
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

BGPStream: A Software Framework for Live and Historical BGP Data Analysis / Orsini, Chiara; King, Alistair; Giordano,
Danilo; Giotsas, Vasileios; Dainotti, Alberto. - ELETTRONICO. - (2016), pp. 429-444. (Intervento presentato al
convegno Internet Measurement Conference tenutosi a Santa Monica, California, USA nel November 14 - 16, 2016)
[10.1145/2987443.2987482].

Original

BGPStream: A Software Framework for Live and Historical BGP Data Analysis

Publisher:

Published
DOI:10.1145/2987443.2987482

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2657077 since: 2016-11-22T16:58:48Z

ACM

BGPStream: A Software Framework for Live and
Historical BGP Data Analysis

Chiara Orsini 1, Alistair King1, Danilo Giordano2, Vasileios Giotsas1, Alberto Dainotti1

1CAIDA, UC San Diego
2Politecnico di Torino

ABSTRACT

We present BGPStream, an open-source software frame-
work for the analysis of both historical and real-time
Border Gateway Protocol (BGP) measurement data.
Although BGP is a crucial operational component of the
Internet infrastructure, and is the subject of research
in the areas of Internet performance, security, topol-
ogy, protocols, economics, etc., there is no efficient way
of processing large amounts of distributed and/or live
BGP measurement data. BGPStream fills this gap, en-
abling efficient investigation of events, rapid prototyp-
ing, and building complex tools and large-scale monitor-
ing applications (e.g., detection of connectivity disrup-
tions or BGP hijacking attacks). We discuss the goals
and architecture of BGPStream. We apply the compo-
nents of the framework to different scenarios, and we
describe the development and deployment of complex
services for global Internet monitoring that we built on
top of it.

1. INTRODUCTION

We present BGPStream, an open-source software frame-
work1 for the analysis of historical and live Border Gate-
way Protocol (BGP) measurement data. Although BGP
is a crucial operational component of the Internet in-
frastructure, and is the subject of fundamental research
(in the areas of performance, security, topology, proto-
cols, economy, etc.), there is no efficient and easy way
of processing large amounts of BGP measurement data.
BGPStream fills this gap by making available a set of

1BGPStream is distributed with the GPL v2 license and
is available at bgpstream.caida.org.

ACM ISBN .

DOI:

APIs and tools for processing large amounts of live and
historical data, thus supporting investigation of specific
events, rapid prototyping, and building complex tools
and efficient large-scale monitoring applications (e.g.,
detection of connectivity disruptions or BGP hijacking
attacks). We discuss the goals and architecture of BGP-
Stream and we show how the components of the frame-
work can be used in different applicative scenarios.

2. BACKGROUND
BGP Data at Router Level

The Border Gateway Protocol (BGP) is the de-facto
standard inter-domain routing protocol for the Inter-
net: its primary function is to exchange reachability
information among Autonomous Systems (ASes) [52].
Each AS announces to the others, by means of BGP
update messages, the routes to its local prefixes and the
preferred routes learned from its neighbors. Such mes-
sages provide information about how a destination can
be reached through an ordered list of AS hops, called
an AS path.
A BGP router maintains this reachability information

in the Routing Information Base (RIB) [52], which is
structured in three sets:

• Adj-RIBs-In: routes learned from inbound update
messages from its neighbors.

• Loc-RIB : routes selected from Adj-RIBs-In by ap-
plying local policies (e.g., shortest path, peering
relationships with neighbors); the router will in-
stall these routes in its routing table to establish
where to forward packets.

• Adj-RIBs-Out : routes selected from Loc-RIB, which
the router will announce to its neighbors; for each
neighbor the router creates a specific Adj-RIB-Out
based on local policies (e.g., peering relationship).

BGP Data Collection

Some operators make BGP routing information from
their routers available for monitoring, troubleshooting
and research purposes. BGP looking glasses give users
limited (e.g., read-only) access to a command line inter-
face of a router, or allow them to download the ASCII

RAD PDF
Rectangle

Figure 1: BGP collection process. Once a BGP collector
establishes a BGP session with a VP, it maintains a state
and an image of the VP’s Adj-RIB-out table derived from
the updates received through the session. With different
periodicity, it dumps (i) a snapshot of all the VP Adj-RIB-
out tables (RIB dump) and (ii) the update messages received
within that period from all the VPs (Updates dump).

output of the current state of the router RIB. Look-
ing glasses are more useful for interactive exploration
rather than systematic and continuous data acquisition.
The latter can instead be implemented either (i) by es-
tablishing a BGP peering session with the monitored
router from a dedicated system (a route collector), or
(ii) through a protocol specifically designed for moni-
toring purposes, such as OpenBMP [30,58]. OpenBMP
is an open-source implementation of the BGP Moni-
toring Protocol defined in an IETF draft [58] and sup-
ported by latest versions of JunOS and Cisco IOS. The
protocol allows a user to periodically access the Adj-
RIBs-In of a router or to monitor its BGP peering ses-
sions. While OpenBMP can be easily deployed within
an AS to monitor its BGP routers, there are currently
no projects which make such data publicly available.
Route collectors instead, are often used for this pur-
pose [48, 49, 56]. A route collector is a host running a
collector process (e.g., Quagga [50]), which emulates a
router and establishes BGP peering sessions with one or
more real routers (vantage points, VPs, in the follow-
ing). Each VP sends to the collector update messages
(updates) each time the Adj-RIB-out changes, reflecting
changes to its Loc-RIB (Figure 1).
Normally, a BGP session with a collector is config-

ured as a customer-provider relationship, i.e., as if the
VP was offering transit service to the collector. In this
case, the VP is called full-feed, since it will advertise to
the collector an Adj-RIB-Out which contains the entire
set of routes in its Loc-RIB. This way, the collector po-
tentially knows, at each instant, all the preferred-routes
that the VP will use to reach the rest of the Internet
– a partial view of the Internet topology graph visible
to that router. A partial-feed VP instead, will provide
through its Adj-RIB-Out only a subset of the routes in
its Loc-RIB, e.g., routes to its own networks, or learned
through its customers. Unfortunately, projects pub-
licly providing information acquired by their collectors
do not label VPs as full- or partial-feed, since peering
with a collector is usually established on a voluntary
basis and VP behavior can be subject to change with-

out notice. Therefore, the policy that determines the
Adj-RIB-Out to be shared with the collector must be
dynamically inferred from the data (e.g., size of the Adj-
RIB-Out).
For each VP, the collector maintains a session state

and an image of the Adj-RIB-out table derived from
updates. The collector periodically dumps, with a fre-
quency of respectively few hours and few minutes, (i)
a snapshot of the union of the maintained Adj-RIB-out
tables (RIB dump) and (ii) the update messages re-
ceived from all its VPs since the last dump, along with
state changes (Updates dump). RIB dumps provide an
efficient summary of changes to BGP routing tables
with a coarse time granularity that is sufficient for sev-
eral classes of studies [34, 42–44]. In contrast, Updates
dumps carry a lot of information to be processed, but
offer a complete view of the observable routing dynam-
ics, enabling other types of analysis and near-realtime
monitoring applications [35,36,46,62].

Popular Data Sources

The most popular projects operating route collectors
and making their dumps available in public archives
are RouteViews [48] and RIPE RIS [56]. They cur-
rently operate 18 and 13 collectors respectively, which
in total peer with approximately 380 and 600 VPs dis-
tributed worldwide (this number increases every year).
Analyzing data from multiple VPs is of fundamental
importance for most Internet studies, since each router
has a limited view of the Internet topology and, even
when full-feed, a VP shares only part of this information
(the preferred routes). Moreover, macroscopic Internet
phenomena visible through the routing infrastructure
(e.g., outages, cyber attacks, peering relationships, per-
formance issues, route leaks, router bugs) affect Internet
routers differently, as a function of geography, topology,
router operating system and hardware characteristics,
operator, etc..
Such a distributed and detailed – even if partial –

view of the inter-domain routing plane, generates large
amounts of data (>2TB of compressed data collected in
2015 alone). RouteViews and RIPE RIS collectors save
a RIB dump every 2 and 8 hours and an Updates dump
every 15 and 5 minutes, respectively. Both projects save
RIB and Updates dumps in a binary format, standard-
ized by the IETF, called the Multi-Threaded Routing
Toolkit (MRT) routing information export format [9].
RouteViews and RIPE RIS archives date back to 2001
and 1999 respectively, enabling longitudinal studies rel-
evant to understand the evolution of the Internet infras-
tructure and its impact in other fields.

