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Abstract

This paper proposes one-dimensional layer-wise theories that make use of higher-order zig-zag functions

defined over fictitious/mathematical layers of the cross-sectional area. These advanced kinematics enable

the computational costs to be reduced while the accuracy of the classical layer-wise theories in which

the number of physical and numerical layers coincide, is maintained. Variable kinematics theories have

been obtained using piecewise continuous power series expansions of an arbitrary order defined over the

whole cross-section of the structure. As in the classical layer-wise approach, the cross-section can be

divided into a variable number of mathematical subdomains. The expansion order of each subdomain

is therefore an input parameter of the analysis. This feature enables the solution to be refined locally

as the kinematics expansion can be enriched over generic regions of the cross-section. The governing

equations have been obtained by applying the Principle of Virtual Displacements, along with the Carrera

Unified Formulation, and have been solved using the Finite Element method. Numerical simulations

have been performed considering laminated and sandwich beams with very low length-to-depth ratio

values. Comparisons between the present results and solutions available in the literature have pointed

out the advantages of this approach, in terms of accuracy of the displacements, of the stress distributions

over the beam cross-section and of the natural frequencies with respect to the classical layer-wise theories.

Keywords: B. Laminates; B. Layered structures; C. Finite element analysis (FEA); C. Numerical Anal-

ysis; Zig-zag-layer-wise theory
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1 Introduction

The fulfillment of the more and more restrictive requirements in vehicles design has led to the extensive

use of composite materials. This fact can be corroborated by considering the significant efforts that

have been made by the most influential industries to develop new commercial airplanes with the highest

possible percentage of advanced materials (more than 50%). The current tendency is to further augment

this percentage. Unfortunately, despite their recognized advantages, composite structures exhibit much

more complex mechanical behavior than their metallic counterparts. For this reason, a huge number

of numerical simulations, supported by expensive test campaigns, is required to ensure the fulfillment

of the safety requirements. Therefore, the development of reliable and computationally effective tools

for the description of the mechanical response of composites is still of practical importance. Over the

years, either one- or two-dimensional structural theories have frequently been used to solve the 3D

elasticity problem. Well-known classical theories, namely the Euler-Bernoulli [1] and Timoshenko [2]

beam models and the corresponding Love-Kirchhoff [3] and Reissner-Mindlin [4] plate approaches, are not

able to provide an accurate description of the stress state of layered structures. The main drawbacks are

derived from the adopted linear displacement assumption through the thickness, which cannot intrinsically

satisfy the interlaminar shear stress continuity and the surface conditions prescribed by the equilibrium

equations. Thus, advanced formulations, based on the equivalent single layer (ESL) and layer-wise (LW)

approaches, have been conceived to overcome these issues. According to the former method, the number

of problem unknowns does not depend on the number of plies, contrary to what happens with the LW

technique. Within the ESL context, the fulfilment of the governing equations is pursued by increasing

the order of the interpolating expansions of the displacement components. Early attempts were proposed

in [5, 6] and [7, 8], where quadratic and cubic power series expansions were developed, respectively. It

was demonstrated that these displacement models can be obtained directly from Reddy’s third-order

shear deformation theory [9], as particular cases. In order to correctly predict the ”local” responses

of laminated structures, Matsunaga considered the displacement components as expansions of arbitrary

orders based on truncated power series expansions of the z-coordinate [10]. Axial stress distributions were

obtained from Hooke’s law, whereas the shear stress profiles were computed by integrating the equilibrium

equations. Other ESL shear deformation theories that exploit the properties of non-polynomial functions

have been proposed, such as [11, 12] and [13]. Although the improvements introduced by these advanced

models are certainly significant, they provide continuous strain distributions through the lamination

direction. This feature leads to interlaminar discontinuity of the shear stresses. Therefore, piecewise

continuous displacement fields have been developed with the aim of reproducing the typical zig-zag

displacement profiles. These formulations have been derived in the frameworks of ESL [14, 15, 16] and

