
03 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A variable kinematic shell formulation applied to thermal stress of laminated structures / Carrera, Erasmo; Valvano,
Stefano. - In: JOURNAL OF THERMAL STRESSES. - ISSN 0149-5739. - 40:7(2017), pp. 803-827.
[10.1080/01495739.2016.1253439]

Original

A variable kinematic shell formulation applied to thermal stress of laminated structures

Publisher:

Published
DOI:10.1080/01495739.2016.1253439

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2658951 since: 2017-05-29T11:10:00Z

Taylor & Francis Limited:Rankine Road, Basingstoke RG24 8PR United Kingdom



A variable kinematic shell formulation applied to thermal

stress of laminated structures

E. Carrera1, S. Valvano1

(1) Department of Mechanical and Aerospace Engineering,
Politecnico di Torino, Turin, Italy

Keywords:
Variable-Kinematic, Equivalent-Single-Layer, Layer-Wise, Finite Element Method,
Thermo-Mechanical, Heat Conduction Problem, Carrera Unified Formulation, Shell.

Author and address for Correspondence
Dr. Erasmo Carrera
Full Professor,
Department of Mechanical and Aerospace Engineering
Politecnico di Torino,
Corso Duca degli Abruzzi, 24,
10129 Torino, ITALY,
tel +39.011.546.6836, fax +39.011.564.6899
e.mail: erasmo.carrera@polito.it

1



Abstract

In this paper, the thermo-elastic static analysis of multilayered shell structure is performed using some

advanced theories, obtained by expanding the unknown displacement variables along the thickness direc-

tion using Equivalent-Single-Layer (ESL) models, Layer-Wise (LW) models, and Variable-Kinematic

models. The Variable-Kinematic models permit to reduce the computational cost of the analyses group-

ing some layers of the multilayered structure with ESL models and keeping the LW models in other zones

of the multilayer. This model is here extended for the static analysis of uncoupled thermo-mechanical

problems. The results obtained with the classical assumed linear temperature profile along the thick-

ness of the shell are compared with those achieved with the calculated temperature profile solving the

Fourier heat conduction equation. The used refined models are grouped in the Unified Formulation by

Carrera (CUF), and they accurately describe the displacement field and the stress distributions along

the thickness of the multilayered shell. The shell element has nine nodes, and the Mixed Interpolation

of Tensorial Components (MITC) method is used to contrast the membrane and shear locking phe-

nomenon. The governing equations are derived from the Principle of Virtual Displacement (PVD), and

the Finite Element Method (FEM) is employed to solve them. Cross-ply plates and shells with simply-

supported edges, subjected to bi-sinusoidal thermal load are analyzed. Various aspect ratios and radius

to thickness ratios are considered. The results, obtained with different theories within CUF context, are

compared with the elasticity solutions given in the literature. From the results, it is possible to conclude

that the shell element based on the CUF is very efficient in the study of thermo-mechanical problems of

composite structures. The Variable-Kinematic models combining the ESL with the LW models, permit

to have a reduction of the computational costs, respect with the full LW models, preserving the accuracy

of the results in localized layers.
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Introduction

In the last years, an increasing amount of new structural materials, such as layered composite materials,

have been used for many engineering applications. More complex scenarios, like structure subjected

to severe high thermal gradients and cycling changes of temperature, are investigated. The continu-

ous development of advanced materials, combining some properties such as high specific strength and

stiffness, and nearly zero coefficient of thermal expansion in the fiber orientation, leads to increasingly

complex structural designs that require careful analysis. The analysis of layered composite structures is

complicated in practice. Anisotropy, complicating effects such as the C0
z - Requirements (zig-zag effects

in the displacements and interlaminar continuity for the stresses), the couplings between in-plane and

out-of-plane strains, are some of the issues to encounter. In most of the practical problems, the solution

demands applications of approximated computational methods. An overview of several computational

techniques for the analysis of laminated structures can be read in the review articles [1, 2, 3]. The Fi-

nite Element Method (FEM) has a predominant role among the computational techniques implemented

for the analysis of layered structures. Studies involving the thermo-elastic behavior using classical or

first-order theories are described by Kant and Khare [4] and Khdeir and Reddy [5]. In recent years,

several higher-order two-dimensional models have been developed for such problems, which consider

only an assumed temperature profile through the thickness. Among these, of particular interest is the

higher-order model by Whu and Chen [6]. The same temperature profile is used by Khare et alii [7]

to obtain a closed-form solution for the thermomechanical analysis of laminated and sandwich shells.

Khdeir [8] and Khdeir et alii [9] assume a linear or constant temperature profile through the thick-

ness. Barut et alii [10] analyze the nonlinear thermoelastic behavior of shells using the Finite Element

Method, but the assigned temperature profile is linear. In the framework of the arbitrary distribution

of temperature through the thickness, Miller et alii [11] and Dumir et alii [12] are noteworthy, in the

first a classical shell theory for composite shells is given, the second remarks the importance of the
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zig-zag form of displacements in the thermal analysis of composite shells. In the case of shells, further

investigations were made by Hsu et alii [13] for both closed form and Finite Element method, and by

Ding [14] for a weak formulation for the case of state equations including the boundary conditions.

A large variety of plate/shell finite element implementations of higher-order theories (HOT) has been

proposed in the last twenty years literature. For multilayered structures, in literature, two kinds of

models can be adopted: the Equivalent-Single-Layer (ESL) models, or the Layer-Wise (LW) models.

For the ESL models, the variables are independent of the number of layers. Differently, the LW models

permit to consider different sets of variables per each layer. In many cases the LW models are more

accurate than ESL models, meanwhile LW theories are more expensive than ESL ones in terms of

computational cost. A satisfactory thermal stress analysis is only possible if advanced and refined com-

putational models are developed to approximate the stiffness matrix correctly, and if a correct thermal

load is recognized. Sometimes the evaluation of a correct thermal load could be mandatory on any

further evaluation for the computational models. In other words, a wrong thermal load invalidates the

static response of plate and shell structures even when advanced computational models are employed.

In the last years, several efforts have been addressed to make the models more efficient. A possible

way is to combine multiple models in the analysis of laminate problems; the issue is to maximize the

accuracy keeping when it is possible a reduced computational cost. One of the simple types of multiple

model methods, for composite laminates analysis, is the concept of selective ply grouping or sublam-

inates [15, 16, 17]. The approach consists of creating some local regions, identified by specific ply or

plies, within which accurate stresses are desidered. The rest of the plies are identified as a global region

or the domain part lying outside the local area. In literature, the local region is often modeled by using

3-D finite elements for each material plies, while the global region can be represented by 3-D finite

elements grouped in one or more sublaminates. In the global region, the grouped sublaminates can be

modeled with an ESL finite element model. The disadvantage of this approach is the use of the 3-D

finite elements. Recently this technique of selective ply grouping or sublaminates has been employed
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using only 2-D finite elements for both local region and global region. The authors of the present paper

used a variable description in the thickness direction of the displacements, [18, 19]. The local region

can be described with more accuracy by the use of LW models, meanwhile the global region can be rep-

resented by ESL models. Both ESL and LW models are described by the use of Legendre polynomials.

The continuity of the primary variables between local and global region is immediately satisfied using

the Legendre polynomials. In the work of Botshekanan Dehkordi et al. [20], a variable description in

the thickness direction for the static analysis of sandwich plates was performed. That model was de-

rived from the Reisnner-Mixed-Variational-Theorem (RMVT) to describe apriori the transverse shear

and normal stresses. The transverse stresses were approximated through a mixed LW/ESL approach.

The same mixed LW/ESL approach with RMVT was then used in [21] for nonlinear dynamic analysis

of sandwich plates with flexible core and composite faces embedded with shape memory alloy wires.

In this work, the thermo-mechanical analysis of multilayered composite structures is performed with

an improved shell finite element with a Variable-Kinematic model. It is based on the Carrera’s Unified

Formulation (CUF), which was developed by Carrera for multi-layered structures [22, 23, 24]. Based

on CUF many works has been developed such as a fully coupled thermo-mechanical analysis applied

to plate structure in [25]. Different type of thermal loads as distributed loads or localized in-plane

distribution of temperature were considered in [26]. The importance of mixed theories for a correct

prediction of transverse shear/normal stresses due to thermal loadings has been remarked in [27, 28].