Software Frameworks and APIs

The most widely adopted software for BGP data anal-
ysis in the research community [5, 7, 18, 37, 53, 57, 60]
is libBGPdump [54], an open source C library that pro-
vides a simple API to parse BGP dumps in MRT format
and deserializes MRT records into custom data struc-

tures. It is distributed along with a command-line tool,
bgpdump, that outputs MRT information read from a
file in an ASCII format. Often researchers directly use
the command-line tool to translate entire BGP dumps
into text, and then parse the ASCII output to further
process or archive the data. Although bgpdump has
been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).
There have been several projects that process BGP

measurement data in real-time, developed both by in-
dustry (e.g., Dyn Research [28]) and academia (e.g.,
PHAS [41]), however their approaches are either undis-
closed, or are specific to a certain application (i.e. they
are not generalized frameworks). An exception is BGP-
mon [3, 63], a distributed monitoring system that re-
trieves BGP information by establishing BGP sessions
with multiple ASes and that offers a live BGP data
stream in the XML format (which also encapsulates
the raw MRT data). Despite the fact that BGPmon
enables rapid prototyping of live monitoring tools, it
currently provides access to a limited number of VPs
(compared to the vast number of VPs connected to RIS
and RouteViews infrastructures), and it cannot be used
for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such
as RouteViews and RIPE RIS, is their file-based distri-
bution system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.
The research community recognizes the need for bet-

ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming de-
velopments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

Figure 2: BGPStream framework overview. Blue
boxes represent components of the framework; those marked
with a star are distributed as open source in the current
BGPStream release [11]. Orange boxes represent external
projects or placeholders. Section numbers mark where each
component is discussed in this paper.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data
from data providers, (either local or remote) which are
data sources external to the BGPStream project.
libBGPStream, the main library of the framework

(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.
We distribute BGPStream with the following inde-

pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 Goals and Challenges

We designed the BGPStream framework with the fol-
lowing goals:
– Efficiently deal with large amounts of distributed

BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed VPs. However, dealing
with such large amounts of data as well as the dis-
tributed and diverse nature (different timing, formats,

etc.) of the VPs pose a series of technical challenges.
– Offer a time-ordered stream of data from heteroge-

neous sources. BGPStream aims to provide a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is im-
portant in at least two cases: (i) when analyzing long
time intervals where time alignment cannot be achieved
by buffering the entire input, and (ii) when an input
data source provides a continuous stream of data (rather
than a discrete dump file), since such a stream cannot
be interleaved at the dump file level.
– Support historical and near-realtime data process-

ing. We consider two modes of operation: (i) histor-

ical - all the BGP data requested is available before
the program starts; (ii) live - the BGP data requested
becomes available while the program is running. In
live mode, the BGPStream stack plus the user appli-
cation, must process data faster than it is generated by
VPs/collectors. We minimize BGPStream processing
latency, thus maximizing the time available for near-
realtime user applications to perform live Internet mon-
itoring and measurements (Sections 4.3 and 6).
Live mode also introduces the problem of sorting records

from collectors that may publish data at variable times.
This problem involves a trade-off between: (i) size of
buffers, (ii) completeness of data available to the appli-
cation, (iii) latency. Since such a trade-off should be
evaluated depending on the specific goals and resources
of the user application, we design BGPStream to per-
form best-effort record interleaving in live mode and we
defer to the application the choice of a specific solution
(in Section 6.2, we provide a concrete example of such
a solution).
– Target a broad range of applications and users. Po-

tential applications of BGPStream are both in the field
of network monitoring and troubleshooting as well as
scientific data analysis. The target user base should not
be limited to the availability of high-performance com-
puting and/or cluster infrastructure. The BGPStream
framework makes available a set of tools and APIs that
suit different applications and development paradigms
(e.g., historical data analysis, rapid prototyping, script-
ing, live monitoring).
– Scalability. Since the pervasiveness of BGP VPs is

key to monitoring and understanding the Internet in-
frastructure, the number of VPs supported by collector
projects continually grows. In parallel, the technolog-
ical challenges (e.g., near-realtime detection of sophis-
ticated man-in-the-middle attacks [19, 20]) require so-
lutions of increasing complexity and computational de-
mand. We designed BGPStream to enable deployment
in distributed and “Big Data analytics” environments:
e.g., Spark’s [2] native Python support makes BGP-
Stream usable in such an environment out-of-the-box
(Section 6.2).
– Easily extensible. Though our solution is designed

to work with current standards and the most popular
available data sources, we designed a stacked and modu-

lar framework, facilitating support for new technologies
and data sources. BGPStream is indeed a project un-
der evolution and is part of a coordinated effort with
data providers, developers of complementary technolo-
gies, and users, to advance the state of the art in BGP
monitoring and measurement data analysis [13, 17].

3.2 BGPStream Meta-Data Providers

One of the challenges in analyzing BGP measurement
data is identifying and obtaining relevant data. Both
RouteViews and RIPE RIS make data available over
HTTP, with basic directory-listing style indexes into
the data. Identifying the appropriate files for large-scale
analysis (across multiple collectors and long time dura-
tions) involves either manual browsing and download,
or scripting of a crawler tailored to the structure of each
project’s repository. Downloading the data, may itself
take a significant amount of time (e.g., all data collected
in 2014 is ≈2TB). Moreover, since both projects con-
tinually add new data to their archives as it is collected
(Section 2), near-realtime monitoring requires custom
scripts to periodically scrape the websites and download
new data. BGPStream hides all of these complexities
through meta-data providers: components that provide
access to information about the files hosted by local or
remote data repositories (the Data Providers, e.g., the
RouteViews and RIPE RIS archives).
We implemented such a meta-data provider as a web

service called BGPStream Broker, responsible for (i)
providing meta-data to libBGPStream, (ii) load bal-
ancing, (iii) response windowing for overload protec-
tion, (iv) support for live data processing. The Broker
continuously scrapes data provider repositories, stores
meta-data about new files into an SQL database, and
answers HTTP queries to identify the location of files
matching a set of parameters. An instance of the Bro-
ker is hosted at the San Diego Supercomputer Center
at UC San Diego and is queried by default by a libBG-
PStream installation, allowing BGPStream to be used
“out-of-the-box” on any Internet-connected machine.

The Broker stores only meta-data about files avail-
able on the official repository, not the files themselves.
This approach minimizes the potential for a bottleneck
since queries to, and responses from, the Broker are
lightweight, with the actual data being served by ex-
ternal data provider archives. This configuration also
makes it simple to add support for additional data providers,
as well as provide load-balancing and redundancy as the
Broker can transparently round-robin amongst multiple
mirror servers or adopt more sophisticated policies (e.g.,
requests sent from UC San Diego machines are normally
pointed to campus mirrors).
While the Broker Data Interface is the primary data

access interface, we also provide three other interfaces
for analysis of local files: Single file, CSV file, and
SQLite. The following sections assume that the Bro-
ker is used as the Data Interface.

3.3 libBGPStream

3.3.1 Application Programming Interface

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API defines
a BGP data stream by the following parameters: collec-
tor projects (e.g., RouteViews, RIPE RIS), list of col-
lectors, dump types (RIB/Updates), time interval start
and either time interval end or live mode. A stream
can include dumps of different type and from different
collector projects.
On the BGPStream website [12] we provide tutori-

als with sample code to use the BGPStream API. In
general, any program using the libBGPStream C API
consists of a stream configuration phase and a stream
reading phase: first, the user defines the meta-data fil-
ters, then the iteratively requests new records to pro-
cess from the stream. Code can be converted into a
live monitoring process simply by setting the end of the
time interval to -1.

3.3.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers, the
library implements a “client pull” model, which enables
efficient data retrieval without potential input buffer
overflow (i.e., data is only retrieved when the user is
ready to process it).
To implement this model, the system iteratively al-

ternates between making meta-data queries to the Bro-
ker and accessing and processing the dump files whose
URLs are returned by the Broker. When the Broker
returns an empty set of dump file URLs, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, libBGPStream will poll
until a response from the Broker points to new data for
processing.

