropbox
Web interface. Finally, Section 4.5.7 summarizes the findings in this section.

4.5.1 Storage Volume

In this section we correlate ISP customers (IP addresses) in home networks
and the total storage volume in store and retrieve operations. Both campuses
are left out of this analysis because IP addresses are not correlated to users or
households in those networks. The amount of stored and retrieved data per
household is depicted in Figure 4.12. Each IP address is represented by a point
and different symbols are used to illustrate the number of devices behind the TP
address. Note that we place all cases with less than 1 kB on the axes because
of the logarithmic scales. The figure accounts only for transfers made from the
Dropbox client. Similarly to Section 4.4.4, the typical overhead of TLS/SSL
negotiations are subtracted from the transferred amount.

Figure 4.12 shows that Dropbox users tend to download more than upload.
This is visible in the higher density of points below the diagonals. Overall, the to-
tal downloaded data in Home 1 is 1.4 times higher than the total uploaded data

84 DROPBOX USAGE AND PERFORMANCE
100G 1 Devices 100G R Devices
] L1 = | [1 x
10G "y 10G j 0i
1G . F>3 e 1G F>3 o
% 100M A 2 100m o
= = [
< 10M 3 S 10M §
2 2
S M A - s M £
7] N < g 7} 5 Y
100k 7§ 7 8o 100k ;
10k ¢ ° 10k +
1K gl = 1k 2 - s

1k 10k 100k 1M 10M100M 1G 10G 100G

Retrieve (bytes)

(a) Home 1

1k 10k 100k IM 10M100M 1G 10G 100G

Retrieve (bytes)

(b) Home 2

Figure 4.12: Data volume stored and retrieved from Dropbox.

(for illustration, this ratio is 1.6 in Campus 1 and 2.4 in Campus 2). Home 2
is an exception: the ratio is around 0.9 in this network. Some customers mas-
sively uploading content create this divergence. These customers appear on the
top right corner of Figure 4.12(b). Note that one of these customers is also
responsible for the bias in the CDF depicted in Figure 4.7.

Four usage scenarios can be identified: (i) occasional users, which abandon
their Dropbox clients, hardly synchronizing any content (points close to the
origin); (ii) upload-only users that mainly submit files (points close to the y-
axes); (iil) download-only users, executing predominantly retrieve operations
(points close to the z-axes); (iv) heavy users that both store and retrieve large
amounts of data (points along the diagonals). The proportion of users in each
group explains the overall relation between downloads and uploads.

Table 4.5 quantifies the groups. The IP addresses are divided according to
the following heuristics: TP addresses that have less than 10 kB in both retrieve
and store operations are included in the occastonal group; IP addresses that have
more than three orders of magnitude of difference between upload and download
(e.g., 1 GB versus 1 MB) are included in either download-only or upload-only;
all others are in the heavy group. For each group, the table shows the percentage
of IP addresses and sessions, the total transferred data, the average number of
days devices are seen on-line, and the average number of devices per household.

The occasional group represents around 30 % of the total IP addresses in
both vantage points. As expected, customers in this group exchange a negligible
amount of data and stay on-line in Dropbox less time when compared to others.
They also have the lowest average number of devices. This group, therefore,
marginally generates any load to the system.

The upload-only group accounts for around 7 % of the IP addresses, and is
responsible for a significant amount of uploads (21 % in Home 1 and 11 % in

4.5. SERVICE USAGE AND WORKLOAD 85

Table 4.5: Fraction of IP addresses and sessions, retrieved and stored data
volume, average number of days on-line, and average number of devices of the
different user groups in Home 1 and Home 2.

(a) Home 1
Group Addresses Sessions Retrieve Store Days Devices
Occasional 31 % 15 % - - 16.37 1.22
Upload-only 6 % 6 % - 84 GB 19.74 1.36
Download-only 26 % 24 % 135 GB - 21.53 1.69
Heavy 37 % 54 % 417 GB 321 GB 27.54 2.65
(b) Home 2
Group Addresses Sessions Retrieve Store Days Devices
Occasional 32 % 18 % - - 15.52 1.13
Upload-only 7T% 4% - 26 GB 20.42 1.37
Download-only 28 % 23% 57 GB - 17.37 1.34
Heavy 33 % 55 % 147 GB 193 GB 27.10 2.16

Home 2). Considering their low number of devices, users in this group seem to
be interested in Dropbox for backups and for the submission of content to third-
parties or to geographically dispersed devices. The opposite behavior can be
concluded for the download-only group — e.g., people that use Dropbox to receive
content produced in other locations. This group is, however, very significant in
both number of IP addresses (26 % in Home I and 28 % in Home 2) and
transferred volume (25 % and 28 %, respectively). Similarly to the upload-only
group, a moderate number of devices per IP address is seen in this group.

Finally, accounting for 37 % of IP addresses in Home 1 and 33 % in Home 2,
the heavy group is responsible for most of the volume transferred by Dropbox
clients. Customers in this group have a high number of devices (above 2 on
average), appear on-line more than 60 % of the days in our capture and are
responsible for more than 50 % of the Dropbox sessions. The usage of Dropbox
for synchronization of devices in a household seems to be the typical scenario in
this group. These are, therefore, the users causing the biggest impact on both
system workload and network utilization.

4.5.2 Devices

Devices connected to the same LAN can use the LAN Sync Protocol for syn-
chronizing files without retrieving duplicated content from the cloud, thus saving
both network and server resources. We describe the distribution of the number

86 DROPBOX USAGE AND PERFORMANCE

1 .

Home 1
0.8 1 Home 2 sowmm |

Fraction

Number of devices

Figure 4.13: Distribution of the number of Dropbox devices per household.

of devices residing in the same LAN, aiming to check the potential for savings
by implementing LAN Sync capabilities. Figure 4.13 depicts the distribution of
the number of devices per IP address in Home 1 and Home 2.

In around 60 % of the households using the Dropbox client, there is only a
single device linked to the service. Most of the remaining households have up
to 4 devices and, not surprisingly, are part of the heavy group identified in the
previous section. By inspecting a subset of notification connections in Home 1,
we observe that in around 60 % of households with more than 1 device (around
25 % of the total), at least 1 folder is shared among the devices. This further
confirms our findings about the typical use of Dropbox among heavy users for
the synchronization of devices. Since the LAN Sync Protocol traffic does not
reach our probes, we cannot precisely quantify the amount of bandwidth saved
in these households by the use of the protocol. We can conclude, however, that
relatively few opportunities for using the LAN Sync Protocol appear in practice,
with no more than 25 % of the households profiting from that. The remaining
users always rely on central storage data centers for their data transfers.

4.5.3 Shared Folders

Next, we measure to what extent Dropbox is being used for content sharing
or collaborative work. Different users sharing folders can profit from the LAN
Sync Protocol as well. Besides that, providers can deploy special capabilities to
save storage space, if several users share the same content. We analyze names-
pace identifications (i.e., folder identifiers) in Home 1 and Campus 1 traffic.6
Figure 4.14 shows the distribution of the number of namespaces per device. By
analyzing Campus 1 data on different dates, it is possible to conclude that the

6 This information could not exposed in Home 2 and Campus 2 for technical reasons.

4.5. SERVICE USAGE AND WORKLOAD 87

..
” P
z 0.6
a
O o4
k Campus 1 I
H()mel -
0 | |
1 2 4 6 : - " |

Number of namespaces

Figure 4.14: Number of namespaces per device.

1 L
0.8 - r
9 06 7 B
5
0.4 A - Campus 1 - r
Campus 2 -—-—
0.2 1 Homel —— [
i) Home 2 -----
0 +=— T T T T T
30s 1m 10m 1h 4h 8h 24h 1w

Time

Figure 4.15: Distribution of session durations.

number of namespaces per device is not stationary and has a slightly increasing
trend. Figure 4.14 is built considering the last observed number of namespaces
on each device in our datasets.

In both networks the number of users with only 1 namespace (the users’
root folder) is small: 13 % in Campus I and 28 % in Home 1. In general,
users in Campus 1 have more namespaces than in Home 1. The percentage of
users having 5 or more namespaces is equal to 50 % in the former, and 23 %
in the latter. When considering only TP addresses assigned to workstations in
Campus 1, each device has on average 3.86 namespaces. These results suggest
that content sharing is common, and providers should prepare their solutions to
handle content duplication. Chapter 5 will discuss such aspects further, using
data from volunteering Dropbox users.

88 DROPBOX USAGE AND PERFORMANCE

0~8 L L L
Campus 1 - Home 1 —&—

Campus 2 -—>—- Home?2 --@--

0.6

Fraction

24/03 31/03 07/04 14/04 21/04 28/04 05/05
Date

Figure 4.16: Device start-ups: fraction of the number of devices in the probe.

4.5.4 Session Duration

We analyze the session duration based on the TCP flows to notification servers.
Home 1, Home 2, and Campus 2 have a similar behavior in general, as shown
in Figure 4.15, with an exception for the number of short-lived sessions. In both
home networks, a significant number of notification flows are terminated in less
than 1 minute. A closer inspection reveals that most of those flows are from
few devices. Their divergent TCP behavior suggests that network equipment
(e.g. NAT or firewalls — see [83]) might be terminating notification connections
abruptly. Considering the normal operation of the Dropbox protocol, notifica-
tion connections are re-established immediately after that.

Most devices in Home 1, Home 2 and Campus 2 stay connected up to 4
hours in a single session. In Campus 1, a significantly higher percentage of long-
lasting sessions is seen. This can be explained by the prevalence of workstations
in a typical 8-hours work routine. Inflections at the tail of the distributions are
seen in all curves, as a consequence of the devices kept always on-line.

4.5.5 Daily Usage

We characterize whether the use of the Dropbox client has any typical seasonal-
ity. Figure 4.16 shows the time series of the number of distinct devices starting
up a Dropbox session in each vantage point per day. The time series are normal-
ized by the total number of devices in each dataset. Around 40 % of all devices
start at least one session every day in home networks, including weekends.” In
campus networks, on the other hand, there is a strong weekly seasonality.

At a finer time scale (1 hour bins), we observe that the service usage follows
a clear day-night pattern. Figure 4.17 depicts the daily usage of the Dropbox

7 Note the exceptions around holidays in April and May.

4.5. SERVICE USAGE AND WORKLOAD 89

0.15 L L L L

Campus 1 -
Campus 2 -—>—-
Home 1 —&—
g 011 - Home2 --@-- [
8
* 0,05 A

0

Time (hours)

(a) Session start-ups

0.4
Campus 1 -
Campus 2 -—>—-
0.3 Home | —&—
g
g 02 .
£ | e
0.1 -

PR St S S N S M e - Smtii=D
04 06 08 10 12 14 16 18 20 22 00 02 04

Time (hours)

(b) Active devices

Figure 4.17: Daily start-ups and sessions on weekdays.

client. All plots are produced by averaging the quantities per interval across all
working days in our datasets.

Figure 4.17(a) shows the fraction of distinct devices that start a session
in each interval, while Figure 4.17(b) depicts the fraction of devices that are
active (i.e., are connected to Dropbox) per time interval. From these figures
we can see that Dropbox usage varies strongly in different locations, following
the presence of users in the environment. For instance, in Campus 1, session
start-ups have a clear relation with employees’ office hours. Session start-ups are
better distributed during the day in Campus 2 as a consequence of the transit
of students at wireless access points. In home networks, peaks of start-ups are
seen early in the morning and during the evenings. Overall, all time series of
active devices (Figure 4.17(b)) are smooth, showing that the number of active
users at any time of the day is easily predictable.

Figure 4.18 depicts the fraction of the total number of bytes exchanged in
each time interval in retrieve and store functions. Figure 4.18(a) shows that

90 DROPBOX USAGE AND PERFORMANCE

0.2

Campus 1 -

Campus 2 -—X—-
0.15 4 # ¥ Home] —a— [
g) Home 2 --@--
g 0.1 1 3
=
0.05 - r
04 06 08 10 12 14 16 18 20 22 00 02 04
Time (hours)
(a) Retrieve
0.2 . . .
Campus 1 -
0.15
=
8
é 0.1
0.05
0 e ERANEIE ES

04 06 08 10 12 14 16 18 20 22 00 02 04

Time (hours)

(b) Store

Figure 4.18: Daily usage of Dropbox storage on weekdays.

the number of bytes received in retrieve operations has a correlation with client
start-ups. This suggests that the first synchronization after starting a device
is dominated by the download of content produced elsewhere, instead of the
upload of content produced off-line. Although other patterns are visible in the
figures, such as the concentration of downloads in the morning in Campus 1 and
in the evening in Home 1, both series are still noisy at this level of aggregation.

4.5.6 Web Storage

In addition to the client application, Dropbox allows users to access shared
folders and files using both its main Web interface and a direct link download
mechanism. In the following, we analyze the usage of these interfaces. Fig-
ure 4.19 presents the CDFs of the number of bytes in the storage flows of the
Dropbox main Web interface. Separate CDFs for uploads and downloads are
presented.

4.5. SERVICE USAGE AND WORKLOAD 91

Download
1 1
0.8 (e 0.8 /,}1‘" g
(=
w 0.6 : 0.6
®
04 04 4 Campus 1 r
Campus 2 ~—-—+
0.2 = 0.2 4 Home] ——
ey Home 2 -----
0 0 ; : ;
100 1k 10k 100k 1k 10k 100k IM 10M
Size (bytes) Size (bytes)

Figure 4.19: Storage via the main Web interface.

Considering the number of uploaded bytes, it becomes clear that the main
Web interface is hardly used for uploading content. More than 95 % of the flows
submitted less than 10 kB. When considering downloaded bytes, up to 80 % of
flows exchanged less 10 kB. These distributions are, however, strongly biased
toward the TLS/SSL handshake sizes for two reasons: (i) the Dropbox interface
retrieves thumbnails from storage servers using TLS/SSL; (ii) Web browsers
open several parallel connections when retrieving those HT'TP objects. The
remaining flows have less than 10 MB in more than 95 % of the cases, showing
that only small files are normally retrieved from this Web interface.

Additionally, we analyze flows related to direct link downloads. Note that
these flows correspond to 92 % of the Dropbox Web storage flows in Home 1,
confirming that this mechanism is highly preferred over the main Dropbox Web
interface. Figure 4.20 shows the CDF of the size of direct link downloads.® Since
these downloads are not always encrypted, the CDF does not have the TLS/SSL
lower-bound. Interestingly, only a small percentage of direct link downloads is
bigger than 10 MB, suggesting that their usage is not related to the sharing of
movies or large archives.

4.5.7 Implications

This section helps to understand the usage of Dropbox. This is needed, for in-
stance, for provisioning data centers and networks to handle cloud storage traffic.
Our analysis of user behaviors reveals that users have different interests regard-
ing the application. For instance, although Dropbox is already installed in more
than 6 % of the households (see Section 4.3), less than 40 % of these households
are fully using its functionalities — i.e., synchronizing devices, sharing folders

8 Uploads are not shown since a single HT'TP request is sent. Campus 2 is not depicted
due to the lack of FQDN.

92 DROPBOX USAGE AND PERFORMANCE

/-—-
0.8 //
w 0.6 ,/’/
2 et
© 04 ST
...‘.4“7"‘ Campus T eeeeeeeees
0.2 Home 1 [
Home 2 -----
0 ; ;
100 1k 10k 100k M 10M 100M

Download (bytes)

Figure 4.20: Size of direct link downloads.

etc. Interestingly, the results are similar in both home networks, reinforcing our
conclusions and showing that cloud storage traffic is very predictable. The high
amount of traffic created by this small percentage of users motivates our expec-
tation that cloud storage services will be among the top applications producing
Internet traffic soon. Geographically dispersed sources as well as longitudinal
data are, however, necessary to check whether the conclusions of this section
can be generalized, when more people adopt such solutions.

4.6 Conclusions

The first contribution of this chapter is the extension of the general methodol-
ogy developed in Chapter 3 to monitor performance of cloud services. This was
achieved by introducing a method for both (i) isolating cloud storage traffic;
and (ii) calculating performance metrics specific to Dropbox. Both steps were
possible because we first succeeded in reverse-engineering the Dropbox proto-
cols. Then, we relied on a specialized flow exporter to collect the measurements
required to our analysis. Results in this chapter showed that flow measurements
are suitable for monitoring advanced aspects of cloud services, provided that the
measurement environment is carefully prepared and the network is properly in-
strumented. However, limitations of the approach also became evident, such as
the need for detailed knowledge of proprietary protocols, which is by no means
trivial to be obtained.

The application of our method resulted in the first study on the usage of
Dropbox on the Internet. By analyzing flows captured at 4 vantage points in
Europe over a period of 42 days, we performed an extensive characterization of
the service, both in terms of the system workload and the typical usage. The
main contributions of this analysis are:

4.6. CONCLUSIONS 93

e We quantified the usage of cloud storage in operational networks. Our
measurements showed a significant amount of traffic related to the ser-
vices, especially on campus networks. We expect these services to become
popular at home too, where penetration is already above 6 %.

e We highlighted that Dropbox performance is mainly driven by the dis-
tance between clients and storage data centers. In addition, short data
transfer sizes coupled with a per-chunk acknowledgment mechanism im-
pair transfer throughput.

e In terms of workloads, our analysis showed how user behavior is reflected
in network traffic. For instance, a considerable number of users takes
full advantage of the Dropbox functionalities, actively storing files and
sharing several folders. However, we also noted around one third of users
completely abandoning their clients, seldom exchanging any data during
the 42 days of observations.

Regarding the protocol bottlenecks, we identified two possible improvements:
(i) the use of a file bundling scheme; (ii) the introduction of delayed acknowledg-
ments. We showed that the recent deployment of a bundling mechanism already
improves Dropbox performance dramatically. In addition, we expect that the
overall performance will be improved by the deployment of other data centers
in different locations.

Finally, this chapter also contributed with the first large-scale public datasets
reporting the activity of anonymized Dropbox users. Our datasets and scripts
can be downloaded from the SimpleWeb trace repository at http://www.
simpleweb.org/wiki/Dropbox_Traces

http://www.simpleweb.org/wiki/Dropbox_Traces
http://www.simpleweb.org/wiki/Dropbox_Traces

94

DROPBOX USAGE AND PERFORMANCE

CHAPTER 5

Comparing Cloud Storage Services

The cloud-based architecture in conjunction with the proprietary protocols of
cloud storage services result in a black-box approach toward cloud storage. Re-
sults in Chapter 4 about Dropbox indicated that design and architectural choices
strongly influence cloud storage performance and network usage. However,
very little is known about how different providers (i.e., other than Dropbox)
implement their services and — most of all — performance implications of de-
sign choices. This understanding is valuable as a guideline for building well-
performing services that wisely use network resources.

The goal of this chapter is twofold. Firstly, we investigate how different
providers tackle the problem of synchronizing files. For answering this question,
we develop a methodology that helps to understand both system architecture
and client capabilities. We apply our methodology to compare five services (see
Table 5.1), revealing differences on client software, synchronization protocols
and data center placement. Secondly, we investigate the consequences of such
designs on performance. Taking the perspective of users connected from a single
location in Europe, we benchmark each selected service under the same condi-
tions, highlighting bottlenecks in various usage scenarios and emphasizing the
relevance of design choices for both users and the Internet.