Extension to Functionally Graded Materials (FGMs) has been done in [29]. An extension of the ther-

moelastic formulation to shells has been done in [30] and the Fourier heat conduction equation was

employed for shell in [31]. The thermo-mechanical analysis of functionally graded shell is considered in

[32].

In this paper, both Equivalent Single Layer (ESL) and Layer Wise (LW) theories contained in the CUF

have been implemented in the shell finite element. A Variable-Kinematic model, obtained combining

the ESL and LW models, is developed. The Mixed Interpolation of Tensorial Components (MITC)
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method [33, 34, 35, 36] is used to contrast the membrane and shear locking. The governing equations

for the thermo-mechanical uncoupled linear static analysis of composite structures are derived from

the Principle of Virtual Displacement (PVD), to apply the finite element method. Cross-ply plates

and cylindrical shells, and sandwich spherical shells with simply-supported edges and subjected to bi-

sinusoidal thermal loads are analyzed. The results, obtained with the different models contained in

the CUF, are compared with the exact solution given in the literature. This paper is organized as

follows: an overview of higher-order and advanced shell theories developed within the CUF framework

is given in Section . In Section a short outline of the different modeling approaches is given, and

the explanation of the Variable-Kinematic model is drawn. Geometrical and constitutive relations for

shells are presented in Section . Section gives a brief outline of the FEM approach, whereas, in Section

, the governing equations in weak form for the thermo-mechanical uncoupled linear static analysis of

composite structures are derived from the PVD. In Section a brief explanation of the use of the Fourier

heat conduction equation for multilayered structures is given. In Section , the results obtained using

the proposed CUF theories are discussed. Section is devoted to the conclusions.

Unified Formulation for Shells

In the literature, classical models are largely used when thin thickness and homogeneous properties

are considered. Differently more sophisticated theories are needed, for the analysis of thick shells, to

achieve sufficiently accurate results. As a general guideline, it is clear that the richer the kinematic field,

the more accurate the 2D model becomes. Employing the Carrera Unified Formulation (CUF), each

variable can be treated independently from the others, according to the required accuracy. With the

CUF it is possible to expand each displacement variable at any desired order. This procedure becomes

extremely useful when multifield problems are investigated such as thermoelastic and piezoelectric

applications [27, 37, 38, 39]. According to the CUF [23, 40, 41], the displacement field can be written
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as follows: 

uk(α, β, z) = F0(z)uk0(α, β) + F1(z)uk1(α, β) + ...+ FN (z)ukN (α, β)

vk(α, β, z) = F0(z) vk0 (α, β) + F1(z) vk1 (α, β) + ...+ FN (z) vkN (α, β)

wk(α, β, z) = F0(z)wk0(α, β) + F1(z)wk1(α, β) + ...+ FN (z)wkN (α, β)

(1)

In compact form:

uk(α, β, z) = Fs(z)u
k
s(α, β) δuk(α, β, z) = Fτ (z)δukτ (α, β) τ, s = 0, 1, ..., N (2)

where (α, β, z) is the general reference system (see Figure 1), the displacement vector u = {u, v, w}

has its components expressed in this system. δ is the virtual variation associated to the virtual work

and k identifies the layer. Fτ and Fs are the thickness functions depending only on z. τ and s are

sum indexes and N is the number of terms of the expansion in the thickness direction assumed for the

displacements. For the sake of clarity, the superscript k is omitted in the definition of the Legendre

polynomials.

Figure 1: Reference system of the doubly-curved shell with a section of a temperature load.

Legendre-like polynomial expansions

In classical models, it is very common to employ a Taylor polynomial expansion, where the unknown

variable are expressed in function of the midplane position of the shell. This limitation can be overcome
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in several ways. A possible solution can be found employing the Legendre polynomials. They permit

to express the unknown variables in function of the top and bottom position of a part of the shell

thickness. In the case of Legendre-like polynomial expansion models, the displacements are defined as

follows:

u = F0 u0 + F1 u1 + Fr ur = Fs us s = 0, 1, r r = 2, ..., N (3)

F0 =
P0 + P1

2
F1 =

P0 − P1

2
Fr = Pr − Pr−2 (4)

in which Pj = Pj(ζ) is the Legendre polynomial of j-order defined in the ζ-domain: −1 ≤ ζ ≤ 1.

P0 = 1, P1 = ζ, P2 = (3ζ2 − 1)/2, P3 = (5ζ3 − 3ζ)/2, P4 = (35ζ4 − 30ζ2 + 3)/8 .

For the Layer-Wise (LW) models, the Legendre polynomials and the relative top and bottom position

are defined for each layer.

Refined polynomials with Zig-Zag Function

Due to the intrinsic anisotropy of multilayered structures, the first derivative of the displacement

variables in the z-direction is discontinuous. It is possible to reproduce the zig-zag effects in the

framework of the ESL description by employing the Murakami theory. According to [42], a zig-zag

term can be introduced into equation(3) as follows:

u = F0 u0 + F1 u1 + Fr ur + (−1)kζku
k
N (5)

0 = top 1 = bottom r = 2, ..., N − 1

Such theories are called zig-zag theories. The zig-zag function is defined in each layer k, where the

adimensional term ζk takes value 1 and −1 at the top and the bottom respectively of each layer.
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Modeling Approaches

The choice of the modeling approach is independent of the type of the used polynomials. In literature

two different kinds of modeling approaches are usually used: the Equivalent Single Layer models, here

named as ESL, and the Layer-Wise models, here indicated as LW. In this paper, a third modeling

approach is taken into account. It is a variable kinematic model obtained as a combination of the ESL

and LW models.

ESL models

In an ESL model, the stiffness matrix is obtained with a homogenization process of the properties of

each layer by summing the contributions of each layer. This method leads to a model that has a set

of variables that is assumed for the whole multilayer. In this work the ESL model is employed using

Legendre polynomials. The ESL behavior of the primary variables along the thickness of the shell is

shown in Figure 2.

Figure 2: Equivalent-Single-Layer behavior of the primary variables along the thickness of the shell.

LW models

In an LW model, the homogenization is just conducted at the interface level. Different sets of variables

per each layer are considered. In this work the LW model is employed using the Legendre polynomials.

The Legendre polynomial F0 and F1 interpolate the displacements at the top (t) and bottom (b) position

of the layer, respectively. The unknown variables at the top (t) and bottom (b) position are used to
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impose the following compatibility conditions:

ukt = uk+1
b k = 1, Nl − 1 (6)

The LW behavior of the primary variables along the thickness of the shell is presented in Figure 3.

Figure 3: Layer-Wise behavior of the primary variables along the thickness of the shell.

Variable-Kinematics

In this paper, a different model is taken into account. This Variable-Kinematic model is obtained as

a combination of the ESL and LW models. The combination of these two models is easily achieved

using the Legendre polynomials. In multilayered structures, some layers can be modeled with a homog-

enization of the properties and modeled with an ESL assembling procedure, whereas for some layers

the homogenization is conducted just at the interface level. This homogenization between the ESL and

LW models is performed by the use of the Legendre polynomials. The Variable-Kinematic behavior of

the primary variables along the thickness of the shell is shown in Figure 4. The Variable-Kinematic

assembling, developed in the framework of the CUF, is very simple to integrate with few lines of pro-

gramming. An overview of the assembling scheme of the ESL, LW and Variable-Kinematics approaches

is given in Figure 5, where the concept of nucleus is anticipated from section .

Figure 4: Variable-Kinematics behavior of the primary variables along the thickness of the shell.
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Figure 5: Overview of assembling scheme of the three different approaches.