3.3.3 Data structures and error checking

libBGPStream processes dump files [9] composed of
MRT records. While an update message is stored in a
single MRT record, RIB dumps require multiple records.
The BGPStream record structure contains a de-serialized
MRT record, as well as an error flag, and additional an-
notations related to the originating dump (e.g., project
and collector names).
To open MRT dumps, we use a version of libBGP-

dump [54] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support reading from multi-
ple files in parallel from a single process, and (iii) signal
a corrupted read. libBGPStream uses this signal to
mark a record as not-valid (status field) when the BGP
dump file cannot be opened or if the dump is corrupted.
libBGPStream also marks records that begin or end a
dump file, allowing users to collate records contained in
a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or
announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures. Table 1 shows the fields that comprise a
BGPStream elem. The AS path field contains all in-
formation present in the underlying BGP message, as
specified in RFC 4271 [52], including AS SET and
AS SEQUENCE segments. libBGPStream also pro-
vides convenience functions for easily iterating over seg-
ments in an AS path, accessing fields within a segment,
and converting paths and segments to strings (using the
same format as bgpdump). We do not currently expose
all the BGP attributes contained in a MRT record in
the BGPStream elem; we will implement the remaining
attributes in a future release. The old state and new
state fields refer to elems from RIPE RIS VPs. Each
RIPE RIS collector maintains, for each VP, a Finite
State Machine (FSM) for the status of the BGP session
with the VP, we store the previous and current state of
the FSM.

Table 1: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, an-
nouncement, withdrawal, or state
message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
community* struct community attribute
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on
type

3.3.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping
time intervals2, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector

2We define the time interval associated with a dump
file as the time range covered by the timestamps of its
records.

!"#$

%%&%% %%&'(%%&)%%%&%(%%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 3: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route-
Views collector (RV2) are interleaved into a sorted stream.
The 30 minutes (10 files) of BGP data are first separated
into two disjoint sets (of 6 and 4 files) based on overlapping
file time intervals. Then a multi-way merge is applied sep-
arately to the two sets, yielding the stream depicted at the
bottom.

sorting). Since each file can be seen as an ordered queue
of records, in practice libBGPStream performs a multi-
way merge [38] on such queues.
Given the current number of collectors in RouteViews

and RIS (about 30), and that the broker returns in
each response a set of dump file URLs (dump file set)
spanning up to 2 hours of data, the number of files to
read can be up to ≈500. The computational cost of
the multi-way merging is proportional to the number of
queues (files) considered. We therefore break the dump
file set in disjoint subsets, ensuring that we place files
with overlapping time intervals in the same subset, and
apply multi-way merge to each. This problem is exacer-
bated by the fact that the duration of Updates dumps
vary between projects (e.g., RouteViews 15 min, RIPE
RIS 5 min). We minimize the number of files per subset
by iteratively applying the following steps until we pro-
cess all files: (1) initialize a new subset with the oldest
file in the set; (2) recursively add files with time in-
tervals overlapping with at least one file already in the
subset; (3) remove from the set the files in the subset.
The subsets we obtain this way typically contain up to
≈150 files. For each of them, we perform the multi-way
merge: libBGPStream simultaneously opens all the files
in the set and iteratively (i) extracts the oldest MRT
record from such files, and (ii) uses the MRT record to
populate a BGPStream record (Figure 3).
We empirically tested the cost of our sorting algo-

rithm by using libBGPStream to process one day of
Update and RIB dumps from all collectors of Route-
Views and RIPE RIS, and confirmed that the cost of
sorting is negligible compared to the cost of actually
reading records from the dump files.

4. ANALYSIS OF SPECIFIC EVENTS AND
PHENOMENA

While users can write code that directly uses the
BGPStream C API, we provide solutions that allow

complex measurement experiments to be expressed with
little to no code. We show how BGPReader and Py-
BGStream can rapidly address a variety of research
tasks.

4.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data. BG-
PReader can be thought of as a drop-in replacement
of the analogous bgpdump tool (a command line op-
tion sets bgpdump output format), which is widely used
by researchers and practitioners. However, BGPReader
adds features such as the support to read data from mul-
tiple files, collectors, and projects in a single process, the
ability to work in live mode and various filters.
For example, the following command line will dump

on stdout a (sorted) stream of lines, each representing
BGP updates from all the RouteViews and RIS collec-
tors which are related to subprefixes of 192/8 and ob-
served since May 12th 2016: bgpreader -w 1463011200
-t updates -k 192.0.0.0/8. The command will run
indefinitely, outputting new data as it is made available
by the data sources.

4.2 Python bindings

PyBGPStream is a Python package that exports all
the functions and data structures provided by the lib-
BGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the un-
derlying C library. Even if an application implemented
in Python using PyBGPStream would not achieve the
same performance as an equivalent C implementation,
PyBGPStream is an effective solution for: rapid proto-
typing, implementing programs that are not computa-
tionally demanding, or programs that are meant to be
run offline (i.e., there are no time constraints associated
with a live stream of data).
In Listing 1, we show a practical example related to a

research topic commonly studied in literature: the AS
path inflation [33]. The problem consists in quantifying
the extent to which routing policies inflate the AS paths
(i.e., how many AS paths are longer than the shortest
path between two ASes due to the adoption of rout-
ing policies), and it has practical implications, as the
phenomenon directly correlates to the increase in BGP
convergence time [40]. In less than 30 lines of code,
the program compares the AS-path length observed in
a set of BGP RIB dumps and the corresponding short-
est path computed on a simple undirected graph built
using the AS adjacencies observed in the AS paths. The
program reads the 8am RIB dumps provided by all RIS
and RouteViews collectors on August 1st 2015, and ex-

Listing 1 Calculate AS path inflation in ≈30 lines

of code. Shows a fully-functional Python script that
processes the 8am RIB dumps from all RouteViews and
RIPE RIS collectors on August 1 2015, and compares
the AS-path length observed in a set of BGP RIB dumps
with the corresponding shortest path computed on a
simple undirected graph built using the same BGP data.

from _pybgpstream import BGPStream, BGPRecord, BGPElem

from collections import defaultdict

from itertools import groupby

import networkx as nx

create and configure new BGPStream instance

stream = BGPStream()

rec = BGPRecord()

request RIB data from Aug 1 2015 7:50am -> 8:10am (UTC)

stream.add_filter(’record-type’, ’ribs’)

stream.add_interval_filter(1438415400, 1438416600)

stream.start()

create datastructures for the undirected graph and path lengths

as_graph = nx.Graph()

bgp_lens = defaultdict(lambda: defaultdict(lambda: None))

consume records from the stream

while(stream.get_next_record(rec)):

process all elements of each record

elem = rec.get_next_elem()

while(elem):

monitor = str(elem.peer_asn)

split the AS path into segments

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))]

sanitization: ignore local routes

if len(hops) > 1 and hops[0] == monitor:

origin = hops[-1]

add all edges to the NetworkX graph

for i in range(0,len(hops)-1):

as_graph.add_edge(hops[i],hops[i+1])

how long this path is (for comparison to shortest path)

bgp_lens[monitor][origin] = \

min(filter(bool,[bgp_lens[monitor][origin],len(hops)]))

elem = rec.get_next_elem()

compare actual BGP path lengths to computed shortest path

for monitor in bgp_lens:

for origin in bgp_lens[monitor]:

nxlen = len(nx.shortest_path(as_graph, monitor, origin))

print monitor, origin, bgp_lens[monitor][origin], nxlen

tracts the minimum AS-path length observed between a
VP and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [47]
to build a simple undirected graph (i.e., a graph with
no loops, where links are not directed) and we compute
the shortest path between the same <VP, origin> AS
pairs observed in the RIB dumps. In this example, we
compare path lengths of 10M unique <VP, origin> AS
pairs and find that, in more than 30% of cases, infla-
tion of the path between the VP’s AS and the origin
AS accounts for 1 to 11 hops. Compared to the study
of Gao and Wang, who analyzed RouteViews data from
year 2000 and 2001 [33], these numbers show more in-
flated paths (>30% instead of >20%) and a consistent
number of max additional hops (11 instead of 10).
In conclusion, this case study shows that BGPStream

simplifies the task of analyzing heterogeneous BGP data,
especially if we want such analysis to be systematically
applied to different datasets and repeatable. To perform
exactly the same experiment described here without us-
ing BGPStream, a researcher would have to manually
identify and download all the data and write a parser for
bgpdump ASCII output (besides writing the same core
analysis logic). In addition, if a researcher wants to per-
form the same type of analysis on different sets of data
(e.g., time window, subset of collectors, data collection
projects) they would need to repeat the manual work of
identifying and downloading all the files needed or, more
realistically, develop a configurable crawler supporting
the file hierarchies and naming conventions of different
collection projects. Moreover, if another research task
requires code to be aware of data collection time, type
(RIB and Updates dumps) and provenance (collector,
project), a researcher would need to build a data in-
dexing system accessible to analysis code. While such
efforts are doable, first they represent an added cost
that greatly outweighs the cost of writing the core anal-
ysis code and deviates focus from the specific research
task. Second, in a research context, similar efforts typ-
ically result in a mix of ad-hoc code and scripts that
make sharing for reproducibility purposes improbable.
Finally, since a script using PyBGPStream embeds the
full definition of the input data used for an experiment,
it further fosters reproducibility of experimental results.