This chapter compares several cloud storage services using active measure-
ments. Previous works have already studied cloud storage services [104, 148],
but without investigating how different designs affect cloud storage performance.
The authors of [101] benchmark cloud providers, but focusing only on server in-
frastructure. Similarly to our goal, [87] evaluates Dropbox, Mozy, Carbonite
and CrashPlan. In contrast to the previous work and motivated by the exten-
sive list of providers on the market, we first propose a methodology to automate
the benchmarking. Then, we analyze several synchronization scenarios and
providers, thus shedding light on the impact of design choices on performance.

Our results reveal interesting insights, such as unexpected drops in perfor-
mance in common scenarios because of both the lack of client capabilities and
architectural differences in the services. Overall, the lessons learned are useful
as guidelines to the design of cloud storage services.

96 COMPARING CLOUD STORAGE SERVICES

This chapter is further organized as follows. Section 5.1 describes our pro-
posed methodology. Section 5.2 applies our methodology to unveil the protocols
and data center locations of the analyzed services. Section 5.3 presents the out-
come of a preliminary data collection with volunteers (i.e., a crowd-sourcing),
which is used to guide the definition of our benchmarks. Client capabilities
are studied in Section 5.4, while Section 5.5 shows our benchmarking results.
Finally, Section 5.6 concludes the chapter and summarizes our contributions.

5.1 Methodology

This section describes our methodology to study cloud storage services. The
methodology is built around a testbed that is described in Section 5.1.1. The
testbed is used to perform active measurements aiming at (i) reverse engineer-
ing protocols; (ii) checking data center locations; and (iii) benchmarking perfor-
mance of storage services. Sections 5.1.2, 5.1.3 and 5.1.4 describe each of these
parts of the methodology, respectively. Finally, Section 5.1.5 lists the services
analyzed in the remainder of the chapter.

5.1.1 Testbed

Figure 5.1 depicts our testbed. It is composed of two parts: (i) the test com-
puters that run the application-under-test in the desired operating system; and
(ii) our testing application. The complete environment can run either in a single
machine, or in separate machines provided that the testing application can in-
tercept traffic from the test computers. In analogy to the setup used in previous
chapters (see Figure 3.1 in Chapter 3), the testbed can also operate in coopera-
tion with a specialized flow exporter, which takes over the tasks of intercepting
packets and calculating statistics from the network traffic.

We build the testbed in a single Linux server for the experiments in the
following. The Linux server both controls the experiments and hosts virtual
machines that run the test computers (Windows 7 Enterprise).! Our testbed is
connected to a 1 GB/s Ethernet network at the University of Twente, in which
Internet connectivity is not a bottleneck.

Our testing application receives as input benchmarking parameters describ-
ing the sequence of operations to be performed (step 0 in Figure 5.1). The
testing application acts remotely on a test computer, generating specific work-
loads in the form of file batches, which are manipulated using an FTP client
(step 1). Files of different types are created or modified at run-time, e.g., text

1 0S X and Linux clients also have been checked if available and show no differences.

5.1. METHODOLOGY 97

Test computer 1

1: Send files 0: Parz}meters

~o \
~
~
~

FTP server

- = - S <

2: Upload files ~ =

App-under-test

Cloud storage
provider

Test computer 2

App-under-test

4: Statistics

Figure 5.1: Testbed to study cloud storage services.

files composed of random words from a dictionary, images with random pix-
els, or random binary files. Generated files are uploaded to the cloud by the
application-under-test (step 2). The application-under-test then synchronizes
the files to other test computers in the testbed (step 3). The exchanged traffic
is monitored during all actions to compute performance metrics (step 4). These
metrics include the amount of traffic seen during the experiments and metrics
related to the responsiveness of the services, such as the time before actual syn-
chronization starts and the time to complete each synchronization step (i.e.,
steps 2 and 3).

5.1.2 Unveiling Storage Protocols

Our testbed includes the methodology described in Chapter 4 to study cloud
storage protocols, which relies on an intercept proxy — i.e., a Squid proxy server
extended with the module SSL-bump [124]. As in the case of Dropbox, other
cloud storage clients need to be instructed to trust the self-signed proxy cer-
tificate. In contrast to Dropbox, in which trusted certificate authorities are
hard-coded, other services can be trivially customized either by editing the op-
erating system certificate stores, or by changing local (plain text) configuration
files. By means of this setup, we are able to understand the client communica-
tion of the selected services and compare solutions of different providers to the
same synchronization scenarios.

98 COMPARING CLOUD STORAGE SERVICES

5.1.3 Architecture and Data Centers

The used architecture, data center locations and data center owner are im-
portant aspects of cloud storage services, having both legal and performance
implications. To identify how the analyzed services operate, we observe the
DNS name of contacted servers when (i) starting the application; (ii) immedi-
ately after files are manipulated; and (iii) when the application is in idle state.
For each service, a list of contacted DNS names is compiled.

To reveal all IP addresses of the front-end nodes used by a service, DNS
names are resolved to IP addresses by contacting more than 2,000 open DNS
resolvers spread around the world.? In fact, cloud services rely on the DNS to
distribute workload, returning different IP addresses according to the originating
DNS resolver [14].

The owners of the IP addresses are identified using the whois service. For
each IP address, we look for the geographic location of the server. Since popu-
lar geolocation databases are known to have serious limitations regarding cloud
providers [118], we rely on a hybrid methodology that makes use of: (i) informa-
tive strings (i.e., International Airport Codes) revealed by reverse DNS lookup;
(ii) the shortest RTT to PlanetLab nodes [136]; and (iii) active traceroute to
spot the closest well-known location of a router. Previous works [14, 55] indicate
that these methods provide an estimation with about a hundred of kilometers
of precision. Since this chapter aims at a coarse reference of the location from
where cloud providers operate (e.g., at country level), this estimation is sufficient
for our goals.

5.1.4 Benchmarking Performance

Cloud storage applications can be implemented in different ways. We follow
three steps in order to compare how different design choices impact performance.

Firstly, we carry a crowd-sourcing experiment to have a view on what type
of files people store in the cloud. This has been done by means of a standalone
application executed by volunteers. The application identifies automatically
whether the volunteer uses Dropbox.?> Then, all files in the volunteer’s cloud
storage folder are read, and file meta-data are extracted. The information is
submitted to a centralized server, where it is anonymized and archived. More
information about this experiment will be provided in Section 5.3.

Secondly, both Chapter 4 and our crowd-sourcing experiment show that
cloud storage applications can optimize storage usage and speed up transfers

2 The list has been manually compiled from various sources and covers more than 100
countries and 500 ISPs.

3 We collect data from Dropbox users only for the sake of simplicity, under the assumption
that usage is similar in other services.

5.1. METHODOLOGY 99

Table 5.1: Analyzed cloud storage services.

Name Version
Dropbox 2.0.8
Microsoft SkyDrive | 1.8.4357.4863
Google Drive 17.0.2006.0314
LaCie Wuala Strasbourg
Amazon Cloud Drive | 2.0.2013.841

by implementing special synchronization capabilities. We develop experiments
in our testbed to observe whether specific capabilities to enhance performance
are present in the five selected services. We describe these experiments directly
in Section 5.4, together with our results. In summary, our testing application
produces batches of files that would benefit from each capability. The exchanged
traffic is analyzed to determine how the services operate.

Finally, after knowing how the services are designed in terms of both data
center locations and client capabilities, we quantify how such choices influence
synchronization performance and the amount of overhead traffic. The results of
our crowd-sourcing experiment are used to define benchmark sets, in which files
of different sizes and formats are synchronized. Each tool is tested in several
experiments and performance metrics are calculated. More details about these
experiments will be provided in Section 5.5.

5.1.5 Tested Storage Services

We focus on five services for the sake of brevity, although our methodology
is generic and can be applied to any other service. We restrict our analysis to
native clients, since the previous chapter showed that this is the largely preferred
means to use cloud storage services.

Table 5.1 lists the analyzed services. Dropbox [46], Google Drive [72] and
SkyDrive [110] are selected because they are among the most popular offers,
according to both results in Chapter 4 and the volume of search queries con-
taining names of cloud storage services (see the Google Trends [74]). Wuala [95]
is considered because it is a system that offers encryption at the client-side. We
want to verify the impact of such a privacy/security enhancing technique on
synchronization performance. Finally, we include Cloud Drive [3] to compare
its performance to Dropbox, since both these services rely on AWS data centers.

100 COMPARING CLOUD STORAGE SERVICES

5.2 System Architecture

This section provides a summary of the observed client protocols as well as data
center locations. A complete description of client protocols is outside the scope
of this thesis, since protocol details are likely to change over time. We, instead,
focus on highlighting design elements that have significant implications in terms
of performance.

5.2.1 Protocols

Two components can be identified in the five analyzed services (see Table 5.1):
control and data storage. Regarding control, servers seem to perform three
major tasks: client authentication, file meta-data control, and notification of
changes to clients. All clients exchange traffic using HT'TPS, with the exception
of Dropbox notifications, which rely on plain HTTP. Interestingly, some Wuala
storage operations also use HI'TP, since users’ privacy has already been secured
by local encryption.

All services but Wuala use separate servers for control and storage. Ex-
cept for Wuala, the identification of control and storage servers is trivial by
monitoring the traffic exchanged when the clients (i) start; (ii) are idle; and
(iii) synchronize files. Both server names (i.e., FQDNs) and IP addresses differ
while performing these operations and, therefore, can be used to isolate control
and storage traffic. In the case of Wuala, we identify control and storage flows
during our tests by relying on flow sizes and on the typical sequence that Wuala
opens TCP connections.

We notice some relevant differences among the applications during login and
idle phases. Figure 5.2 reports the cumulative number of bytes exchanged with
control servers considering an initial 16 minutes after starting the clients and
without synchronizing any files (i.e., in idle state). Two considerations hold.
Firstly, the applications authenticate the user and check if any content has to
be updated. Note how SkyDrive requires about 150 kB in total, 4 times more
than others. This happens because the application contacts many Microsoft Live
servers during login. Secondly, once login is completed, the applications keep
exchanging data with the cloud. Wuala is the most silent, polling servers every 5
minutes on average — i.e., equivalent background traffic of about 60 b/s. Google
Drive follows close, with a lightweight 40 s polling interval (42 b/s). Dropbox
and SkyDrive use intervals close to 1 minute (82 b/s and 32 b/s, respectively).

Amazon Cloud Drive is completely different: polling is done every 15 s, each
time opening a new HTTPS connection. This notification strategy consumes
6 kb/s — i.e., about 65 MB per day! This information is relevant to users with
bandwidth constraints and to the system: a user connected to prepaid 3G/4G

5.2. SYSTEM ARCHITECTURE 101

900 L L L L L L Il
Dropbox —— Cloud Drive -8
SkyDrive =% Google Drive —o—
Wuala —+
600 ‘_._,_,.r’."rff

.--"""rr
300 e

Cumulative traffic (kB)

0 2 4 6 8 10 12 14 16
Time (min)

Figure 5.2: Background traffic while idle.

networks in the Netherlands in 2013, for instance, would have to pay around
0,65 euros per day without exchanging any files; similarly, 1 million users would
generate approximately 6 Gb/s of signaling traffic alone! As the results for other
providers demonstrate, such design is not optimal and seems indeed possible to
be improved.

These findings show the relevance of protocol design. In particular, cloud
storage services require mechanisms to notify and keep clients updated, period-
ically producing workload to both servers and the network. Even if each of such
notifications may by relatively small when compared to users’ files, some design
choices can result in surprisingly high costs to clients and to the system.

5.2.2 Data Centers

Next, we analyze data center topologies and locations. These aspects influence
cloud storage performance primarily because of the network latency, as Sec-
tion 5.5 will analyze. Moreover, storing data in the cloud has privacy and social
implications (see Chapter 1), because cloud providers and, possibly, authorities
can access people’s data without being noticed, if data are not previously en-
crypted by users. Knowing data center locations is, therefore, important for
helping people to understand possible issues of storing data in the cloud.
Figure 5.3 depicts the identified locations of four services. Dropbox uses
own servers (in the San Jose area) for client management, while storage servers
are committed to Amazon in Northern Virginia. Cloud Drive uses three AWS
data centers: two are used for both storage and control (in Ireland and North-
ern Virginia); a third one is used for storage only (in Oregon). SkyDrive relies
on Microsoft’s data centers in the Seattle area (for storage) and Southern Vir-
ginia (for storage and control). We also identified a destination in Singapore
(for control only). Not surprisingly, most data centers are located in the U.S.

102 COMPARING CLOUD STORAGE SERVICES

Dropbox
Wuala
Cloud Drive
SkyDrive

[N N

Figure 5.3: Data center locations. Points around Virginia (U.S.) are slightly
displaced for improving visualization.

Wuala data centers instead are located in Europe: two in the Nuremberg area
(Germany), one in Zurich (Switzerland) and a fourth in Northern France. None
is owned by Wuala. All these services follow a centralized design where clients
contact the servers directly using the public Internet, as expected.

Google Drive follows a different approach: TCP connections are terminated
at the closest Google’s edge node, from where the traffic is routed to the actual
storage/control data center using the private Google network. Figure 5.4 shows
the locations identified in our experiments.* Overall, more than 100 different
entry points have been located. Such architecture allows to reduce client-server
RTT and to offload storage traffic from the public Internet. Performance impli-
cations are discussed in Section 5.5.

5.3 Crowd-Sourced Files

Our results in Chapter 4, obtained using passive flow measurements, provided
evidences about the characteristics of files stored in the cloud. For example, our
study revealed that:

1. Typical Dropbox flows exchange few bytes of payload. This fact, together
with our knowledge of the Dropbox protocol, suggests that files stored in
the service are generally small;

4 Our results match with Google’s points of presence [73]. Understanding how Google
manages traffic inside its network is outside the scope of this thesis.

5.3. CROWD-SOURCED FILES 103

Google Drive @

Figure 5.4: Google Drive’s edge nodes.

2. A significant portion of Dropbox flows carry several chunks of data, sug-
gesting that files are often added in groups to the service;

3. Replication is common among different users, because of shared folders.

This section summarizes the outcome of our data collection with volunteering
Dropbox users, which has been performed with two goals. Firstly, we want
to verify and reinforce our conjectures of Chapter 4, by directly reading and
analyzing the files of a sample of Dropbox users. Secondly, we want to extend
our knowledge about the files stored in the cloud with information that cannot
be observed in passive flow measurements, such as file meta-data.

Section 5.3.1 gives an overview of our data collection and the obtained
dataset. Sections 5.3.2-5.3.5 present characteristics of the files in volunteers’
folders, including file size distributions, replication, content types and file cre-
ation dynamics. Finally, Section 5.3.6 lists client capabilities that providers can
implement to explore the identified file characteristics and improve performance.

5.3.1 Dataset Summary

Our data collection has been performed by means of a standalone application,
publicized via mailing lists and social networks. The call for participation has
been distributed for 2 months (in 2013). Our program has been executed by 333
unique Dropbox users, who have around 3 million files in Dropbox, totalizing
1.38 TB of data. Most participants are from Brazil (45 %), Europe (40 %) and
the U.S. (7 %). The collected meta-data include content type, file size, last
modification time, encrypted name and MD5 hashes of initial and final 8 kB of

104 COMPARING CLOUD STORAGE SERVICES

1 1

0.8 0.8 /
E 0.6 / E 0.6

O o4 S (@

P
0.2 P 0.2
_— I e,
0 0
1 10 100 1000 10000 100000 IM I0OM 100M 1G 10G 100G
Files Bytes
(a) Number of files (b) Dropbox folder size

Figure 5.5: Usage per volunteer (note the logarithmic z-axis).

each file. It should be noted that, while our sample is certainly biased toward
few geographic regions and people working in the academia, it provides strong
indications to support our conjectures of Chapter 4 and, thus, define realistic
benchmarks to study cloud storage services. Moreover, this is the first work to
characterize files stored in Dropbox. Our results are an initial reference to other
measurement studies, which might extend the analysis in the future.’

Figure 5.5 summarizes the dataset by presenting the status of volunteers’
Dropbox folders. Figure 5.5(a) shows the CDF of the total number of files
of each volunteer, whereas Figure 5.5(b) shows the CDF of volunteers’ used
space. We can conclude from these figures that most volunteers synchronize a
high number of files, with 70 % having more than 1,000 files — see point (p)
in Figure 5.5(a). Usage is generally close to the initial limit given for free by
Dropbox — around 2 GB, marked by point (q) in Figure 5.5(b), although a
significant portion of volunteers is already above such limit.

5.3.2 File Sizes

Figure 5.6 depicts the CDF of file sizes considering all volunteers. This figure
leads to the first important conclusion for defining our benchmarks, reinforcing
our conjecture of the previous chapter: the vast majority of files in volunteers’
folders are very small — e.g., around 60 % of the files have 10 kB or less —
see point (p) in Figure 5.6. Moreover, this finding raises questions about net-
work overheads, since most storage communication is encrypted and TLS/SSL
handshakes involve certificate exchanges that are of a few kilobytes too.

5 All data discussed in this section is available to the public at http://www.simpleweb.
org/wiki/Dropbox_Crawler.

http://www.simpleweb.org/wiki/Dropbox_Crawler
http://www.simpleweb.org/wiki/Dropbox_Crawler

5.3. CROWD-SOURCED FILES 105

1
0.8 —
Y
a)
© 04 v
02 //
0

1 10 100 1k 10k 100k 1M 10M 100M
Bytes

Figure 5.6: Overall file size (note the logarithmic z-axis).

1 -
() .

0.8 *"7‘
|
0.6 |

g /L @
Coq {201
0.2 g i Bytes r
‘ | Files -------
0 : ‘
0 0.2 0.4 0.6 0.8 1

Fraction of volunteer’s total

Figure 5.7: CDF of the number of volunteers per fraction of replicas.

Figure 5.6 also shows that a small but non-negligible percentage of files are
over 1 MB in size. The distribution is long-tailed, with the biggest file in our
sample having more than 5.5 GB, for instance. Therefore, our second conclusion
is that cloud storage services need to be able to efficiently handle huge files,
although less frequently.

5.3.3 Replicas

Figure 5.7 depicts the CDF of the number of volunteers according to the fraction
of replicas in their folders. The figure reports only repeated content — i.e.,
whenever two or more files with the same content are identified, all bytes/files are
accounted, except for the first occurrence. For speeding up the data collection,
files are considered replicas if they have the same size and share the first and
last 8 kB. Manual analyses reveal that most replicas also share names, but are
in distinct folders, suggesting that our approach provides a good approximation.

106 COMPARING CLOUD STORAGE SERVICES

Table 5.2: Percentage of bytes and files on top-10 content-types. The line in
bold marks the only content type that is surely compressible.