Perliminaries for thermo-mechanical problems for shells

Shells are bi-dimensional structures in which one dimension (in general the thickness in the z direction)

is negligible with respect to the other two dimensions. The reference system of the shell is indicated in

Figure 1. By considering multilayered structures, the square of an infinitesimal linear segment in the

layer, the associated infinitesimal area and volume are given by:

ds2
k = Hk

α
2
dα2

k + Hk
β

2
dβ2

k +Hk
z

2
dz2
k

dΩk = Hk
αH

k
β dαk dβk

dV = Hk
α H

k
β H

k
z dαk dβk dzk

(7)

where the metric coefficients are:

Hk
α = Ak(1 + zk/R

k
α) Hk

β = Bk(1 + zk/R
k
β) Hk

z = 1 (8)
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k denotes the k-layer of the multilayered shell; Rkα and Rkβ are the principal radii of the midsurface

of the layer k. Ak and Bk are the coefficients of the first fundamental form of Ωk (Γk is the Ωk

boundary). In this paper, the attention has been restricted to shells with constant radii of curvature

(cylindrical, spherical, toroidal geometries) for which Ak = Bk = 1. Details for shells are reported in

[43]. The geometrical relations enable to express the in-plane εkp and out-plane εkn strains in terms of

the displacement u for each layer k:

εkp = [εkαα, ε
k
ββ , ε

k
αβ]T = (Dk

p +Ak
p) u

k

εkn = [εkαz, ε
k
βz, ε

k
zz]

T = (Dk
nΩ +Dk

nz −Ak
n) uk

(9)

The explicit form of the introduced arrays is:

Dk
p =


∂α
Hk
α

0 0

0
∂β
Hk
β

0

∂β
Hk
β

∂α
Hk
α

0

 Dk
nΩ =


0 0 ∂α

Hk
α

0 0
∂β
Hk
β

0 0 0

 Dk
nz =


∂z 0 0

0 ∂z 0

0 0 ∂z

 (10)

Ak
p =


0 0 1

Hk
αR

k
α

0 0 1
Hk
βR

k
β

0 0 0

 A
k
n =


1

Hk
αR

k
α

0 0

0 1
Hk
βR

k
β

0

0 0 0

 (11)

The definition of the constitutive equations that permit to express the stresses σ in terms of the

strains ε is defined as follows:

σkp = [σkαα, σ
k
ββ , σ

k
αβ] = σkpd − σkpT = Ck

pp ε
k
p +Ck

pn ε
k
n − λkp θk

σkn = [σkαz, σ
k
βz, σ

k
zz] = σknd − σknT = Ck

np ε
k
p +Ck

nn ε
k
n − λkn θk

(12)
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where

Ck
pp =


Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =


0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =


0 0 0

0 0 0

Ck13 Ck23 Ck36

 Ck
nn =


Ck55 Ck45 0

Ck45 Ck44 0

0 0 Ck33



(13)

λkp = Ck
pp α

k
p +Ck

pn α
k
n

λkn = Ck
np α

k
p +Ck

nn α
k
n

(14)

αkp =


αk1

αk2

0

 αkn =


0

0

αk3

 (15)

λkp =


λk1

λk2

λk6

 λkn =


0

0

λk3

 (16)

The subscripts d and T mean mechanical and thermal contributions. For the sake of brevity, the

expressions that relate the material coefficients Cij to Young’s moduli E1, E2, E3, the shear moduli

G12, G13, G23 and Poisson’s ratios ν12, ν13, ν23, ν21, ν31, ν32 are not given here, they can be found in

[44]. αij are the thermal expansion coefficients, λij are the coupling thermal coefficients and θk is the

difference with a reference temperature.

Finite Element approximation

Independently from the choice of the thickness functions, a Finite Element Model (FEM) can be

formulated. According to the common FEM approximation, the generalized displacements can be
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expressed as a linear combination of the shape functions. Considering a 9-node finite element, the

generalized displacement, and its variation are defined as follows:

us = Njusj δuτ = Niδuτi with i, j = 1, ..., 9 (17)

where usj , δuτi are the nodal displacements and their virtual variations, and Ni, Nj are the Lagrangian

shape functions defined in each node of the finite element. Substituing the compact form of the FEM

approximation (Eq. (17)) in the generalized displacement expansion (Eq. (2)), one has:

u(α, β, z) = Fs(z)Nj(α, β)usj s = 0, 1, ..., N

δu(α, β, z) = Fτ (z)Ni(α, β)δuτi τ = 0, 1, ..., N

(18)

Therefore, to overcome the numerical problems related to the shear locking, it is possible to use many

computational procedures, such as reduced integration, selective integration [45], and the mixed inter-

polation of tensorial components (MITC) [33]. In this paper, a MITC technique is used to overcome

the shear locking phenomenon, for more details see [39].

Governing FEM equations for uncoupled thermo-mechanical problems

The PVD for a multilayered shell structure reads:

∫
Ωk

∫
Ak

{
δεkp

T
σkp + δεkn

T
σkn

}
Hk
αH

k
β dΩkdz = δLe (19)

where Ωk and Ak are the integration domains in the plane and the thickness direction, respectively.

The left-hand side of the equation represents the variation of the internal work, while the right-hand

side is the virtual variation of the external work. σkp and σkn contain the mechanical (d) and thermal

(T) contributions, so:

∫
Ωk

∫
Ak

{
δεkp

T
(
σkpd − σkpT

)
+ δεkn

T
(
σknd − σknT

)}
Hk
αH

k
β dΩkdz = δLe (20)
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In this work no mechanical loads are applied to the shell structure, so the external work is null, except

for the thermal stress contribution of the temperature distribution applied, so:∫
Ωk

∫
Ak

{
δεkp

T
σkpd + δεkn

T
σknd

}
Hk
αH

k
β dΩkdz =

∫
Ωk

∫
Ak

{
δεkp

T
σkpT + δεkn

T
σknT

}
Hk
αH

k
β dΩkdz (21)

Substituting the constitutive equations (12), the geometrical relations written via the MITC method and

applying the CUF (2 and the FEM approximation (17), one obtains the following governing equations:

δqkτi : Kkτsijqksj = Θkτi (22)

where

Kkτsij =


Kαα Kαβ Kαz

Kβα Kββ Kβz

Kzα Kzβ Kzz



kτsij

(23)

Θkτi =


Θα

Θβ

Θz



ksj

(24)

where Kkτsij is a 3× 3 matrix, called fundamental nucleus of the mechanical stiffness matrix, and its

explicit expression is given in [46]. Θkτi is a 3 × 1 matrix, called fundamental nucleus of the thermal

load matrix, and its explicit expression is given in [37, 47]. The nucleus is the basic element from which

the stiffness matrix and the thermal load matrix of the whole structure are computed. The fundamental

nucleus is expanded on the indexes τ and s to obtain the stiffness matrix of each layer k. Then, the

matrixes of each layer are assembled at the multi-layer level depending on the approach considered.

qksj and δqkτi are the nodal displacements and its variation respectively.

Fourier heat conduction equation in layered structures

The heat conduction problem is investigated by solving the Fourier heat conduction equation as de-

scribed in [48] for the plate case. Here the solution is given for the shell case as proposed in [31]. If
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the values of the temperature are known at the top and bottom surface of the shell, the temperature

profile through the thickness can be considered in two different ways. The first method introduces an

assumed profile θ̂ (z) that varies linearly from the top to the bottom as follows:

θ̂ (z) = θbottom +
θtop − θbottom

h
∗
(
z +

h

2

)
z ∈

[
−h
2

;
h

2

]
(25)

Independetly by the number of considered layers the linear profile is always the same.

The second one computes θ̂ (z) by solving the Fourier heat conduction equation. In case of multi-layered

structures, in general for the kth homogeneous orthotropic layer, the differential Fourier equation of

heat conduction reads:

(
Kk

1

(Hk
α)2

)
δ2θ

δα2
+

(
Kk

2

(Hk
β)2

)
δ2θ

δβ2
+
(
Kk

3

) δ2θ

δz2
= 0 (26)

where Kk
1 , K

k
2 , K

k
3 are the thermal conductivities coefficients in material coordinates (1, 2, 3) for each

orthotropic layer k and then rotated in the general curvilinear reference system (α, β, z). In case of

multi-layered structures, continuity conditions for the temperature θ and the transverse normal heat

flux qz hold in the thickness direction at each kth layer interface, reading:

θkt = θk+1
b qkzt = qk+1

zb for k = 1, ..., Nl − 1 (27)

where Nl is the number of layers in the considered structure. The relationshp between the transverse

heat flux and the temperature is given as:

qkz = Kk
3

δθ

δz
(28)

For the kth layer of the shell structure it is supposed that Kk
1 , K

k
2 , K

k
3 are constant because in each

layer Hk
α, H

k
β are calculated. For each layer both governing equations and boundary conditions are

satisfied by assuming the following temperature field:

θ (α, β, z) = f (z) sin
(mπα

a

)
sin

(
nπβ

b

)
(29)