4.3 Timely Additional Measurements

In this section, we show how BGPStream can be com-
bined with RIPE Atlas [55], a large-scale distributed in-
frastructure for active measurements, to enable timely
analysis of customer-triggered BGP policies.
To mitigate the collateral damage of a DoS attack, a

customer may use the Remotely Triggered Black-Holing
(RTBH) technique to request its transit providers or
peers to divert all the traffic towards its targeted IP ad-
dresses to a null interface, which drops all the incoming
traffic [39]. Providers who support RTBH define a BGP
community [15] [59] that can be used by their customers
to signal IP ranges to be black-holed. Since BGP com-
munities lack standardization, the black-holing commu-
nities can differ among different providers [26], there-
fore multi-homed customers may need to set multiple
black-holing communities to request black-holing from
more than one of their providers. RTBH is effective
on minimizing the collateral damage of DoS attacks, at
the expense of taking the target completely offline. To
limit the number of hosts adversely affected by black-
holing, providers often restrict black-holing only to /32
prefixes, although shorter prefixes may also be allowed
depending on each provider’s policy. The lack of stan-
dardization regarding RTBH policies means that the
impact of RTBH can be difficult to predict. Dietzel et.
al. have studied the use of RTBH from the perspective
of a large European IXP [25]. In this case study, we

(a) Fraction of traceroute queries that
reach each black-holed destination.

(b) Fraction of traceroute queries per
black-holed destination that reach each
origin AS.

Figure 4: Two metrics showing a pronounced difference in the data-plane reachability of black-holed destinations during (red)
and after RTBH (green). For each destination we execute traceroutes from 50-100 Atlas probes (depending on the connectivity
of the origin AS), which we repeat after blackholing is withdrawn. The results are ordered based on the values of each metric
during RTBH.

combine data-plane and control-plane measurements to
demonstrate how we can gain a better understanding
of how black-holing is implemented and its effects. Our
purpose is to illustrate how BGPStream filters and live-
mode streams facilitate complicated measurements that
otherwise would require enormous instrumentation ef-
forts, rather than providing a complete study of RTBH.
We identify as an RTBH request any triple of (collec-

tor, VP, prefix) that is tagged with at least one black-
holing community from a list we compiled by parsing
the IRR records and technical support websites for 30
ASes (13 Tier-1 providers, 12 multinational ISPs, and 5
academic networks). We respectively mark the start of
an RTBH request when we first observe a BGP update
with a black-holing community attached on a prefix that
was previously announced without such a community,
and the end when such prefix is re-advertised without
it or explicitly withdrawn.
We executed our RTBH measurements between 20-29

April 2016 by continuously listening to BGP updates
from the route-views2 and RRC12 collectors, for IPv4
prefix announcements tagged with black-holing commu-
nities. Almost 80% of the RTBH requests we detected
have a duration of less than a day, while 20% have a
duration of less than 40 minutes. These observations
are consistent with previous studies on DoS attack du-
ration [6,25]. Therefore, it is important to minimize the
delay between the application of black-holing commu-
nities and the detection time, in order to avoid missing
the time window during which we can execute tracer-
oute measurements toward the black-holed prefixes. To
minimize latency between BGP and traceroute mea-
surements, we utilize two BGPStream streams (within
the same Python script) running in live mode to col-
lect BGP updates. We apply community-based filters
to the first stream so that it only yields prefix announce-
ments tagged with at least one black-holing community.
Whenever we observe a RTBH request from this stream,
we add a filter for the black-holed prefix to the second

stream to capture explicit or implicit withdrawals. Us-
ing two streams in this manner provides a clear sepa-
ration of concerns, simplifying the logic in our Python
script. That is, one stream triggers investigation of a
prefix, whereas the other (possibly) triggers the com-
pletion of investigation.
Upon detecting the start of an RTBH request we or-

chestrate a set of paris ICMP traceroutes towards a
random IP address in the corresponding prefix. We se-
lect currently-active RIPE Atlas probes from: (i) the
visible AS neighbors of the origin AS, (ii) ASes that
are co-located in the same IXPs as the origin AS, (iii)
the same country of the target IP (to account for po-
tentially invisible peripheral peering inter-connections).
Our measurements are timely in most of the cases: we
are able to probe over 95% and 90% of the black-holed
prefixes, respectively for updates collected from RIPE
RIS and RouteViews, before the RTBH is switched off.
We also repeat the same traceroutes as we detect the
end of the RTBH request.
In total, we discovered 482 black-holed prefixes, orig-

inated by 67 different ASes. 398 of the black-holed pre-
fixes had a length longer than /24, 397 of which had a
length of /32 (single hosts). Contrary to the best prac-
tices that recommend the suppression of black-holed
prefix advertisements [16, 39] or prefixes that are too
specific [27], during the short period of our experiment
we observed a non-trivial number of black-holed pre-
fixes that propagated beyond the AS that defined the
balck-holing communities. Namely, the corresponding
ASes applied neither the egress filter for black-holed
prefixes, nor the egress filter for too specific prefixes.
Past works found that prefixes longer than /24 are vis-
ible to 20% – 30% of the monitors at the BGP collec-
tors [4,10]. In Section 5 we briefly analyze the propaga-
tion of BGP communities as it is visible from BGP col-
lectors. However, the control-plane propagation of the
black-holed prefixes beyond the network that applies
the black-holing has not been analyzed before. From

our measurement results, we remove prefixes for which
we could not obtain traceroutes from the same set of
Atlas probes between the two measurements (due to
fluctuations in the availability of the probes), obtaining
253 prefixes that we briefly investigate (Figure 4).
Figure 4a shows the fraction of traceroutes that reach

each destination. In this graph we do not include desti-
nations that traceroutes do not reach after the RTBH,
resulting in 100 destinations examined: after the RTBH
83% destinations are reached by at least 95% of the
traceroutes, whereas during the RTBH 77% of the des-
tinations are reached by less than 5% of the traceroutes
and 73% are never reached by any probe. These num-
bers clearly show a change in data-plane reachability.
Interestingly, during RTBH, 13% of the destinations are
only partially reachable (between 20% and 80% reach-
ability). For these destinations, we manually verified
that traceroutes from customers or peers of the origin
AS could still reach the black-holed destination, while
ASes in the upstream path failed.
Although these results indicate a change in data-plane

reachability during the RTBH events, the DoS attack it-
self may be the cause of traceroutes not reaching a host
normally responding. However, if RTBH is in place
the traffic is supposed to be dropped at the border
routers [39, 61]. To dig deeper, in Figure 4b (where
we consider all the 253 prefixes) we look at reachability
at the level of the origin AS instead of the end host.
On one hand, we find that the majority of the destina-
tions (190) experience traceroutes that frequently fail
(i.e., 40% reachability or less) to reach the origin AS.
On the other hand, the vast majority of destinations
show full reachability of the originAS after the RTBH.
This preliminary finding is consistent with the expected
behavior when RTBH is employed, and we plan to in-
vestigate it further in future work.
In conclusion, this case study shows that we are able

to easily instrument combined passive control-plane and
active data-plane measurements to capture and inves-
tigate transient routing policies. Without the capabil-
ity to stream and filter BGP updates in near-realtime,
we would be unable to capture the data-plane paths of
the short-lived black-holing events. The alternative to
BGPStream (or a system that implements the same fea-
tures) would have been to continuously run traceroute
scans against the entire address space which is imprac-
tical given the immense resource requirements of such
an exhaustive probing.

