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Abstract

Among the major challenges in performing underground flow simulations
in fractured media are geometrical complexities in the domain and uncer-
tainty in the problem parameters, including the geometrical configuration.
The Discrete Fracture Network (DFN) model is largely applied in order to
properly account for the directionality of the flow in fractured media. Gen-
eration of DFN configurations is usually based on stochastic data and this
contributes to generate very complex geometrical configurations for which
a conforming mesh generation is often infeasible. Moreover, uncertainty in
the geometrical and hydro-geological properties calls for a deep uncertainty
quantification analysis; the corresponding huge computational cost of the
simulations requires modern efficient approaches faster and cheaper than the
classical Monte Carlo approach. In this paper we numerically investigate
both these aspects, proposing a viable solution for dealing with geometrical
complexities arising in the computation of the hydraulic head and in the so-
lution of the unsteady transport problem of a passive scalar in the DFN, and
for dealing with uncertainties in hydro-geological parameters of the fracture
distribution considered.
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1. Introduction

Simulation of transport phenomena in underground fractured media is
a key issue in many applications requiring the analysis of the advection-
diffusion transport of a passive pollutant immersed in a bulk fluid, such as
aquifers monitoring, disposal and geological storage of nuclear wastes, and,
more in general, the control of the dispersion in the subsoil of any kind of
contaminant deriving from industrial activities.

According to the Discrete Fracture Network (DFN) model [1, 2, 3, 4,
5, 6, 7], the underground is described as a rock matrix crossed by a net-
work of intersecting fractures, each one being modeled as a planar polygon;
fracture-resembling polygons intersect each other in segments called traces
(see Figure 1). DFN models are an alternative to continuum-like models [8],
for geological sites with a relatively low density of fractures, and are partic-
ularly useful for the description of transport phenomena, as they allow for a
realistic representation of the directionality of the flow. Dimensions, orien-
tation and hydraulic properties of the fractures in a DFN are extrapolated
by probability distribution functions, derived from experimental data and
samplings of the ground.

As a consequence of the stochastic generation of the networks, DFNs for
practical applications are usually intricate networks, counting a large number
of fractures and fracture intersections, with possibly critical features such as,
for examples, very narrow angles formed by intersecting traces, non intersect-
ing traces very close to each other and traces with length spanning several
orders of magnitude. These geometrical complexities require targeted ap-
proaches for the discretization of the governing system of equations , moving
from standard finite elements on conforming meshes to more unconventional
settings [9, 10, 11, 12, 13, 14, 15]. In fact, it is well known that the gener-
ation of a mesh conforming to fracture intersections in a DFN often results
in an infeasible process, due to the extremely large number of constraints, or
would yield poor quality meshes, which in practice could not be used. Due
to the above mentioned complexities, the simulation of transient flows and
transport phenomena in discrete fracture networks is still a very challenging
task. Some recent works on the subject can be found in [16, 17, 18, 19, 20].

In the present work, we will focus on the effective simulations of un-
steady advection-diffusion processes in DFNs by means of a reformulation
of the problem as a PDE-constrained optimization problem. We propose a
modification of the optimization-based approach introduced in [13, 21, 22]
and further developed in [23, 24, 25, 26, 27, 28]; this new formulation is
suitable for the application in the advection-diffusion framework in DFNs.
The approach inherits the advantages of the original optimization approach:
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namely, the meshing process can be performed independently on each frac-
ture; this makes the method a reliable and robust resolution tool, with an
intrinsic parallel nature. These characteristics are of paramount importance
also to perform uncertainty quantification analyses of transport phenomena.

The starting point of the new approach is the computation of the Darcy
velocity in the DFN, which is a function of the gradient of the hydraulic
head. The evaluation of the hydraulic head is performed by means of the op-
timization approach [13, 21, 22], in which the matching conditions prescribing
continuity of the hydraulic head and flux balance at fracture intersections are
imposed through the minimization of a proper functional, and the equations
for the Darcy law on the fractures act as constraints for the minimization
process. Conditions of continuity of the hydraulic head and flux balance at
fracture intersection are a common choice in DFN flow simulations [9, 29],
but alternative choices prescribing more complex matching conditions (see,
e.g., [30, 31, 19]) could be plugged in the optimization framework. The com-
puted velocity field is then post-processed to remove the small components
of the computed velocity in the direction normal to the fracture boundaries
due to the numerical approximation of the solution where a no-flow bound-
ary condition is prescribed. Then, the unsteady advection-diffusion problem
is tackled again with a PDE-constrained optimization approach with mod-
ified constraints to account for the transport problem and for the SUPG-
stabilization terms for advection-dominated flow regimes [32].

Furthermore, due to the stochastic generation of the network features,
an uncertainty quantification analysis of the output of the simulations, as
a function of the random parameters affecting the network, is of crucial
importance. Here, we will focus on a framework in which the hydro-geological
properties of the fractures are stochastically generated, whereas the geometry
is assumed to be deterministic. We will use effective, recently developed
uncertainty quantification techniques to analyse the effect of a stochastic
transmissivity, with a prescribed distribution, on the transport of pollutants
in DFNs in a time dependent framework. The use of a stochastic collocation
approach on sparse grids allows to perform an uncertainty quantification
analysis with a number of simulations which is smaller than the one required
by, e.g., Monte Carlo method. Keeping the number of simulations as small
as possible is a crucial issue, considering the high computational cost of each
time-dependent simulation in large DFNs.