16



where f (z) is assumed as:

f (z) = θ0 exp
(
skz
)

(30)

where θ0 is a constant and sk a parameter. Substituting 29 in 26 and solving for sk:

sk1,2 = ±

√√√√√√ Kk
1

(Hk
α)2

(mπ
a

)2
+

Kk
2

(Hk
β)2

(nπ
b

)2

Kk
3

(31)

Therefore:

f (z) = θk01 exp
(
sk1z
)

+ θk02 exp
(
sk1z
)

or

f (z) = Ck1 cosh
(
sk1z
)

+ Ck2 sinh
(
sk1z
)

(32)

The solution for a layer k can be written as:

θc (α, β, z) = θk =
[
Ck1 cosh

(
sk1z
)

+ Ck2 sinh
(
sk1z
)]

sin
(mπα

a

)
sin

(
nπβ

b

)
(33)

wherein the coefficients Ck1 and Ck2 are constant for each layer k. In 32 for each layer k two unknowns

( Ck1 and Ck2 ) remain. Therefore, if the number of layers is Nl, the number of unknowns is (2Nl)

and (2Nl) equations to determine the unknowns are needed. The first two conditions are given by the

temperature at the top and the bottom of the shell structure:

f (zbottom) = θ̂bottom = C1
1 cosh

(
s1

1zbottom
)

+ C1
2 sinh

(
s1

1zbottom
)

f (ztop) = θ̂top = CNl1 cosh
(
sNl1 ztop

)
+ CNl2 sinh

(
sNl1 ztop

) (34)

Another (Nl − 1) equations can be obtained from the continuity of temperature at each layer interface

as follows:

Ck1 cosh
(
sk1z

k
t

)
+ Ck2 sinh

(
sk1z

k
t

)
− Ck+1

1 cosh
(
sk+1

1 zk+1
b

)
− Ck+1

2 sinh
(
sk+1

1 zk+1
b

)
= 0 (35)
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and another (Nl− 1) equations can be obtained from the continuity of heat flux through the interfaces

as follows:

sk1K
k
3

[
Ck1 sinh

(
sk1z

k
t

)
+ Ck2 cosh

(
sk1z

k
t

)]
−sk+1

1 Kk+1
3

[
Ck+1

1 sinh
(
sk+1

1 zk+1
b

)
+ Ck+1

2 cosh
(
sk+1

1 zk+1
b

)]
= 0

(36)

In 35 and 36 subscripts t and b indicate the top and bottom of each layer. Solving the system given

by 34, 35 and 36 the (2Nl) coefficients Ck1 and Ck2 are obtained. The temperature amplitude in the

thickness shell direction is given by:

θ̂c (z) = θ̂k = Ck1 cosh
(
sk1z
)

+ Ck2 sinh
(
sk1z
)

for k = 1, ..., Nl (37)

Acronyms

Depending on the variables description and the number of terms N of the various expansion of kine-

matics plate theories can be obtained. A system of acronyms is given to denote these models. The first

letter indicates the used approach in this work which is Equivalent Single Layer (E). The second letter

indicates the type of polynomial adopted, (L) for the Legendre’s polynomials. Sometimes a reference

solution is given with a layer-wise approach, so the first letters become LW. The number N indicates

the number of terms of the expansion used in the thickness direction. If the Navier analytical method

is employed the subscript (a) is used. The letter Z is added if the zig-zag function of Murakami is

employed. Therefore if the temperature profile is assumed linear the letters Ta can be added close

to the model description, meanwhile if the temperature profile is calculated solving the Fourier heat

conduction equation, it is indicated by the letters Tc.

Numerical results

To assess these theories the following reference problems have been considered:

• A three-layer square plate with lamination [0◦/90◦/0◦]
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• A ten-layer cylindrical shell panel with lamination [0◦/90◦]5

• A sandwich composite spherical panel with lamination [0◦/90◦/Core/90◦/0◦]

Both of them are evaluated applying a thermal load with a bi-sinusoidal in-plane behavior:

θ (α, β, z) = θ̂ (z) sin
(mπα

a

)
sin

(
nπβ

b

)
(38)

where m = n = 1. The three problems are briefly described in the following sections.

Three-layer plate

A three-layer cross-ply square plate, see Figure 6, with cross-ply composite layers with lamination

[0◦/90◦/0◦] and simply-supported boundary condition is considered.

Figure 6: Reference system of the composite plate with section of thermal load applied.

The Carbon-Epoxy material constants of the plate are taken from [49, 37], the values are ex-

pressed in terms of ratios of the longitudinal and transversal fiber directional properties: EL/ET = 25

; GLT /ET = 0, 5 ; GTT /ET = 0, 2 ; νLT = νTT = 0, 25 ; αT
αL

= 1125, 0 ; KLKT = 36,42
0,96 . The geometrical

dimensions are: a = b = 1, 0. The temperature boundary conditions are: θ̂top = +1, 0, θ̂bottom = −1, 0.

The results are presented for different thickness ratios a/h = 2; 100, and the deflections and stresses

are presented in the following dimensionless forms:

ŵ =
w

hαLθ0

(
a
h

)2 σ̂i,j =
σi,j

ETαLθ0
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where the temperature gradient is θ0 = 1. A mesh grid of 32 × 32 elements is taken to ensure the

convergence of the solution, see Table 1. The rate of convergence is invariant respect to the temperature

profile.

Table 1: Convergence study. Composite three layered plate with thickness ratio a/h = 100. All the

cases are computed with a LW4 model.

Mesh 4× 4 8× 8 12× 12 16× 16 20× 20 24× 24 28× 28 32× 32 3DExact[49]

Ta

ŵ 10.274 10.261 10.260 10.260 10.260 10.260 10.260 10.260 10.26

σ̂xx 1030.5 981.69 972.63 969.45 967.98 967.18 966.70 966.39 965.4

σ̂xz 7.4509 7.1665 7.1150 7.0968 7.0883 7.0837 7.0809 7.0791 7.073

σ̂zz 2.3686 0.1772 0.0379 0.0126 0.0056 0.0030 0.0019 0.0014 −0.1738× 10−5

Tc

ŵ 10.268 10.254 10.253 10.253 10.253 10.253 10.253 10.253

σ̂xx 1029.7 980.87 971.81 968.64 967.17 966.37 965.89 965.57

σ̂xz 7.4463 7.1621 7.1106 7.0924 7.0839 7.0793 7.0765 7.0747

σ̂zz 2.3652 0.1777 0.0378 0.0126 0.0055 0.0030 0.0019 0.0014

Therefore a locking study has been performed evaluating different types of integration methods [45]

for the same plate structure to prove that the element is locking free, see Table 2. The plate element with

the MITC9 method ensures accuracy on both the transverse displacement and the stresses variables.
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Table 2: Locking study. Composite three layered plate with thickness ratio a/h = 100. The

TemperatureAssumedLinear and the TemperatureCalculated cases are computed with a mesh of

32× 32 elements and with a LW4 model.

Reduced Selective MITC9 3DExact[49]

Ta

ŵ 10.257 10.259 10.260 10.26

σ̂xx 815.55 966.12 966.39 965.4

σ̂xz 10.929 7.8184 7.0791 7.073

σ̂zz 14.431 -0.0071 0.0014 −0.1738× 10−5

Tc

ŵ 10.251 10.253 10.253

σ̂xx 814.74 965.30 965.57

σ̂xz 10.924 7.8135 7.0747

σ̂zz 14.456 -0.0071 0.0014

The description of the temperature profile along the thickness of the multilayered plate is given in

Figure 7 for different aspect ratios a/h. It has to be noticed that for thin plates the temperature profile

is almost linear or very close to it; differently for thick plates it is very important to use the calculated

profile solving the Fourier heat conduction equation, the linear profile leads to relevant errors in the

approximation of the temperature load, the temperature load is overestimated.
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Figure 7: Three-layered plate. Temperature Profiles Comparison.

An assessment of the Legendre polynomials with a full ESL approach has been performed for the

pure mechanical case in [18] for plates and in [19] for shells. All the results presented in [18, 19], for

thick and thin plates and shells, show that the Legendre polynomials lead to the same results of the

Taylor polynomials. The use of either polynomials is invariant respect to the solution accuracy.