LW [17] approaches, using either displacement-based [18] or mixed [19] variational statements. A detailed

description of zig-zag theories, especially those obtained in the ESL context, can be found in [20]. ESL
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zig-zag theories are able to combine a high level of accuracy with a low computational cost. However,

their derivation often represents a complex task since it requires a number of assumptions related to

the laminate properties (degree of anisotropy, thickness ratios etc.). Despite the higher computational

cost, compared to ESL models, the LW description is probably the most reliable and general approach

for the study of layered structures. According to this methodology, each cross-sectional subdomain can

be treated either as a mathematical or a physical layer, in which the displacement components are

arbitrarily expanded. The kinematic expansion within each subdomain must ensure the continuity of the

displacements through the interfaces. To this end, polynomial [21, 22] as well as trigonometric [23, 24]

functions have been used. Moreover, the assembly technique at the interface level enables the study

of delamination phenomena to be performed [25, 26] and [27]. Recently, both ESL and LW theories

have successfully been developed by means of the Carrera Unified Formulation (CUF) for the analyses

of laminated structures [28]. As far as the ESL theories are concerned, the authors (Carrera and Filippi)

provided comparisons of several kinematic models, obtained with arbitrary functions of the cross-sectional

coordinates [29, 30]. The Murakami zig-zag function (hereafter referred to as ’MZZ’) was added to the

displacement fields in order to fulfill the C0
z -requirement. The same formulations were subsequently

adopted for stress [31] and dynamic [32] analyses of functionally graded structures. On the other hand,

the CUF-LW models were derived using Lagrange [33, 34] and Legendre-type [35] expansions, which

enabled compact and thin-walled layered structures to be analyzed. Another interesting LW formulation,

in which the multi-line refined beam models were developed, was proposed by Carrera and Pagani [36].

According to this approach, subdomain kinematics was approximated using Taylor-like expansions, by

locally imposing displacement continuity by means of Lagrange’s multipliers. A similar approach was

used by Yang et al. for the analysis of wrinkling in stiff thin films, which rest on compliant thick

elastic substrates [37]. As far as plate theories are concerned, mixed ESL/LW models have recently

been proposed for the static [38, 39] and nonlinear vibration analyses [40] of layered structures. These

models exploit the interesting characteristics of the Legendre polynomials in order to obtain variable

kinematic theories through the plate thickness. ESL-LW models were derived using both displacement-

based and mixed variational statements. The present paper has the aim of presenting a new class of

refined beam displacement-based theories that can provide both ESL and LW kinematic descriptions.

The displacement components have been written as power series of piecewise continuous functions of

arbitrary orders. Since these functions are defined over the whole cross-section, the expansion order of

each subdomain becomes an input parameter of the analysis. Therefore, the kinematics theory can be

locally enriched while the displacement continuity through the interfaces is preserved. The equations

of motion have been derived from the Principle of Virtual Displacements (PVD) and solved through a

classical 1D finite element technique. The numerical applications have demonstrated the accuracy of the

proposed theories, in terms of displacements, stress distributions and natural frequencies, with respect
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to the results available in the literature.

2 Equations of motion in CUF form

The general form of the PVD establishes the well-known relation between the kinematically admissible

perturbations (indicated by δ) of the strain energy (Lint), inertial energy (Line) and the external work

(Lext) exerted by the forces (F̃ ):

δLint = δLext + δLine (1)

The energies of Eq. 1 are expressed in terms of the displacement vector, uT = [ux, uy, uz], as it follows

∫

V

δuTDTCDu dV =

∫

V

δuT F̃ dV +

∫

V

δuTρü dV (2)

where the differential operator D is a matrix that defines the strain-displacement relations, C is the

stiffness matrix of the Hooke’s law, ρ is the material density, and ü is the acceleration vector.

CUF is a simple methodology, which essentially offers two main advantages:

1. the governing equations are systematically obtained from Eq. 2 regardless of the adopted kinematic

assumptions;

2. comparisons between different kinematic theories can be easily performed to identify which are the

most effective solutions depending on the problem characteristics.

The fundamental CUF equation is based on a simple separation of variables, according to which, the

3D displacement field u(x, y, z, t) is being assumed to be a combination of products of cross-sectional

functions Fτ (x,z) and the generalized displacement vector uτ (y,t)

u(x, y, z, t) = Fτ (x, z)uτ (y, t) τ = 1, 2, . . . , N (3)

The subscript τ stands for summation, and N is the number of terms in the expansion. In this work, the

Fτ (x,z) functions are assumed a − priori, and the generalized displacement vector along the beam axis

is interpolated through a classical finite element technique

uτ (y, t) = Ni(y)qτi(t) (4)

where qT
τi(t) = [quxτi

, quyτi
, quzτi

] is the nodal displacement vector, and Ni are the lagrangian shape

functions along the longitudinal axis (see [41] (§5.2.2)). The linear strain-displacement relations and the