The structure of the paper is as follows. In Section 2 we introduce some
useful notation; in Section 3 we describe the problem providing the trans-
port velocity field, whereas in Section 4 we introduce the advection-diffusion
formulation of the problem, followed by the discrete formulation in Section
5; Section 6 is devoted to the introduction of the uncertainty quantification
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Figure 1: Example of network

setting. Finally, numerical results are proposed and discussed in Section 7.

2. Definitions and main assumptions

Let D denote the DFN, given by the union of planar polygonal fractures
Fi, i = 1, . . . , I, intersecting each other to form traces; let Sm, m = 1, . . . ,M ,
be the traces; see Figure 1. Let S denote the set of all traces in D, whereas
Si is the set of the traces on Fi. We assume that the overall set D is con-
nected. We also assume that each trace Sm is given by the intersection of
two fractures, say Sm = Fi ∩ Fj; the link between the trace Sm and the cou-
ple of intersecting fractures will be highlighted by introducing the following
notation: ISm := {i, j}.

In the present context we will consider the rock matrix surrounding
fractures as impervious, so that flow can only occur through the fracture
planes and in the normal direction across the traces. Given a function
ζ ∈ H1(Fi), ∀i, and a uniformly positive definite tensor function q, the
symbol

[[
(q∇ζ) · niSm

]]
Sm

denotes the jump of the co-normal derivative of ζ

across trace Sm, being niSm the unit vector with a fixed direction normal to
trace Sm on Fi. The symbol ‖ · ‖α,ϑ will denote a norm in the Sobolev space
Hα(ϑ); sometimes, for the sake of increasing clarity, the functional space will
be explicitly denoted with a subscript.

The boundary of D, ∂D, is split into a Dirichlet part, ΓD 6= ∅, and a
Neumann part, ΓN , such that ∂D = ΓD∪ΓN and ΓD∩ΓN = ∅. The boundary
of each fracture ∂Fi is split accordingly in a Dirichlet part ΓDi = ∂Fi ∩ ΓD

and a Neumann part ΓNi = ∂Fi ∩ ΓN . Functions GD and GN prescribe
boundary conditions on ΓD and ΓN , respectively, whereas GD

i and GN
i are the

corresponding restrictions to ΓDi and ΓNi . We then introduce the functional
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spaces

V D
i = H1

D(Fi) =
{
v ∈ H1(Fi) : v|ΓDi = GD

i

}
,

Vi = H1
0,D(Fi) =

{
v ∈ H1(Fi) : v|ΓDi = 0

}
,

and the dual space (Vi)
′. Given a positive time T , we also introduce the

space

Wi =

{
w :

∫ T

0

‖w(t)‖2
Vi

dt <∞ and

∫ T

0

‖∂w
∂t
‖2

(Vi)′
dt <∞

}
. (1)

In order to solve the advection-diffusion problem of a passive pollutant in
a DFN D we are first interested in determining the Darcy velocity. In the
following, a hat symbol (̂) will be used in order to denote quantities re-

lated to the Darcy velocity problem; for example, Γ̂D represents the Dirichlet
boundary for the Darcy velocity problem, whereas ΓD represents the Dirichlet
boundary in the advection-diffusion problem.

3. The Darcy velocity problem

The hydraulic head H is defined by H = P + ζ, where ζ is the elevation
and P = p/ρg, being p the fluid pressure, g the gravitational acceleration
and ρ the fluid density. The hydraulic head is governed by the Darcy law on
each fracture of the DFN D, and is a continuous function across the traces
with discontinuous first order derivatives. On each fracture, the jump of the
gradient of the hydraulic head in the direction normal to a trace corresponds
to the flux leaving or entering the fracture through the trace itself, and it is
balanced by the flux jump on the other intersecting fracture. Starting from
H it is possible to compute the Darcy velocity β in D. Let us assume to
split the fractures in the DFN into sub-fractures (i.e., portion of fractures
cut along the traces, thus without internal traces, [13]), such that each trace
is now part of the boundary of some of the new sub-fractures. Assuming
that there are no sources or sinks of hydraulic head in the sub-fractures, the
DFN problem on the new sub-fractures fk is written as: for all k = 1, . . . , If

−∇ · (Kfk∇H) = 0 in fk,

H|Γ̂D∩∂fk = ĜD on Γ̂D ∩ ∂fk,
(Kfk∇H) · nΓ̂N∩∂fk = ĜN on Γ̂N ∩ ∂fk,

(2)

where Kfk is a uniformly positive definite tensor function representing the
transmissivity of the sub-fracture fk and nΓ̂N∩∂fk is the outward unit vector
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normal to the boundary of fk. The previous equations are completed with
the following additional constraints: ∀m = 1, . . . ,M and k, p = 1, . . . , If
such that ∂fk ∩ Sm 6= ∅ and ∂fp ∩ Sm 6= ∅