Content-type % of bytes | % of files
image/jpeg 19.6 8.0
application/pdf 14.5 6.2
application/octet-stream 12.4 12.7
application/zip 8.3 2.2
text/plain 7.1 30.5
video/mp4 5.5 < 0.1
video/quicktime 3.4 < 0.1
video/3gpp 3.4 < 0.1
video/x-msvideo 2.9 < 0.1
application/x-is09660-image 2.7 < 0.1
Others 20.2 404

Figure 5.7 shows that content replication is significant. The point (p) in the
figure marks the percentage of volunteers (i.e., 80 %) that have up to 15 % of
replicated files. This number implies that the remaining 20 % of volunteers have
at least 15 % of bytes in replicas. The percentage is even higher for the number
of files: more than 50 % of the volunteers have at least 15 % of replicated files —
see mark (q) in Figure 5.7. Overall, 42 % of the files (i.e., 1.3 million files) and
14 % of the bytes (i.e., around 204 GB) in our crowd-sourced sample are replicas.
These numbers not only confirm our conjecture in Chapter 4 that content du-
plication among different users is frequent (because of shared folders), but also
show that duplication is common inside folders of individual users. Therefore,
cloud storage services have significant room for saving bandwidth and storage
by skipping transmitting and storing duplicated content. The next section will
discuss how some cloud providers avoid submitting replicas by implementing
client-side deduplication.

5.3.4 Content Types

The content type is determined by means of the libmagic [125]. Table 5.2
shows the top-10 identified content types. Formats in Table 5.2 account for
around 80 % of the bytes in our sample. Around 12 % of the bytes are in
files that cannot be precisely identified by the libmagic and are reported as
application/octet-stream in the table. A variety of file extensions are noticeable
in this group, pointing mostly to executable and multimedia files.

Some inconsistencies also appear on the content subtype, such as files with
mp4 extension identified as either video/mp/ or video/3gpp. This happens be-

5.3. CROWD-SOURCED FILES 107

0 ; ® —
o 0.6 /i
Y04 /
o |/
%(q)
0

D

0
200 400 600 800 1000 1200
Days

Figure 5.8: File age since last modification time.

cause our crowd-sourcing application first tries to determine the content type
using the initial 8 kB of a file, for performance considerations. The complete file
is read only when this first attempt fails. The following conclusions, however,
are not affected by these inconsistencies.

Our results show that formats that are surely incompressible (e.g.,
application/zip) comprise more than 60 % of the bytes in total. However,
text/plain and some other compressible formats are non-negligible: around 9 %
of the bytes and more than 30 % of the files. These percentages show that
incompressible files are smaller than the compressible ones, as it could be ex-
pected, since movies and images are usually larger than documents and text
files, for example. More importantly, these results suggest that cloud storage
services should compress data before transmission, but taking file types into
account to avoid wasting of resources.

5.3.5 File Creation and Aging

Next, we want to understand how files are created and whether they are changed
often in the cloud. Figure 5.8 shows the distribution of file ages, calculated as
the difference between file last modification times and the time in the moment
of our data capture. Focusing on mark (p) in Figure 5.8, note that almost
80 % of the volunteers’ files have been modified less than 1 year before our data
collection. The figure is smooth, with only 14 % of the files modified in the last
month before our capture (point (q) in the figure). These results suggest that
files are relatively young in the service, but not constantly changed. We cannot
make any definitive assertion about how files evolve over time, however, since
our application collects a single snapshot.

Last modification times also allow us to speculate about how files are cre-
ated and modified in the service. Section 4.4.3 already showed that a significant

108 COMPARING CLOUD STORAGE SERVICES

1 g 0 e
- 3 "
0.8 1.+ $adl
¥ p) o
w 0.6 -
a ////
04
—— Bundles ----
0.2 Overall bytes ---%--
0 Overall files —o—
1 10 100 1000 10000
Cardinality

Figure 5.9: Bundles — files of a volunteer are grouped by last modification time.

portion of Dropbox flows in the network carries several chunks of data, thus
suggesting that files are often added (or modified) in bundles. Our flow mea-
surements, however, do not provide insights on the files inside the bundles.

We perform this analysis by grouping the files of each volunteer by last
modification time — arbitrary time bins of 10 s are used for illustration, with
smaller bins leading to similar conclusions. Three properties of the obtained
bundles are analyzed: (i) the size of the bundles (i.e., their cardinality); (ii) the
number of bytes that are in bundles of a specific cardinality; and (iii) the number
of files that are in bundles of a specific cardinality. Figure 5.9 shows the CDF
of these three variables (note the logarithmic z-axis). Focusing on the line
representing the CDF of the number of bundles per cardinality, note that 70 %
of the created bundles have just 1 file. However, the tail of the distribution is
long: the remaining bundles have up to 10,000 files. The distribution of bytes
shows that single-file bundles include around 70 % of the data.

More interestingly, although 70 % of the bundles have just a single file, most
files in our sample are in the remaining 30 % of the bundles. Figure 5.9 depicts
that only 20 % of the files are in single-file bundles. Moreover, 40 % of the files
are in bundles of at least 100 (mark (p) in the figure). That is, most files in our
sample are small (see Figure 5.6) and multiple small files are frequently added
or modified at once. These findings imply that cloud storage services should be
prepared to handle bundles containing lots of small files.

5.3.6 Implications

Our study gives an indication about the type of workload that cloud storage ap-
plications need to handle. Similar workloads have already been faced by tradi-
tional networked file systems, which often implement special client capabilities to

5.4. CLOUD SERVICE CAPABILITIES 109

optimize storage usage and to speed up transfers in specific scenarios [114, 140].
These client capabilities include the adoption of:

e Bundling, i.e., the transmission of multiple small files as a single object;
e Chunking, i.e., splitting content into a maximum size data unit;
e Compression;

e (lient-side deduplication, i.e., avoiding re-transmitting content already
available on servers;

e Delta encoding, i.e., the transmission of only modified portions of a file.

The next section will investigate whether the selected providers implement these
capabilities in their clients, by performing a series of active experiments in our
testbed. After that, Section 5.5 discusses performance implications of the dif-
ferent designs.

5.4 Cloud Service Capabilities
5.4.1 Bundling

Section 5.3 showed that most files in Dropbox are small and added in groups.
When a batch of files needs to be transferred, files could be bundled and
pipelined, such that both transmission latency and control overhead are re-
duced. Our benchmark to check how services handle batches of files consists of
4 upload sets, each containing exactly the same number of bytes, which are split
into 1, 10, 100 or 1000 files, respectively.

These experiments reveal a variety of synchronization strategies. Google
Drive and Cloud Drive open one separate TCP (and TLS/SSL) connection for
each file. Considering management, Cloud Drive opens 3 TCP and TLS/SSL
control connections per file operation. Figure 5.10 shows the number of TCP
SYN packets observed when Google Drive and Cloud Drive have to store 100
files of 10 kB each: 100 and 400 connections are opened respectively, requiring
30 s and 55 s to complete the upload. Section 5.5 will confirm that such design
strongly limits the client performance when several files have to be exchanged,
owing to TCP and TLS/SSL negotiations.

Other services reuse TCP connections. However, SkyDrive and Wuala sub-
mit files sequentially, waiting for application layer acknowledgments between
each file upload. This can be determined by counting packet bursts, which are
proportional to the number of files in our experiments. The same strategy is seen
in older versions of Dropbox (see Chapter 4). Dropbox, however, implements a
file-bundling strategy since its version 1.4.0.

110 COMPARING CLOUD STORAGE SERVICES

400

2 Cloud Drive = -~
Z 300 Google Drive x /
[a?
= /
o
2 200 /
= o
g 100 /' —
8 ’M
0 bamtae
0 10 20 30 40 50 60

Time (s)

Figure 5.10: Uploading 100 files of 10 kB. Other services are not shown since a
single connection is normally used to store batches of files.

5.4.2 Chunking

Our next test aims at understanding how the services process large files. By
monitoring throughput during the upload of files differing in size, we determine
whether files are exchanged as single objects (no pause during the upload), or
split into chunks, each delimited by a pause. Our experiments show that only
Cloud Drive surely does not perform chunking. In fact, Google Drive uses 8 MB
chunks while Dropbox uses 4 MB chunks. SkyDrive and Wuala apparently vary
chunk sizes, since different throughput patterns can be identified over different
experiment rounds.

Chunking seems advantageous because it simplifies upload recovery in case of
failures: partial submission becomes easier to be implemented, benefiting users
connected to slow networks, for example.

5.4.3 Compression

We next verify whether data is compressed before a transfer. Compression
could, in general, reduce traffic and storage requirements at the expense of local
processing time. We benchmark the compression capability with two distinct
file sets. The first set (Figure 5.11(a)) is made of highly compressible text files
(sizes from 100 kB to 2 MB). Files in the second set (Figure 5.11(b)) contain
pure random bytes so that compression is ineffective. Figure 5.11(a) reveals that
Dropbox and Google Drive compress data before transmission, with the latter
implementing a more efficient scheme — i.e., less network traffic is measured
when compared to the benchmark size. Figure 5.11(b) confirms that Dropbox
has the highest overhead in this scenario. This overhead, which is mostly caused
by the Dropbox control protocol, will be further discussed in Section 5.5.

5.4. CLOUD SERVICE CAPABILITIES 111

3 : ! ! 3 ! ! !
Dropbox —— Cloud Drive B Dropbox —4— Cloud Drive -B-
SkyDrive - Google Drive -®- SkyDrive - Google Drive -@-

Wuala —+ ‘ Wuala —+

Upload (MB)
Upload (MB)

File size (MB) File size (MB)
(a) Random readable text (b) Random bytes
3 s s s
Dropbox —— Cloud Drive -B-
SkyDrive - Google Drive -®-
—_ Wuala —+ .
/M 2 Pl
2
=
<
=
Sl
0

File size (MB)
(¢) Fake JPEGs

Figure 5.11: Bytes uploaded during the compression test.

Naturally, compression is advantageous only for some file types. Compres-
sion has a negligible or negative impact when already compressed files are going
to be transmitted. Results in Section 5.3 show that incompressible formats
are indeed the majority, although a significant portion of compressible files are
stored in the cloud. A possible approach would be to verify the file format before
trying to compress it — e.g., by checking file extensions or by looking for magic
numbers in file headers, as it is implemented in the libmagic [125]. We check
whether Google Drive and Dropbox implement smart policies by creating fake
JPEGs — i.e., files with JPEG extension and JPEG headers, but actually filled
with text that can be compressed. Figure 5.11(c) reveals that Google Drive
identifies JPEG content and avoids compression. Dropbox instead compresses
all files independently of contents and extensions. Hence, in case of true JPEG
files, resources are wasted.

112 COMPARING CLOUD STORAGE SERVICES

5.4.4 Client-Side Deduplication

Server data deduplication eliminates replicas on the storage server. In case a file
is already present, replicas in the client folder can be identified to save upload
capacity too. This can be accomplished by calculating a hash value using the
file content (e.g., SHA256 is used by Dropbox [113]). The hash value is sent to
servers prior to submitting the complete file. Servers can check whether the hash
is already stored in the system and skip the upload of repeated files. Our crowd-
sourced sample shows that file replicas are common inside users’ folders and,
therefore, implementing client-side deduplication can save a significant amount
of bandwidth.

To check whether client-side deduplication is implemented, we design the
following experiment:

1. A file with random content is created in an arbitrary folder — since this is
the first copy of the file, the full content is transferred in the network;

2. The same random content is used to create a replica of the file with a
different name in a second folder — assuming hashes are used to identify
replicas, only meta-data should be transferred, and not the complete file
again;

3. The original file is copied to a third folder — this step tests whether file
names, or any other information besides content hashes, are checked to
identify the copying of files to different folders;

4. After all copies are deleted, the original file is placed back — this last step
determines whether deduplication still works after all copies of a file are
deleted from the local folder.

Results allow to conclude that only Dropbox and Wuala implement dedu-
plication. All other services have to upload the same data even if it is readily
available at the storage server. Interestingly, Dropbox and Wuala can identify
copies of users’ files even after they are deleted and later restored. In the case
of Wuala, deduplication is compatible with local encryption — i.e., two identical
files generate two identical encrypted versions.

Finally, Dropbox used to implement inter-user deduplication [113]. Inter-
user deduplication allows clients to skip submitting files that are already stored
by any other user. However, this scheme has been shown to leak information
about content stored in the service, if no proof-of-ownership method is em-
ployed [81]. By manually performing extra experiments with different users, we
conclude that none of the services implement inter-user deduplication anymore.

5.4. CLOUD SERVICE CAPABILITIES 113

3 ! ! ‘ 15 i i ‘ ‘
Dropbox —4— Cloud Drive -®: Dropbox —4— Cloud Drive -
SkyDrive - Google Drive -@- SkyDrive - Google Drive -@-

~ Wuala ——) N Wuala —+—
m 2 > P m 10]
e =77 \
E - g " 7
51 e gl 5 5 A
s 2 /""/
X /,/ - /A——_/v

0 B A A _a A 0 *’

0.1 0.5 1 1.5 2 1 2 4 6 8 10
File size (MB) File size (MB)
(a) Append (b) Random

Figure 5.12: Delta encoding tests. Note the x-axes.

5.4.5 Delta Encoding

Delta encoding is a specialized compression technique that calculates file differ-
ences among two copies, allowing the transmission of only the modifications be-
tween revisions. To verify which services implement delta encoding, a sequence
of changes is generated on a file such that a portion of content is added/changed
at each iteration. Three cases are considered: new data added/changed (i) at
the end; (ii) at the beginning; or (iii) at a random position within the file. This
allows us to check whether any rolling hash mechanisms [140] are implemented.
In all cases, the modified file replaces its old copy.

Figure 5.12(a) shows the number of bytes uploaded at each step of the ex-
periment in which data are added at the end of the file (i.e., appended). File
sizes have been chosen up to 2 MB in this case, and 100 kB are appended at
each iteration — e.g., all content in the 1 MB file plus 100 kB of random bytes
are used to create the 1.1 MB file at the next iteration of the experiment. Larger
files are instead considered in Figure 5.12(b) to highlight the combined effects
with chunking and deduplication. In this second case, files of up to 10 MB are
generated, and 1 MB of content is added at a random position within the file
at each iteration. Other experiments (e.g., adding content at the beginning of
files) are not shown, since similar conclusions are obtained.

We see that only Dropbox implements delta encoding — e.g., the volume of
uploaded data in Figure 5.12(a) corresponds to the actual part that has been
modified. The use of chunking, however, may increase the sent traffic in certain
circumstances. For example, focusing on Dropbox in Figure 5.12(b), observe
that the amount of traffic increases when files are bigger than the Dropbox
4 MB-long chunk. This happens because the original content may be shifted by

114 COMPARING CLOUD STORAGE SERVICES

Table 5.3: Summary of the capabilities implemented in each service.

. Google Cloud

Dropbox | SkyDrive | Wuala Drive Drive
Bundling yes no no no no
Chunking 4 MB variable | variable 8 MB no

Compression always never never smart never
Deduplication yes no yes no no
Delta encoding yes no no no no

the new bytes added at a random position, changing several chunks at once. As
such, the volume of data to be transmitted is larger than the added data.

Whuala does not implement delta encoding. However, deduplication prevents
the client from uploading chunks not affected by the change. This can be seen in
Figure 5.12(b) — see mark (p): when 1 MB is added at a random offset forming
a 10 MB file, only some chunks are modified, and thus uploaded.

Delta encoding may have a positive impact on storage performance if files
are constantly changed as, for instance, when people perform iterative work
on synchronized folders. On the other hand, the storage of static content is
not affected by this feature. Our crowd-sourced sample suggests that most
files are in formats that, normally, are not incrementally edited, such as JPEG
images. However, our sample is neither informative nor representative enough
to estimate the overall impact of delta encoding, since only a single snapshot has
been taken from a limited number of users. This analysis requires longitudinal
data about the evolution of file systems, and might be performed in future work.

5.4.6 Summary

Table 5.3 summarizes the capabilities of each service, by showing: (i) whether
the service implements bundling, deduplication and delta encoding; (ii) the
used threshold to split files in chunks (or whether the threshold is variable);
and (iii) whether content is compressed always, never or based on file formats
(i.e., smart). We can see that Dropbox has the most sophisticated client from
the point of view of features to enhance synchronization speed. Wuala, Google
Drive and SkyDrive come next, implementing some capabilities. Finally, Cloud
Drive has the most simplistic client, as none of the checked capabilities have
been implemented.

5.5. CLIENT PERFORMANCE 115

Table 5.4: Benchmarks to assess client performance.

Binary files (random bytes) Plain text
Set Files Size Set Files Size
1 1 100 kB) 1 100 kB
2 1 1 MB 6 1 1 MB
3 10 100 kB 7 10 100 kB
4 100 10 kB 8 100 10 kB

5.5 Client Performance

After documenting the architecture and capabilities of each service, we quan-
tify the impact of design choices on performance. Based on the information
described in Section 5.3, we develop 8 benchmarks varying (i) the number of
files; (ii) the file sizes; and (iii) the file formats. Table 5.4 lists our benchmark
sets. All files in the sets are created at run-time by our testing application. We
do not include benchmarks with files that are constantly changed or file replicas
because most services do not implement any functionality targeting these cases.
Naturally, results in these scenarios would be identical for the services that do
not implement specific capabilities.

All experiments are executed precisely in the same controlled environment,
from a single location and under the same conditions, in order to isolate other
effects and highlight the implications of design choices. Each experiment is
repeated 24 times per service, allowing at least 5 min between experiment rounds
to avoid creating abnormal workload to servers and the network. Furthermore,
to prevent our results from being affected by systematic sampling bias [127], we
test a different benchmark set (see Table 5.4) at each experiment round and
execute other tasks that last for a variable length of time between the rounds,
such as the cleaning of the client folders. Therefore, the time between two
rounds of a single benchmark is not deterministic. Synchronization startup,
upload duration and protocol overhead are discussed in the following.

5.5.1 Synchronization Startup

We evaluate how much time each service needs before synchronization starts.
This metric could reveal whether implementing advanced capabilities increases
the initial synchronization delay. The metric is computed from the moment files
start being modified in a test computer (see step 1 in Figure 5.1) until the first
storage flow is observed in the network (see step 2 in Figure 5.1).

6 The metric also includes a small delay of our application to start sending files to the test
computer. This artifact can be ignored, however, since all experiments are equally affected.

116 COMPARING CLOUD STORAGE SERVICES

25 i i i 25 f : :
Dropbox M Cloud Drive &2 Dropbox M Cloud Drive &2
20 | SkyDrive Google Drive N 20 | SkyDrive Google Drive N
Wuala &3 Wuala &3
=z 15 =z 15
g g
£ 10 =
5 4
0 il ¢ L il L
Ix100kB 1xIMB 10x100kB 100x10kB 1x100kB IxIMB 10x100kB 100x10kB
(a) Random binary files (b) Plain text files

Figure 5.13: Average synchronization start up time.

Table 5.5: Averages and standard deviations of synchronization start up times
(in seconds). Numbers are truncated to 2 decimal digits.