Hooke’s law are
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ǫ = Du σ = C ǫ (5)

The expressions of the stiffness coefficients of C matrix and the differential mathematical operator, D,

can be found in [42]. To obtain the variational statement in CUF form, Eqs. 3, 4 and 5 are substituted

in Eq. 2

δqT
τi

∫

V

FτNiD
TCDFsNj dV qsj = δqT

τi

∫

V

FτNi F̃ dV + δqT
τi

∫

V

FτNiIρFsNj dV q̈sj (6)

where I is the 3-by-3 identity matrix. The variational principle of Eq. 6 is satisfied for all possible

perturbations if the following equations of motion are fulfilled

• static problem:

Kijτsqsj = P (7)

• undamped homogenous dynamic problem:

M ijτsq̈sj +Kijτsqsj = 0 (8)

It is straightforward to demonstrate that for given indexes, the systems of Eqs. 7 and 8 consist of three

equations related to the three displacement components. Indeed, the dimension of both stiffness Kijτs

and mass M ijτs matrices is 3-by-3, while the loading vector P is a 3-by-1 vector. Furthermore, neither

the nature of functions Fτ nor their number N modifies the expressions of these mathematical operators,

which are traditionally called fundamental nuclei. The explicit expressions of the fundamental nuclei can

be found in [43]. The complete structural matrices related to the adopted mathematical model are being

obtained through the assembly technique schematically shown in Fig. 1.

Fundamental nucleus

τ

s

i

j

1 SN

SN

1

1

N1

Node Element Structure

Figure 1: Graphical representation of the assembly procedure.
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3 Layerwise models with higher-order zig-zag functions

Let us consider a laminated structure with a prismatic cross-section constituted of n layers. The cross-

section can be considered divided into K subdomains, which can include one or more layers, having the

thickness and width equal to hk = zk−1 − zk and b, respectively (see Fig. 2).

{

{
{
{

Layer 1

2

3

Layer n

Subdomain 1

2

..
.

3 4

{k

SubdomainK

z0

z1

z2

zk-1

zk

z3

hk

b
x

z

ζ
x

Figure 2: Cross-section of a laminated structure.

The variable kinematic field is written by using an arbitrary number of continuous piecewise polynomial

functions, which are defined over the entire cross-section. The pk-order polynomial expansion of generic

subdomain ’k’ is a combination of power functions of the cross-sectional coordinates, ’x’ and ’z’.

Assuming that the mechanical properties vary discretely along the thickness direction, the Fτ functions

defined over the k-th subdomain are

Fτ (x, z)
(px,pz)
k =































(−1)pz
(

2 x
b

)px
, if z < zk−1

(1)
(

2x
b

)px

(

2 ζ
hk

)pz

, if zk−1 < z < zk

(1)pz
(

2x
b

)px
, if z > zk

(9)

where the superscripts px, pz are the polynomial orders and ζ is the subdomain thickness coordinate,

which ranges from −hk/2 to hk/2. Since the polynomial orders are input parameters of the analysis, they

can be arbitrarily defined for each cross-sectional subdomain. Moreover, the Fτ functions are defined

such that they range from -1 and +1 regardless on the chosen (px, pz) combination (see Fig. 3).

y

z
-1 0  1 -1 0  1 -1 0  1 -1 0  1 -1 0  1

Fτ1

(0,1)
Fτ2

(0,1)
Fτ1

(0,2)
Fτ2

(0,3)
Fτ2

(1,1)

x=-b/2

x= b/2

ζ2

ζ1

Figure 3: Various Fτ functions for a 2-subdomain beam.
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It is noteworthy that, depending on the number of considered subdomains ’K’, the proposed methodology

can represent either an equivalent single layer approach (K=1) or a ”pure” layer-wise kinematic model

(K=n). Figure 4 shows the piecewise functions up to the third order for the middle region of a 3-

subdomain cross-section.
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Figure 4: The Fτ functions computed on a subdomain defined between zk−1 = −3 and zk = 2.

Owing to the zig-zag form of such displacement fields, first derivatives (and, therefore, the strain field)

with respect to the thickness direction, Fτ,z, are discontinuous as shown in Fig. 5
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Figure 5: The Fτ,z derivatives computed on a subdomain defined between zk−1 = −3 and zk = 2.