H|∂fk∩Sm = H|∂fp∩Sm , (3)∑
k=1,..,If : ∂fk∩Sm 6=∅

(Kfk∇H) · n∂fk∩Sm = 0. (4)

If we define β ∈ Hdiv(Fi) such that β|fk = −Kfk∇H, then, according to
the previous setting we have ∇ · β|fk = 0, and β is such that there is mass
conservation across each trace of the DFN. We remark that, in the present
work, the hydraulic head distribution in D is not computed solving equations
(2)-(4), but following the optimization approach proposed in [13, 21, 22]
and further developments. According to the framework proposed in these
references, the problem previously written on the sub-fractures can be stated
on the whole fractures Fi, introducing, on each trace, additional unknowns
Ûm
i = α̂Hi|Sm +

[[
(K∇Hi) · niSm

]]
Sm

, in which α̂ is a positive parameter. The

problem is stated as follows: ∀i = 1, . . . , I, find Hi ∈ V̂ D
i such that: ∀v ∈ V̂i∫

Fi

K∇Hi∇vdD + α̂
∑
Sm∈Si

∫
Sm

Hi|Smv|Sm =
∑
Sm∈Si

〈
Ûm
i , v|Sm

〉
H−

1
2 (Sm),H

1
2 (Sm)

.

The previous equations are completed by the additional constraints: ∀m =
1, . . . ,M and for i, j ∈ ISm

Hi|Sm −Hj |Sm = 0, (5)[[
(K∇Hi) · niSm

]]
Sm

+
[[
(K∇Hj) · njSm

]]
Sm

= 0. (6)

This problem is solved enforcing the coupling conditions (5)-(6) by a PDE-
constrained optimization method. In the next Section, we will describe this
optimization method in a new formulation which takes into account non-
stationary solutions and transport phenomena.

4. Advection-diffusion problem formulation

Let us now state the formulation of the advection-diffusion problem in a
network of fractures. Let us denote by C the function expressing the concen-
tration of a passive scalar in [0, T ]×D, and by Ci its restriction to fracture Fi.
Then, let us denote by (·, ·)ϑ the L2(ϑ)-scalar product, and let us introduce
the symmetric bilinear form ai : Vi × Vi 7→ R:

ai(u, v) =

∫
Fi

µi∇u∇v dD + α
∑
Sm∈Si

∫
Sm

u|Smv|Smds,

6



in which µi is the diffusivity of the pollutant in the bulk fluid on Fi and α > 0
is a constant scalar parameter; finally, the bilinear form bi : Vi × Vi 7→ R is
set as

bi(u, v) =

∫
Fi

βi · ∇uv dD,

where βi is the restriction of the Darcy velocity β to Fi. Furthermore, let
Ci,0 ∈ L2(Fi) be the initial condition for the concentration Ci.

With these definitions at hand, the problem of interest can be stated
as follows: ∀i = 1, . . . , I find Ci ∈ Wi, satisfying Ci(0, ·) = Ci,0, such that,
∀vi ∈ Vi,

d

dt
(Ci, vi)Fi + ai(Ci, vi) + bi(Ci, vi) =

∑
Sm∈Si

〈
Um
i , vi|Sm

〉
H−

1
2 (Sm),H

1
2 (Sm)

, (7)

with the following additional conditions: ∀m = 1, . . . ,M and for i, j ∈ ISm
Ci|Sm − Cj |Sm = 0, (8)[[

(µi∇Ci) · niSm
]]
Sm

+
[[
(µj∇Cj) · njSm

]]
Sm

= 0, (9)

a.e. in (0, T ). In the previous equations we have set

Um
i =

[[
(µi∇Ci) · niSm

]]
Sm

+α Ci|Sm
and we have neglected any forcing function, for simplicity of notation. Con-
ditions (8)-(9) express the continuity of the concentration of the pollutant
across the traces at each time-frame and the balance of the diffusive flux
across the traces. We finally observe that the advective flow is balanced
across the traces, according to the definition of β.

In order to introduce an alternative formulation for the matching con-
ditions at the interfaces (i.e., at the traces) we introduce the following cost
functional:

J(C, U) =
1

2

I∑
i=1

M∑
m=1

∥∥Ci|Sm − Cj|Sm∥∥2
1
2
,Sm

+
∥∥Um

i + Um
j − α

(
Ci|Sm + Cj|Sm

)∥∥2

− 1
2
,Sm

,

(10)
where for all m = 1, . . . ,M , indexes i, j are taken in ISm .

The functional J is quadratic, and it can be proven, following the argu-
ments of [13], that for each fixed time t it has a unique minimum if it is min-
imized constrained by (7). The optimization formulation of the advection-
diffusion problem in a network of fractures is then: for each t ∈ [0, T ]

min J(C, U)

subject to (7) for i = 1, . . . , I, (11)
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in which the functions Um
i act as control variables, with Um

i ∈ H−
1
2 (Sm) a.e.

in (0, T ).