5. ANALYSIS OF MASSIVE DATASETS

In this section, we showcase simple case studies to
demonstrate that BGPStream’s Python bindings are
readily usable in a Big Data workflow. We deploy Py-
BGPStream scripts in an Apache Spark [2] environment
running on a 15-node cluster (240 CPUs and 960GB
of RAM) to extract statistics of BGP across the last
15 years. We make these scripts available at [14] as

a starting point for other researchers to use PyBGP-
Stream with Spark for their own analyses. In addition,
our examination highlights how certain features of the
BGP eco-system (e.g., average size of the routing table)
appear different depending on the data sources and data
types picked from the heterogeneous BGP measurement
infrastructure currently available to researchers, thus
providing a reference for future research.
In all our analyses, we processed the midnight RIB

dumps of the 15th day of each month from January 2001
to January 2016: more than 3000 RIB dumps, totalling
approximately 44 billion BGP elems. The running times
of the various analyses range between ≈1 and 24 hours.
All our Python scripts share a common structure: (i) we
build a list of data partitions splitting the data by time
range and BGP collector and instruct Spark to create
a Resilient Distributed Dataset (a data structure split
across many nodes)3; (ii) we map a Python function to
execute for every element in the list; this function rep-
resents the core of the BGPStream routines for data ex-
traction; e.g., it creates the stream (defining filters etc.)
and it executes nested while loops – per BGP record
and per BGP elem – such as the one in Listing 1; this
operation results in the creation of as many streams as
list elements; (iii) we specify three independent reduc-
tion operations: per VP, per collector, overall. We also
provide a hello-world template script that follows this
pattern [14].
In our first analysis, we study the growth of the IPv4

routing table in BGP speakers over time (calculated as
the number of unique prefixes in the Adj-RIB-out of
each VP). There are three observations in this analysis
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and significantly skew the dis-
tribution; Figure 5a shows a heatmap of data from 2,296
VPs, with warmer colors representing a higher concen-
tration of points from different VPs; only 710 out of
2,296 VPs are within 20 percentage points of the maxi-
mum at each time bin (we adopt this definition of full-
feed VP in the following); (ii) two collectors (Route-
Views kixp and soxrs) do not have a single full-feed peer,
thus may not provide enough information for most anal-
yses; (iii) we find that both the RouteViews and RIPE
RIS repositories occasionally miss RIB dumps (34 per
year on average) on midnight of the 1st day of the month
(thus we perform our analyses with data from the 15th
day of the month). In this analysis, we also compute,
at each level of aggregation (VP, collector, overall), the
number of unique prefixes and ASes observed, which we
use to normalize data in the other analyses.
Figure 5b shows the results of analysis in which iden-

tified MOAS (Multi Origin AS) prefixes [64]. Study
and detection of MOAS prefixes is relevant to many
problems [36], including the detection of BGP hijacking

3We also specify the number of slices, typically 2-3 times
the number of cores in the cluster.

2002 2004 2006 2008 2010 2012 2014 2016
0

100k

200k

300k

400k

500k

#
 I

P
v

4
 p

re
�

xe
s

(a)

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

500

1000

1500

2000

#
M
O
A
S
s
et
s

overall

(others) per-collector

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

ASNs (IPv4)

Transit ASNs % (IPv6)

ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04

rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16
saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth
of the IPv4 routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors
represent a higher concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top
blue line) and per-collector (other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which
are classified as transit – i.e., appearing in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue
lines). (d) community diversity as observed by VPs (January 2016). VPs are depicted as circles (inner colored circles) with
diameter and color proportional to the number of distinct AS identifiers (inferred from the two most-significant bytes of the
community value) in the BGP communities they observe. The aggregated data (by collector and by data collection project)
are depicted as grey circles, and highlight which collectors observe a more heterogeneous set of BGP communities.

activity [20]. Figure 5b plots the number of unique sets
of ASes (MOAS sets in the following) contributing to
MOAS prefixes aggregated into overall (top blue line)
and per-collector (other lines). Besides the slow growth
in observable MOAS sets over time, this graph high-
lights that to obtain a better view of MOAS prefixes,
it is important to analyze data from as many collectors
as are available: the number of MOAS sets identified
in the overall aggregation is always significantly larger
than the maximum number identified by a single collec-
tor.
We then calculated the number of transit ASes (ASes

appearing in the middle of an AS path) observed for
both IPv4 and IPv6. Figure 5c shows that for IPv4,
despite the nearly-linear growth in the number of ASes,
the fraction of transit ASes over time has been con-
stant! For IPv6 in contrast, overall there has been a
constant decay in the fraction of transit ASes (edge
growing faster than transit). However, around 2012,
this decay slowed considerably, while the total number
of IPv6 ASes kept a fast rate: the IPv6 graph is growing
fast while its edge and transit portions recently started
growing at similar paces! (Approaching the property we
observed in the IPv4 graph over the last 15 years.) As

of January 2016, however, the fraction of transit ASes is
much larger in IPv6 (21% vs 16%), reflecting a smaller
adoption of IPv6 at the edge.
In the final analysis we conducted with Spark, we in-

vestigated how BGP communities propagate and are
visible via the RouteViews and RIPE RIS measure-
ment infrastructures. BGP communities can be used
to study several relevant Internet phenomena, such as
complex AS relationships [34], traffic engineering poli-
cies [51], DDos mitication (Section 4.3). We collected
unique communities appearing in IPv4 paths and we
found that the number of observable communities over
time increased from ≈800 (January 2001) to ≈40,000
(January 2016). In the rest of this section we focus
on the most recent data (January 2016). By counting
only the AS identifier portion of each community (which
typically refers to the AS targeted by or generating the
community), we observed approximately 4,000 ASes us-
ing communities. We observe communities only through
≈83% of the VPs, showing that many BGP speakers
strip out communities from AS paths before propagat-
ing them. By observing the full paths, we find that at
least 1,000 ASes propagate BGP communities (out of
the more than 8,000 transit ASes found in the previous

analysis). In practice, since the number of communities
a VP observes depends on the filtering by the ASes in its
vicinity, analysis requiring either diversity of BGP com-
munities or communities from a specific AS requires a
careful choice of VPs/collectors. Figure 5d4, shows the
VPs as circles (inner colored circles) with diameter pro-
portional to the number of distinct AS identifiers (in-
ferred from the two most-significant bytes of the com-
munity value) in the BGP communities they observe.
The aggregated data (by collector and by data collec-
tion project) are depicted as grey circles, and highlight
which collectors observe a more heterogeneous set of
BGP communities: RouteViews collectors route-views2
(3,624), linx (3,262), route-views4 (3,236), and RIPE
RIS collectors rrc04 (2,979), rrc01 (2,947), and rrc12
(2,886). We selected the two collectors used for the
analysis in Section 4.3 based on these data.
Performing analyses such as those discussed in this

section without using BGPStream requires considering
scalability issues (besides the efforts described in Sec-
tion 4.2: crawling, data indexing, ASCII output pars-
ing). For example, the amount of data needed for large
longitudinal analyses may preclude a-priori download.
In this case, a researcher would need to develop a system
to dynamically download a moving window of data for
consumption by analysis code. However, such a solu-
tion will turn storage into a potential bottleneck, since
the size of the window limits the number of processing
units that can run in parallel. A better solution would
instead enable processing scripts to download data on
demand, which is close (but still suboptimal) to the
functionality provided by libBGPStream (which does
not download the file to disk but streams it to the script
directly from the HTTP connection). Another benefit
of such functionality in a cluster-computing context is
that it reduces the overhead of data locality optimiza-
tion, since it implicitly co-locates each data block with
the appropriate processor.

6. CONTINUOUS MONITORING

6.1 Lightweight monitoring: BGPCorsaro

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

4An interactive, high-resolution version of this graph,
as well as the equivalent for IPv6, are available at [14].

Figure 6: Monitoring of GARR (AS137) IP space us-
ing the pfxmonitor plugin. The green line is the number
of unique prefixes announced over time. The blue line is
the number of unique origin ASes that announce them: the
spikes identify four hijacking events in which AS 198596 an-
nounces part of the IP space belonging to AS137.

of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis
of historical or live data streams. In Section 6.2, we
describe a deployment of BGPCorsaro that runs 24/7 as
a part of our global Internet monitoring infrastructure.
As a sample plugin, we describe a stateful plugin that

monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.
We use a BGP hijacking event reported by Dyn Re-

search, the hijacking of Italian Academic and Research
Network (GARR) prefixes on January 7th 2015 [45], to
demonstrate this plugin. We configured the plugin to
process data from all available RouteViews and RIPE
RIS collectors for January 2015, setting the time bin
size to 5 minutes, and providing as input to the plugin
the IP ranges covered by the 78 prefixes originated by
AS137 (GARR) as observed on January 1st, 2015. Fig-
ure 6 shows a graphical representation of the two time-
series generated by the plugin: the number of unique
announced prefixes (in green) and number of unique
origin ASNs (in blue). While a small oscillation of the
number of prefixes announced is expected (as prefixes
can be announced as aggregated or de-aggregated), in 4
cases the number of unique announcing ASes shifts from
1 to 2, for about 1 hour. Through manual analysis, we
found that during these spikes a portion of GARR’s IP
space (specifically, 7 /24 prefixes) was also announced
by TehnoGrup (AS 198596), a Romanian AS that ap-
pears to have no relationship with GARR. The report

by Dyn Research describes a single attack on January
7th. However, given the similar nature of the other
three events visible in the graph (1st, 5th and 8th of
January), the plugin output suggests that three addi-
tional attacks occurred. Although this approach can-
not detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate how users can leverage the capabilities of
BGPCorsaro by writing plugins specific to their appli-
cation.