The proposed layer-wise expansions are being denoted with the following notation

• TE-LW(pc): the subscript ’c’ indicates that the ’p’-th order expansion is used for each subdomain.

If the number of subdomains does not coincide with the number of structural layers, the superscript

(⋆) is added to the notation (TE-LW(pc)
⋆);

• TE-LW(p1 − p2 − . . .− pK): the local expansion order of each subdomain ’pk’ is explicitly reported

in brackets starting from the bottom surface.

According to this notation, two expressions of the first component of the displacement field (ux) are

reported below for a 2-subdomains structure (see Eq. 9)
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• TE-LW(2c):

ux = 1 ux1 + Fτ (x, z)
(1,0)
1 ux2 + Fτ (x, z)

(0,1)
1 ux3 + Fτ (x, z)

(0,1)
2 ux4 + Fτ (x, z)

(2,0)
1 ux5 +

+Fτ (x, z)
(1,1)
1 ux6 + Fτ (x, z)

(0,2)
1 ux7 + Fτ (x, z)

(1,1)
2 ux8 + Fτ (x, z)

(0,2)
2 ux9

• TE-LW(1-2):

ux = 1 ux1 + Fτ (x, z)
(1,0)
1 ux2 + Fτ (x, z)

(0,1)
1 ux3 + Fτ (x, z)

(0,1)
2 ux4 + Fτ (x, z)

(2,0)
2 ux5 +

+Fτ (x, z)
(1,1)
2 ux6 + Fτ (x, z)

(0,2)
2 ux7

where ux1, ux2, . . ., uxN are the theory unknowns. It should be observed that the functions Fτ (x,z)k
(px,0)

appear only once in the expansions since they coincide for all subdomains.

4 Static analysis

This section has the aim of presenting a number of results derived from bending analyses performed on

laminated prismatic beams with rectangular cross-sections, which are made of orthotropic and isotropic

materials. The numbers of degrees of freedom (DOFs) required for the TE-LWmodels have been obtained

using the following formula

DOFs = (3×N)× SN

where ’SN ’ stands for the structural beam nodes along the longitudinal axis.

4.1 8-layer laminated beam

The cantilever 8-layer laminated beam investigated in [29] has been considered. The geometry and the

stacking sequence are shown in Fig. 6. All the layers have the same Young’s Modulus in the transverse

direction E2 = E3 = 1GPa, shear modulus G = 0.5 GPa and, Poisson’s ratio ν = 0.25, whereas the layers

labeled with 1 have a longitudinal modulus E1 = 30 GPa and the layers labeled with 2 have E1 = 5

GPa. A concentrated load, Fz = −0.2 N, has been applied at the tip and ten 4-node beam elements have

been used to model the structure along the longitudinal direction. The results, in terms of maximum

displacement and maximum longitudinal stress at mid-span, are reported in Tab. 1 and compared with

those available in the literature. The analyses have been performed using linear, quadratic and cubic

Taylor-type expansions within each sub-domain. Seven and 8 sub-domains have been define in order to

model the cross-section, by considering the -1.25 ≤ z ≤ 1.25 mm region to be constituted by either 1

or 2 layers, respectively. Moreover, the σyy and σyz distributions along the z axis are shown in Fig. 7,
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where the present beam models are compared to the analytical solution derived by the theory of elasticity

presented in [44].

90mm

10mm

1mm

1

2

1

2

2

1

2

1

Figure 6: The 8-layer laminated beam.

−w × 10−2 −σyy DOFs

Surana and Nguyen [45] 3.031 720 -
Davalos and Barbero [46] 3.029 700 -
Lin and Zhang [47] 3.060 750 -
Vo and Thai [48] 3.024 - -
Carrera and Pagani [36] 3.026 731 6696
Carrera et al. [34] 3.029 730 4743

EBBT 2.629 730 279
TBT 2.988 730 279
TE1 2.992 730 279
TE2 2.985 730 558
TE3 3.032 729 930
TE5 3.042 730 1953
TE8 3.046 730 4185

TE-LW(1c) 2.857 731 930
TE-LW(2c) 3.026 731 2511
TE-LW(3c) 3.026 731 4836
TE-LW(1c)

∗ 2.858 731 837
TE-LW(2c)

∗ 3.026 731 2232
TE-LW(3c)

∗ 3.026 731 4278

subscript ’c’: same expansion order is used within each sub-domain.

superscript ’∗’: 7 sub-domains.