5. Discrete formulation

As already mentioned, the advantages of the optimization approach for
the advection-diffusion problems in DFNs are the flexibility and the robust-
ness of the method, as outcomes of the possibility of an independent meshing
process on each fracture of the DFN, not conforming to fracture intersections.
Good quality meshes are easily generated, indeed, and the non-conformities
at fracture intersections are handled through the cost functional. Further-
more, when problem size becomes an issue, the optimization approach allows
for a natural parallel implementation, splitting the original high-dimension
problem into smaller sub-problems on the fractures. We refer the reader to
[26] for further details.

Let us now sketch the discrete formulation of the advection-diffusion
problem in DFNs. To this end, let us introduce on each fracture Fi a
triangulation Ti,δ, independently generated from those on the other frac-
tures, suitable for a finite element based discretization. On each triangu-
lation we build the finite dimensional subspace V δ

i of the functional space
Vi, i = 1, . . . , I, with dimension Ni, and we set NF =

∑I
i=1Ni. For

each trace Sm, m = 1, . . . ,M , and for each of the two fractures F` with
` ∈ ISm , we build an independent space discretization and introduce a finite
dimensional space Um,δ` ⊂ L2(Sm) ⊂ H−

1
2 (Sm) with dimension Nm

` . We set

NS =
∑I

i=1

∑
Sm∈Si N

m
i . The discrete approximation, on each fracture, of

Ci is ci =
∑Ni

k=1 ci,kϕi,k, whereas the discrete counterpart of the control vari-

able Um
i is umi =

∑Nm
i

k=1 u
m
i,kψi,k. The norms involved in the definition of the

discrete functional are computed in L2, and thus the discrete functional is
written as:

J(c, u) =
1

2

I∑
i=1

M∑
m=1

∥∥ci|Sm − cj|Sm∥∥2

0,Sm
+
∥∥umi + umj − α

(
ci|Sm + cj|Sm

)∥∥2

0,Sm
.

Let us now introduce, on each fracture Fi, the Péclet non-dimensional number
Pei = ‖βi‖Li

2µi
, in which Li is a characteristic dimension of fracture Fi, and,

for each element E ∈ Ti,δ the element Péclet number Pei,E = mi,E
‖βi|E‖δE

2µi|E
,

where δE is the diameter of E and mi,E is defined as in [33], i.e., mi,E =
min{1

3
, 2CE}, being CE an estimate of the largest constant satisfying the

inverse inequality [34]

CE
∑
E∈Ti,δ

δ2
E‖∆ϕ‖2

0,E ≤ ‖∇ϕ||20,Fi , ∀ϕ ∈ V δ
i .
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We then define the parameter τi,E as

τi,E =
δE

2‖βi|E‖
min(Pei,E, 1).

Approximating the time derivative by the Implicit Euler method with ∆t =
t[n+1]− t[n], and recalling that we have no forcing function, the discrete prob-
lem formulation is: for n = 0, 1, . . . , solve

min J(c[n+1], u[n+1])

subject to, for i = 1, . . . , I,∀k = 1, . . . , Ni

1

∆t
(c

[n+1]
i , ϕi,k)Fi + ai(c

[n+1]
i , ϕi,k) + bi(c

[n+1]
i , ϕi,k) +∑

E∈Ti,δ

(R
[n+1]
i , τ̃i,Eβi|E∇ϕi,k)E =

∑
Sm∈Si

(
(umi )[n+1], ϕi,k|Sm

)
+

1

∆t
(c

[n]
i , ϕi,k)Fi (12)

in which the last term on the left-hand side accounts for SUPG stabilization
[33] for advection dominated flow regimes, being

R
[n+1]
i =

c
[n+1]
i − c[n]

i

∆t
+∇ · (µi∇c[n+1]

i ) + βi · ∇c[n+1]
i ,

and, see for example [35],

1

τ̃i,E
=

1

∆t
+

1

τi,E
.

6. Uncertainty quantification techniques

In this section we describe the techniques used in order to perform the
uncertainty quantification on the outputs of the simulations. We consider
herein a DFN described by deterministic geometric parameters (such as frac-
ture dimensions, positions, orientations...), boundary data and source terms.
On the contrary, the transmissivity is assumed to be a random variable, en-
dowed with a certain probability distribution. The solution (C, U) is therefore
seen as a dependent random variable, of which we are interested in comput-
ing suitable statistics. For easing the notation, we will avoid in this section
the explicit reference to the dependency of C and U on (t,x). We start briefly
describing the uncertainty quantification setting, by closely following [25]. In
Section 7 we will detail the specific application considered herein.

Let (Ω,F ,P) denote a complete probability space, where Ω is the set
of outcomes, F a σ-algebra, and P : Ω → [0, 1] the probability measure.
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Let D ⊂ Rd, d ≤ 3, be a bounded Lipschitz domain. In a realistic net-
work composed by a large number of fractures, it is unlikely that the set of
fracture transmissivities are represented by a collection of independent, or
even uncorrelated, random variables. We rather consider a stochastic field
for describing the fracture transmissivities: namely, we consider a function
K(x, ω) : D̄ × Ω → R such that, for each fixed point x ∈ D, the quantity
K(x, ·) is a random variable representing the transmissivity at point x ∈ D.
The stochastic field may be approximated by a finite (possibly small) num-
ber of stochastic variables following, e.g., the Karhunen-Loéve expansion
approach (see, for example, [36] and references therein). Following this ap-
proach, the stochastic field is represented as an (infinite) sum of terms ob-
tained from a spectral decomposition of its correlation function; by making a
suitable truncation of the expansion, we may describe the stochastic feature
of the medium by means of a moderate number of stochastic variables. We
briefly sketch in the following this approach, while referring the reader to [25]
for more details.