Hereafter Legendre polynomials have been employed for the structure analyzes. Different Variable

Kinematic models have been used to perform the analysis of the plate structures, see Figures 8. The

acronyms have been modified adding a subscript to them, for the sake of clarity the list of subscripts

is given below:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}
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Figure 8: Variable Kinematic Cases. Compact example of assembling scheme.

The results are listed in Table 3. For the plate structures analysed the following considerations can be

drawn:

• Regarding the transverse displacement w, for thin plates a/h = 100, the theories EL4,Case1 and

EL4,Case2 lead a relevant improvement of the solution respect to the EL4 showing the same

accuracy, see Figure 9a. The same comments can be drawn for both the temperature assumed

linear cases Ta and for the temperature calculated via the Fourier heat conduction law Tc. For

thick plates a/h = 2, the variable kinematic theories have the same accuracy of the full layer-wise

and full equivalent-single-layer solutions, see Figure 9b. The maximum transverse displacement

Tc case value is 49.53 % smaller than the Ta case, this relevant difference is due to temperature

calculated profile Tc that permits to better describe the temperature load.

• For both the transverse shear stress σxz, see Figure 10a, and the transverse normal stress, see

Figure 10b, the theories EL4,Case1 and EL4,Case2 improve the results respect to the EL4 theory

only in the layer with a layer-wise description. It has to be noticed that no differences can be
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appreciated between the temperature assumed linear cases Ta and the temperature calculated via

the Fourier heat conduction law Tc cases.

• For the in-plane stress σxx, see Figures 11a, 11b, noticeable differences of the stress amplitude are

present between the temperature assumed linear cases Ta and the temperature calculated profile

Tc cases. The variable kinematic theories EL4,Case1 and EL4,Case2 improve the results respect

to the EL4 theory only in the layer with a layer-wise description. It has to be noticed that the

interlaminar continuity of the stress is reached in the temperature assumed cases Ta, but not in

the calculated profile cases Tc.
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Table 3: Three-layer composite plate with lamination [0◦/90◦/0◦]. Mechanical variables described
by Mono-models and Variable kinematic models for various aspect ratios a/h. Evaluation po-
sition for transverse displacement ŵ(x, y, z) = ŵ(a/2, b/2,+h/2), in-plane stress σ̂xx(x, y, z) =
σ̂xx(a/2, b/2,+h/2), transverse shear stress σ̂xz(x, y, z) = σ̂xz(0, b/2,+h/6), transverse normal stress
σ̂zz(x, y, z) = σ̂zz(a/2, b/2,+h/6).

Ta ( Assumed Linear )

a/h = 100 a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz ŵ σ̂xx σ̂xz σ̂zz

3DExact[49] 10.26 965.4 7.073 −0.1738× 10−5 96.79 1390 63.92 -7.391
LW4a[37] 10.26 - 7.073 - 96.78 - 63.82 -
LW4 10.260 966.39 7.0791 0.0014 96.783 1391.0 70.532 -5.9366 164775
LW1 10.915 893.99 1.8031 492.56 89.252 640.39 -3.9613 417.76 50700
EL3Z 10.260 966.39 7.0489 -0.0346 94.871 1279.6 110.16 -31.218 63375
EL4 10.253 966.28 10.365 -0.0074 98.215 1336.5 93.196 -12.266 63375
EL3 10.253 966.29 10.365 -0.0122 98.150 1335.3 93.208 -19.536 50700
EL2 10.231 964.60 4.5411 -0.0108 83.471 188.71 28.967 -17.038 38025
EL1 16.093 1240.6 7.9964 -487.39 42.714 164.03 114.24 -459.25 25350

EL4Case 1 10.258 966.36 7.0794 0.0014 96.679 1389.3 71.700 -5.9661 114075
EL4Case 2 10.258 966.38 10.466 -0.0063 97.009 1389.5 89.699 -11.812 114075
EL3Case 1 10.258 966.34 7.0789 0.0013 96.338 1376.4 43.807 -11.728 88725
EL3Case 2 10.258 966.37 9.9672 -0.0077 97.122 1331.9 99.761 -10.802 88725
EL2Case 1 10.258 966.33 8.0746 0.0031 94.629 1224.0 121.26 -11.109 63375
EL2Case 2 10.258 966.29 9.0002 -0.0176 95.508 1029.8 55.725 -20.599 63375
EL1Case 1 12.203 1042.9 2.4285 491.28 72.269 211.32 -12.328 435.51 38025
EL1Case 2 12.203 918.14 7.6641 0.0229 68.305 44.865 97.018 -40.574 38025

Tc ( Calculated via Fourier Heat conduction Law )

a/h = 100 a/h = 2 DOFs

ŵ σ̂xx σ̂xz σ̂zz ŵ σ̂xx σ̂xz σ̂zz

LW4a[37] 10.25 - 7.069 - 49.09 - 30.11 -
LW4 10.253 965.58 7.0747 0.0014 48.851 486.92 35.171 -13.392 164775
LW1 10.908 892.94 1.8018 492.57 44.174 33.733 -0.5026 344.19 50700
EL3Z 10.253 965.27 7.0443 0.3590 50.086 403.89 55.696 172.60 63375
EL4 10.246 965.47 10.360 -0.0074 49.301 410.42 59.850 -47.521 63375
EL3 10.246 965.17 10.360 0.3815 51.328 446.81 59.474 179.54 50700
EL2 10.224 963.49 4.5384 0.3829 40.880 -317.44 15.166 181.62 38025
EL1 16.083 1239.3 7.9915 -486.69 21.047 -329.45 56.660 -33.581 25350

EL4Case 1 10.252 965.55 7.0750 0.0014 48.741 484.86 35.799 -13.346 114075
EL4Case 2 10.252 965.56 10.460 -0.0064 48.830 446.19 59.176 -30.492 114075
EL3Case 1 10.251 965.51 7.0744 0.0371 48.805 454.55 17.787 85.001 88725
EL3Case 2 10.251 965.46 9.9617 -0.0077 49.179 395.76 62.223 -29.540 88725
EL2Case 1 10.251 965.39 8.0701 -0.3191 48.785 328.05 72.670 -224.56 63375
EL2Case 2 10.251 965.16 8.9953 0.3402 48.871 258.99 37.141 156.37 63375
EL1Case 1 12.195 1041.7 2.4268 491.28 34.834 -208.92 -3.5914 353.85 38025
EL1Case 2 12.195 917.08 7.6599 0.3808 32.350 -426.20 53.745 144.06 38025
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Figure 9: Three-layered plate, transverse mechanical displacement ŵ, a/h = 100 (a), a/h = 2 (b).
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Figure 10: Three-layered thin plates a/h = 100, transverse shear and normal stresses, σ̂xz (a), σ̂zz (b).
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Figure 11: Three-layered thick plates a/h = 2, in-plane stress σ̂xx, Ta assumed linear (a), Tc calculated

via Fourier heat law (b).

Ten-layer cylindrical panel

A ten-layer cross-ply cylindrical shell panel with cross-ply composite layers with lamination [0◦/90◦]5

and simply-supported boundary condition is considered. The Carbon-Epoxy material constants of the

shell panel are taken from [7, 9], the values are expressed in terms of ratios of the longitudinal and

transversal fiber directional properties : E1
E2

= 25, 0 ; E2 = E3 ; G12
E2

= 0, 5 ; G23
E2

= 0, 2 ; G12 = G13 ;

ν12 = ν13 = ν23 = 0, 25 ; α2
α1

= 3, 0 ; α1 = α3 ; K1
K2

= 36,42
0,96 ; K2 = K3. The geometrical dimensions are:

a = b = 1, 0 and htotal = 0, 1. The temperature boundary conditions are: θ̂top = +0, 5, θ̂bottom = −0, 5.