6.2 Monitoring the Global Internet

In this section, we present a distributed architecture
built on top of BGPStream and leveraging Apache Kafka
[1] (a distributed messaging system) to perform contin-
uous global BGP monitoring. Our goal is two-fold: we
demonstrate how BGPStream enables and simplifies de-
veloping complex global monitoring infrastructure and
we present our architectural solutions to challenges that
arise in this context.
To frame context and motivation for developing such

complex architectures, let us consider two sample appli-
cations, our“Internet Outages: Detection and Analysis”
(IODA) [23] and “Hijacks” [20] research projects. In
IODA we monitor the Internet 24/7 to detect and char-
acterize phenomena of macroscopic connectivity disrup-
tion [21] [22]. In the case of BGP, our objective is to
understand whether a set of prefixes (e.g., that share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are
interested in detecting and analyzing BGP-based traffic
hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a
portion of the same address space at the same time, de-
tecting them requires comparing the prefix reachability
information as observed from multiple VPs.
In order to detect these events in a timely fashion,

we need to maintain a global (i.e., for each and ev-
ery VP) view of BGP reachability information updated
with fine time granularity (e.g., few minutes). Such a
continuously updated global view can be useful in many
other applications, such as tracking AS paths contain-
ing a particular AS, verifying the occurrence of a route
leak, spotting new (suspicious) AS links appearing in
the AS-graph, etc.
We sketch our proposed architecture in Figure 7: mul-

tiple BGPCorsaro process data (one instance per col-
lector, in order to distribute the computation across
multiple CPUs/hosts), their output is stored into an
Apache Kafka cluster and further processed by appli-
cations (consumers) based on meta-data generated by
synchronization servers. In the following sections, we

Figure 7: Distributed framework for live monitoring.
For each collector, we run an instance of BGPCorsaro with
the RT plugin which reconstructs the observable LocRIB of
all of the collector’s VPs. At the end of each time bin (e.g., 1
minute) each BGPCorsaro publishes diffs to a Kafka cluster.
Per-application sync servers then align data from multiple
collectors and signal consumers to start processing.

describe the main components of this architecture and
which challenges they address: Section 6.2.1 explains
how we efficiently and accurately reconstruct the ob-
servable LocRIB of each VP; Section 6.2.2 illustrates
our solution to reduce the amount of data we store and
later process with the consumers; Section 6.2.3 shows
how we solve the problem of supporting different syn-
chronization mechanisms based on the application re-
quirements; finally, in Section 6.2.4 we provide an ex-
ample of applications implemented as a consumer.

6.2.1 Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hours.
Our goal is to reconstruct snapshots of the observable
LocRIB (herein referred to as the routing table) of each
VP with a granularity of 1 or few minutes. For this
purpose, we developed a BGPCorsaro plugin, called
routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates
dumps to reconstruct the evolution of the routing table,
using subsequent RIB dumps for sanity checking and
correction. However, since this is an inference process
based on distributed collection of heterogeneous mea-
surement data, multiple things can go wrong: BGP ses-
sions going down, corrupted data, dump files published
out of order, etc. We address this problem by main-
taining a finite state machine and data structures that
model the state of the VP, its routing table, and our
confidence that the modeled data is accurate. In partic-
ular, we deal with the following four special events: E1.

We ignore all records of a RIB dump if libBGPStream
marks at least one of its records as corrupted. E2. Since
records from a single RIB dump have timestamps often
spanning several minutes and RIB and Update dumps
may be published out of order, it is possible for the plu-
gin to receive a RIB dump with some records that are

UP
UP

RIB Application

DOWN
RIB Application

DOWN

update RIB/update

RIB/update

RIB end

RIB start

RIB end

RIB start

State Established State DownCorrupted Record

consistent routing table

unavailable routing table

12

3 4

RIB/update

Figure 8: Finite State Machine (FSM) for recon-
structing VP routing table. The two macro states (con-
sistent routing table and unavailable routing table represent
the (un)availability of a consistent routing table. The FSM
starts in the down state, then it usually moves to down-RIB-
Application, and, for the vast majority of time, it oscillates
between up and up-RIB-Application.

older than the latest Update records applied by the plu-
gin. To cope with this issue, we check each individual
record of a RIB dump and only apply information from
the record if the timestamp of the record is more recent
than the timestamp of information already applied by
the plugin. E3. Upon receiving a corrupted Updates
dump record we stop applying Updates and wait for the
next RIB dump. E4. We force state transitions upon
receiving certain VP state messages (e.g., receipt of a
state message with the Established code [52] triggers a
transition to the UP state).
We save state and routing table information in a

multi-dimensional hash table, which can be seen as a
matrix with prefixes as rows and VPs as columns. Each
cell contains the reachability-attributes for the prefix
(e.g., the AS path), the timestamp of when the cell was
last modified by an Updates dump record, and a A/W
flag that indicates whether such operation was an an-
nouncement or a withdrawal. In addition, for each cell,
the RT plugin uses a shadow cell to temporarily store
records from a new RIB dump until it receives its last
record: if none of the RIB dump records are corrupted
(E1), we replace the content of the main cell with the
content of the shadow cell unless the timestamp of the
RIB record is older than the cell’s last modification time
(E2).
Figure 8 depicts the process of maintaining a VP

routing table as a finite state machine that models the
state of the VP. When the plugin starts, the VP’s rout-
ing table is unavailable and the VP is in state down (1).
When a new RIB dump starts, the VP’s state moves to
down-RIB-application state (2). During this phase, the
plugin populates the shadow cells with the information
received from the RIB dump records and the main cells
with Updates dump records. The VP’s state becomes
up (3) once the entire RIB dump is received; when in
this state the routing table is determined to be an accu-

rate representation of the VP’s routing table. Each new
announcement or withdrawal record triggers modifica-
tion of the main cell, whereas if a new RIB dump starts,
the VP’s state transitions to up-RIB-application (4), a
state similar to (3) but whereby the RIB dump records
modify the shadow information of the cells. Once the
RIB ends, the shadow and main cells are merged (as de-
scribed previously) and the VP transitions to state (3)
again. In addition, a corrupted Updates dump record
forces the state to be down (E3). Reception of an Up-
dates dump record carrying a state message5 with the
Established code [52] moves the VP’s state to up (E4),
whereas reception of any other state message indicates
that the connection between the VP and the collector
is not established, and therefore, the VP is considered
down (E4).
To evaluate the accuracy of our approach, we peri-

odically compare the information in the current and
shadow cell. RIS and RouteViews error probabilities
– defined as the number of mismatching prefixes over
the sum of all VPs’ prefixes – calculated over 12 months
across 31 collectors, are 10−8 and 10−5 respectively. We
find that mismatches are usually caused by unrespon-
sive VPs for which we do not have state messages (e.g.,
RouteViews), or by a collector not applying all incoming
update messages before starting its RIB dump (but ap-
plying them afterwards, even if they have been already
assigned a timestamp).

6.2.2 IO routines: diffs, (de)serialization, Kafka

At the end of each time bin, the RT plugin transmits
the reconstructed routing table of each VP to a Kafka
cluster. However, in order to reduce the volume of data
to be stored and later processed by the consumers, we
developed routines that allow the RT plugin to com-
pute the difference between the routing table generated
at the previous time bin and the current one and trans-
mit only the changed portions (which we call diff cells).
Consumers use complementary routines to retrieve the
data from Kafka and reconstruct a full routing table
by applying diffs to the previously stored version. The
resulting data structure marks the updated portions of
the routing table, allowing a consumer to limit its anal-
ysis to only these data. We periodically (e.g., 1 hour)
also store entire (non-diff) routing tables in the Kafka
cluster that applications can use for synchronizing in
order to receive future diffs.
Figure 9 highlights the advantage (in terms of num-

ber of processed BGP elems) of processing only diffs be-
tween routing tables instead of processing every update

5Each RIPE collector maintains, for each VP, a finite
state machine for the status of the BGP session with the
VP and dump specific messages when state transitions
occur. RouteViews collectors do not dump such state
messages, hence the plugin may maintain a stale routing
table for a VP that is actually down. To mitigate this
problem, we also declare a VP down if none of its routes
are present in the latest RIB dump.