Let us introduce κ = logbK, being b > 1 a fixed constant; indeed, since
in realistic applications the fracture transmissivities typically span several
orders of magnitude, the analysis is preferably performed in terms of the
logarithm of the transmissivity. Let us assume that the auto-covariance
function Cκ(x, z) of κ, i.e., the function

Cκ(x, z) = E[(κ(x, ·)− E[κ](x))(κ(z, ·)− E[κ](z))], x, z ∈ D,

is a known continuous function on D×D. We consider the Karhunen-Loève
decomposition of κ

κ(x, ω) = E[κ](x) +
∞∑
n=1

√
λnϕn(x)Yn(ω) , (13)

where ϕn(x), n ≥ 1, are the orthonormal eigenfunctions (with corresponding
positive eigenvalues λn) of the compact operator Tϕ =

∫
D
Cκ(·, z)ϕ(z)dz. We

recall that the eigenvalues are in non-increasing order, and Yn are mutually
uncorrelated random variables satisfying E[Yn] = 0, E[Y 2

n ] = 1. As it is clear
from equation (13), each term of the expansion is given by a deterministic
function ϕn(x) times a random variable Yn(ω); these random variables have
in charge the stochastic behaviour of κ and their distribution function is
therefore related to the stochastic behaviour of κ. If, for example, κ is a
Gaussian process, the random variables Yn have normal distribution.

By truncating the expansion after the first N terms, for some N ≥ 1, we

10



approximate κ(x, ω) by the quantity

κN(x, ω) = E[κ](x) +
N∑
n=1

√
λnϕn(x)Yn(ω) , (14)

which depends on a finite number N of stochastic variables, the truncation
parameter N therefore representing the stochastic dimension. Clearly, the
higher is the stochastic dimension, the better is the approximation of the
stochastic field, but the more complex are the computations involving the
stochastic variables. The number of terms to be retained for a good approx-
imation clearly depends on the rate of decay of the eigenvalues, which in
turn depends on the smoothness of the correlation kernel Cκ(x, z) and on
the correlation length.

For a fixed value of the stochastic dimension N , the transmissivity Ki,N

on each fracture is finally obtained from κN as follows: we set Ki,N(ω) =
KN(xi, ω) where xi is the position of the center of mass of the fracture and

KN(x, ω) = bκN (x,ω).

Note that for the sake of simplicity the transmissivity Ki,N is assumed here to
be constant on each fracture, the quantity κN being computed at the center
of mass of Fi. Nonetheless, the same framework can be applied retaining,
in KN and κN , the dependence on the space variable x, thus considering a
transmissivity on each fracture which depends on the local coordinate system
on Fi.

The solution to the problem is therefore described by a finite set of random
variables: (C(ω), U(ω)) = (C(Y1(ω), . . . , YN(ω)), U(Y1(ω), . . . , YN(ω))). Let

Φ(ω) := Φ(C(ω), U(ω)) = Φ̂(Y1(ω), . . . , YN(ω))

denote the quantity of interest. In several applications related to DFNs, Φ
represents, for example, the overall flux flowing through the network. The
interest is in computing statistics of Φ, namely, mean value (expectation)
and variance

E(Φ) =

∫
Ω

Φ(ω) dP , σ2(Φ) = E(Φ2)− E(Φ)2 ,

provided Φ has bounded second-order moment (i.e., Φ ∈ L2(Ω, dP)). Let us
denote by Γn the image of Yn (namely, Γn = Yn(Ω)), with Γ =

∏N
n=1 Γn; let

ρ : Γ → R+ be the joint probability function of Y1, . . . , Yn. Then, the mean
value of Φ is computed as

11



E(Φ) =

∫
Γ

Φ(y1, . . . , yn)ρ(y1, . . . , yn)dy1 . . . dyN .

In order to efficiently compute accurate approximations of the statistics of
interest, we adopt a stochastic collocation approach (see, e.g., [37, 38, 39]).
Within this approach, the problem is solved at suitably – and determin-
istically – selected points chosen in Γ (the collocation points) and then the
statistics of interest are computed through numerical integration with proper
quadrature formulas built on the collocation points. The stochastic colloca-
tion approach allows therefore for a non-intrusive implementation in which
the deterministic solver is used as a black-box, and the model equations are
solved several times with different input data corresponding to the collocation
points.