The results are presented for different radius to length side ratios R/a = 5; 10; 50, and the deflections

and stresses are presented in the following dimensionless forms:
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ŵ =
w

α1θ1b2
σ̂i,j =

σi,j
E2α1θ1

where θ1 = 1. The adopted mesh is the same of the previous numerical example. Due to the symmetry

of both the geometry and load, a quarter of the cylindrical shell panel is analyzed, see Figure 12, with

a corresponding mesh grid of 16 × 16 elements. The corresponding thermal load, using the symmetry

conditions, is defined as follows:

θ(α, β, z) = θ̂(z) cos
(mπα

a

)
cos

(
nπβ

b

)
(39)

where m = n = 0, 5. The symmetry condtions and the boundary conditions are defined as follows:

uτ (α, β) = uτ (a/2, β) = 0

vτ (α, β) = vτ (α, b/2) = 0

uτ (α, β) = uτ (α, b) = 0

vτ (α, β) = vτ (a, β) = 0

wτ (α, β) = wτ (α, b) = 0

wτ (α, β) = wτ (a, β) = 0

(40)
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Figure 12: Reference system of the quarter of the composite cylindrical shell panel with

symmetry condition applied.

The effect of the shell curvature on the temperature profile along the thickness of the multilayered

cylindrical panel is given in Figure 13 for different radius to length ratios R/a. It has to be noticed

that the curvature radius has no relevant influence on the approximation of the temperature load; as

mentioned about the plate temperature profile discussion, the aspect ratio a/h shows the principal

effect. It is preferable to use a calculated temperature profile to avoid to overestimate the temperature

load.
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Figure 13: Ten-layered cylindrical shell panel. Temperature Profiles Comparison.

Different Variable Kinematic models, via the Legendre polynomials, have been used to perform the

analysis of the shell structures. The acronyms have been modified adding a subscript to them, for the

sake of clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3, layer4, layer5, layer6, layer7, layer8, layer9} {layer10}

• Case2 = {layer1} {layer2} {layer3, layer4, layer5, layer6, layer7, layer8} {layer9} {layer10}

• Case3 = {layer1} {layer2} {layer3, layer4} {layer5, layer6} {layer7, layer8} {layer9} {layer10}

• Case4 = {layer1} {layer2, layer3} {layer4} {layer5, layer6} {layer7} {layer8, layer9} {layer10}

The results are listed in Table 4 for various radius to length side ratios R/a, and the degrees of freedom

DOFs are indicated for a quarter of the considered structure. The present FEs results are compared

with an equivalent single layer model with cubic expansion in the z direction named HOST12 [7], and

with an higher order shear deformation theory named HSDT [9]. The transverse displacement ŵ and

the in-plane stress σ̂αα show small accuracy differences for the considered cases R/a, see Table 4, this is

due to the fixed aspect ratio a/h = 10. The difference of the variables magnitude is due to the different
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description of the temperature profile, assumed linear profile for the upper part of the table results Ta

and calculated solving the Fourier heat conduction equations for the lower part of the table results Tc.

The behavior of the transverse shear stress σ̂αz along the thickness is not simple to well describe; for

example for the assumed linear temperature profile Ta, the full equivalent-single-layer model EL4 is not

able to perform the discontinuous nature of the shear stress along the thickness, see Figure 14a. The

Variable-Kinematic model EL4Case2 and EL4Case3 show different level of accuracy respect to the full

layer-wise solution LW4, meanwhile the model EL4Case4 seems to describe well the shear stress along

the thickness with small loss of accuracy in the layers with an ESL description and with a regardable

−29, 27% DOFs reduction respect to the full layer-wise solution LW4, see Figure 14b.

As already mentioned for the shear stress, the description of the transverse normal stress σ̂zz is not

simple to perform too. For example, for the calculated temperature profile Tc, see Figure 15a, the

full equivalent-single-layer EL4 model is not sufficient to correctly describe the stress profile along the

thickness. Relevant improvements of the solution accuracy are shown by the Variable-Kinematic model

EL4Case2 and EL4Case3. These Variable-Kinematic models permit to have noticeable reduction of the

computational cost in terms of degrees of freedom; for example a −29, 27% DOFs reduction respect to

the full layer-wise solution LW4 is obtained by the model EL4Case4, see Figure 15b, with very small

loss in the solution accuracy in the layers with an ESL description.
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Table 4: Ten-layer composite cylindrical shell panel with lamination [0◦/90◦]5. Mechanical variables
described by Mono-models and Variable kinematic models for various radius to length side ratios R/a.
Evaluation position for transverse displacement ŵ(x, y, z) = ŵ(a/2, b/2, 0), in-plane stress σ̂αα(x, y, z) =

σ̂αα(a/2, b/2,+h/2), transverse shear stress σ̂αz(x, y, z) = 10 × σ̂αz(a, b/2,+
2

5
h), transverse normal

stress σ̂zz(x, y, z) = 102 × σ̂zz(a/2, b/2, 0).

Ta ( Assumed Linear )

R/a = 50 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

HOST12[7] 1.0325 - - - 1.0224 - - -
HSDT [9] 1.0332 - - - 1.0216 - - -
LW4 1.0306 -0.9823 0.1368 0.0263 1.0207 -0.9789 0.1651 0.2817 133947
LW1 1.0306 -1.0023 0.0188 8.0403 1.0207 -0.9990 0.0448 8.3176 35937
EL3Z 1.0302 -0.9825 0.1123 0.0190 1.0205 -0.9792 0.1226 0.2852 16335
EL4 1.0301 -0.9827 0.1064 0.0038 1.0210 -0.9794 0.1383 0.2660 16335
EL3 1.0301 -0.9825 0.1079 0.0037 1.0210 -0.9792 0.1386 0.2660 13068
EL2 1.0271 -0.9851 -0.0207 -0.0037 1.0186 -0.9810 0.0275 0.1826 9801
EL1 1.0656 -1.1649 0.0016 0.0162 1.0575 -1.1611 0.0481 0.4828 6534

EL4Case 1 1.0303 -0.9825 0.0974 0.0033 1.0211 -0.9790 0.1116 0.2677 42471
EL4Case 2 1.0304 -0.9824 0.1369 0.0042 1.0211 -0.9789 0.1651 0.2669 68607
EL4Case 3 1.0306 -0.9823 0.1368 0.0042 1.0208 -0.9789 0.1651 0.2650 94743
EL4Case 4 1.0306 -0.9823 0.1500 0.0043 1.0208 -0.9789 0.1883 0.2651 94743
EL1Case 1 1.0499 -0.9934 0.0050 0.0108 1.0413 -0.9899 0.0577 0.4065 13068
EL1Case 2 1.0402 -0.9990 0.0075 0.0101 1.0311 -0.9956 0.0337 0.3525 19602
EL1Case 3 1.0314 -1.0023 0.0190 0.0048 1.0222 -0.9989 0.0451 0.2773 26136
EL1Case 4 1.0315 -1.0019 0.0111 0.0049 1.0222 -0.9985 0.0555 0.2766 26136

Tc ( Calculated via Fourier Heat conduction Law )

R/a = 50 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

LW4 0.9706 -1.0226 0.1443 0.0198 0.9613 -1.0194 0.1708 0.2155 133947
LW1 0.9707 -1.0498 0.0343 6.6928 0.9613 -1.0465 0.0588 6.9191 35937
EL3Z 0.9698 -1.0377 0.1231 0.6375 0.9606 -1.0344 0.1329 0.8491 16335
EL4 0.9699 -1.0231 0.1288 0.0141 0.9613 -1.0198 0.1587 0.2372 16335
EL3 0.9697 -1.0388 0.1198 0.0137 0.9611 -1.0355 0.1489 0.2223 13068
EL2 0.9654 -1.0428 -0.0702 0.0105 0.9573 -1.0388 -0.0246 0.1826 9801
EL1 1.0018 -1.2114 0.0015 0.0311 0.9941 -1.2078 0.0451 0.4673 6534

EL4Case 1 0.9698 -1.0228 0.1254 0.0130 0.9611 -1.0195 0.1386 0.2269 42471
EL4Case 2 0.9698 -1.0228 0.1444 0.0130 0.9610 -1.0195 0.1709 0.2197 68607
EL4Case 3 0.9705 -1.0226 0.1443 0.0112 0.9613 -1.0194 0.1709 0.2128 94743
EL4Case 4 0.9706 -1.0226 0.1582 0.0113 0.9613 -1.0194 0.1942 0.2130 94743
EL1Case 1 0.9869 -1.0420 -0.0098 0.0247 0.9787 -1.0386 0.0398 0.3828 13068
EL1Case 2 0.9780 -1.0471 0.0249 0.0212 0.9694 -1.0438 0.0494 0.3176 19602
EL1Case 3 0.9705 -1.0500 0.0349 0.0133 0.9618 -1.0467 0.0594 0.2287 26136
EL1Case 4 0.9712 -1.0494 0.0185 0.0145 0.9624 -1.0461 0.0603 0.2287 26136
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Figure 14: Ten-layered cylindrical shell panel R/a = 50, transverse shear stress σ̂αz, Ta assumed linear.
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Figure 15: Ten-layered cylindrical shell panel R/a = 5, transverse normal stress σ̂zz, Tc calculate via

Fourier heat conduction law.

