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Abstract 

The Blade Tip Timing (BTT) measurement system is a technique to measure vibration parameters of a rotating bladed disk. In particular for 

synchronous vibrations the BTT provides signals versus the rotation speed of the disk starting from the measurement of the time of arrival (TOA) 

of each blade under the tip timing probes. The signals must be post processed in order to obtain  the interesting parameters of each blade vibration. 

The  paper presents a method to extract the main parameters (amplitude and frequency) in resonance condition from the tip timing measurements. 

The proposed method is a revision of the already existing well known Two-Parameter Plot (2PP) method which requires a minimum of two 

probes. Improvements to the existing 2PP method are here suggested mainly in the part of engine order identification. 

The proposed method is then applied to the BTT measured signals coming from a rotating bladed disk excited at different engine orders. At the 

same time on the disk the vibration of one blade was detected by strain gauges. The strain gauges were calibrated and they provide the reference 

values of the vibration parameters. The vibration parameters derived by the proposed method are in agreement with those  obtained by the  strain 

gages methodology. 
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1. Introductions  

Turbomachinery blades undergo various types of excitations 

during operation and, for this reason, their fatigue life is 

reduced and there is an increase in the risk of crack formation 

that can lead to costly damages. A good design of turbo 

machinery should avoid the most dangerous excitation 

frequencies during operation. Therefore the measurement of 

blade vibration amplitude and frequency during rotation is a 

challenging topic in the frame of the blade monitoring to avoid 

high cycle fatigue failure. The Blade Tip Timing (BTT) 

measurement technique is presently the most promising 

technique for blade monitoring. It is a non-intrusive 

measurement procedure. The technology was born in 1970 but 

it is still under improvement in our days. The great advantages 

with respect to the standard method like strain gages are that 

the technique is not intrusive (the blades are not in contact with 

the measurement probes) and it can monitor each blade giving 

the possibility to identify if one blade vibrates more than the 

others (for typical mistuning problems).  

The BTT detects the vibration amplitude and frequency of 

the blades of a rotating disk by using a set of probes. Number, 

type of probes and locations depend on the application and on 

the data that are needed.  The basic principle of this technique 

is that, in absence of vibrations, the blade passes in front of the 

probe after each rotation in a time that depends only on the 

rotational speed. On the contrary, in the case in which the blade 

is vibrating, the vibration changes the time of arrival (TOA) 

and the new value can be higher or lower than the theoretical 

one.  

The BTT works in three steps:  

 - acquisition of the TOA for each blade by the probes,  

 - calculation of  the blade  displacement in the measurement 

point,  

- analysis of the data and displaying of the results.  

Many methods of data analysis for BTT are available and 

they are divided into indirect and direct methods.  

-  Indirect methods. In this case the data are collected through 

one or two probes and the measurements are done during an 

acceleration (or deceleration) of the disk in a range of speed 

when one or more resonances are excited. These methods give 

the maximum amplitude (in resonance) and the corresponding 

frequency. One indirect method that has become the standard 

method for single synchronous resonances is the one proposed 

by Zablotsky and Korostelev (1970) and it is called Single 

Parameter method [2,4]. Another indirect method is the so-

called Two Parameter Plot method [1,2,3] that will be deeply 

analyzed in this paper. 

-  Direct methods. They generally use four or more probes to 

collect the data and they operate over a chosen number of 

revolutions at a constant rotational speed of the system. These 

methods give the amplitude not only at resonance, but at each 

rotational speed. They have the limitation that they need to 

already know the engine order (EO) corresponding to each 

resonance. The basic procedure is a least-squares sine fit of the 

data starting from a given equation of the blade vibration 

displacement at a given EO. Examples of direct methods are 

the Determinant method and the Autoregressive method 

[3,5,6]. 