A wise choice of the collocation points in Γ is fundamental for the overall
efficiency, in particular when the stochastic dimension N increases, as the
computational cost of a full tensorization of 1D grids would be prohibitive.
A widely used remedy consists in resorting to sparse grids [40, 41], in which
only suitable subsets of tensorial grids are used. As far as the univariate
quadrature formulas are concerned, the use of high-precision nested grids is
worthwhile. Indeed, if – for a fixed stochastic dimension N – the stochastic
mesh has to be refined in order to improve the accuracy in the computations
of the statistics of Φ, information from the coarser mesh can be re-used.
For the uniform probability density, one can use Gauss-Patterson formulas
[42] or Clenshaw-Curtis formulas [43]. For the normal probability density,
Kronrod-Patterson-Normal (KPN) formulas [44] are a possible choice. Multi-
dimensional sparse quadrature formulas are then built according, e.g., to
Smolyak’s recipe [40].

7. Numerical results

In this section we propose some numerical tests: first, a simple DFN con-
figuration is considered with simulations tailored at showing optimal con-
vergence properties of the method. Then a more complex DFN is tackled,
performing an uncertainty quantification analysis following the lines depicted
in Section 6, aimed at assessing the effects of a random fracture transmis-
sivity on the dispersion of a pollutant in the subsoil. Numerical results are
obtained using first order extended finite elements (XFEM) [45] on trian-
gular non-conforming meshes. Optimization problems are written in saddle
point formulation, [21]; given the moderate size of the considered problems,
a direct solver is used to solve the linear systems. The mesh parameter is
denoted by δ and represents the maximum element area.
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7.1. Validation tests

As a first example, labelled PV , let us consider a DFN D composed of
two rectangular fractures F1 and F2 intersecting in the 3D space along a trace
S, as shown in Figure 2, left. With reference to the coordinate system Oxyz
reported in the figure, let us introduce the following function on D:

C =

{
(1− e−t) (y(y − 1)|x|(x2 − 1)) , in F1,

(1− e−t) (y(1− y)|z|(z2 − 1)) , in F2.
(15)

Consider the following problem defined on D: find Ci ∈ Wi, i = 1, 2, such
that a.e. in (0, 1)

d

dt
(Ci, vi)Fi +ai(Ci, vi)+bi(Ci, vi) =

〈
U1
i , vi|S

〉
H−

1
2 (S),H

1
2 (S)

+(qi, vi), ∀vi ∈ Vi,
(16)

with additional constraints (8)-(9), initial condition C(0, ·) = 0 and homo-
geneous Dirichlet boundary conditions on ∂D. In the previous equation
qi ∈ L2(Fi) is a load term computed in such a way that C given by (15)
is the exact solution. The velocity field β is defined on each fracture as
follows:

β1 =

{
(1, 0, 0) x < 0,

(0, 0, 0) x ≥ 0,
β2 =

{
(0, 0,−1) z < 0,

(0, 0, 0) z ≥ 0.

The velocity field, thus, has a jump across S on each of the fractures, but
is preserving mass conservation on the whole D. Diffusivity of the pollutant
in the bulk fluid is µ = 10−6.

7.1.1. Stationary solution

A convergence analysis with respect to the space variables is proposed,
considering the steady state solution of PV . The space mesh parameter
varies from δ = 10−1 to δ = 10−4, thus resulting in a maximum grid Péclet
number ranging from about 6.5× 104 on the coarsest mesh to 3× 103 on the
finest mesh. The numerical solution on an intermediate mesh (δ = 5× 10−2)
is shown in Figure 2, right, whereas convergence curves of the error in the H1

and L2 norms against mesh refinement are reported in Figure 3, left, showing
asymptotic optimal trends.

7.1.2. Transient solution

Convergence with respect to the time discretization parameter ∆t is also
analyzed. Tests are performed on the finest spatial grid with values of ∆t
ranging from 0.25 to 3.125 × 10−2. The expected linear decreasing trend of
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Figure 2: Test PV . Left: computational domain and non-conforming mesh, δ = 5× 10−2.
Right: numerical solution of the stationary problem on F1, δ = 5× 10−2
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Figure 3: Test PV . Convergence curves versus spatial mesh refinement (left) and versus
refinement in time grid (right)

the error is obtained, measured in the L2-norm in space and L∞-norm in time.
The results are reported in Figure 3. For smaller values of ∆t a progressive
degradation of the convergence trend is observed, due to the effect of space
discretization errors.

7.2. A dispersion problem with uncertain transmissivity

The second numerical experiment, labelled Puq, tackles the issue of ran-
domness of input data for DFN simulations, combining the proposed opti-
mization approach for the flow and transport simulation with the aforemen-
tioned uncertainty quantification strategies. With this example we aim at
proving the viability of the proposed approaches in realistic situations.

We consider a scenario in which, over a large fault, the rock matrix is
crossed by a network of fractures, forming a DFN composed of 24 fractures
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Figure 4: Test Puq, geometry of the DFN

and 60 traces, see Figure 4. Two vertical fractures represent a bore-hole,
which injects a pollutant in the network, and an extraction well. The fault
connects the network to a nearby fracture presenting an outcrop, which may
be, therefore, a carrier for a dangerous pollutant leakage. The geometry of
the considered network is not based on realistic data, but is generated in order
to display some of the complexities typical of networks of interest in practical
applications. The network has indeed a multi-scale nature, with trace length
spanning approximately three orders of magnitude and also shows some geo-
metrical complexities, such as angles between intersecting fractures as small
as few degrees, and very close and almost parallel traces in the same fracture.