Sandwich composite spherical panel

A sandwich spherical shell panel with cross-ply composite skins with lamination [0◦/90◦/Core/90◦/0◦]

and simply-supported boundary condition is considered. The physical properties of the sandwich

spherical panel are taken from [7, 30]. The material constants of the Carbon-Epoxy skins are: E1 =

172, 37GPa ; E2 = E3 = 6, 89GPa ; G12 = G13 = 3, 45GPa ; G23 = 1, 38GPa ; ν12 = ν13 = ν23 = 0, 25

; α1 = α3 = 0, 1× 10−5 1
◦C ; α2 = 2, 0× 10−5 1

◦C ; K1 = 36, 42W/(m ◦C) ; K2 = K3 = 0, 96W/(m ◦C).

The material properties of the Honeycomb soft core are: E1 = E2 = 0, 28GPa ; E3 = 3, 45GPa ;

G12 = 0, 11GPa ; G13 = G23 = 0, 41GPa ; ν12 = ν13 = ν23 = 0, 02 ; α1 = α3 = 0, 1 × 10−6 1
◦C ;

α2 = 2, 0×10−6 1
◦C ; K1 = 3, 642W/(m ◦C) ; K2 = K3 = 0, 096W/(m ◦C). The geometrical dimensions

are: a = b = 1, 0; the core thickness is hcore = 0, 8 × htotal and each skin is hskin = 0, 05 × htotal.
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The temperature boundary conditions are: θ̂top = +0, 5, θ̂bottom = −0, 5. The results are presented

for different radius to length side ratios R/a = 5; 20 and different aspect ratios a/h = 4; 100, and the

deflections and stresses are presented in the following dimensionless forms:

ŵ =
w

α1θ1b2
σ̂i,j =

σi,j
E2α1θ1

where θ1 = 1, E2 and α1 are the properties of the composite skins. The adopted mesh is the same of

the previous numerical example. Due to the symmetry of both the geometry and load, a quarter of the

spherical shell panel is analyzed, see Figure 16, with a corresponding mesh grid of 16 × 16 elements.

The corresponding thermal load and boundary conditions are the same of previous numerical example.

Figure 16: Reference system of the quarter of the sandwich spherical shell panel with sym-

metry condition applied.

The description of the temperature profile along the thickness of the sandwich spherical panel is

discussed for different radius to length ratios R/a and aspect ratios a/h. It has to be noticed that for

thin shells, see Figure 17a, the calculated temperature profile is far from the linear one, and differently

from the previous numerical example the linear profile is underestimating the temperature load. For

thick shells, see Figure 17b, the calculated profile has a non-linear behavior along the thickness direction,
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the linear profile is both underestimating and overestimating the temperature load in different part of

the multilayered structure. Looking at the results of the thick sandwich spherical shells, the global

effect is that the linear profile is underestimating the temperature load. For both the thin and thick

shells the radius to length ratios R/a is not showing any relevant effect on the calculated temperature

profiles.
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Figure 17: Five-layered sandwich spherical shell panel. Temperature Profiles Comparison. a/h = 100

(a), a/h = 4 (b)

Different Variable Kinematic models, via the Legendre polynomials, have been used to perform the

analysis of the shell structures. The acronyms have been modified adding a subscript to them, for the

sake of clarity the list of subscripts is given below:

• Case1 = {layer1} {layer2, layer3, layer4} {layer5}

• Case2 = {layer1, layer2} {layer3, layer4, layer5}
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• Case3 = {layer1, layer2} {layer3} {layer4, layer5}

The results are listed in Table 5 with a temperature profile assumed linear Ta for various radius to

length side ratios R/a and various aspect ratios a/h, and the degrees of freedom DOFs are indicated

for a quarter of the considered structure. The present FEs results are compared with an equivalent

single layer model with cubic expansion in the z direction named HOST12 [7], and with two analytical

models, a layer-wise theory of the fourth order named LW4a [30] and an equivalent-single-layer the-

ory of the fourth order with Taylor polynomials named ET4a [30]. Therefore the temperature profile

calculated solving the Fourier heat conduction equations Tc is evaluated and the results are presented

in Table 6 for various radius to length side ratios R/a and various aspect ratios a/h. The following

considerations can be drawn:

• Regarding the transverse displacement w, for thin plates a/h = 100, the theories EL4,Case1 and

EL4,Case2 lead an improvement of the solution respect to the EL4, and the model EL4,Case3 show

the same accuracy of the full layer-wise solution LW4 with a reduction of −38, 1 % DOFs respect

the LW4 theory, see Figure 18a. The same comments can be drawn for both the temperature

assumed linear cases Ta and for the temperature calculated via the Fourier heat conduction law

Tc. For thick plates a/h = 2, the description of the transverse displacement is well drawn only by

EL4,Case3 that show an accuracy very close to the full layer-wise solution LW4, see Figure 18b.

• For the in-plane stress σαα no relevant differences can be appreciated between all the presented

models.

• Regarding the transverse shear stress σαz, the variable kinematic model EL4,Case1 improves the

results respect to the EL4 theory only in the layer with a layer-wise description, see Figure 19a.

The theories EL4,Case3 can improve the results along the whole thickness with some errors in the

description of the composite skins, see Figure 19b.
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• For the transverse normal stress σzz, the variable kinematic model EL4,Case1 improves the results

respect to the EL4 theory only in the layer with a layer-wise description, see Figure 20a. The

theories EL4,Case3 has the same accuracy of the full layer-wise solution along the whole thickness

of the spherical sandwich panel, see Figure 20b.
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Table 5: Five-layer sandwich spherical shell panel with lamination [0◦/90◦/Core/90◦/0◦]. Mechanical
variables described by Mono-models and Variable kinematic models for various radius to length side
ratios R/a and various aspect ratios a/h. Evaluation position for transverse displacement ŵ(x, y, z) =
ŵ(a/2, b/2, 0), in-plane stress σ̂αα(x, y, z) = σ̂αα(a/2, b/2,+h/2), transverse shear stress σ̂αz(x, y, z) =

10× σ̂αz(a, b/2,+
9

20
h), transverse normal stress σ̂zz(x, y, z) = 102 × σ̂zz(a/2, b/2, 0). The temperature

profile is assumed linear Ta.

a/h = 100

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

HOST12[7] 1.6614 - - - 0.7332 - - -
LW4 1.6296 6.9442 -0.1049 0.0165 0.7178 -3.1483 0.0603 0.2818 68607
LW1 1.6298 6.9005 -0.0431 0.0172 0.7179 -3.1968 0.0419 0.2837 19602
EL3Z 1.6619 7.0796 -0.0209 0.3365 0.7333 -3.2259 0.2987 0.8667 16335
EL4 1.6387 7.2355 -0.0405 0.3199 0.7223 -2.8967 0.3029 0.8617 16335
EL3 1.6620 7.0788 -0.0424 0.3135 0.7334 -3.2272 0.3057 0.8269 13068
EL2 1.6623 7.0792 -0.0015 -0.5764 0.7349 -3.2468 0.7680 -0.8356 9801
EL1 1.7362 7.4627 0.0282 -0.5819 0.7711 -3.3300 0.8482 -0.7890 6534