Table 1: w displacement and σyy values composite cantilevered beam.

It has been observed that, at least the quadratic piece-wise expansions (TE-LW(2c) and TE-LW(2c)
∗)

are required to obtain accurate estimations of the displacement and transverse shear stress distribution

(see Fig. 7). The TE-LW(1c) and TE-LW(1c)
∗ linear theories provided the same σyy distributions as the

higher-order models.
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Figure 7: Distribution of axial, σyy, and transverse shear, σyz, stresses for the 8-layer laminated beam.
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4.2 Symmetric and antisymmetric laminated beams

Three- and 2-layer beams with square cross-sections have been studied. All the laminae have the same

thickness and are made of the same orthotropic material, which has the following properties:

EL

ET
= 25 GLT

GTT
= 2.5

GTT = 0.2ET νLT = 0.1 νTT = 0.3

where L indicates the fiber direction and T stands for the direction normal to the fibers. The ratio

between the beam length, ’Ls’, and the side dimension of the cross-section, ’b’, was assumed equal to 4.

The results are provided in the following non-dimensional forms

w∗ = 100ET bh3

q0L4 w; σ∗

ij =
σij

q0
with i, j = x, y, z (10)

where q0 is the intensity of the load uniformly distributed over the face of the cantilevered beams. The

symmetric [0/90/0] and antisymmetric [0/90] configurations were previously analyzed in [29] and [36],

in which higher-order theories based on equivalent single-layer and multi-line approaches were adopted.

The corresponding results have been taken as reference solutions and are reported in Tab. 2.

The agreements between the different kinematic theories, in terms of maximum displacement and normal

transverse stress, are somewhat significant. As far as the computational cost is concerned, the proposed

theory is comparable with the multi-line approach, since the number of unknowns increases as the theory

order and the number of layers increases. Figure 8 shows the through-the-thickness distributions of σyy

and σzz for both structures, computed with different expansions within each layer. Comparisons with

converged solid FE solutions have revealed that the third-order polynomial expansion (TE-LW(3c)) is

able to provide accurate approximations of the stress profiles.

Moreover, other stress analyses have been performed considering the [θ1/θ2/θ3] lamination sequence,

where θ1, θ2 and θ3 denote the fiber angles of the lower, middle and upper layers, respectively. The

results, in terms of through-the-thickness distributions of the stresses and displacements, have been

compared with converged FE solutions and are shown in Fig. 9.

It can be observed that the results obtained with the TE-LW(7c) are close to the reference solutions,

regardless of which stacking sequence is considered. Furthermore, it should be noted that the stress-free

condition on the beam boundary surfaces is substantially fulfilled, even though, it had not been a−priori

imposed. As far as [30/30/45] is concerned, a refined theory would be required to reduce the interface

discontinuities of the normal transverse stress σzz .
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[0/90/0] [0/90]
w∗ −σ∗

zz DOFs w∗ −σ∗

zz DOFs

Carrera et al. [29]

Solid 17.98 1.03 103920 43.09 1.02 198300
TE6Mzz 17.84 1.03 1914 42.26 1.01 1914
TE6 17.14 0.99 1848 42.16 1.04 1848
TE3Mzz 17.83 1.02 726 41.66 1.04 726
TE3 16.76 1.04 660 41.63 1.13 660
FSDT 14.02 0.00 198 40.88 0.00 198
EBBT 6.22 0.00 198 31.96 0.00 198

Carrera and Pagani [36]

ML2/2/2 17.69 1.01 1188 – – –
ML3/2/3 17.83 1.03 1716 – – –
ML3/3 – – – 42.30 – 1320

Present

TE-LW(1c) 17.43 0.83 330 41.18 0.42 264
TE-LW(2c) 17.81 1.03 792 41.68 1.03 594
TE-LW(3c) 17.94 1.01 1452 42.61 1.07 1056
TE-LW(4c) 17.95 1.01 2310 42.62 1.01 1650
TE-LW(5c) 17.96 0.99 3366 42.62 0.99 2376
TE-LW(6c) 17.96 0.98 4620 42.63 0.99 3234
TE-LW(7c) 17.96 1.00 6072 42.63 1.00 4224

’FSDT’: first-order shear deformation theory.

’EBBT’: Euler-Bernoulli beam theory.