Test Dropbox SkyDrive Wuala Cloud D. | Google D.

> | 1x100kB | 1.69 (0.28) | 9.21 (0.02) | 2.19 (1.06) | 2.17 (0.11) | 2.17 (0.02)
3 1x1MB |1.74 (0.14) | 9.24 (0.03) | 2.57 (0.97) | 3.55 (6.56) | 2.28 (0.05)
5 10 x 100 kB | 1.71 (0.13) | 15.29 (0.04) | 2.35 (0.85) | 2.43 (1.02) | 2.27 (0.03)
100 x 10 kB | 3.56 (7.91) | 21.89 (0.56) | 7.47 (4.50) | 2.79 (0.47) | 2.30 (0.06)

1x 100 kB | 1.54 (0.13) | 9.22 (0.03) | 2.55 (1.41) | 2.19 (0.10) | 2.18 (0.02)

*5 1x1MB |1.78 (0.18) | 9.25 (0.03) | 1.95 (1.11) | 2.12 (0.14) | 2.34 (0.05)
& | 10 x 100 kB | 1.64 (0.21) | 15.29 (0.03) | 2.10 (1.05) | 2.22 (0.25) | 2.28 (0.06)
100 x 10 kB | 2.17 (0.79) | 21.77 (0.06) | 8.20 (3.41) | 2.53 (0.19) | 2.28 (0.03)

Figure 5.13(a) depicts results in 4 scenarios using binary files. Dropbox
is the fastest service to start synchronizing single files. Its bundling strategy,
however, slightly delays the start up with multiple files. As we will show next,
such strategy pays back in total upload time. SkyDrive is by far the slowest,
waiting at least 9 s before starting submitting files. The root cause of this delay
is unclear, since the SkyDrive client does not report any activity during this
period. Moreover, SkyDrive gets slower as batches increase in size, taking more
than 20 s to start sending 100 files of 10 kB. Wuala also increases its startup
time when multiple files are submitted.

Similar conclusions are obtained with plain text files (see Figure 5.13(b)).
Table 5.5 complements the results, by showing averages along with standard de-
viations. All services generally produce consistent averages for both file formats,
with relatively small standard deviations after 24 runs. Some exceptions are seen
in the results for Dropbox (e.g., 100 binary files of 10 kB) and Cloud Drive (e.g.,
1 binary file of 1 MB). These exceptions are caused by a single execution round

5.5. CLIENT PERFORMANCE 117

100 T ; T 100 ; . :
Dropbox M Cloud Drive &2 Dropbox M Cloud Drive &2
SkyDrive Google Drive SkyDrive Google Drive

10 Wuala &I 10 Wuala &3

= =

0.1 4 0.1 A

0.01 = : < — 0.01 - ES— - =
1x100kB 1xIMB 10x100kB 100x10kB 1x100kB IxIMB 10x100kB 100x10kB

(a) Random binary files (b) Plain text files

Figure 5.14: Average upload duration (note the logarithmic y-axis).

in each case (i.e., an outlier).” It is not clear in our results whether the outliers
are measurement errors, or whether the distributions are heavy-tailed. Never-
theless, results in Table 5.5 reinforce our conjecture that clients can implement
advanced capabilities, without increasing synchronization delays.

5.5.2 Upload Duration

We test how long each service takes to complete upload tasks. This is measured
as the difference between the first and the last packet with payload seen in
any storage flows. Similarly to our measurements in the previous chapter (see
Appendix B), we ignore TCP tear-down delays, and control messages sent after
the upload is complete.®

Figure 5.14 summarizes our results (note the logarithmic scale on the y-axis).
A mixed figure emerges. When synchronizing single binary files of 100 kB or
1 MB, the distance between our testbed and the data centers dominates the
metric. Google Drive (26.49 Mb/s) and Wuala (33.34 Mb/s) are the fastest,
since each TCP connection is terminated at data centers nearby our testbed.
Dropbox and SkyDrive, on the other hand, are the most impacted services.
SkyDrive (160 ms of RTT), for instance, needs almost 4 s to upload a 1 MB file,
whereas Google Drive requires only 300 ms (15 ms of RTT).

When multiple files are stored, the client capabilities play a central role. The
rightmost bars in Figure 5.14(a) show a striking difference on transfer duration
when 100 files of 10 kB are used. Dropbox wins by a factor of 2 because of
bundling, topping to 0,8 Mb/s of upload rate. Interestingly, Google Drive’s

7 Interested readers can download all datasets used in this chapter from http://www.
simpleweb.org/wiki/cloud_benchmarks.

8 Note that some clients allow users to limit the upload rate manually. This functionality
has been disabled if available.

http://www.simpleweb.org/wiki/cloud_benchmarks
http://www.simpleweb.org/wiki/cloud_benchmarks

118

COMPARING CLOUD STORAGE SERVICES

Table 5.6: Averages and standard deviations of upload durations (in seconds),
truncated to 2 decimal digits.

Test Dropbox SkyDrive Wuala Cloud D. Google D.
> | 1x100kB | 0.72 (0.08) 2.38 (0.79) 0.16 (0.09) 1.43 (0.09) 0.07 (0.00)
3| 1x1MB 1.59 (0.16) 3.51 (1.00) 0.24 (0.05) 8.36 (0.39) 0.30 (0.01)
% |10x 100 kB | 2.38 (0.30) | 879 (248) | 1.20 (0.39) | 5.62 (4.14) | 5.1 (1.22)
100 x 10 kB | 10.12 (3.63) | 49.98 (16.92) | 17.04 (4.08) | 60.74 (34.78) | 42.32 (10.50)
1x 100 kB | 0.59 (0.05) 2.15 (0.41) 0.15 (0.00) 1.47 (0.09) 0.05 (0.00)
'g 1x1MB 1.10 (0.11) 3.47 (0.81) 0.53 (0.81) 8.27 (0.43) 0.16 (0.02)
H |10 x 100 kB | 1.82 (0.24) 10.11 (9.05) 1.50 (0.60) 5.47 (1.23) 5.74 (2.22)
100 x 10 kB | 9.21 (3.56) | 47.28 (6.41) | 19.10 (10.09) | 52.36 (1.33) | 62.31 (8.92)

advantage due to its distributed topology is completely canceled by the usage
of separate TCP and TLS/SSL connections per file. It takes 42 s on average —
i.e., 189 kb/s. Other services are also penalized by their lack of bundling, with
Cloud Drive taking about 60 s (132 kb/s) to complete some tests.

Figure 5.14(b) and Table 5.6 complement the analysis. As for the synchro-
nization startup, outliers increase the standard deviation in some scenarios, e.g.,
when Cloud Drive uploads 10 text files of 100 kB and when SkyDrive uploads
10 binary files of 100 kB. All results with 100 files of 100 kB have high standard
deviations, which allow us to conclude that the transfer times of all five services
are very unstable when synchronizing lots of small files.

Dropbox is slightly faster with plain text files because of compression, al-
though network latency still dominates the metric. Google Drive profits from
compression as well, when sending single plain text files. However, the service
is unexpectedly the slowest when multiple small text files are added, showing
that its smart compression advantage is also canceled by the client design.

5.5.3 Protocol Overhead

Finally, we evaluate protocol overhead. Figure 5.15(a) shows the overhead of
each service, calculated as the ratio between the total storage and control traffic
over the benchmark size. Note that the use of compression may lead to ratios
smaller than 1. We see in the figure that all services have a significant overhead
when small binary files are synchronized. Cloud Drive presents the highest over-
head because of the several control flows opened for every file transfer (see Fig-
ure 5.2). Dropbox exhibits the highest overhead among the remaining services,
possibly owing to the signaling cost of implementing its advanced capabilities:
on average, it sends 1.47 times more bytes than the benchmark size when up-
loading a single 100 kB binary file and 1.22 times more bytes when uploading a
single 1 MB binary file — see the exact numbers on Table 5.7.

5.5. CLIENT PERFORMANCE

119

Fraction

1x100kB 1x1MB
(a) Random binary files

Dropbox M Cloud Drive &2
SkyDrive Google Drive
Wuala &

\
\
\
\
\
\
\
Nk

10x100kB 100x10kB

Fraction
—_

0.1

Dropbox ® Cloud Drive &2

SkyDrive Google Drive

Wuala &

1x100kB 1xIMB 10x100kB 100x10kB
(b) Plain text files

Figure 5.15: Average overhead. The logarithmic y-axis depicts the ratio of
control and storage traffic in the network over the benchmark size.

Table 5.7: Averages and standard deviations of the overhead ratio, truncated
to 2 decimal digits. The table lists the ratio of control and storage traffic in the

network over the benchmark size.

Test Dropbox SkyDrive Wuala Cloud D. | Google D.

_ | 1x 100 kB | 1.47 (0.03) | 1.21 (0.05) | 1.25 (0.03) | 3.95 (2.29) | 1.19 (0.01)

| 1x1MB |1.22(0.01) | 1.04 (0.02) | 1.09 (0.00) | 1.41 (0.30) | 1.05 (0.00)

& 10 x 100 kB | 1.23 (0.00) | 1.14 (0.03) | 1.19 (0.05) | 1.80 (0.40) | 1.14 (0.00)

100 x 10 kB | 1.34 (0.01) | 1.92 (0.37) | 2.43 (0.26) | 5.74 (0.26) | 2.03 (0.08)

1x 100 kB | 0.81 (0.02) | 1.20 (0.02) | 1.25 (0.03) | 4.26 (2.51) | 0.69 (0.04)

%] 1x1MB |0.60 (0.00) | 1.03 (0.01) | 1.09 (0.00) | 1.43 (0.30) | 0.52 (0.00)

£ | 10 x 100 kB | 0.62 (0.01) | 1.14 (0.02) | 1.19 (0.05) | 1.70 (0.32) | 0.62 (0.01)

100 x 10 kB | 0.79 (0.01) | 1.92 (0.33) | 2.48 (0.31) | 5.61 (0.07) | 1.57 (0.04)

The lack of bundling dramatically increases overhead when multiple
files are uploaded, because the upload of every file requires application layer
control traffic to be sent. Google Drive, for instance, exchanges twice as much
traffic as the actual data size when sending 100 binary files of 10 kB. Cloud
Drive shows even more overhead — i.e., more than 5 MB of data are exchanged

to commit 1 MB of binary content.

small

Figure 5.15(b) and Table 5.7 show the

results in other scenarios, in which a similar pattern is generally seen. Dropbox
and Google Drive are the exceptions when sending plain text files, owing to their
compression strategies. Standard deviations are very low, confirming that the
amount of overhead is highly constant in all tested scenarios.

120 COMPARING CLOUD STORAGE SERVICES

5.6 Conclusions

The contributions in this chapter are threefold. Firstly, we introduced a method-
ology to benchmark performance and to check capabilities and system design of
cloud storage services. Secondly, we presented a characterization of files stored
in such services. Thirdly, we evaluated the implications of design choices on
performance by benchmarking five cloud storage providers.

Our analysis shows the relevance of client capabilities and protocol design to
cloud storage services. Dropbox implements most of the checked capabilities,
and its sophisticated client clearly boosts performance, although some protocol
tweaks seem possible to reduce network overhead. On the other extreme, Cloud
Drive bandwidth wastage is an order of magnitude higher than other offerings,
and its lack of client capabilities results in performance bottlenecks. SkyDrive
shows some performance limitations, while Wuala generally performs well. More
importantly, Wuala deploys client-side encryption, and this feature does not
seem to affect Wuala synchronization performance.

The analysis of Dropbox, SkyDrive, Cloud Drive and Wuala confirms the role
played by data center placement in a centralized approach: taking the perspec-
tive of European users only, network latency is an important limitation for U.S.
centric services, such as Dropbox and SkyDrive. Services deploying data centers
nearby our test location, such as Wuala, therefore, have an advantage. Google
Drive follows a different approach resulting in a mixed picture: it enjoys the
benefits of using Google’s capillary infrastructure and private backbone, which
reduces network latency and speeds up the system. However, protocols and
client features limit performance, especially when multiple files are considered.

Overall, our results are useful to improve the performance of cloud
storage applications. Finally, our methodology has been implemented
as a set of open source tools and is available to the public at
http://www.simpleweb.org/wiki/cloud_benchmarks.

http://www.simpleweb.org/wiki/cloud_benchmarks

Part 111

Conclusions

CHAPTER 6

Conclusions

6.1 Summary and Findings

Cloud-based services have quickly made the idea of utility computing a reality.
For example, when our work started in 2009, cloud storage — used as a case
study in this thesis — was largely unknown for Internet users. Dropbox had been
officially released less than one year before, and only a few other providers, such
as Microsoft, had started experimenting with similar products for this niche
market at that time. Four years later, cloud storage has become a pervasive
service, already among the most popular Internet applications.

The advantages of the cloud model have attracted more and more cus-
tomers to the cloud market. However, such migration exposes customers to
both dependability problems and privacy threats. This thesis started by ar-
guing that (i) dependability concerns demand new methods to monitor cloud
services; (ii) privacy concerns demonstrate the need for new providers to offer
stronger privacy and protection against foreign governments. Such private and
national cloud providers need to understand existing cloud services, to compete
with international providers in a timely manner. We developed our research
around two objectives, associated with four research questions, as follows.

6.1.1 Objective 1: Monitoring Cloud Services

Our first objective was to investigate simple and scalable methods for moni-
toring the performance of cloud services, such that customers could monitor
their services easily and independently. We studied whether flow measurements
provide such monitoring by answering two research questions.

Research Question 1: Are popular flow-based measurement devices
suitable for serving as data source for monitoring cloud services?

Chapter 2 answered this research question by revisiting the background on flow
monitoring and by evaluating the quality of flow data exported by two devices
in our production network. The main finding of this analysis is:

124 CONCLUSIONS

e Measurement errors might be found in widely deployed devices and can
turn flow data unusable for advanced applications.

Two kinds of devices were evaluated in Chapter 2. First, we evaluated a ded-
icated flow export device, developed by a specialized company (i.e., INVEA-
TECH). Our experiments showed that this device works as specified and, thus,
it is suitable to our analysis. Second, we evaluated a device from a widely
deployed series of switches (Cisco Catalyst 6500), which is equipped with an
embedded flow exporter. We showed (Section 2.5) that this device exports flow
data with a multitude of errors, including inaccurate time fields and wrongly
measured flow attributes. Because of such errors, this device had proven inap-
propriate for the analysis performed in subsequent chapters.

The lessons learned is that not all flow data sources are appropriate for
advanced applications. Therefore, all flow export devices must be carefully
checked before the deployment of any flow-based application.

Research Question 2: Are flow measurements suitable to monitor
cloud services? What are the limiting factors for such an approach?

We answered these questions first by proposing a method to monitor the avail-
ability of cloud services (see Figure 3.2), which was later extended to monitor
the performance of Dropbox (see Section 4.2 and Appendix B). The use of flow
measurements to monitor cloud services was then evaluated by means of case
studies. We have two main findings from this analysis:

o Flow measurements are a viable alternative for customers to monitor the
performance of cloud services.

The case studies in Chapter 3 showed that simple application-independent met-
rics can be easily monitored using flow measurements. We also confirmed that
flow-based methods are scalable and non-intrusive. Indeed, without any cus-
tomizations in our measurement environment, our first case study (Section 3.2)
revealed problems in popular cloud services, thus providing evidence of the de-
pendability challenges identified in Chapter 1. Similarly, our second case study
(Section 3.3) evaluated the consequences of a case of cyber-demonstration pro-
moted by the hacktivist group “Anonymous”, relying solely on NetFlow data
collected in an international backbone. Finally, Chapter 4 showed that complex
metrics and systems (e.g., Dropbox) can be monitored as well, provided that flow
measurements are carefully tailored and the network is properly instrumented.

e Proprietary cloud protocols, difficulties for isolating traffic and the need
for application-specific metrics might limit the applicability of flow-based
methods in certain scenarios.

6.1. SUMMARY AND FINDINGS 125

Chapter 3 and Chapter 4 revealed limiting factors for the flow-based approach.
As an example, the application of our method in Chapter 4 was only possi-
ble because a deep understanding on Dropbox internals was gained by means
of reverse-engineering (Section 4.1). Reverse-engineering of protocols is time-
consuming and proprietary protocols are likely to change over time. As another
example, the projection of flow measurements into high-level performance met-
rics (e.g., response times) is clearly an approximation. While we succeeded in
finding elements in flow measurements that could be mapped to operations of
the encrypted Dropbox protocol (e.g., see Appendix B), there is no guarantee
that such “tricks” will work for other services.

Therefore, the lessons learned from our second research question indicate
that flow measurements are generally suitable to monitor the performance of
cloud services. However, the monitoring of each particular service requires spe-
cific methods to post-process the flows, which seems feasible only for standard-
ized and well-established protocols.

6.1.2 Objective 2: Understanding Cloud Services

Our second objective was to understand how cloud services are implemented,
and to understand the implications of their design and usage for the Internet.
Two questions were addressed for this objective.

Research Question 3: What are the typical usage and performance
characteristics and bottlenecks of Dropbox?

We answered this question by presenting the first comprehensive characteriza-
tion of Dropbox, which is the most popular cloud storage service by the time
of writing (see Chapter 4). By means of flow measurements passively collected
from operational networks, we showed that Dropbox is a data-hungry appli-
cation. Moreover, we quantified how Dropbox protocol design and data center
locations, together with users’ behavior, are reflected on the application network
usage. This research question resulted in three key findings:

e Cloud storage is a new data-intensive application, already among the top
applications producing Internet traffic.

The traffic to Dropbox observed during our measurements is comparable to
other widely used Internet applications — e.g., as much as 30 % of YouTube
or 4 % of the total traffic in one of the studied networks (Section 4.3). Such
numbers were a surprise to us, since the adoption of cloud storage is still in a
much earlier stage — e.g., our measurements showed that only 6-12 % of home
users rely on cloud storage services.

126 CONCLUSIONS

e Despite the high popularity of Dropbox, a minority of its users is respon-
sible for most workload.

Section 4.5 showed that only around 35 % of the users take full advantage of
the Dropbox functionality, actively synchronizing devices and sharing several
folders. Such users are responsible for more than 80 % of the traffic observed
in our measurements. We also noted that around one third of the users com-
pletely abandon their clients, rarely exchanging any data during our observa-
tions. Other usage patterns relevant for the design of similar services are de-
scribed in Section 4.5 and include the high popularity of content sharing (e.g.,
70 % of users share at least one folder) and the relatively small number of devices
per user (e.g., only 30 % of home users have more than one linked device).

o The sequential submission of files in cloud storage services results in per-
formance bottlenecks. Implementing some form of file bundling or content
pipelining is essential.

We identified that the performance of Dropbox during our measurements was
mainly determined by the distance between clients and storage data centers
(Section 4.4). The combination of high network latency with the sequential sub-
mission of files was shown to penalize Dropbox performance dramatically. This
bottleneck was further confirmed by reverse-engineering the Dropbox protocol.
We identified as possible solutions the use of file bundling or the introduction
of content pipelining. A protocol update performed by Dropbox during our
data collection included a file bundling strategy. We showed that such change
increased around 65 % the average Dropbox throughput (Section 4.4.5).