0

10M

20M

30M
M

a
x
im

u
m

BGP elems

diff cells

1 5 10 15 20 25 30 35 40 45 50 55 60

Time interval (min)

0

0.5M

1.0M

1.5M

A
v
e
ra

g
e

Figure 9: RT diffs vs. BGP elems. Results from running
the RT plugin on data from route-views2 for the month of
March 2016: average and maximum number (bottom and
top graphs respectively) of BGP elems (red circles) and diff
cells published by the RT plugin (blue squares) in each time
bin.

message. We run the RT plugin on data from route-
views2 for the month of March 2016: in the graph, the
red circles show the average (bottom) and maximum
(top) number of BGP elems extracted from BGP update
messages in each time bin, whereas the blue squares
show the number of diff cells between consecutive rout-
ing tables. When the time bin is 1 minute, there are
on average more than 3 times fewer diff cells than BGP
elems, indicating that there is redundancy in update
messages even at such short time scales. As the size
of the time bin increases, the reduction factor also in-
creases, at the expense of time granularity; a time bin
of 1 hour yields ≈13 times fewer diff cells than BGP
elems. Also, the maxima show that by processing diffs,
consumers are more resilient to bursts of updates (e.g.,
as a result of prefixes flapping).

6.2.3 Data synchronization

Different collectors, and in general different data sources,
provide data with variable delay. Performing data syn-
chronization requires a trade-off between latency, amount
of data available at processing time, and memory foot-
print. The optimal point in such a trade-off depends
on the specific application goals and requirements. A
monitoring application may require data from all (or a
given fraction of) available sources for the current time
bin regardless of latency. Other applications may have
stringent real-time requirements and prefer to explic-
itly set a time-out. For example: in realtime detection
of hijacking, we set a time-out of few minutes to ex-
ecute traceroutes as soon as a suspicious BGP event
is detected; in the IODA application instead, we relax
latency constraints in favor of data completeness and
we use a time-out of 30 minutes, since it results in RT
routing tables from all the VPs to be available for con-
sumption for 99% of the time bins (we verified it on
data from 2014 and 2015).
We designed a system based on meta-data stored in

Kafka and multiple sync servers, each implementing a
different synchronization mechanism: each BGP Cor-
saro RT plugin writes in the Kafka queue, along with

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

pr

ef
ix

es

prefixes

Figure 10: Visible Iraqi prefixes (June, 20- July, 20
2015). Number of prefixes observable in BGP that geolo-
cate to Iraq (blue line, y2 axis) and number of unique pre-
fixes announced by the 5 top Iraqi providers (stacked lines,
y1 axis). An observable series of ≈3-hour outages starts on
June 27, and ends on July 15. According to the media, the
local government ordered complete shutdowns of the Inter-
net service in the country.

the routing tables, indexing meta-data; such meta-data
is monitored by the sync servers, which based on the
synchronization criterion they implement, inject meta-
data into their own topic in the Kafka queue to mark
data as ready for consumption. By using Kafka, the re-
sulting system is horizontally scalable (since Kafka sup-
ports distributing data across many nodes) and robust
(e.g., due to data replication). In addition, since sync
servers only handle lightweight meta-data which have a
small memory footprint, they do not affect scalability.

6.2.4 Consumers

Consumers implement routines that analyze the rout-
ing tables retrieved from Kafka to perform event detec-
tion, extraction of statistics to output as time series
etc. We developed two consumers for near-realtime de-
tection of per-country and per-AS outages. Both con-
sumers select the prefixes observed by full-feed VPs and
monitor the visibility of these prefixes by computing the
number of prefixes geo-located to each country and an-
nounced by each AS. The consumers store this data into
a time series monitoring system supporting automated
change-point detection and data visualization.
Figure 10 shows data from the per-country and per-

AS outages consumers over a period of 1 month, (June
20 to July 20, 2015), selecting prefix visibility associ-
ated with Iraq and five of the biggest Iraqi ISPs. The
noticeable drops reflect a sequence of country-wide In-
ternet outages that the government ordered in conjunc-
tion with the ministerial preparatory exams [8, 29,32].

7. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as

well as feedback and contributions to our platform. In
addition, since code and scripts using BGPStream em-
bed the definition of the public data sources used for an
experiment, BGPStream significantly eases the repro-
ducibility of experimental results.
BGPStream development is part of a collaborative ef-

fort with other researchers and data providers, such as
Cisco, RouteViews and BGPMon, to coordinate progress
in this space [17]. We plan to release new features in
the near future, including support for more data formats
(e.g., JSON exports from ExaBGP [31], OpenBMP [30]).
In particular, adding native support for OpenBMP will
enable processing of streams sourced directly from BGP
routers.

Acknowledgements

We would like to thank the reviewers for their insightful
comments and in particular the shepherd, Dave Choffnes,
for many suggestions on further improving the paper.
This work was supported by National Science Foun-
dation grants CNS-1228994 and CNS-1423659. This
work was also supported by the Department of Home-
land Security Science and Technology Directorate, Cy-
ber Security Division (DHS S&T/CSD), via contract
N66001-12-C-0130 and grant FA8750-12-2-0314, coop-
erative agreement FA8750-12-2-0326. This work used
the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE), which is supported by NSF grant
number ACI-1053575. Danilo Giordano’s contribution
to this research has been partially funded by the Vi-
enna Science and Technology Fund (WWTF) through
project ICT15-129, BigDAMA.

8. REFERENCES
[1] Apache Kafka. http://kafka.apache.org/, 2015.
[2] Apache Spark. http://spark.apache.org/, 2015.
[3] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[4] E. Aben. Has the Routability of Longer-than-/24

Prefixes Changed?
https://labs.ripe.net/Members/emileaben/
has-the-routability-of-longer-than-24-prefixes-changed,
September 2015.

[5] S. Anisseh. Internet Topology Characterizationon on
AS Level. Master’s thesis, KTH, School of Electrical
Engineering, 10 2012.

[6] ARBOR Networks. ATLAS Q2 2015 Global DDoS
Attack Trends.
https://resources.arbornetworks.com/h/i/
110843942-atlas-q2-2015-global-ddos-attack-trends,
2014.

[7] G. D. Battista, M. Rimondini, and G. Sadolfo.
Monitoring the status of MPLS VPN and VPLS based
on BGP signaling information. In Network Operations
and Management Symposium (NOMS), 2012 IEEE,
pages 237–244. IEEE, 2012.

[8] D. Bernard. Iraqi Internet Experiencing ’Strange’
Outages. http://www.voanews.com/content/
iraqi-internet-experiencing-strange-outages/2921135.
html, 2015.

[9] L. Blunk, M. Karir, and C. Labovitz. Multi-Threaded
Routing Toolkit (MRT) Routing Information Export
Format. RFC 6396 (Proposed Standard), Oct. 2011.

[10] R. Bush, O. Maennel, M. Roughan, and S. Uhlig.
Internet optometry: assessing the broken glasses in
internet reachability. In Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement
conference, pages 242–253. ACM, 2009.

[11] CAIDA. BGPStream.
https://github.com/CAIDA/bgpstream, 2016.

[12] CAIDA. BGPStream. https://bgpstream.caida.org/,
2016.

[13] CAIDA. CAIDA BGP Hackathon 2016. https:
//www.caida.org/workshops/bgp-hackathon/1602/,
2016.

[14] CAIDA. Supplemental data: BGPStream: a software
framework for live and historical BGP data analysis.
http://www.caida.org/publications/papers/2016/
bgpstream/supplemental/, 2016.

[15] R. Chandra, P. Traina, and T. Li. BGP Communities
Attribute. RFC 1997 (Proposed Standard), Aug. 1996.
Updated by RFC 7606.

[16] Cisco Systems. Remotely Triggered Black Holed
Filtering. http://www.cisco.com/c/dam/en us/about/
security/intelligence/blackhole.pdf, 2005.