We consider the phenomenon of the transport of the pollutant from the
injection well into the DFN, and the effect of a random transmissivity field on
this process. The quantity of interest for the present investigation, denoted
by Φ, is the integral mean of the concentration of the passive pollutant at
the outcrop after a fixed time period (T = 15 time units). Recalling that the
concentration is here seen as a random variable C(t,x, ω) for all t,x, we set

Φ(ω) =

∫
Γoc

C(T,x, ω)dΓ,

being Γoc the top edge of the outcrop fracture.
The transmissivity of the injection and extraction wells (F1 and F2), of

the fault (F3) and of the outcrop (F4) is deterministic and set to K1,2 = 1 and
K3,4 = 0.5. The transmissivity of fractures Fi, i = 5, . . . , 24 is obtained along
the lines of Section 6 as follows. We consider the stochastic field K(x, ω) as a
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function of the distance x from the fault plane, so that in (13) and subsequent
equations we have x = x ∈ R. We choose D = [0, 1] and consider an auto-
covariance function given by

Cκ(x, z) = e
− |x−z|

2

γ2 , x, z ∈ D , (17)

being the parameter γ a measure of correlation length. We remark that
other choices are possible for the auto-covariance function, such as for exam-
ple functions from the Matérn family [46]. Once the truncated Karhunen-
Loéve expansion κN(x, ω) is obtained as in (14), the transmissivity Ki,N is
obtained as Ki,N = 2κN (xi,ω), for a chosen stochastic dimension N , where xi
is the distance of the center of mass of Fi from the fault plane. Concerning
the choice of γ, in order to show the viability of the proposed approach in
the broadest range of situations, a small value of γ = 0.125 and a larger
value of γ = 0.75 are used in the following simulations, whereas stochastic
dimensions N = 1, 2, 4 are considered. The values obtained for the trans-
missivity spans therefore several orders of magnitude; the robustness of the
approach in dealing with a broad range of values for the transmissivity has
been investigated in [28]. The random variables Yn in (14) are assumed to be
normally distributed; consequently, we used KPN nodes for the univariate
quadrature formulas and sparse grids have been generated using the sparse

grid toolkit [47, 48] for the higher stochastic dimensions. The KPN nodes
are nested and five levels of refinement for quadrature are attainable adding
nodes to the previous level quadrature mesh: starting from the coarsest grid
(level 0, consisting of only one node), the total number of nodes for each level
is reported in Table 1. The number of nodes reported in the table and cor-
responding to stochastic dimensions N > 1 are obtained with sparse grids,
instead of with a full tensorization of the univariate formula, as anticipated
at the end of Section 6. We remark that increasing the number of nodes of
the stochastic collocation, i.e. increasing the level of refinement, the accu-
racy of the quadrature formulas increases; on the other hand, increasing the
stochastic dimension N corresponds to a better representation of the model,
as a larger number of terms of the Karhunen-Loéve expansion is kept.

For each realization of the random transmissivity field, the Darcy velocity
β in the DFN is computed by means of the optimization approach [13, 28],
prescribing a fixed inflow through the top edge of the injection well and a
zero hydraulic head condition at the top edge of the extraction well and of
the outcrop-fracture, all other fracture edges being insulated.

Mass conservation properties of the computed velocity field β are shown
by means of two error indicators, expressing the relative flux mismatch per
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Table 1: Kronrod-Patterson-Normal grid nodes for the sparse grids

Level N = 1 N = 2 N = 4
0 1 1 1
1 3 5 9
2 9 21 57
3 19 65 273
4 35 173 1097

t=0.02 t=2.5 t=10

Figure 5: Solution of the DFN for problem Puq at selected time-frames. Velocity field is
shown in the leftmost picture: lines are directed as the velocity field and line lengths are
proportional to the velocity magnitude
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trace length and the relative global flux unbalance, defined respectively as:

∆flux =

(
M∑
m=1

∥∥ûmi + ûmj − α̂
(
hi|Sm+ hj|Sm

)∥∥2

) 1
2

(χ̄L)−1,

∆cons =

∣∣∣∣∣
3∑
i=1

∑
Sm∈Si

∫
Sm

(ûmi − α̂hi|Sm )

∣∣∣∣∣ (χ̄)−1,

in which ûmi is the discrete control variable for trace Sm on fracture Fi for
the stationary Darcy velocity problem, L is the cumulative trace length, and
χ̄ denotes the average flux through the network:

χ̄ =
1

2

(
3∑
i=1

|
∑
Sm∈Si

∫
Sm

(ûmi − αhi|Sm )|

)
.

The first sum in the definitions of ∆cons and χ̄ is limited to fractures with a
non-insulated portion of the boundary. The error indicators are computed
for 2 × 103 randomly chosen simulations, each corresponding to a different
realization of the random variables. The average value of ∆flux for the consid-
ered set of simulations is 1.86×10−4 with a variance of 7.18×10−10, whereas
the average value for ∆cons is 1.00 × 10−4 with a variance of 6.30 × 10−10.
These results confirm a good accuracy in the resolution of the initial Darcy
problem.