These findings are an important asset to new players implementing cloud
storage. New providers can profit from our contributions not only to predict
the workload their services will have to face, but also to avoid the bottlenecks
identified and quantified in our analysis. Moreover, our results are important
for the research community, companies and ISPs, to understand and anticipate
the impact of a likely massive adoption of cloud storage.

Research Question 4: How do different providers implement cloud
storage services and what are the implications of the design choices
for client performance?

We provided the first thorough analysis of the impact of design choices on cloud
storage services. This was achieved by means of a methodology that relies on a
testbed, intercept proxies, benchmarking scripts and tools to collect information
from volunteers (Section 5.1). Chapter 5 evaluated several aspects of the design
and implementation of five popular cloud storage services. We concluded that

6.1. SUMMARY AND FINDINGS 127

providers follow different strategies to synchronize files (e.g., see Section 5.2 and
Table 5.3). Design differences that seem minor at first can result in performance
bottlenecks and surprising costs to both users and the Internet. In particular,
Chapter 5 demonstrated the importance of protocol design, client capabilities
and data center placement to cloud storage performance:

o The design of “notification” and “storage” protocols is critical for the per-
formance of cloud storage services.

Section 5.2 showed that cloud storage services require mechanisms to notify and
keep clients updated, periodically producing workload both to servers and to the
network. Although it is intuitive that such protocols should produce as little
overhead traffic as possible, we showed that some of the most popular providers
still deploy inefficient protocols, which significantly impacts client performance
and network usage. For example, the bandwidth wastage of Amazon’s protocol
to notify clients about file changes was found to be one order of magnitude
higher than competitors (see Section 5.2.1). Amazon’s application can generate
up to 65 MB per day even when no files are synchronized. Such wastage is
problematic to users with bandwidth constraints, such as those using mobile
networks, but also to the system as a whole: 1 million users would generate
approximately 6 Gb/s of signaling traffic alone.

e The typical characteristics of files stored in the cloud allow providers to
improve performance by deploying special capabilities at the client-side.

Results in both Chapter 4 and Section 5.3 showed that files stored in the cloud
have particular characteristics that can be exploited to optimize storage usage
and speed up transfers. We concluded, for example, that (i) most files are
small; (ii) several small files are often added in large groups; and (iii) content
duplication is very common. Chapter 5 showed that some providers already take
advantage of these particularities. Client capabilities found on Dropbox, such as
client-side deduplication, delta encoding and bundling (see Section 5.4), provide
not only real performance advantages in terms of latency, but also a significant
reduction of Internet traffic. Indeed, Section 5.5 demonstrated that the upload
of some file sets takes six times more in some of Dropbox’s competitors, wasting
three times as much capacity. However, Dropbox also seems to have room for
improvements: differences in control protocols make Dropbox to transfer 10 %
more overhead than its competitors in some common scenarios.

e Data center placement plays an important role not only in terms of pri-
vacy, but also in the overall cloud storage performance.

128 CONCLUSIONS

Chapter 1 argued that privacy issues will impel the appearance of new national
cloud players. Chapter 5 evaluated the location from where popular providers
operate and, not surprisingly, most of them are centralized in the U.S. Besides
the known privacy implications, Section 5.5 evaluated to what extend data cen-
ter placement impacts performance. We concluded that the upload time of the
same files can be reduced by a factor of 11 when data centers are placed closer
to users. Interestingly, we benchmarked a service (i.e., Wuala) that deploys
both (i) per-user encryption to increase privacy; and (ii) data centers nearby
our test location. Results suggest that the privacy-preserving feature does not
affect synchronization performance, and the favorable data center location im-
proves the overall system performance. Hence, new players seem to have room
for providing stronger privacy to users, while also delivering well-performing
services.

Overall, the lessons learned are a permanent reference for engineers designing
protocols and provisioning data centers for similar services. Results in Chap-
ter 5 contain valuable insights into the bottlenecks resulting from design choices.
They will help private and national cloud providers to create a next generation
of cloud storage services.

6.2 Contributions

We now provide a list of contributions of this thesis, organized according to the
chapters they are presented.

Chapter 2 — Understanding Flow Data Sources

e Reviews the background on flow monitoring, including the basic terminol-
ogy and the effects of varying common flow export parameters.

e Reveals measurement artifacts in widely deployed flow exporters, by means
of active experiments and flow data analysis. The uncovered artifacts are
related to missing flows and imprecise fields, and can damage flow data
permanently, turning the data unusable to any flow-based application.

Chapter 3 — Monitoring Cloud Services using NetFlow

e Introduces a simple method to indicate the availability of cloud services
using NetFlow. The method is shown to be robust to handle flows mea-
sured under different configurations, including sampled and non-sampled
NetFlow.

6.2. CONTRIBUTIONS 129

e Presents an open source plug-in for NfSen [78] implementing the method.
The tool can be downloaded from http://www.simpleweb.org/wiki/
Cloud_Monitoring.

e Applies the method to evaluate the use of flows to monitor cloud ser-
vices. First, a 10-week measurement study gives evidences of availability
problems in cloud services. Then, flows collected from an international
backbone show the consequences of a cyber-demonstration.

Chapter 4 — Dropbox Usage and Performance

e Presents the first comprehensive characterization of cloud storage ser-
vices, focusing on Dropbox. The characterization details the (proprietary)
Dropbox protocol, general traffic characteristics, typical usage scenarios
and the performance experienced by end users.

e Highlights practical implications of protocol designs for both users and
the Internet. Bottlenecks resulting from design choices are quantified and
possible counter-measures are proposed.

e Provides the first large-scale public dataset reporting the activity of
anonymized Dropbox users. The data have been capture during 42
days in 4 different locations and can be downloaded from http://www.
simpleweb.org/wiki/Dropbox_Traces.

Chapter 5 — Comparing Cloud Storage Services

e Introduces a benchmarking tool for studying cloud storage services. The
tool includes scripts for determining the presence of particular capabilities,
data center locations etc. Files of several types can be generated at run-
time and performance metrics are calculated automatically. The tool is
available at http://www.simpleweb.org/wiki/cloud_benchmarks.

e Presents a characterization of files stored in Dropbox. The dataset has
been obtained from more than 300 volunteers in a crowd-sourcing experi-
ment. This is the first public dataset describing files stored in cloud storage
services. The dataset can be downloaded from http://www.simpleweb.
org/wiki/Dropbox_Crawler.

e Documents how different providers implement cloud storage services, fo-
cusing on the underlying design choices of each service.

e Evaluates the consequences of design choices on performance by means of
a series of benchmarks, defined according to our crowd-sourced sample.

http://www.simpleweb.org/wiki/Cloud_Monitoring
http://www.simpleweb.org/wiki/Cloud_Monitoring
http://www.simpleweb.org/wiki/Dropbox_Traces
http://www.simpleweb.org/wiki/Dropbox_Traces
http://www.simpleweb.org/wiki/cloud_benchmarks
http://www.simpleweb.org/wiki/Dropbox_Crawler
http://www.simpleweb.org/wiki/Dropbox_Crawler

130 CONCLUSIONS

6.3 Future Work

Regarding the development of cloud storage services, we can list three research
directions that emerge from our results:

e Our study was completely based on measurements collected either pas-
sively from operational networks or actively using our benchmarking tools.
Measurement-based studies suffer from some limitations (e.g., sampling
bias). New questions raised by our conclusions seem easier to be answered
by taking a model-based approach. For example, we concluded that some
capabilities, such as file bundling, have a significant impact on perfor-
mance. However, the difficulties in collecting data from geographically
dispersed regions disallow us to speculate about how users worldwide per-
ceive these effects. Extending the results with model-based analysis is,
therefore, a natural continuation.

e This thesis provided the first dataset of meta-data from files stored in the
cloud. Our data collection, however, reached a somehow limited number
of participants, most of them with an academic profile. Furthermore, more
collection rounds would be necessary to evaluate the evolution of cloud file
systems, the advantages of delta encoding etc. Some works have already
characterized long-term aspects of traditional file systems [1]. We will
pursue in future work a comparison of cloud storage against traditional
file systems. Assuming both systems are similar, the latter could be used
to extend our results.

e Migrating parts of enterprise file systems (e.g., backups) to the cloud is
a hypothesis that we have both heard from system administrators and
read in related work [80]. We plan to study the possible impact of such a
migration in future work. In particular, we are interested in understanding
how the migration would affect the network, and how users would perceive
performance once storage systems are (partially or totally) provided from
remote data centers.

Other research directions can be listed in relation to the use of flow measure-
ments in general:

e The previously mentioned limiting factors for flow-based methods are nat-
ural directions for future work. For example, the automatic identification
of network traffic has already been actively researched [21]. Similarly,
several works propose methods to automatically reverse-engineer proto-
cols [141] or find associations among traffic flows [91]. The outcomes of
such efforts might provide solutions for the problems identified, but not
tackled, in this thesis.

APPENDIX A

Estimating Connection Status using NetFlow

This appendix validates the intermediate steps of the method presented in Chap-
ter 3 (see Figure 3.2). The goal is to show that the method consistently estimates
the number of TCP connections in the network using NetFlow records exported
in different scenarios. Therefore, we show that the health index calculated solely
from NetFlow data matches those that would be obtained by other traffic ana-
lyzers that make use of full packet traces.

Section A.1 describes the dataset and the validation methodology. After
that, we show results of the validation with non-sampled flow data in Section A.2
and with packet-sampled flow data in Section A.3.

A.1 Dataset and Methodology

The same packet traces used in Chapter 2, in particular, Section 2.4, to illustrate
the consequences of varying parameter settings of flow exporters are used in this
validation. As in Chapter 2, we use YAF [89] to generate flow records from the
packet traces, because we want to test several flow export scenarios. Moreover,
for the analyses that focus on a specific service or organization, we rely on
the MaxMind GeoIP Organization database [106] and on IP addresses of cloud
providers to filter the traffic.

In both the non-sampled and packet-sampled cases, we follow a validation
methodology similar to [103]. The status of all TCP connections in our dataset
is evaluated by means of (i) a tool that operates directly on the original packet
traces (i.e., the ground truth); and (ii) our method, after converting the traces
into flow records using YAF. The results of both the packet-based tool and
our method are then compared. We use Bro [116] as the ground truth for our
comparisons. Bro is a stateful network monitor that contains a module for
analyzing TCP connections. Bro classifies terminated TCP connections using
the classes listed in Table A.1.!

1 Bro has other classes that should not be reached when all packets are observed. Less
than 0.1 % of the connections in our datasets are terminated in those classes owing to packet
loss.

132 ESTIMATING CONNECTION STATUS USING NETFLOW

Table A.1: Mapping between Bro classes and our definition of health.

Meaning Bro Freq. (%) Description
Oneoin S1 0.9 Established, but not terminated
8OM8 g7y 0.5 Midstream traffic (no flags observed)
> . S2 0.3 Established, originator attempt to close
2 | Closing .
= S3 0.4 Established, responder attempt to close
<
o Aborted RSTO 20.9 Established, originator aborted
RSTR 5.7 Established, responder aborted

Complete SF 57.6 Established and terminated
= S0 7.7 Attempt without reply
= B SH 0.4 Attempt, followed by FIN from originator
% REJ 5.2 Rejected
o) RSTOSO 0.4 Attempt, followed by RST from originator

We map Bro classes into the two classes of our problem (i.e., healthy or
unhealthy) as follows. Ongoing, closing, aborted and complete connections are
healthy. Most connections marked as ongoing or closing occur because we have
captured data for a limited time interval. As such, several connections have
been truncated both at the begin and at the end of our capture. Connections
marked as complete are those with normal establishment and termination. Con-
nections marked as aborted are those that have a normal TCP handshake, but
are reset by one of the end-points afterward. This is mainly caused by some
client applications that intentionally reset connections after exchanging appli-
cation layer payload, to avoid the TCP termination delays (see [8]). Those are
likely to be successful service requests and, therefore, are healthy in our context.
Finally, the TCP connections classified as unhealthy in Table A.1 are only those
that could not carry payload at the transport layer. Table A.1 also shows the
frequency of each class in our dataset (see column Freq. (%)).

A.2 Non-Sampled Data

A.2.1 Comparison Methodology

When dealing with non-sampled data, our method aggregates the flow records
generated by each TCP connection. The aggregated records are then classified
as either healthy or unhealthy. Assuming these steps are correct, the health
index calculated by our method will be equivalent to what would be calculated
directly from Bro’s output.

A.2. NON-SAMPLED DATA 133

Both our method and Bro can list the TCP connections labeled with their
final classes. A natural way of validating our method is, therefore, by matching
its list of connections with Bro’s output. The results of both Bro and our
method are matched by looking for connections with common keys and the
same start times (in seconds). A confusion matrix is then filled. The confusion
matrix is a way of presenting results when evaluating classification models [56].
It presents the original number of instances (i.e., connections, in our case) per
class versus the total number of instances that are predicted to belong to each
class. The diagonal of the matrix contains correctly classified instances, whereas
the remaining cells contain the errors per class. Table A.2 shows an example of
such a matrix M, in a problem composed of n classes.

Table A.2: Confusion matrix M when classifying instances in n classes.

Prediction
2 Ci1Cy|...|Cy,
i
Q &
=
= on

Since our method may output a different number of connections than the
ground truth, besides the healthy and unhealthy classes, an artificial class
is used to count wunmatched connections in the confusion matrix. Several
performance metrics can be derived from the confusion matrix M to com-
pare classification models. Three metrics are used in our experiments: pre-
cision (P;), recall (R;), and the, so-called, F-measure (F;) [56, 143]. Let
w = (healthy, unhealthy, unmatched), i.e., w is a vector with the possible out-
put classes in the classification problem. Then, the three performance metrics
are defined as a function of w;. The precision P; represents the fraction of
instances correctly classified as being of class w;:

p=——t (A1)

Ri=—"_ (A.2)

134 ESTIMATING CONNECTION STATUS USING NETFLOW

The F-measure is a combination of precision and recall that increases faster
when both metrics are simultaneously increased:

PR;

Fi:)
(1 -)P+ aR;

0<a<l, (A.3)
where the parameter o weights the importance of each metric in the results.
This can be used, for instance, when failing to identify instances of a class
has a different cost than making classification mistakes. We calculate F; using
a = 0.5, which means that both precision and recall have equal importance.
We refer to [143] for a deeper discussion on methods to compare classification
models and to [100] for a practical example in another problem domain.

A.2.2 Tested Scenarios

Two analyses are performed, both using Bro as ground truth. Firstly, because
flow exporters may be configured differently and may implement different flow
expiration policies (see Chapter 2), the validation is repeated in several export
setups. Secondly, since we extend [130], we re-implement the original heuristic
and show that our extension indeed improves the results.

Three scenarios are used to check the effects of flow expiration policies:

e Scenario 1: Only timeouts expire flow records without any protocol
checks. Several flow exporters, such as Vermont [96] and FlowMon [22],
implement only this policy because of performance considerations;

e Scenario 2: Includes Scenario 1 and flow termination by TCP RST/FIN
packets. Cisco IOS NetFlow and nProbe [36] export flows in this way.
However, exporters may implement different heuristics. We use the heuris-
tic of YAF: an RST packet in any traffic direction or FIN packets followed
by acknowledgments in both traffic directions terminate a flow;

e Scenario 3: Includes Scenario 2 and the creation of new flows by TCP
SYN packets. Although not listed in IPFIX standards, this policy would
force exporters to separate connections not properly closed into different
records. Sequence numbers are evaluated to differentiate SYN retransmis-
sions from new connection attempts.

The impact of the idle and the active timeout of flow exporters is also mea-
sured for each scenario. This is done by disabling expiration by one of the two
timeouts and varying the other one in distinct experiments. Note that both Bro
and our method have internal timeout parameters to be set (see Section 3.1.1).
The values suggested by Bro for recording connections as accurately as possible
(e.g., 2 hours for reporting inactive connections) are used in both cases.

A.2. NON-SAMPLED DATA 135

[‘Stsstr sps atisse aps s s O o S
099 § - a . - R
0.9 4
§ 098 1 =
Z 9 0.8 A A & A=
3 3
£ 097 , =
Ongoing —v— Ongoing —v—
Closing --#-- 0.7 4 Closing --#--
0.96 1 Complete T Complete
Aborted ---¥%-- Aborted ---%--
Unhealthy —-4-- Unhealthy —--4—-
0.95 T T T T T 0.6 T T T T T
15 50 100 150 200 250 300 15 50 100 150 200 250 300
Idle timeout (sec) Idle timeout (sec)
(a) Varying idle timeout - precision (b) Varying idle timeout - recall
1 R — P P P PO PO *
—————— | EEPPERY SPPPR EESPUS SERPeS R
L. _ a
0.99 - - - - - o
0.9 +
§ 098 1 5
Z 9 0.8 A & A=
3 3
£ 097 , =
Ongoing —v— Ongoing —v—
Closing - - 0.7 A Closing --#--
0.96 1 Complete - T Complete
Aborted ---¥%-- Aborted ---%--
Unhealthy —-&-- Unhealthy —--4—-
0.95 T T T T T 0.6 T T T T T
15 50 100 150 200 250 300 15 50 100 150 200 250 300
Active timeout (sec) Active timeout (sec)
(¢) Varying active timeout - precision (d) Varying active timeout - recall

Figure A.1: Effects of timeouts on the precision and recall in Scenario 1.

A.2.3 Results

The impact of timeout parameters in Scenario 1 is depicted in Figure A.1.
Figure A.1(a) and A.1(b) show the precision and recall of our method when
varying the idle timeout, while Figure A.1(c) and A.1(d) show the results when
varying the active timeout. The results for the class healthy are shown in a
finer granularity (see Table A.1) to illustrate that most errors in this class are
from ongoing and closing connections, which should not happen frequently in
an on-line deployment.

The figures show that our method is invariant to timeouts. Moreover, the
precision is very high for both classes, which means that our method reliably
classifies both classes. The recall for the class unhealthy is lower, because some
connections output by Bro do not have a match in the output of our method.
The problem happens because flow exporters may report several connections in
a single flow record — e.g., when TCP end-points reuse sockets before a record

136 ESTIMATING CONNECTION STATUS USING NETFLOW

0.9 0.9
£ g
E 2
S 0.8 S 0.8
= =
53 =
0.7 A 0.7 A
0.6 - 0.6 - T T
Scenario 1 Scenario 2 Scenario 3 Original heuristic Our proposal
Healthy = Unhealthy @ Healthy = Unhealthy &
(a) Our method in different scenarios (b) Comparison to [130] in Scenario 3

Figure A.2: Performance of heuristics to reassemble non-sampled flow records.

has been expired by the flow exporter. As a consequence, similarly to [130], in
a scenario where the exporter expires records solely by means of timeouts, the
number of unhealthy connections is slightly under-counted.