[17] k. claffy. The 8th Workshop on Active Internet
Measurements (AIMS8) Report. ACM SIGCOMM
Computer Communication Review (CCR), Jul 2016.

[18] M. Cosovic, S. Obradovic, and L. Trajkovic.
Performance evaluation of BGP anomaly classifiers. In
Digital Information, Networking, and Wireless
Communications (DINWC), 2015 Third International
Conference on, pages 115–120. IEEE, 2015.

[19] J. Cowie. The New Threat: Targeted Internet Traffic
Misdirection. http://research.dyn.com/2013/11/
mitm-internet-hijacking/, 2013.

[20] A. Dainotti. HIJACKS: Detecting and Characterizing
Internet Traffic Interception based on BGP Hijacking.
http://www.caida.org/funding/hijacks/, 2014.
Funding source: NSF CNS-1423659.

[21] A. Dainotti. North Korean Internet outages observed.
http://blog.caida.org/best available data/2014/12/
23/north-korean-internet-outages-observed/, 2014.

[22] A. Dainotti and V. Asturiano. Under the Telescope:
Time Warner Cable Internet Outage. http:
//blog.caida.org/best available data/2014/08/29/
under-the-telescope-time-warner-cable-internet-outage/,
2014.

[23] A. Dainotti and K. Claffy. Detection and analysis of
large-scale Internet infrastructure outages (IODA).
http://www.caida.org/funding/ioda/, 2012. Funding
source: NSF CNS-1228994.

[24] A. Dainotti, A. King, C. Orsini, and V. Asturiano.
BGPStream: a framework for BGP data analysis.
https:
//ripe70.ripe.net/presentations/55-bgpstream.pdf,
2015.

[25] C. Dietzel, A. Feldmann, and T. King. Blackholing at
ixps: On the effectiveness of ddos mitigation in the
wild. In Passive and Active Network Measurement
(PAM), pages 319–332. Springer, 2016.

[26] B. Donnet and O. Bonaventure. On BGP
communities. SIGCOMM Comput. Commun. Rev.,
38(2):55–59, 2008.

[27] J. Durand, I. Pepelnjak, and G. Doering. BGP
Operations and Security. RFC 7454 (Best Current
Practice), Feb. 2015.

[28] Dyn Research. Routing alarms.
http://research.dyn.com/products/routing-alarms/.

[29] Dyn Research. Iraq has had 12 govt-directed Internet
blackouts since 27-Jun. https://twitter.com/
DynResearch/status/629393185517666305, 2015.

[30] T. Evens. OpenBMP.
http://http://www.openbmp.org/, 2015.

[31] Exa-Networks. ExaBGP.
https://github.com/Exa-Networks/exabgp, 2015.

[32] S. Gallagher. Iraqi government shut down Internet to
prevent exam cheating?
http://arstechnica.com/tech-policy/2015/06/
iraqi-government-shut-down-internet-to-prevent-exam-cheating/,
2015.

[33] L. Gao and F. Wang. The extent of as path inflation
by routing policies. In Global Telecommunications
Conference, 2002. GLOBECOM’02. IEEE, volume 3,
pages 2180–2184. IEEE, 2002.

[34] V. Giotsas, M. Luckie, B. Huffaker, et al. Inferring
complex as relationships. In Proceedings of the 2014
Conference on Internet Measurement Conference,
pages 23–30. ACM, 2014.

[35] X. Hu and Z. M. Mao. Accurate real-time
identification of ip prefix hijacking. In Security and
Privacy, 2007. SP’07. IEEE Symposium on, pages
3–17. IEEE, 2007.

[36] Q. Jacquemart, G. Urvoy-Keller, and E. Biersack. A
longitudinal study of bgp moas prefixes. In Traffic
Monitoring and Analysis, pages 127–138. Springer,
2014.

[37] E. Karaarslan, A. G. Perez, and C. Siaterlis.
Recreating a Large-Scale BGP Incident in a Realistic
Environment. In Information Sciences and Systems
2013, pages 349–357. Springer, 2013.

[38] D. E. Knuth. The Art of Computer Programming,
Volume 3: (2Nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1998.

[39] W. Kumari and D. McPherson. Remote Triggered
Black Hole Filtering with Unicast Reverse Path
Forwarding (uRPF). RFC 5635 (Informational), Aug.
2009.

[40] C. Labovitz, A. Ahuja, S. Venkatachary, and
R. Wattenhofer. The Impact of Internet Policy and
Topology on Delayed Routing Convergence. In 20th
Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), April 2001.

[41] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and
L. Zhang. Phas: A prefix hijack alert system. In
Proceedings of the 15th Conference on USENIX
Security Symposium, 2006.

[42] M. Luckie. Spurious routes in public bgp data. ACM
SIGCOMM Computer Communication Review,
44(3):14–21, 2014.

[43] M. Luckie, B. Huffaker, A. Dhamdhere, V. Giotsas,
and k claffy. AS relationships, customer cones, and
validation. In IMC, Oct. 2013.

[44] A. Lutu, M. Bagnulo, J. Cid-Sueiro, and O. Maennel.
Separating wheat from chaff: Winnowing unintended
prefixes using machine learning. In INFOCOM, 2014
Proceedings IEEE, pages 943–951. IEEE, 2014.

[45] D. Madory. The Vast World of Fraudulent Routing.
http://research.dyn.com/2015/01/
vast-world-of-fraudulent-routing/, 2015.

[46] R. Mazloum, M.-O. Buob, J. Auge, B. Baynat,
D. Rossi, and T. Friedman. Violation of interdomain
routing assumptions. In Passive and Active
Measurement, pages 173–182. Springer, 2014.

[47] NetworkX Developers. NetworkX.
https://networkx.github.io, 2015.

[48] U. of Oregon. Route Views Project.
http://www.routeviews.org/, 2015.

[49] PCH. Packet Clearing House. http://www.pch.net/,
2015.

[50] Quagga. Quagga Routing Software Suite.
http://www.nongnu.org/quagga/, 2015.

[51] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure,
and S. Uhlig. Interdomain traffic engineering with
bgp. Communications Magazine, IEEE,
41(5):122–128, 2003.

[52] Y. Rekhter, T. Li, and S. Hares. A Border Gateway
Protocol 4 (BGP-4). RFC 4271 (Draft Standard), Jan.
2006. Updated by RFCs 6286, 6608, 6793, 7606, 7607.

[53] P. Richter. Classification of origin AS behavior based
on BGP update streams. Master’s thesis, Technische
Universitat Berlin, 2010. Bachelor Thesis.

[54] RIPE NCC. libBGPdump.
https://bitbucket.org/ripencc/bgpdump, 2015.

[55] RIPE NCC. RIPE Atlas: A Global Internet
Measurement Network. The Internet Protocol Journal,
18(3), September 2015.

[56] RIPE NCC. Routing Information Service (RIS). https:
//www.ripe.net/analyse/internet-measurements/
routing-information-service-ris, 2015.

[57] D. Schatzmann, B. Plattner, and W. Mühlbauer.
Identification of Connectivity Issues in Large
Networks using Data Plane Information.

[58] J. Scudder, R. Fernando, and S. Stuart. BGP
Monitoring Protocol. Internet-Draft
draft-ietf-grow-bmp-14.txt, IETF Secretariat, Aug.
2015.

[59] R. Steenbergen and T. Scholl. BGP Communities: A
Guide for Service Provider Networks . NANOG 40,
Bellevue, Washington, June 2007.

[60] C. Q. Sun and P. F. Ding. Optimization Techniques of
Traceroute Measurement Based on BGP Routing
Table. In Applied Mechanics and Materials, volume
303, pages 2062–2067. Trans Tech Publ, 2013.

[61] D. Turk. Configuring BGP to Block Denial-of-Service
Attacks. RFC 3882 (Informational), Sept. 2004.

[62] M. Wählisch, O. Maennel, and T. C. Schmidt.
Towards detecting bgp route hijacking using the rpki.
ACM SIGCOMM Computer Communication Review,
42(4):103–104, 2012.

[63] H. Yan, R. Oliveira, K. Burnett, D. Matthews,
L. Zhang, and D. Massey. BGPmon: A real-time,
scalable, extensible monitoring system. In CATCH’09.
Cybersecurity Applications & Technology, pages
212–223. IEEE, 2009.

[64] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F.
Wu, and L. Zhang. An analysis of bgp multiple origin
as (moas) conflicts. In Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement, IMW
’01, pages 31–35, New York, NY, USA, 2001. ACM.