’Mzz’: Murakami’s zig-zag function.

’−’: result not provided.

Table 2: Non-dimensional tip deflections and normal transverse stresses of the laminated beams [0/90/0]
and [0/90].
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(a) σ
∗
zz at y = L/2, 0/90/0 (b) σ

∗
zz at y = L/2, 0/90

(c) σ
∗
yz at y = L/2, 0/90/0 (d) σ

∗
yz at y = L/2, 0/90

Figure 8: Through-the-thickness distributions of stresses of the 3- and 2-layer laminated beam [0/90/0],
[0/90].
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(a) w∗ at y = L (b) σ
∗
yy at y = L/2

(c) σ
∗
yz at y = L/2 (d) σ

∗
zz at y = L/2

Figure 9: Through-the-thickness distributions of stresses and transverse displacement of the 3-layer lam-
inated beam [θ1/θ2/θ3].
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4.3 Sandwich beam with soft core

The considered cantilevered structure consisted of 3-layers of the same thickness and subjected to a

uniform pressure. The bottom and top face sheets were made up of the orthotropic material defined in

the previous section, whereas the core material was considered isotropic with the following properties

ELface

Ecore
= 2612.12 νcore = 0.27

Figure 10 shows comparisons of various TE-LW expansions and a converged 3D FE solution in terms of

axial (Fig. 10-a) and, transverse (Fig. 10-b) displacements, as well as normal (Fig. 10-c) and, shear (Fig.

10-d) transverse stresses.

As expected, at least a cubic local approximation is required in order to properly describe the deforma-

tion field of the structure. In fact, both the displacement and stress distributions computed with the

TE-LW(3c) model agree closely with the solid solution. However, owing to the significant transverse

anisotropy of sandwich structures, the use of different kinematic assumptions would be expedient. The

current approach enables the solution to be locally refined while the displacement continuity is preserved

over all the interfaces and, at the same time, the number of DOF is reduced. In this context, Fig. 11

shows comparisons of the ”full” TE-LW(7c) model and the two variable kinematics theories, TE-LW(4-

7-4) and TE-LW(5-7-5), in which the displacement fields of the face sheets have been approximated by

fourth and fifth-order expansions, respectively.

Despite the lower number of DOFs, the reduced models have provided almost the same results as the

complete kinematic field. In fact, only slight differences have been observed in the prediction of σzz at

the interfaces.
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(a) v∗ at y = L (b) w∗ at y = L

(c) σ
∗
zz at y = L/2 (d) σ

∗
yz at y = L/2

Figure 10: Through-the-thickness distributions of displacements and stresses of the 3-layer sandwich
beam [0/core/0].
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(a) v∗ at y = L (b) w∗ at y = L

(c) σ
∗
zz at y = L/2 (d) σ

∗
yz at y = L/2

Figure 11: Through-the-thickness distributions of displacements and stresses of the 3-layer sandwich
beam [0/core/0].
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5 Free-vibration analyses

The following section aims to present the results derived from the vibrational analyses of 1) antisymmetric

[0/90] and symmetric [0/90/0] cross-ply laminated beams and 2) sandwich structures with a soft core.

The aspect-ratio, Ls/b, of all the structures has been assumed equal to 5. The natural angular frequencies

are expressed in the following dimensionless form

ω̄ =
L2
s

b

√

ρ

E
ω (11)

5.1 Cross-ply laminated beams

The square cross-section beams have been considered simply-supported and constituted of orthotropic

material which has the following properties:

EL

ET
= 25 GLT

GTT
= 2.5 νLT = νTT = 0.25

The natural angular frequencies are reported in Tabs. 4-3 where, according to Eq. 11, Young’s modulus

is E = ET . The results obtained by means of Navier-type [49] and finite element [30] solutions have

been reported for comparison purposes. The considered mode shapes involve bending, torsional, shear

and coupled deformations. Convergence has been achieved, for both lamination sequences, with the

fourth-order expansion, which essentially provided the same results of the 3D solution. According to [30],

the use of Murakami’s zig-zag term determines significant improvements in the results with a negligible

increase in the computational cost. It should be noted that the number of DOFs required for the proposed

approach is comparable with that of zig-zag higher-order beam theories.