Then, the time-dependent advection-diffusion problem is solved with the
approach discussed in the present work, to compute pollutant concentration
C. Boundary conditions in this case are a unitary Dirichlet condition on the
top edge of the injection well and a vanishing diffusive flow µi

∂Ci
∂n

= 0 at
all other fracture edges. At time t = 0 there is absence of pollutant in the
DFN. Simulations are performed using a mesh parameter δ = 10−3 resulting
in about 8600 DOFs. Diffusivity parameters µi are taken all constant and
equal to 10−7 for all i = 1, . . . , I; the Péclet number of the problem is in the
order of 107 and the mesh Péclet numbers span the range 103 − 105.

In Figure 5 we show, as an example, the results obtained with one (time-
dependent) realization of the problem in the case γ = 0.125. The picture
reports the solution at three different time-frames, with colours proportional
to the concentration of the pollutant in the DFN at the corresponding time.
On the leftmost image, relative to the solution at t = 0.02 (corresponding to
two time steps), the velocity field is also shown by means of lines directed as
the velocity vectors in each point, and with length proportional to the velocity
magnitude. It is possible to see how, at increasing time, the pollutant is
diffused into the DFN, and reaches both the extraction well and the outcrop.
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Figure 6: Plot of Φ versus the random parameter for N = 1; γ = 0.125 (left) and γ = 0.75
(right).

γ = 0.125 γ = 0.75
E(Φ) σ2(Φ) E(Φ) σ2(Φ)

Stochastic Collocation
N = 1 6.7740e-1 6.2248e-6 6.7769e-1 1.8029e-6
N = 2 6.7670e-1 3.7730e-4 6.7710e-1 1.1967e-4
N = 4 6.7655e-1 4.0343e-4 6.7709e-1 1.3376e-4

Monte Carlo Method N = 4 6.7625e-1 4.0816e-4 6.7711e-1 1.4195e-4

Table 2: Computed Stochastic moments

The effect of the random transmissivity field on Φ is shown in Figure 6
for the two values of γ on the finest grid (level 4) in the case N = 1, i.e.
corresponding to 35 different realizations of the transmissivity field (see Table
1). It can be noticed that Φ is significantly affected by the variation of the
random variable Y1, in a different manner for the two values of the parameter
γ.

We now aim at measuring the convergence behaviour in the approxima-
tion of the mean value and of the variance of Φ for an increasing number
of nodes in the stochastic grids. This analysis is performed taking, for each
fixed stochastic dimension N , as reference solution the mean value and the
variance of Φ computed on the finest stochastic grid (level 4), and measuring
the relative error between the approximations of E(Φ) and σ2(Φ) computed
on the coarser grids (levels 0 to 3) and the reference solution. Results are
reported in Figure 7 for γ = 0.125 and in Figure 8 for γ = 0.75, for the
three stochastic dimensions N = 1, 2, 4; in the same figure, we report as a
comparison the results obtained for N = 4 with Monte Carlo method. The
reference solutions obtained in all cases are reported in Table 2. Figures 7
and 8 highlight that, with the collocation approach, errors decay at a fast
rate. A degradation of the convergence trend can be observed for increas-
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Figure 7: Convergence of the mean value (left) and variance (right) w.r.t. number of
collocation nodes, dimensions N = 1, 2, 4, γ = 0.125. Monte Carlo simulations in dashed
black lines.
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Figure 8: Convergence of the mean value (left) and variance (right) w.r.t. number of
collocation nodes, dimensions N = 1, 2, 4, γ = 0.75. Monte Carlo simulations in dashed
black lines.

ing stochastic dimensions, which is the well-known curse of dimensionality
phenomenon (see, e.g., [39]). Comparing the errors obtained with the col-
location approach to those relative to Monte Carlo simulations, it appears
that the collocation strategy allows to measure the response of the model to
the randomness of the data in a very effective way, thus providing reliable
results without requiring a huge number of costly simulations. This is of
paramount importance for such applications as the dispersion of pollutants
in the subsoil, in which safety is a key aspect. Finally, note in both the cases
depicted in Figures 7 and 8, the very fast decay of the errors obtained in
the computation of the variance with the stochastic collocation approach,
compared with those obtained with Monte Carlo method.
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8. Conclusions

An optimization-based approach has been presented and numerically tested
for the solution of time-dependent advection-diffusion problems in realistic
DFNs. The main advantages of the method lie in the possibility of handling
non-conforming meshes at the interfaces (i.e., intersections between fractures)
and in a naturally parallel implementation, as demonstrated in previous
works where similar methods were used for stationary diffusion problems.
The method is coupled to modern uncertainty quantification techniques to
measure the effect of a random transmissivity field on the dispersion of a
pollutant, combining, for the first time to the best of our knowledge, un-
certainty quantification strategies to time-dependent solutions in complex
DFNs. Results show a fast decay of the errors for the estimated mean value
and variance of a relevant quantity of interest. Given the high cost of each
DFN simulation, these results appear very promising for practical applica-
tions aiming at taking into account the probabilistic nature of input data in
underground flow simulations.
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