This paper is focused on the Two-Parameter Plot (2PP) 

indirect method developed by Heath and Imregun [1,2]. The 

method is here reconsidered and some possible improvements 

are proposed.  The 2PP method has the advantage to be very 

simple, requiring only two probes and it can be used for a first 

analysis before applying any other direct methods, providing 

the EO of each resonance. In particular in this paper a more 

straightforward procedure than that proposed in [1,2], is 

developed to identify the engine order (EO). Once the EO is 
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known, the resonance frequency can easily be determined. The 

blade vibration amplitude can be estimated by the 2PP method 

using the two probes or more than two probes used in pair and 

averaging the results of the different pairs of probes. 

Alternatively, once the EO is known, data coming from more 

than two sensors can be post processed together in a fitting data 

procedure using one of the direct methods proposed in 

literature which assume that the EO is already known [3,5,6]. 

In this paper the proposed method was applied to the tip 

timing data coming from an experimental set up where 

simultaneous strain gage measurements were carried out on 

one of the blades. The vibration displacements obtained by the 

strain gauges after a calibration procedure are considered as 

reference [10]. The accuracy of the values of the resonance 

parameters (frequency and amplitude) obtained by the tip 

timing measurement post processed by the proposed method is 

shown through the comparison with the same parameters 

obtained by the strain gauges measurements. 

2. The Tip timing basic principle 

The Blade Tip Timing  (BTT) is a not-intrusive 

measurement technique for the blade vibration monitoring of 

blades during rotation. Probes positioned on the casing detect 

the time of arrival (TOA) of each blade. In absence of vibration 

and in case of constant rotation speed, each blade passes in 

front of the probe always after the same time delay as the blue 

blade in the scheme of Fig. 1a). This means that in case of 

constant rotation speed the signals detected by the probe at the 

passing of each blade are equally spaced in time as shown in 

the upper scheme of Fig. 1 b). On the contrary, in the case in 

which the blade is vibrating the TOA depends on the blade 

vibration amplitude. The signals detected by the probe at the 

passing of each vibrating blade are at different distance in time 

as shown in the lower scheme of Fig. 1 b). The system 

computes the difference T between the TOA detected by the 

probe at the passing of the vibrating blade and the TOA of the 

not vibrating blade given by a reference sensor, which points 

on a not vibrating part of the disk. The time difference T 

multiplied by the rotor speed and by the distance of the 

measurement point from the rotation center, gives the blade 

displacement amplitude at a given rotational speed. The 

measurements are normally taken during an increasing ramp of 

rotational speed. For each value of rotational speed the blade 

displacement amplitude is detected. The plot displacement 

versus rotational speed has a shape similar to that represented 

in Fig. 1 c) when a natural frequency of the blade is excited in 

the selected range of speed. The form of the plot displacement 

versus rotational speed of Fig. 1 c) depends on the position of 

the probe relative to the measured vibrating blade. It can be 

demonstrated that the Peak-to-Peak distance in Fig. 1 c) is a 

good approximation of the value of the maximum vibration 

amplitude A [4] in resonance of the blade. This property is used 

in many methods, even in the 2PP method that is analyzed in 

this paper. 

 

 

 

a) 

 

b) 

 

 
 

c) 

 
 

Fig. 1. Basic principles of tip timing measurement. a) Scheme of the blades passing in front of the probe. b) TOA detected by a probe for 

non-vibrating and vibrating blades. c) Peak-to-Peak plot. 

 

 

 

 

3. The Two-Parameter Plot (2PP) method 

The Two-Parameter Plot (2PP) is an indirect method for the 

Blade Tip Timing (BTT) data analysis developed by Heath and 

Imregun [1,2] to post process tip timing data for synchronous 

vibration. This method needs two probes on the same axial 

position on the bladed disk casing. The signals detected by the 

two probes have shape similar to that of  Fig. 1c). The two 

probes a and b are located around the casing respectively at the 

position θa and θb, being Δθ the angle between them: 

                            𝛥𝜃 =  𝜃𝑏 − 𝜃𝑎                                (1) 

In a synchronous vibration the two blade tip displacements 

(xa and xb) detected by the two probes are assumed to be 

harmonic, and for a given engine order EO, they can be written 

as: 