EL4Case 1 1.6378 7.0512 -0.1065 0.2951 0.7219 -3.0907 0.0596 0.8051 42471
EL4Case 2 1.6345 6.9486 -0.1335 6.8462 0.7195 -3.1891 0.1277 7.7908 29403
EL4Case 3 1.6296 6.9443 -0.1335 0.0165 0.7178 -3.1483 0.1265 0.2819 42471
EL1Case 1 1.6775 7.5348 -0.0480 -0.3343 0.7418 -2.8316 0.0394 -0.3409 13068
EL1Case 2 1.6696 6.9080 -0.0639 -26.156 0.7337 -3.5591 0.1289 -28.658 9801
EL1Case 3 1.6301 6.8592 -0.0639 0.0172 0.7181 -3.2449 0.1224 0.2837 13068

a/h = 4

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

HOST12[7] 1.7959 - - - 1.7738 - - -
LW4a[30] 1.8259 - - - 1.8059 - - -
ET4a[30] 1.8370 - - - 1.8125 - - -
LW4 1.8254 6.5416 -2.7197 0.1938 1.8052 6.6884 -2.6941 0.7940 68607
LW1 1.8241 6.4558 -1.1339 0.2070 1.8038 6.6040 -1.1245 0.8482 19602
EL3Z 1.7897 6.6392 -1.0356 -0.0284 1.7700 6.7748 -1.0097 -0.0901 16335
EL4 1.8371 6.7068 -1.5927 0.2405 1.8184 6.8654 -1.5633 0.9855 16335
EL3 1.7954 6.6231 -1.6543 -0.0264 1.7759 6.7600 -1.6257 -0.0820 13068
EL2 1.6641 6.2299 -1.1041 0.1285 1.6548 6.3836 -1.0617 0.5291 9801
EL1 1.9033 6.5229 -0.7331 0.5996 1.8922 6.6269 -0.7111 2.4134 6534

EL4Case 1 1.8503 6.6151 -2.7443 0.2290 1.8314 6.7656 -2.7192 0.9378 42471
EL4Case 2 1.8408 6.5387 -3.5575 6.8849 1.8224 6.6884 -3.5236 7.6024 29403
EL4Case 3 1.8236 6.5457 -3.5647 0.1936 1.8034 6.6922 -3.5297 0.7932 42471
EL1Case 1 1.8601 6.7508 -1.2004 0.4221 1.8458 6.9087 -1.1911 1.7059 13068
EL1Case 2 1.7971 6.0653 -1.7360 -24.504 1.7960 6.2311 -1.7219 -23.352 9801
EL1Case 3 1.8109 6.3652 -1.8325 0.2061 1.7910 6.5116 -1.8116 0.8445 13068
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Table 6: Five-layer sandwich spherical shell panel with lamination [0◦/90◦/Core/90◦/0◦]. Mechanical
variables described by Mono-models and Variable kinematic models for various radius to length side
ratios R/a and various aspect ratios a/h. Evaluation position for transverse displacement ŵ(x, y, z) =
ŵ(a/2, b/2, 0), in-plane stress σ̂αα(x, y, z) = σ̂αα(a/2, b/2,+h/2), transverse shear stress σ̂αz(x, y, z) =

10× σ̂αz(a, b/2,+
9

20
h), transverse normal stress σ̂zz(x, y, z) = 102 × σ̂zz(a/2, b/2, 0). The temperature

profile is calculated via Fourier heat conduction equation Tc.

a/h = 100

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

LW4 1.7822 9.0011 -0.1253 0.0185 0.7850 -2.0364 0.0553 0.3101 68607
LW1 1.7823 9.0037 -0.0550 0.0193 0.7850 -2.0383 0.0379 0.3123 19602
EL3Z 1.8174 9.2487 -0.0317 0.3689 0.8019 -2.0210 0.3178 0.9518 16335
EL4 1.7932 9.4104 -0.0564 0.3509 0.7905 -1.6778 0.3194 0.9461 16335
EL3 1.8174 9.2478 -0.0584 0.3442 0.8020 -2.0224 0.3223 0.9098 13068
EL2 1.8178 9.2492 -0.0167 -0.6303 0.8036 -2.0431 0.8248 -0.9137 9801
EL1 1.8987 9.6691 0.0158 -0.6364 0.8433 -2.1342 0.9125 -0.8628 6534

EL4Case 1 1.7919 9.1278 -0.1272 0.3235 0.7898 -1.9682 0.0544 0.8835 42471
EL4Case 2 1.7879 9.0075 -0.1632 7.3768 0.7870 -2.0835 0.1225 8.4112 29403
EL4Case 3 1.7822 9.0011 -0.1633 0.0185 0.7850 -2.0364 0.1211 0.3101 42471
EL1Case 1 1.8379 9.7435 -0.0607 -0.3653 0.8128 -1.6140 0.0350 -0.3695 13068
EL1Case 2 1.8256 9.0597 -0.0814 -28.720 0.8023 -2.3859 0.1295 -31.455 9801
EL1Case 3 1.7822 9.0053 -0.0813 0.0193 0.7851 -2.0416 0.1224 0.3123 13068

a/h = 4

R/a = 20 R/a = 5 DOFs

ŵ σ̂αα σ̂αz σ̂zz ŵ σ̂αα σ̂αz σ̂zz

LW4 1.8301 6.6442 -2.7929 0.1954 1.8102 6.8325 -2.7774 0.7999 68607
LW1 1.8278 6.5515 -1.1718 0.2127 1.8078 6.7420 -1.1679 0.8704 19602
EL3Z 1.7951 6.7499 -1.0524 -0.0426 1.7756 6.9282 -1.0335 -0.1473 16335
EL4 1.8426 6.8165 -1.6421 0.2351 1.8242 7.0193 -1.6195 0.9630 16335
EL3 1.8010 6.7329 -1.7036 -0.0317 1.7817 6.9141 -1.6818 -0.1037 13068
EL2 1.6760 6.3515 -1.1377 0.1692 1.6667 6.5495 -1.1031 0.6915 9801
EL1 1.9164 6.6461 -0.7640 0.6424 1.9053 6.7943 -0.7475 2.5840 6534

EL4Case 1 1.8572 6.7241 -2.8195 0.2096 1.8385 6.9166 -2.8046 0.8598 42471
EL4Case 2 1.8457 6.6422 -3.6752 6.8694 1.8276 6.8335 -3.6549 7.5752 29403
EL4Case 3 1.8282 6.6485 -3.6822 0.1952 1.8083 6.8365 -3.6608 0.7991 42471
EL1Case 1 1.8723 6.8700 -1.2427 0.4647 1.8580 7.0716 -1.2390 1.8761 13068
EL1Case 2 1.8064 6.1758 -1.8030 -24.714 1.8053 6.3862 -1.7970 -23.479 9801
EL1Case 3 1.8135 6.4685 -1.8977 0.2119 1.7940 6.6587 -1.8846 0.8669 13068
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Figure 18: Five-layered sandwich spherical panel transverse displacement ŵ with an assumed linear

temperature profile Ta, R/a = 5 and a/h = 100 (a), R/a = 20 and a/h = 4 (b)
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Figure 19: Five-layered sandwich spherical panel transverse shear stress σ̂αz with an assumed linear

temperature profile Ta, R/a = 5 and a/h = 100.
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Figure 20: Five-layered sandwich spherical panel transverse normal stress σ̂zz with an assumed linear

temperature profile Ta, R/a = 5 and a/h = 100.

Conclusions

This paper has dealt with the thermo-elastic static analysis of composite plates and shells using a

two-dimensional finite element based on the Unified Formulation. The element has been assessed

by analyzing cross-ply plates and multilayered composite cylindrical and sandwich spherical shells

with simply-supported boundary conditions under bi-sinusoidal thermal loads. The results have been

presented in terms of both transverse displacement, in-plane stresses, transverse shear stresses and

transverse normal stress for various thickness ratios and radius to thickness ratios. The performances of

the shell element have been tested, and the different theories (classical, refined, and Variable-Kinematic

models) within the CUF framework have been compared. It is possible to conclude that the shell element

with the MITC technique is locking free, for all the considered cases and for all the chosen models.
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The results converge to the reference solution by increasing the order of expansion of the displacements

in the thickness direction. For multilayered composite plates and shells, Variable-Kinematic models

permit to improve the results with a reduction of computational costs, with respect to a full Layer-

Wise solutions.Therefore the shear stresses can be modelized, in specific layers, by Variable-Kinematic

models with the same accuracy of Layer-Wise theories, whereas strong reduction of computational costs

can be obtained in the other layers. The sandwich core has to be modeled by a layer-wise description.

The Variable-Kinematic model permits to improve globally the results, and at the same time permit

to reduce the computational cost of the analysis, assembling the composite skins with an equivalent-

single-layer model. In future works, the loss of accuracy of the behavior of the transverse shear and

normal stresses can be solved adopting the RMVT principle in the layers with an equivalent-single-layer

description.
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