Results in Figure A.1 imply that timeouts of flow exporters can be set to any
value without impacting our results. This is important because several exporters
handle overloads by expiring flow records faster — i.e., by reducing timeouts at
run-time. The results of varying timeouts in Scenarios 2 and 3 are not shown,
since the same flat lines in Figure A.1 are obtained in these scenarios.

Our extension to [130] improves the results when other expiration policies are
applied in the flow exporter. Figure A.2(a) shows the F-measure for all scenarios
when the idle and the active timeouts are fixed to 30 and 120 s, respectively.
The low recall of the class unhealthy decreases the F-measure in Scenario 1, as
previously explained. The improvement in Scenario 2 is caused by the proper
checks of TCP flags in the flow exporter, which prevent different connections
from being merged into a single flow record. Scenario 3 slightly improves the
results for the same reason. The F-measure is close to 1 in Scenarios 2 and 3,
meaning that both precision and recall are close to 1 in these cases — ¢.e., the
output of our method matches almost perfectly with the output of Bro.

Finally, Figure A.2(b) depicts the F-measure per class also for the original
method presented in [130]. Only Scenario 3 is depicted, since the method in [130]
produces similar results in other scenarios. Because we use more information to
aggregate flow records, our method is more accurate when TCP flags are also
considered for flow expiration (i.e., Scenarios 2 and 3). Overall, results in this
section show that, regardless of flow expiration policies and timeout parameters,
our method is consistent when dealing with non-sampled flow records.

A.3. PACKET-SAMPLED DATA 137

1

T Healthy (Est.) ——
= ! Total (Est.) ~-#-~
g 08] Healthy (Bro)

v ! Total (Bro) ------

Z 06 2

%

= 04 N T B

Q Y -

g RTARY ,

E 02 S A]

g 02171 \}/f/x\{ Lot ¥ o
0 T T

07:30 07:40 07:50 08:00 08:10 08:20 08:30

Time

Figure A.3: An example of our estimations compared to the ground truth.

A.3 Packet-Sampled Data

The validation with packet-sampled flows is performed against the same ground
truth as in the previous section — i.e., Bro output produced using non-sampled
packet headers. Because sampling implies loss of information, it is not possible
to output individually labeled connections as in the non-sampled case. Instead,
confidence intervals of the total number of connections per class (i.e., healthy
and unhealthy) are calculated. Similarly, expiration policies do not play the
same fundamental role in the flow formation when sampling is applied, since
only few packets per flow are observed. Hence, we validate whether our method
calculates confidence intervals that include the original numbers counted from
Bro output. For the results in this section, YAF converts our packet header
dataset to packet-sampled flow records using p = 0.1. We first illustrate the
application of our method in a simple example. After that, the method is
applied to the complete dataset used in the previous section.

Figure A.3 shows the intervals calculated by our method and the number of
connections reported by Bro using only the traffic going to Facebook in a limited
time interval. Confidence intervals for n and ny, are calculated by Equation (3.1),
with a significance level of 95 % and r = 1. Bro results show that the difference
between n and ny is very small most of the time. Around 7:55 AM, some
users are not able to access Facebook, resulting in an increase in the number
of connections. The confidence intervals always overlap, except on the slot at
7:55 AM. Hence, the service is correctly identified to be unhealthy at that time.

However, it is also clear that the estimation 7 strongly diverges from the real
value n when there are unhealthy connections. This happens because retrans-
missions of SYN packets violate our assumption of a single SYN packet per traffic
direction on TCP flows, biasing the estimators. For the period in Figure A.3,

138

ESTIMATING CONNECTION STATUS USING NETFLOW

Table A.3: Connections with more than one SYN packet (%).

Type Frequency Originator Responder
Ongoing 1.4 19.9 51.9
Closing 0.7 2.4 2.3
Aborted 26.6 1.6 2.1
Complete 57.6 0.8 1.1
Unhealthy 13.7 46.9 0.2
Total 100.0 7.6 1.9

Bro reports 3,087 healthy connections out of 3,314 in total. In the same period,
np = 3,450 and n = 3,930 under sampling.

When the method is applied to packet-sampled flows of the complete dataset,
confidence intervals include the numbers reported by Bro in around 93 % of the
intervals for the number of healthy connection ny. On the other hand, the per-
centage is as low as 61 % for the total number of connections n. This percentage
clearly diverges from the selected significance level (i.e., 95 %). Retransmissions
of SYN packets, in particular from originators, bias the intervals. Table A.3 ex-
plains that by reporting the percentage of flows with SYN retransmissions in the
complete dataset. In particular, 46.9 % of the unhealthy connections include
at least one SYN retransmission from originators. Therefore, the probability of
sampling at least one SYN packet from these connections is higher.

For detecting availability problems, overestimating the unhealthy traffic is
not harmful: it causes the health index to decrease faster in case of problems,
thus helping in the detection. For illustration, however, next section presents a
possible method to reduce the bias in the estimation.

A.3.1 Handling SYN Retransmissions

Service failures can cause retransmissions of SYN packets, violating the assump-
tions made in Chapter 3 (see Section 3.1.2). Table A.3 shows that, not surpris-
ingly, most retransmissions are from connection originators. In the following,
we provide an estimation of n taking into account that n = .., n;, where n;
is the number of connections with exactly ¢ SYN packets from originators.

For a given time interval, let x;, ¢ > 1, be the number of records with 4
SYN packets. It should be noted that most NetFlow exporters do not report the
number of observed SYN packets per record, although IPFIX exporters can use
the tcpSynTotalCount information element to report that. We refer to [41] for
a discussion on how x1, a,... can be estimated directly from NetFlow records.

A.3. PACKET-SAMPLED DATA 139

1.2 : : : :
Healthy (Est.) ——
14 Total (Est.) +--=-~
Healthy (Bro)
08 Total (Bro) ------

0.6

0.4

IS R VAN S S I
AR = e § I

0 T T T T T T
07:30 07:40 07:50 08:00 08:10 08:20 08:30

Time

Connections (k) / 5 min

Figure A.4: An example of an estimation considering SYN retransmissions.

Given a TCP flow with s SYN packets, the number s’ of SYN packets sampled
for this flow follows the Binomial distribution B(s'|s,p). In order to simplify
the following calculations, we assume n; = 0 for ¢ > 2, i.e., at most one SYN
retransmission per TCP flow. Consequently, the probability of sampling the
SYN packet of a flow with one SYN packet is p, the probability of sampling the
two SYN packets from a flow with two SYN packets is p?, and the probability of
sampling one SYN packet from a flow with two SYN packets is 2p(1 — p).

The probability of observing x5 flow records with two SYN packets out of no
original flows with two SYN packets is B(x2|nsa,p?). The probability of observing
29,1 flow records with only one SYN packet out of the remaining ny — x2 flows
with two SYN packets is B(xo 1|n2 — 22,2p(1 — p)). Finally, the probability of
observing x1,; flow records with one SYN packet out of n, flows with one SYN
packet is B(x1.1|n1, D).

For small p, the above Binomial distributions can be approximated by Pois-
son distributions. Since 21 = x1,1+21, the conditional probability of observing
21 flow records with one SYN packet is given by

f($1|n15 ng — J)g,p) = xll €_>\1, (A4)
1!

with Ay = n1p+ 2(n2 — 22)p(1 — p). The joint probability of observing 1, x5 is

ATL \T2
f(z1,x2|n1,n9,p) = L2 7>\17/\23

(A.5)

l‘l! .132!

with Ay = ngp? and A; as in Equation (A.4). Similarly to Equation (3.1) in
Chapter 3, the posterior distribution of n; and ny can be estimated by

Fny,naley, @9, p) o fo(n1) fo (no) AP AT2e™ M2, (A.6)

140 ESTIMATING CONNECTION STATUS USING NETFLOW

where f(; and f(;' are prior distributions of n; and no, respectively. Given the
posterior distribution of n; and no, the posterior distribution of n = n; +ns can
be computed numerically, and its mode 7 gives a maximum likelihood estimation
of n. Confidence intervals are calculated by summing up the probabilities of
neighbor values of the mode until the desired significance level is reached.
Figure A.4 illustrates the improvement when SYN retransmissions are taken
into account in the estimations. In comparison to the results in Figure A.3,
it can be seen that the estimation is more accurate when there are unhealthy
connections. The estimation n considering the complete dataset used in the
previous section includes the real value n reported by Bro in 81 % of the intervals,
instead of 61 %, in this case. Note that the approach in this section estimates .
only from a single observation, in contrast to Equation (3.1) in Chapter 3, which
considers a window of r observations. Moreover, since we assumed that n; = 0
for i > 2, some bias remains because this assumption might also be violated.
Extending the estimator to other cases is out of the scope of this thesis.

APPENDIX B

Dropbox Storage Traffic in Details

This appendix presents more details about the Dropbox client and its protocols.
The information in the following helps to interpret flow measurements and cal-
culate performance metrics that are meaningful to monitor the service at the
application layer, as discussed in Chapter 4.

B.1 Typical Storage Flows

Figure B.1 shows typical storage flows observed in our testbed (see Chapter 4).
All packets exchanged during initial and final TCP and TLS/SSL handshakes
are depicted. Initial and final handshakes are particularly constant in this case,
because of the single client generating the traffic (i.e., Dropbox). This constant
behavior is key to our methodology, and allows us to exploit information visible
at the transport layer, such as TCP flags, to derive performance metrics mean-
ingful at the application layer. The data transfer phases (in gray) are shortened
for the sake of clarity. Key elements to our methodology, such as TCP seg-
ments with PSH flag set and flow durations, are highlighted. To validate that
these models are valid for real clients, Tstat in Campus 1 has been set to record
statistics about the first 10 messages delimited by TCP segments with PSH flag
set. In the following, more details of our methodology and the results of this
validation are presented.

B.2 Tagging Storage Flows

Storage flows are first filtered using FQDNs and TLS/SSL certificate names.
After that, they are classified based on the number of bytes sent by each endpoint
of the TCP connection. The method has been built based on the assumption
that a storage flow is used either for storing chunks or for retrieving chunks,
but never for both. This assumption is supported by two facts: (i) when both
operations happen in parallel, Dropbox uses separate connections to speed up

142 DROPBOX STORAGE TRAFFIC IN DETAILS

Client Tstat Amazon Client Tstat Amazon
A A
: :
H 1
H 1
H 1
H 1
H 1
: :
H 1
H 1
H 1
H 1
H 1
: :
H 1
H 1
H 1
H 1
H 1
H 1
H 1
: H SSL_server_h
add At} “UACK +
E i spec (PSH)
: : ACK + 3 ;
! i SSL_cipher_spec (PSH) _| !
' H] !
H 1
PR ;
H 1
: :
H 1
H 1
H 1
H 1
H 1
: :
H 1
H 1
1 = :
v Data i
1
HTTP_OK (PSH) \ E ,
1 1 H
I iz 7 iz
SSL_alert (PSH) + d 1%
FIN/ACK ' SSL_alert + FIN/ACK 1
e
"
(a) Store (b) Retrieve

Figure B.1: Typical flows in storage operations.

synchronization; (ii) idle storage connections are kept open waiting for new
commands only for a short time interval (i.e., 60 s).

Our assumption could be possibly violated during this idle interval. In prac-
tice, however, this seems to be hardly the case. Figure B.2 illustrates that by
plotting the number of bytes in storage flows in Campus 1. Flows are concen-
trated near the axes, as expected under our assumption.

B.3. NUMBER OF CHUNKS

143

1G ‘
Store +
L10OM -) Retrieve *
- 10M - -
5}
=
£ IM 1 r
=]
8 x
= 100k - % -
g X i i B
a 10k 1 >§< iy +ﬁ+ n i
X i
1k « ~ -
X
100 + e ; ; ‘ ‘
100 1k 10k 100k M 1I0M 100M 1G

Upload (bytes)

Figure B.2: Bytes exchanged in storage flows in Campus 1. Note the logarithmic
scales.

Flows in Figure B.2 are already divided into two groups. The separation of
flows into the groups can be defined by noting the gap between the regions in the
figure, which is an outcome of typical overheads for each operation. The typical
overhead of both store and retrieve operations could be documented based on
the extra information collected in Campus 1. Note that TLS/SSL overheads
are subtracted from each point in the figure for improving visualization.

Finally, we quantify the possible error caused by violations of our assump-
tions. In all vantage points, flows tagged as store download less than 1 % of the
total storage volume. Since this includes protocol overhead (e.g., HTTP_OK
messages in Figure B.1), mixed flows marked as store might have only a negli-
gible impact in our results. A similar reasoning is valid for retrieve flows.

B.3 Number of Chunks

The number of chunks transported in a storage flow (¢) is estimated by counting

TCP segments with PSH flag set (s) in the reverse direction of the transfer, as
indicated in Figure B.1. For retrieve flows, ¢ = % For store flows ¢ = s —3 or

¢ = s—2, depending on whether the connection is passively closed by the server
or not. This can be inferred by the time difference between the last packet with
payload from the client and the last one from the server: when the server closes

144 DROPBOX STORAGE TRAFFIC IN DETAILS

Store Retrieve
1 — 1 T b
) Campus 1 =+ P
0.8 0.8 |- Campus2 -—
i Home 1 —
g 0.6 {77 T 0.6 1 Home 2 --
Q 7
© 04 0.4 BE
0.2 0.2
) 0 e
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Proportion (bytes) Proportion (bytes)

Figure B.3: Payload in the reverse direction of storage operations per estimated
number of chunks.

an idle connection, the difference is expected to be around 1 min (otherwise,
only a few seconds). Tstat already records the timestamps of such packets by
default.

We validate this relation by dividing the amount of payload (without typical
TLS/SSL handshakes) in the reverse direction of a transfer by ¢. This propor-
tion has to be equal to the overhead needed per storage operation. Figure B.3
shows that for the vast majority of store flows the proportion is about 309 bytes
per chunk, as expected given the extra data captured in Campus 1 (see previous
section). In Home 2, the apparently misbehaving client described in Chapter 4
biases the distribution: most flows from this client lack acknowledgment mes-
sages. Most retrieve flows have a proportion between 362 and 426 bytes per
chunk, which are typical sizes of the HTTP request in this command. The ex-
ceptions (3 % — 8 %) might be caused by packet loss in our probes as well as by
the flows that both stored and retrieved chunks. Our method underestimates
the number of chunks in those cases.

B.4 Duration

Figure B.1 shows the transfer duration (At — see also Section 4.4.4) used when
computing the throughput of a storage flow. Since initial TCP and TLS/SSL
handshakes affect users’ perception of throughput, the first SYN packet is taken
as the begin of the transfer. Termination handshakes, on the other hand, are
ignored. In store flows, the last packet with payload sent by the client is con-
sidered the end of the transfer. In retrieve flows, the last packet with payload
is normally a server alert about the TLS/SSL termination. We compensate for

B.4. DURATION 145

that by subtracting 60 s from the duration of retrieve flows whenever the dif-
ference between the last packet with payload from the server and the one from
the client is above 60 s.

Because of our monitoring topology, At does not include the trip time be-
tween clients and our probes. At is, therefore, slightly underestimated. Fig-
ure B.1 also shows that 4 or 5 RTTs are needed before the client starts to send
or to receive data. In some cases, this already accounts for about 500 ms in the
flow duration. Note that the initial TCP congestion window in place at servers
forces a pause of 1 RTT during the TLS/SSL handshake. This parameter has
been tuned after the release of Dropbox 1.4.0, thus reducing the overhead.

146 DROPBOX STORAGE TRAFFIC IN DETAILS

Bibliography

[1] AcrawaL, N., BoLosky, W. J., DOUCEUR, J. R., AND LORCH, J. R. 2007. A
Five-Year Study of File-System Metadata. ACM Transactions on Storage 3, 3.

[2] AL-FARES, M., ELMELEEGY, K., REED, B., AND GASHINSKY, I. 2011. Overclocking
the Yahoo! CDN for Faster Web Page Loads. In Proceedings of the 11th ACM
SIGCOMM Conference on Internet Measurement. IMC’11. 569-584.

[3] AMAZON. Cloud Drive. http://wuw.amazon.com/gp/feature.html?
docId=1000828861. Online. Accessed May 2013.

[4] AMAZON. Web Services. http://aws.amazon.com/. Online. Accessed Jul 2013.

[5] ANDERSON, S., NICCOLINI, S., AND HOGREFE, D. 2009. SIPFIX: A Scheme For
Distributed SIP Monitoring. In Proceedings of the 11th IFIP/IEEE International
Symposium on Integrated Network Management. IM’09. 382—-389.

[6] ANDREJEVIC, M. 2007. iSpy: Surveillance and Power in the Interactive Era 1 Ed.
University Press of Kansas, Lawrence, KS, USA.

[7] ANTI, M. 2012. Behind the Great Firewall of China. TEDTalk http://www.
ted.com/talks/michael_anti_behind_the_great_firewall_of_china.html. On-
line. Accessed May 2013.

[8] ARLITT, M. AND WILLIAMSON, C. 2005. An Analysis of TCP Reset Behaviour on
the Internet. ACM SIGCOMM Computer Communication Review 35, 1, 37—-44.

[9] ArRMBRuUST, M., Fox, A., GRIFFITH, R., JOSEPH, A. D., KaTz, R., KONWINSKI,
A., LEE, G., PATTERSON, D., RABKIN, A., STOICA, 1., AND ZAHARIA, M. 2010. A
View of Cloud Computing. Communications of the ACM 53, 50-58.

[10] ARTHUR, C. 2010. Google’s ChromeOS Means Losing Control of Data, Warns
GNU Founder Richard Stallman. http://www.guardian.co.uk/technology/blog/
2010/dec/14/chrome-os-richard-stallman-warning. Online. Accessed Jul 2013.

[11] BENTHAM, J. 1791. Panopticon; or, the Inspection-House. Vol. 2. London, UK.

[12] BERGEN, A., CoADY, Y., AND MCGEER, R. 2011. Client Bandwidth: The For-
gotten Metric of Online Storage Providers. In Proceedings of the IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing. PacRim’2011.
543-548.

http://www.amazon.com/gp/feature.html?docId=1000828861
http://www.amazon.com/gp/feature.html?docId=1000828861
http://aws.amazon.com/
http://www.ted.com/talks/michael_anti_behind_the_great_firewall_of_china.html
http://www.ted.com/talks/michael_anti_behind_the_great_firewall_of_china.html
http://www.guardian.co.uk/technology/blog/2010/dec/14/chrome-os-richard-stallman-warning
http://www.guardian.co.uk/technology/blog/2010/dec/14/chrome-os-richard-stallman-warning

148 BIBLIOGRAPHY

[13] BERMUDEZ, 1., MELLIA, M., MUNAFO, M. M., KERALAPURA, R., AND Nucci,
A. 2012. DNS to the Rescue: Discerning Content and Services in a Tangled Web. In
Proceedings of the 12th ACM Internet Measurement Conference. IMC’12. 413-426.

[14] BERMUDEZ, I. N., TRAVERSO, S., MELLIA, M., AND MUNAFO, M. M. 2013.
Exploring the Cloud from Passive Measurements: The Amazon AWS Case. In
Proceedings of the 32nd Annual IEEE International Conference on Computer Com-
munications. INFOCOM’13.