5.2 Sandwich beam with soft core

A sandwich beam consisting of structural face sheets (f) bonded to a core (c) has been considered; the

parameters are

Ef = 200GPa Ec = 0.66GPa νf = 0.3 νc = 0.27

ρf = 7800Kgm−3, ρc = 60Kgm−3

The side dimension of the square cross-section and the thickness of face sheets have been assumed equal

to b = 0.02 and tf = 0.003 m, respectively. Simply-supported boundary conditions were applied at both

ends. Tables 5 and 6 present the dimensionless frequency parameters (see Eq. 11, where the core density

and Young’s modulus are used) related to the modal shapes shown in Fig. 12. The current results have

19



Mode Ia Mode IIb Mode IIIc Mode IVd Mode Ve DOFs

Giunta et al. [49]

FEM 3D20 4.9357 6.4491 9.0672 33.566 50.448 3843
TE23 4.9375 6.4603 9.0852 33.718 50.640 900

Carrera et al. [30]

EBBT 6.0083 10.102 - 57.186 - 198
FSDT 5.0738 7.5051 - 40.961 - 198
TE2 5.0551 6.9637 10.133 37.566 63.570 396
TE2Mzz 5.0440 6.9632 10.133 36.384 59.734 462
TE3 4.9947 6.6601 9.8334 36.165 56.963 660
TE3Mzz 4.9942 6.6593 9.8330 33.851 53.001 726
TE6 4.9462 6.5042 9.1550 34.153 51.527 1848
TE6Mzz 4.9384 6.5037 9.1550 33.583 50.799 1914

Present

TE-LW(1c) 5.0545 7.5248 10.237 33.908 62.116 264
TE-LW(2c) 5.0194 6.8680 9.7713 33.625 55.885 594
TE-LW(3c) 4.9363 6.4650 9.4585 33.571 52.381 1056
TE-LW(4c) 4.9360 6.4549 9.0777 33.615 51.102 1650
TE-LW(5c) 4.9359 6.4505 9.0739 33.587 50.664 2376

’-’: mode not provided by the theory.

’Mzz’: Murakami’s zig-zag function.
a Flexural mode on plane yz.
b Flexural/torsional mode.
c Torsional mode.
d Axial/shear mode.
e Shear mode on plane xz.

Table 3: Dimensionless natural frequencies, L/b=5, [0/90] beam.
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Mode Ia Mode IIb Mode IIIc Mode IVd Mode Ve DOFs

Giunta et al. [49]

FEM 3D24 6.8888 7.4968 9.0386 55.536 57.912 5475
TE23 6.9252 7.5017 9.0683 55.914 58.135 900

Carrera et al. [30]

EBBT 13.752 11.552 - - 64.722 198
FSDT 8.0853 8.0409 - - 64.752 198
TE2 8.0837 8.0451 10.502 67.238 62.857 396
TE2Mzz 7.0131 8.0451 10.502 66.319 62.893 462
TE3 7.1597 7.6230 10.502 59.912 62.824 660
TE3Mzz 6.8990 7.6230 10.502 56.467 62.540 726
TE6 7.0610 7.5581 9.1952 57.429 59.315 1848
TE6Mzz 6.8869 7.5581 9.1952 56.079 59.444 1914
TE8 6.9800 7.5279 9.1129 56.694 58.670 2970
TE8Mzz 6.8886 7.5279 9.1129 55.729 58.886 3036

Present

TE-LW(1c) 7.0144 8.0569 10.536 66.987 62.570 330
TE-LW(2c) 6.9051 7.9665 9.5021 61.514 57.963 792
TE-LW(3c) 6.8893 7.5042 9.4215 56.321 57.835 1452
TE-LW(4c) 6.8891 7.5011 9.0508 56.020 57.934 2310
TE-LW(5c) 6.8891 7.4980 9.0496 55.671 57.893 3366

’-’: mode not provided by the theory.

’Mzz’: Murakami’s zig-zag function.
a Flexural mode on plane yz.
b Flexural mode on plane xy.
c Torsional mode.
d Shear mode on plane xz.
e Axial/shear mode.

Table 4: Dimensionless natural frequencies, L/b=5, [0/90/0] beam.
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been compared with those presented in [50], where 1D Navier-type and 3D FE solutions were also used.

As in the previous cases, the fourth-order TE-LW expansion provides an accurate description of the

beam kinematics, except for the seventh mode shown in Tab. 6. In fact, it should be noted that the

corresponding relative error, with respect to the 3D solution, is about 14%. This difference decreases to

1% when the TE-LW(5c) theory, which essentially provides the same results as the 3D model, is used.