[15] BERTHIER, R., CUKIER, M., HILTUNEN, M., KORMANN, D., VESONDER, G.,
AND SHELEHEDA, D. 2010. Nfsight: NetFlow-Based Network Awareness Tool. In
Proceedings of the 24th International Conference on Large Installation System Ad-
ministration. LISA’10. 1-8.

[16] BRACEWELL, R. N. 1986. The Fourier Transform and Its Applications 2 Ed.
McGraw-Hill, New York, NY, USA.

[17] BRIGNALL, T. 2002. The New Panopticon: The Internet Viewed as a Structure
of Social Control. Theory & Science 3, 1.

[18] BROWNLEE, N. 1999. Traffic Flow Measurement: Meter MIB. RFC 2720 (Stan-
dards Track).

[19] BROWNLEE, N. 2011. Flow-Based Measurement: IPFIX Development and De-
ployment. IEICE Transactions on Communications 94, 8, 2190-2198.

[20] BROWNLEE, N., MiLLs, C., AND RuTH, G. 1999. Traffic Flow Measurement:
Architecture. RFC 2722 (Informational).

[21] CaLLaDO, A., Kamienskl, C., SzAaBO, G., GERO, B. P., KELNER, J., FERNAN-
DES, S., AND SADOK, D. 2009. A Survey on Internet Traffic Identification. IEEE
Communications Surveys & Tutorials 11, 3, 37-52.

[22] CELEDA, P., KovACik, M., Konik, T., KRMICEK, V., SPRINGL, P., AND ZADNIK,
M. 2007. FlowMon Probe. Tech. rep., CESNET.

[23] CHA, M., Kwak, H., RODRIGUEZ, P., AHN, Y.-Y., AND MOON, S. 2007. I
Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System. In Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement. IMC’07. 1-14.

[24] Ci1sco SYSTEMS. 2006. IOS Flexible NetFlow Overview. http://www.cisco.com/
en/US/docs/ios/fnetflow/configuration/guide/fnetflow_overview.html. On-
line. Accessed Jun 2013.

[25] Cisco SYSTEMS. 2009. Catalyst 6500 Series Switch Cisco I0S Software Configu-
ration Guide. http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/
ios/12.2SXF/native/configuration/guide/122sxscg.pdf. Online. Accessed Dec
2012.

http://www.cisco.com/en/US/docs/ios/fnetflow/configuration/guide/fnetflow_overview.html
http://www.cisco.com/en/US/docs/ios/fnetflow/configuration/guide/fnetflow_overview.html
http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SXF/native/configuration/guide/122sxscg.pdf
http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SXF/native/configuration/guide/122sxscg.pdf

BIBLIOGRAPHY 149

[26] CLAFFY, K. C., BrRAUN, H.-W., AND PoLyzos, G. C. 1995. A Parameterizable
Methodology for Internet Traffic Flow Profiling. IEEE Journal on Selected Areas in
Communications 13, 8, 1481-1494.

[27] CLAISE, B. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954
(Informational).

[28] CLAISE, B. 2008. Specification of the IP Flow Information Export (IPFIX) Proto-
col for the Exchange of IP Traffic Flow Information. RFC 5101 (Standards Track).

[29] CrLAISE, B., AITKEN, P., AND BEN-DVORA, N. 2012. Cisco Systems Export
of Application Information in IP Flow Information Export (IPFIX). RFC 6759
(Informational).

[30] CrAISE, B., DHANDAPANI, G., AITKEN, P., AND YATES, S. 2011. Export of
Structured Data in IP Flow Information Export (IPFIX). RFC 6313 (Standards
Track).

[31] CLARKE, R. 2012. How Reliable is Cloudsourcing? A Review of Articles in the
Technical Media 2005-11. Computer Law & Security Review 28, 1, 90-95.

[32] CLOUDSLEUTH. Global Provider View. https://cloudsleuth.net/
global-provider-view. Online. Accessed Jul 2013.

[33] COMPUWARE. APM Synthetic =~ Monitoring. http://www.
compuware.com/en_us/application-performance-management/products/
user-experience-management/synthetic-web-and-mobile/overview.html.
Online. Accessed Jul 2013.

[34] CuNHA, 1., SILVEIRA, F., OLIVEIRA, R., TEIXEIRA, R., AND DioT, C. 2009. Un-
covering Artifacts of Flow Measurement Tools. In Proceedings of the 10th Interna-
tional Conference on Passive and Active Network Measurement. PAM’09. 187-196.

[35] DE O. SCHMIDT, R., SPEROTTO, A., SADRE, R., AND PrAS, A. 2012. Towards
Bandwidth Estimation using Flow-Level Measurements. In Proceedings of the 6th
IFIP WG 6.6 International Conference on Autonomous Infrastructure, Manage-
ment, and Security. AIMS’12. 127-138.

[36] DERI, L. 2003. nProbe: An Open Source NetFlow Probe for Gigabit Networks.
In Proceedings of the Terena. TNC’03.

[37] DERI, L. 2006. Open Source VoIP Traffic Monitoring. In Proceedings of the 5th
System Administration and Network Engineering Conference. SANE’06.

[38] DERI, L., TROMBACCHI, L. L., MARTINELLI, M., AND VANNOZzZI, D. 2012. A
Distributed DNS Traffic Monitoring System. In Proceedings of the 8th International
Wireless Communications and Mobile Computing Conference. IWCMC,12. 30-35.

https://cloudsleuth.net/global-provider-view
https://cloudsleuth.net/global-provider-view
http://www.compuware.com/en_us/application-performance-management/products/user-experience-management/synthetic-web-and-mobile/overview.html
http://www.compuware.com/en_us/application-performance-management/products/user-experience-management/synthetic-web-and-mobile/overview.html
http://www.compuware.com/en_us/application-performance-management/products/user-experience-management/synthetic-web-and-mobile/overview.html

150 BIBLIOGRAPHY

[39] DracO, 1., BARBOSA, R. R., SADRE, R., PrAs, A., AND SCHONWALDER, J.
2011a. Report of the Second Workshop on the Usage of NetFlow/IPFIX in Network
Management. Journal of Network and Systems Management 19, 2, 298-304.

[40] Draco, 1., BoccHl, E., MELLIA, M., SLATMAN, H., AND PrAS, A. 2013a. Bench-
marking Personal Cloud Storage. In Proceedings of the 13th ACM Internet Mea-
surement Conference. IMC’13.

[41] DracGO, I., HOFSTEDE, R., SADRE, R., SPEROTTO, A., AND PRrAS, A. 2013b.
Measuring Cloud Service Health using NetFlow /IPFIX: The WikiLeaks Case. Jour-
nal of Network and Systems Management. Online First Articles. http://dx.doi.
org/10.1007/s10922-013-9278-0. Accessed Jun 2013.

[42] Draco, 1., MELLIA, M., MUNAFO, M. M., SPEROTTO, A., SADRE, R., AND
PraAs, A. 2012. Inside Dropbox: Understanding Personal Cloud Storage Services.
In Proceedings of the 12th ACM Internet Measurement Conference. IMC’12. 481—
494.

[43] DrAGO, I. AND PrAS, A. 2010. Scalable Service Performance Monitoring. In Pro-
ceedings of the 4th International Conference on Autonomous Infrastructure, Man-
agement and Security. AIMS’10. 175-178.

[44] DracO, 1., SADRE, R., AND PRrRAS, A. 2011b. Report of the Third Workshop
on the Usage of NetFlow/IPFIX in Network Management. Journal of Network and
Systems Management 19, 4, 529-535.

[45] DRAPER, N. AND GUTTMAN, I. 1971. Bayesian Estimation of the Binomial Pa-
rameter. Technometrics 18, 3, 667-673.

[46] DrOPBOX. Dropbox Release Notes. https://www.dropbox.com/release_notes/.
Online. Accessed May 2013.

[47] DroOPBOX. DropboxOps. http://twitter.com/DropboxOps. Online. Accessed
Jun 2013.

[48] DropBOX. What Is Dropbox? https://www.dropbox.com/news/company-info/.
Online. Accessed May 2013.

[49] DUFFIELD, N. 2004. Sampling for Passive Internet Measurement: A Review.
Statistical Science 19, 3, 472-498.

[50] DUFFIELD, N. AND LuND, C. 2003. Predicting Resource Usage and Estimation
Accuracy in an IP Flow Measurement Collection Infrastructure. In Proceedings of
the 8rd ACM SIGCOMM Conference on Internet Measurement. IMC’03. 179-191.

[61] DUFFIELD, N., LunDp, C., AND THORUP, M. 2002. Properties and Prediction
of Flow Statistics from Sampled Packet Streams. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurement. IMW’02. 159-171.

http://dx.doi.org/10.1007/s10922-013-9278-0
http://dx.doi.org/10.1007/s10922-013-9278-0
https://www.dropbox.com/release_notes/
http://twitter.com/DropboxOps
https://www.dropbox.com/news/company-info/

BIBLIOGRAPHY 151

[652] DUFFIELD, N., LUunND, C., AND THORUP, M. 2005. Estimating Flow Distributions
from Sampled Flow Statistics. IEEE/ACM Transactions on Networking 13, 5, 933—
946.

[63] DukkipaTl, N., REFICE, T., CHENG, Y., CHU, J., HERBERT, T., AGARWAL,
A., JaiN, A., AND SUTIN, N. 2010. An Argument for Increasing TCP’s Initial
Congestion Window. ACM SIGCOMM Computer Communication Review 40, 3,
26-33.

[54] DURKEE, D. 2010. Why Cloud Computing Will Never Be Free. ACM Queue 8, 4,
20-29.

[65] ERIKSSON, B. AND CROVELLA, M. 2013. Understanding Geolocation Accuracy
using Network Geometry. In Proceedings of the 32nd Annual IEEE International
Conference on Computer Communications. INFOCOM’13.

[56] FAwCETT, T. 2006. An Introduction to ROC Analysis. Pattern Recognition
Letters 27, 8, 861-874.

[57] Fiippr, P. D. AND MCCARTHY, S. 2012. Cloud Computing: Centralization and
Data Sovereignty. European Journal of Law and Technology 3, 2.

[58] FINAMORE, A., GEHLEN, V., MELLIA, M., MUNAFO, M. M., AND NICOLINI, S.
2012. The Need for an Intelligent Measurement Plane: The Example of Time-
Variant CDN Policies. In Proceedings of 15th International Telecommunications
Network Strategy and Planning Symposium. NETWORKS’12. 1-6.

[59] FINAMORE, A., MELLIA, M., MEO, M., MUNAFO, M. M., AND RossI, D. 2011a.
Experiences of Internet Traffic Monitoring with Tstat. IEEE Network 25, 3, 8-14.

[60] FINAMORE, A., MELLIA, M., MUNAFO, M. M., ToRRES, R., AND RaO, S. G.
2011b. YouTube Everywhere: Impact of Device and Infrastructure Synergies on User
Experience. In Proceedings of the 11th ACM SIGCOMM Conference on Internet
Measurement. IMC’11. 345-360.

[61] FoLLETT, J. H. 2006. Cisco: Catalyst 6500 The Most Successful Switch
Ever. http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/i0s/12.
2SXF/native/configuration/guide/122sxscg.pdf. Online. Accessed Jun 2013.

[62] FoucauLrt, M. 1995. Discipline & Punish: The Birth of the Prison 2 Ed. Vintage,
New York, NY, USA.

[63] FULLMER, M. AND RoMiIG, S. 2000. The OSU Flow-Tools Package and CISCO
NetFlow Logs. In Proceedings of the 14th USENIX Conference on System Admin-
istration. LISA’00. 291-304.

http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SXF/native/configuration/guide/122sxscg.pdf
http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SXF/native/configuration/guide/122sxscg.pdf

152 BIBLIOGRAPHY

[64] GArcia-DorADO, J. L., FINAMORE, A., MELLIA, M., MEO, M., AND MUNAFO,
M. M. 2012. Characterization of ISP Traffic: Trends, User Habits, and Access
Technology Impact. IEEFE Transactions on Network and Service Management 9, 2,
142-155.

[65] Garcia-Dorapo, J. L., MaTA, F., Ramos, J., DEL Rio, P. M. S., MORENO,
V., AND ARAcCIL, J. 2013. High-Performance Network Traffic Processing Systems
using Commodity Hardware. In Data Traffic Monitoring and Analysis. LNCS Series,
vol. 7754. 3-27.

[66] GEHLEN, V., FINAMORE, A., MELLIA, M., AND MUNAFO, M. M. 2012. Uncover-
ing the Big Players of the Web. In Proceedings of the 4th International Conference
on Traffic Monitoring and Analysis. TMA’12. 15-28.

[67] GJoKA, M., SIRIVIANOS, M., MARKOPOULOU, A., AND YANG, X. 2008. Pok-
ing Facebook: Characterization of OSN Applications. In Proceedings of the 1st
Workshop on Online Social Networks. WOSN’08. 31-36.

[68] GLATZ, E. AND DIMITROPOULOS, X. 2012. Classifying Internet One-way Traffic.
In Proceedings of the 12th ACM Internet Measurement Conference. IMC’12. 37-50.

[69] GooDIN, D. 2012. Yes, Microsoft Azure Was Downed By Leap-Year Bug. http://
www.wired.com/wiredenterprise/2012/03/azure-leap-year-bug/. Online. Ac-
cessed Jul 2013.

[70] GOOGLE. Apps Status Dashboard. http://www.google.com/appsstatus. Online.
Accessed Jun 2013.

[71] GOOGLE. Docs. https://docs.google.com/. Online. Accessed Jul 2013.

[72] GOOGLE. Drive. https://tools.google.com/dlpage/drive/. Online. Accessed
May 2013.

[73] GOOGLE. Network Introduction. https://peering.google.com/about/
delivery_ecosystem.html. Online. Accessed May 2013.

[74] GOOGLE. Trends. http://www.google.com/trends/. Online. Accessed May 2013.

[75] GREENWALD, G. AND MACASKILL, E. 2013. NSA Prism Program Taps In to User
Data of Apple, Google and Others. http://www.guardian.co.uk/world/2013/jun/
06/us-tech-giants-nsa-data. Online. Accessed Jul 2013.

[76] Gu, Y., BRESLAU, L., DUFFIELD, N., AND SEN, S. 2009. On Passive One-Way
Loss Measurements using Sampled Flow Statistics. In Proceedings of the 28th An-
nual IEEE International Conference on Computer Communications. INFOCOM’09.
2946-2950.

[77] Haag, P. Plugin Writers Guide. http://nfsen.sourceforge.net/PluginGuide/
plugin-guide.html. Online. Accessed Jun 2013.

http://www.wired.com/wiredenterprise/2012/03/azure-leap-year-bug/
http://www.wired.com/wiredenterprise/2012/03/azure-leap-year-bug/
http://www.google.com/appsstatus
https://docs.google.com/
https://tools.google.com/dlpage/drive/
https://peering.google.com/about/delivery_ecosystem.html
https://peering.google.com/about/delivery_ecosystem.html
http://www.google.com/trends/
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data
http://nfsen.sourceforge.net/PluginGuide/plugin-guide.html
http://nfsen.sourceforge.net/PluginGuide/plugin-guide.html

BIBLIOGRAPHY 153

[78] HaaG, P. 2005. Watch Your Flows with NfSen and NFDUMP. 50th RIPE
Meeting http://meetings.ripe.net/ripe-50/presentations/. Online. Accessed
May 2013.

[79] HaBIB, S. M., RIES, S., AND MUHLHAUSER, M. 2010. Cloud Computing Land-
scape and Research Challenges regarding Trust and Reputation. In Proceedings of

the Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing.
UIC-ATC’10. 410-415.

[80] HaJjaT, M., SuN, X., SUNG, Y.-W. E., MALTZ, D., RAO, S., SRIPANIDKULCHAI,
K., AND TAWARMALANI, M. 2010. Cloudward Bound: Planning for Beneficial Mi-
gration of Enterprise Applications to the Cloud. ACM SIGCOMM Computer Com-
munication Review 40, 4, 243—-254.

[81] HALEVI, S., HARNIK, D., PINKAS, B., AND SHULMAN-PELEG, A. 2011. Proofs of
Ownership in Remote Storage Systems. In Proceedings of the 18th ACM Conference
on Computer and Communications Security. CCS’11. 491-500.

[82] HARNIK, D., PINKAS, B., AND SHULMAN-PELEG, A. 2010. Side Channels in
Cloud Services: Deduplication in Cloud Storage. IEEE Security and Privacy 8, 6,
40-47.

[83] HATONEN, S., NYRHINEN, A., EGGERT, L., STROWES, S., SAROLAHTI, P., AND
Koo, M. 2010. An Experimental Study of Home Gateway Characteristics. In
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement.
IMC’10. 260-266.

[84] HOFER, C. AND KARAGIANNIS, G. 2011. Cloud Computing Services: Taxonomy
and Comparison. Journal of Internet Services and Applications 2, 81-94.

[85] HOFSTEDE, R., DrRAGO, 1., SPEROTTO, A., SADRE, R., AND PrAs, A. 2013.
Measurement Artifacts in NetFlow Data. In Proceedings of the 14th International
Conference on Passive and Active Measurement. PAM’13. 1-10.

[86] HOFSTEDE, R. AND FIOREZE, T. 2009. SURFmap: A Network Monitoring Tool
based on the Google Maps APL. In Proceedings of the 11th IFIP/IEEE International
Conference on Symposium on Integrated Network Management. IM’09. 676—-690.

[87] Hu, W., YaNG, T., AND MATTHEWS, J. N. 2010. The Good, the Bad and the
Ugly of Consumer Cloud Storage. ACM SIGOPS Operating Systems Review 44, 3,
110-115.

[88] TANA. 2007. IP Flow Information Export (IPFIX) Entities. http://www.iana.
org/assignments/ipfix/ipfix.xml. Online. Accessed Jun 2013.

[89] INacio, C. M. AND TRAMMELL, B. 2010. YAF: Yet Another Flowmeter. In
Proceedings of the 24th International Conference on Large Installation System Ad-
ministration. LISA’10. 1-16.

http://meetings.ripe.net/ripe-50/presentations/
http://www.iana.org/assignments/ipfix/ipfix.xml
http://www.iana.org/assignments/ipfix/ipfix.xml

154 BIBLIOGRAPHY

[90] JoHN, W., TAFVELIN, S., AND OLOVSSON, T. 2010. Passive Internet Measure-
ment: Overview and Guidelines based on Experiences. Computer Communica-
tions 33, 5, 533-550.

[91] KANNAN, J., JUNG, J., PAXSON, V., AND KOKsAL, C. E. 2006. Semi-Automated
Discovery of Application Session Structure. In Proceedings of the 6th ACM SIG-
COMM Conference on Internet Measurement. IMC’06. 119-132.

[92] KOGEL, J. 2011. One-way Delay Measurement based on Flow Data: Quantifi-
cation and Compensation of Errors by Exporter Profiling. In Proceedings of the
International Conference on Information Networking. ICOIN’11. 25-30.