Moreover, it has been observed that the frequencies related to the flexural modes in the yz plane (first

columns of Tabs. 5 and 6) computed with TE-LW(2c) are very close to the reference values.

Mode I, m=1

Mode I, m=2

Mode II, m=1 Mode III, m=1 Mode IV, m=1

Mode II, m=2Mode V, m=1 Mode VI, m=1

Mode III, m=2 Mode IV, m=2 Mode VI, m=2Mode V, m=2

Mode VII, m=2 Mode VIII, m=2

Figure 12: Mode shapes of the sandwich simply-supported beam.
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Mode Ia IIb IIIc IVd Ve VIf

Giunta et al. [50]

FEM 3D-a 1.097 2.669 2.920 6.641 6.670 7.092
TE19 1.142 2.669 2.953 6.997 7.055 7.482
TE15 1.154 2.669 2.967 7.096 7.175 7.635
TE8 1.245 2.669 3.018 7.840 8.276 8.144

Present

TE-LW(1c) 1.124 3.073 9.719 6.980 11.89 -
TE-LW(2c) 1.093 2.683 3.040 6.895 7.454 7.482
TE-LW(3c) 1.092 2.668 2.962 6.646 6.982 7.467
TE-LW(4c) 1.092 2.668 2.931 6.644 6.959 7.118
TE-LW(5c) 1.092 2.668 2.931 6.628 6.709 7.113

’-’: mode not provided by the theory.
a Flexural mode on plane yz.
b Flexural mode on plane xy.
c Torsional mode.
d Sheet face bending.
e Antisymmetric sheet faces twisting.
e Symmetric sheet faces twisting.

Table 5: Dimensionless natural frequencies, sandwich beam, m = 1.

Mode Ia IIb IIIc IVd Ve VIf VIIg VIIIh

Giunta et al. [50]

FEM 3D-a 2.660 6.716 7.447 8.730 9.299 10.25 26.96 27.03
TE19 2.746 7.047 7.625 9.042 9.314 10.41 27.21 27.38
TE15 2.770 7.140 7.687 9.149 9.336 10.47 27.32 27.53
TE8 2.949 7.829 8.065 9.665 9.269 11.07 28.24 28.65

Present

TE-LW(1c) 2.842 7.208 19.43 - 10.55 20.58 - -
TE-LW(2c) 2.663 6.911 7.988 9.181 9.464 10.96 - 36.13
TE-LW(3c) 2.656 6.722 7.707 9.106 9.320 10.50 31.83 32.62
TE-LW(4c) 2.654 6.718 7.590 8.806 9.298 10.37 30.75 27.73
TE-LW(5c) 2.653 6.704 7.511 8.793 9.298 10.26 27.25 27.36

’-’: mode not provided by the theory.
a Flexural mode on plane yz.
b Sheet faces bending.
c Torsional mode.
d Symmetric sheet faces twisting.
e Flexural mode on plane xy.
f Antisymmetric sheet faces twisting.
g Symmetric sheet face bending with through-the-width bending.
h Antisymmetric sheet face bending with through-the-width bending.

Table 6: Dimensionless natural frequencies, sandwich beam, m = 2.
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6 Conclusions

This paper has evaluated the capabilities of a new class of displacement beam theories developed within

the CUF framework. The Principle of Virtual Displacements has been used to derive the governing

equations, which have been solved by means of the Finite Element method. Numerical simulations have

been carried out on prismatic beams with rectangular cross-sections made of orthotropic and isotropic

materials. Symmetric, antisymmetric and arbitrary stacking sequences have been considered. In the light

of the results, the following conclusions can be drawn:

• the displacements and stress distributions computed with TE-LW theories agreed closely with the

reference solutions, regardless of of which lamination was considered;

• accurate predictions of the shear stress distributions have been achieved, even though they were

computed directly from Hooke’s law;

• the higher-order TE-LW models essentially reproduced the same results, in terms of natural fre-

quencies and mode shapes, as the 3D FE solutions, even for structures with high transverse degrees

of anisotropy;

• this formulation is able to provide a valuable trade-off between computational cost and accuracy,

since it has the flexibility to treat each subdomain independently;

• despite the encouraging results, the definition of the piecewise continuous functions can be difficult

for complex-shaped cross-sections.
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