[93] KossMANN, D., KRASKA, T., AND LOESING, S. 2010. An Evaluation of Alterna-
tive Architectures for Transaction Processing in the Cloud. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. SIGMOD’10.
579-590.

[94] LaBovitz, C., IEKEL-JOHNSON, S., MCPHERSON, D., OBERHEIDE, J., AND JA-
HANIAN, F. 2010. Internet Inter-Domain Traffic. In Proceedings of the ACM SIG-
COMM 2010 Conference. SIGCOMM’10. 75-86.

[95] LACIE. Wuala. http://www.wuala.com/. Online. Accessed May 2013.

[96] LAMPERT, R. T., SOMMER, C., MUNZ, G., AND DRESSLER, F. 2006. Vermont
— A Versatile Monitoring Toolkit for IPFIX and PSAMP. In Proceedings of the
IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation. MonAM’06.

[97] LEINEN, S. 2004. Evaluation of Candidate Protocols for IP Flow Information
Export (IPFIX). RFC 3955 (Informational).

[98] LENK, A., KLEMS, M., Nmvis, J., TAl, S., AND SANDHOLM, T. 2009. What’s
Inside the Cloud? An Architectural Map of the Cloud Landscape. In Proceedings
of the ICSE Workshop on Software Engineering Challenges of Cloud Computing.
CLOUD’09. 23-31.

[99] LENK, A., MENZEL, M., LipsKY, J., TAl, S., AND OFFERMANN, P. 2011. What
Are You Paying For? Performance Benchmarking for Infrastructure-as-a-Service
Offerings. In Proceedings of the 4th IEEE International Conference on Cloud Com-
puting. CLOUD’11. 484-491.

[100] LEwis, D. D. AND GALE, W. A. 1994. A Sequential Algorithm for Training Text
Classifiers. In Proceedings of the 17th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR’94. 3-12.

[101] L1, A., YaNG, X., KANDULA, S., AND ZHANG, M. 2010. CloudCmp: Comparing
Public Cloud Providers. In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement. IMC’10. 1-14.

http://www.wuala.com/

BIBLIOGRAPHY 155

[102] Li, B., SPRINGER, J., BEBIS, G., AND GUNES, M. H. 2013. A Survey of Network
Flow Applications. Journal of Network and Computer Applications 36, 2, 567-581.

[103] LiIMMER, T. AND DRESSLER, F. 2009. Flow-Based TCP Connection Analysis.
In Proceedings of the 2nd IEEE International Workshop on Information and Data
Assurance. WIDA’09. 376-383.

[104] MAGER, T., BIERSACK, E., AND MICHIARDI, P. 2012. A Measurement Study of
the Wuala On-line Storage Service. In Proceedings of the IEEE 12th International
Conference on Peer-to-Peer Computing. P2P’12. 237-248.

[105] MANSFIELD-DEVINE, S. 2011. Anonymous: Serious Threat or Mere Annoyance?
Network Security 2011, 1, 4-10.

[106] MAXMIND. GeolP Organization. http://www.maxmind.com/en/organization.
Online. Accessed May 2013.

[107] MELLIA, M., MEO, M., MUSCARIELLO, L., AND RossI, D. 2008. Passive Analysis
of TCP Anomalies. Computer Networks 52, 14, 2663—2676.

[108] MENG, S., IYENGAR, A. K., RouvELLOU, I. M., Liu, L., LEE, K., PALANISAMY,
B., AND TANG, Y. 2012. Reliable State Monitoring in Cloud Datacenters. In Pro-
ceedings of the 5th IEEE International Conference on Cloud Computing. CLOUD’12.
951-958.

[109] MENG, S. AND Liu, L. 2012. Enhanced Monitoring-as-a-Service for Effective
Cloud Management. IEEE Transactions on Computers PP.

[110] MICROSOFT. SkyDrive. https://skydrive.live.com/. Online. Accessed May
2013.

[111] MisLOVE, A., MARcON, M., GuMmmaDI, K. P., DRUSCHEL, P., AND BHAT-
TACHARJEE, B. 2007. Measurement and Analysis of Online Social Networks. In Pro-
ceedings of the Tth ACM SIGCOMM Conference on Internet Measurement. IMC’07.
29-42.

[112] MITSEVA, A. 2012. On-line Monitoring of Cloud Providers with NfSen. Bachelor
thesis, Technical University of Sofia.

[113] MULAZZANI, M., SCHRITTWIESER, S., LEITHNER, M., HUBER, M., AND WEIPPL,
E. 2011. Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and
Online Slack Space. In Proceedings of the 20th USENIX Conference on Security.
SEC’11.

[114] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. 2001. A Low-Bandwidth
Network File System. ACM SIGOPS Operating Systems Review 35, 5, 174-187.

http://www.maxmind.com/en/organization
https://skydrive.live.com/

156 BIBLIOGRAPHY

[115] PATTERSON, M. 2009. NetFlow v9 vs. NetFlow v5: What Are the Dif-
ferences? http://www.plixer.com/blog/netflow/netflow-v9-vs-netflow-v5/.
Online. Accessed Jun 2013.

[116] PAXSON, V. 1999. Bro: A System for Detecting Network Intruders in Real-time.
Computer Networks 31, 23-24, 2435-2463.

[117] PAXSON, V. 2004. Strategies for Sound Internet Measurement. In Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement. IMC’04. 263—-271.

[118] POESE, 1., UHLIG, S., KAAFAR, M. A., DONNET, B., AND GUEYE, B. 2011. IP
Geolocation Databases: Unreliable? ACM SIGCOMM Computer Communication
Review 41, 2, 53-56.

[119] PorTUGAL TELECOM. SmartCloudPT. https://www.smartcloudpt.pt/Pages/
FAQ/. Online. Accessed Jul 2013.

[120] PraAs, A., SPEROTTO, A., MOURA, G. C., DRAGO, 1., BARBOSA, R. R., SADRE,
R., bE O. ScaMmIDT, R., AND HOFSTEDE, R. 2010. Attacks by “Anonymous”
WikiLeaks Proponents not Anonymous. Tech. Rep. TR-CTIT-10-41, CTIT, Uni-
versity of Twente.

[121] PTACEK, L. 2011. Analysis and Detection of Skype Network Traffic. Master
thesis, Masaryk University.

[122] QUITTEK, J., ZSEBY, T., CLAISE, B., AND ZANDER, S. 2004. Requirements for
IP Flow Information Export (IPFIX). RFC 3917 (Informational).

[123] RivMAL, B. P., CHo1, E., AND LUMB, L. 2009. A Taxonomy and Survey of Cloud
Computing Systems. In Proceedings of the 2009 Fifth International Joint Conference
on INC, IMS and IDC. NCM’09. 44-51.

[124] Rousskov, A. AND TSANTILAS, C. Squid-in-the-Middle SSL Bump. http://
wiki.squid-cache.org/Features/Ss1Bump/. Online. Accessed May 2013.

[125] RULLGARD, M. Magic Number Recognition Library. http://sourceforge.net/
projects/libmagic/. Online. Accessed Jun 2013.

[126] SADASIVAN, G., BROWNLEE, N., CLAISE, B., AND QUITTEK, J. 2009. Architec-
ture for IP Flow Information Export. RFC 5470 (Informational).

[127] SADRE, R. AND HAVERKORT, B. R. 2008. Fitting Heavy-Tailed HTTP Traces
with the New Stratified EM-Algorithm. In Proceedings of the 4th International
Telecommunication Networking Workshop on QoS in Multiservice IP Networks. IT-
NEWS. 254-261.

[128] SCHATZMANN, D., LEINEN, S., KOGEL, J., AND MUHLBAUER, W. 2011. FACT:
Flow-Based Approach for Connectivity Tracking. In Proceedings of the 12th Interna-
tional Conference on Passive and Active Network Measurement. PAM’11. 214-223.

http://www.plixer.com/blog/netflow/netflow-v9-vs-netflow-v5/
https://www.smartcloudpt.pt/Pages/FAQ/
https://www.smartcloudpt.pt/Pages/FAQ/
http://wiki.squid-cache.org/Features/SslBump/
http://wiki.squid-cache.org/Features/SslBump/
http://sourceforge.net/projects/libmagic/
http://sourceforge.net/projects/libmagic/

BIBLIOGRAPHY 157

[129] SCHONWALDER, J., FOUQUET, M., RODOSEK, G. D., AND HOCHSTATTER, I. C.
2009. Future Internet = Content + Services + Management. IEEE Communications
Magazine 47, 7, 27-33.

[130] SOMMER, R. AND FELDMANN, A. 2002. NetFlow: Information Loss or Win?
In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement.
IMW’02. 173-174.

[131] SPEROTTO, A., SCHAFFRATH, G., SADRE, R., MORARIU, C., PRAS, A., AND
STILLER, B. 2010. An Overview of IP Flow-Based Intrusion Detection. IEEE
Communications Surveys € Tutorials 12, 3, 343—-356.

[132] STEINBERGER, J., SCHEHLMANN, L., ABT, S., AND BAIER, H. 2013. Anomaly
Detection and Mitigation at Internet Scale: a Survey. In Proceedings of the 7th IFIP
WG 6.6 International Conference on Autonomous Infrastructure, Management, and
Security. AIMS’13. 49-60.

[133] TANG, V. K. AND SINDLER, R. B. 1987. Confidence Interval for Parameter n in
a Binomial Distribution. Tech. Rep. CRM 86-265, Center for Naval Analyses.

[134] TaNnG, V. K., SINDLER, R. B., AND SHIRVEN, R. M. 1987. Bayesian Estimation
of n in a Binomial Distribution. Tech. Rep. CRM 87-185, Center for Naval Analyses.

[135] THOUSANDEYES. Performance Management for the Cloud Era. http://www.
thousandeyes.com/. Online. Accessed Jul 2013.

[136] TORRES, R., FINAMORE, A., KiM, J. R., MELLIA, M., MUNAFO, M. M., AND
RAO, S. 2011. Dissecting Video Server Selection Strategies in the YouTube CDN. In
Proceedings of the 31st International Conference on Distributed Computing Systems.
ICDCS’11. 248-257.

[137] TRAMMELL, B. AND BoscHi, E. 2008. Bidirectional Flow Export Using IP Flow
Information Export (IPFIX). RFC 5103 (Standards Track).

[138] TRAMMELL, B. AND Boscul, E. 2011. An Introduction to IP Flow Information
Export (IPFIX). IEEE Communications Magazine 49, 4, 89-95.

[139] TRAMMELL, B., TELLENBACH, B., SCHATZMANN, D.; AND BURKHART, M. 2011.
Peeling away Timing Error in NetFlow Data. In Proceedings of the 12th Interna-
tional Conference on Passive and Active Measurement. PAM’11. 194-203.

[140] TRIDGELL, A. 1999. Efficient Algorithms for Sorting and Synchronization.
Ph.D. thesis, Australian National University. http://www.samba.org/ tridge/
phd_thesis.pdf.

[141] TRIFILO, A., BURSCHKA, S., AND BIERSACK, E. 2009. Traffic to Protocol Re-
verse Engineering. In Proceedings of the 2nd IEEE International Conference on
Computational Intelligence for Security and Defense Applications. CISDA’09. 257—
264.

http://www.thousandeyes.com/
http://www.thousandeyes.com/
http://www.samba.org/~tridge/phd_thesis.pdf
http://www.samba.org/~tridge/phd_thesis.pdf

158 BIBLIOGRAPHY

[142] TWITTER. Status. http://status.twitter.com. Online. Accessed Jun 2013.

[143] vAN RIISBERGEN, C. 1979. Information Retrieval 2 Ed. Butterworth, London,
UK.

[144] VAQUERO, L. M., RODERO-MERINO, L., CACERES, J., AND LINDNER, M. 2008.
A Break in the Clouds: Towards a Cloud Definition. ACM SIGCOMM Computer
Communication Review 39, 1, 50-55.

[145] Viavan, J. 2013. U.S. Cloud Firms Face Backlash from NSA
Spy Programs. http://wuw.computerworlduk.com/news/security/3460473/
us-cloud-firms-face-backlash-from-nsa-spy-programs/. Online. Accessed Jul
2013.

[146] WALDBUSSER, S. 2004. Application Performance Measurement MIB. RFC 3729
(Standards Track).

[147] WaNG, G. AND NG, T. E. 2010. The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center. In Proceedings of the 29th Annual IEEE
International Conference on Computer Communications. INFOCOM’10. 1-9.

[148] WaNG, H., SHEA, R., WANG, F., AND L1u, J. 2012. On the Impact of Virtualiza-
tion on Dropbox-Like Cloud File Storage/Synchronization Services. In Proceedings
of the IEEE 20th International Workshop on Quality of Service. IWQoS ’12. 11:1—
11:9.

[149] ZHANG, J. AND MOORE, A. 2007. Traffic Trace Artifacts due to Monitoring Via
Port Mirroring. In Proceedings of the 15th IEEE/IFIP Workshop on End-to-End
Monitoring Techniques and Services. E2EMON’07. 1-8.

[150] ZHANG, Q., CHENG, L., AND BouTaBa, R. 2010. Cloud Computing: State-of-
the-Art and Research Challenges. Journal of Internet Services and Applications 1,
7-18.

[151] ZsEBY, T., BoscHl, E., BROWNLEE, N., AND CLAISE, B. 2009a. IP Flow Infor-
mation Export (IPFIX) Applicability. RFC 5472 (Informational).

[152] ZsEBY, T., MOLINA, M., DUFFIELD, N., NICCOLINI, S., AND RASPALL, F. 2009b.
Sampling and Filtering Techniques for IP Packet Selection. RFC 5475 (Standards
Track).

http://status.twitter.com
http://www.computerworlduk.com/news/security/3460473/us-cloud-firms-face-backlash-from-nsa-spy-programs/
http://www.computerworlduk.com/news/security/3460473/us-cloud-firms-face-backlash-from-nsa-spy-programs/

Acronyms

ADSL Asymmetric Digital Subscriber Line
Amazon EC2 Amazon Elastic Compute Cloud
Amazon S3 Amazon Simple Storage Service
API Application Programming Interface

AS Autonomous System

AWS Amazon Web Service

CDF Cumulative Distribution Function
CPU Central Processing Unit

DNS Domain Name System
DPI Deep Packet Inspection

FQDN Fully Qualified Domain Name
FTP File Transfer Protocol
FTTH Fiber to the Home

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

HuaaS Human as a Service

IaaS Infrastructure as a Service

TANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX IP Flow Information Export

ISP Internet Service Provider
LAN Local Area Network

MIB Management Information Base

160

ACRONYMS

MPLS Multi-Protocol Label Switching

NAT Network Address Translation
NSA United States National Security Agency

PaaS Platform as a Service
POP Point of Presence
PSAMP Packet SAMPling

RFC Request for Comment

RRD Round-Robin Database

RTFM Real-time Traffic Flow Measurement
RTT Round Trip Time

SaaS Software as a Service

SLA Service Level Agreement

SNMP Simple Network Management Protocol
SSL Secure Sockets Layer

TCP Transmission Control Protocol
TLS Transport Layer Security

UDP User Datagram Protocol
URL Uniform Resource Locator
UT University of Twente

VoIP Voice over IP

About the author

I was born in Marilandia, Espirito Santo, Brazil, on March
30th, 1980. I received my Master of Science (M.Sc.) de-
gree in Computer Science in 2007 and my Bachelor of Science
(B.Sc.) degree in Computer Engineering in 2004, both from
the Federal University of Espirito Santo, Brazil. From 2009
until 2013, T was a Ph.D. student at the Design and Anal-
ysis of Communication Systems Group (DACS) of the Uni-
versity of Twente, under supervision of Prof.dr.ir. Aiko Pras
and Prof.dr.ir Boudewijn R. Haverkort. During my Ph.D.
I spent 3 months in an internship in the Politecnico di
Torino, in Italy, where I had the pleasure to work with
Prof. Maurizio M. Munafo and Prof. Marco Mellia. These are
the papers I published during the time I was a Ph.D. student:

e Drago, ., Bocchi, E., Mellia, M., Slatman, H., and Pras, A. 2013. Benchmarking
Personal Cloud Storage. In Proceedings of the 13th ACM Internet Measurement
Conference. IMC’13.

e Hofstede, R., Drago, 1., Sperotto, A., Sadre, R., and Pras, A. 2013. Measurement
Artifacts in NetFlow Data. In Proceedings of the 14th International Conference
on Passive and Active Measurement. PAM’13. pp. 1-10.

Best Paper Award of PAM 2013.

e Drago, I., Hofstede, R., Sadre, R., Sperotto, A., and Pras, A. 2013. Measuring
Cloud Service Health using NetFlow/IPFIX: the WikiLeaks Case. Journal of
Network and Systems Management. Accepted for publication.

e Drago, I. and Vieira, A.B. and Silva, A.P.C. 2013. (in Portuguese) Caracter-
1zagao dos Arquivos Armazenados no Dropboxr. In: WP2P+. 31° Simpdsio
Brasileiro de Redes de Computadores e Sistemas Distribuidos. SBRC’13.

e Drago, ., Mellia, M., Munafo, M. M., Sperotto, A., Sadre, R., and Pras, A. 2012.
Inside Dropboz: Understanding Personal Cloud Storage Services. In Proceedings
of the 12th ACM Internet Measurement Conference. IMC’12. pp. 481-494.
IETF/IRTF Applied Networking Research Prize 2013.

e Hofstede, R.J. and Drago, I. and Sperotto, A. and Pras, A. 2011 Flow Monitoring
Ezxperiences at the Ethernet-Layer. In: Proceedings of the 17th Workshop on
Energy-Aware Communications, EUNICE’11. pp. 129-140.

e Hofstede, R.J. and Drago, I. and Moreira Moura, G.C. and Pras, A. 2011. Car-
rier Ethernet OAM: An Overview and Comparison to IP OAM. In: Proceedings

162

ABOUT THE AUTHOR

of the 5th International Conference on Autonomous Infrastructure, Management
and Security, AIMS’11, pp. 112-123.

Drago, I. and Sadre, R. and Pras, A. 2011. Report of the Third Workshop on
the Usage of NetFlow/IPFIX in Network Management. Journal of network and
systems management, 19 (4). pp. 529-535.

Drago, I. and Barbosa, R.R.R. and Sadre, R. and Pras, A. and Schonwélder,
J. 2011. Report of the Second Workshop on the Usage of NetFlow/IPFIX in
Network Management. Journal of Network and Systems Management, 19 (2).
pp. 298-304.

Pras, A. and Sperotto, A. and Moreira Moura, G.C. and Drago, 1. and Barbosa,
R.R.R. and Sadre, R. and de Oliveira Schmidt, R. and Hofstede, R.J. 2010. At-
tacks by “Anonymous” WikiLeaks Proponents not Anonymous. Technical Report
TR-CTIT-10-41, CTIT, University of Twente.

Drago, I. and Pras, A. 2010. Scalable Service Performance Monitoring. In
Proceedings of the 4th International Conference on Autonomous Infrastructure,
Management and Security. AIMS’10. pp. 175-178.