𝑥𝑎 = 𝐴(𝜔) 𝑠𝑖𝑛(𝐸𝑂𝛺𝑡𝑎 + 𝜑(𝜔)) + 𝐷    

                           𝑥𝑏 = 𝐴(𝜔) 𝑠𝑖𝑛(𝐸𝑂𝛺𝑡𝑏 + 𝜑(𝜔)) + 𝐷 

t 

t 

A 

(2) 
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where 𝛺  is the rotational speed, ta and tb are the time of 

arrivals (TOA) at which the blade passes in front of the two 

probes, 𝜑(𝜔) is the phase of the response, 𝐴(𝜔) is the modulus 

of the response and D is the constant offset. The equations can 

be reformulated substituting Ωt with the angular position of the 

two probes a and b =a+ Δθ:  

𝑥𝑎 = 𝐴(𝜔) 𝑠𝑖𝑛(𝐸𝑂𝜃𝑎 + 𝜑(𝜔)) + 𝐷                     

𝑥𝑏 = 𝐴(𝜔) 𝑠𝑖𝑛(𝐸𝑂𝜃𝑎 + 𝜑(𝜔) + 𝐸𝑂𝛥𝜃) + 𝐷 

By substituting to A() and () the typical frequency 

response and phase functions for a single degree of freedom at 

a given excitation force, the two theoretical  plot of Fig. 2 a) 

are obtained. The plots have the typical shape of the tip timing 

signal shown in Fig. 1 c). Moreover by plotting the same two 

Eqn. (3) one against the other, the resulting plot is the ellipse 

of Fig. 2 b). It is then expected that by plotting the real 

measured data coming from the two probes, one against the 

other, a curve as much as similar to an ellipse is obtained. This 

is true if  the hypothesis of  one harmonic vibration  is correct. 

a) 
 

b) 

 
 

Fig. 2. a) Two theoretical sensor signals. b) Ellipse generated by plotting the 

two signals 

 

The 2PP method is based on the analysis of this ellipse in 

order to obtain the vibration parameters.  In the present paper 

some variations to the original 2PP method are proposed in 

particular in the part of the derivation of the engine order value 

(EO) of a  synchronous vibration.  The new approach, here  

proposed, is based, with the due modifications, on the theory of 

the ellipse treated as a Lissajous’s figure [8] to determine the 

phase shift between two harmonic signals. 

3.1. Engine order determination 

As shown in Eqn. (3) the EO value is strictly related to the 

phase shift between the two signals detected by the two probes. 

The contribution to the phase difference given by the EO is 

expressed by the 𝐸𝑂Δθ term. Once this term is obtained, the 

engine order can be easily computed, because the angle 

Δθ between the two probes is a constant.  

In the 2PP method [2] 𝐸𝑂𝛥𝜃  has a specific name: PSR - 

Probe Spacing on the Resonance.  It is obtained by using a third 

order polynomial formula in 𝛼, with 𝛼 being the ratio between 

the minor and the major axes of the ellipse. From each ellipse 

two values of PSR (and than two values of EO) had to be 

determined. In order to choose the correct one between the two  

it was necessary to already know the expected engine order 

value. 

The new version presented here avoids the polynomial 

procedure and allows obtaining directly the right value of EO. 

The procedure is based on the similarity of this case with the 

Lissajous’s figure method. The Lissajous’s figure is a 

parametric plot well known in literature [9] particularly used in 

laboratory practice to visualize two shifted harmonic signals 

coming from the acquisition of an oscilloscope. The two 

signals of the 2PP method (Eqn (3)) are described through two 

harmonics as well, even if there are two main differences 

between the 2PP signals and the Lissajous ones. In the 2PP 

method the variable that changes is the frequency, while in 

Lissajous’s analysis the variable is the time. The other 

difference is the vibration amplitude that is constant in the 

Lissajous’s figures, while in the case of the 2PP method it 

depends on the frequency.  

Consider the equations of the two signals xa and xb detected 

by the two probes (Eqn. (3))  during the rotation: xa is the signal 

detected by the first probe and xb is the signal from the second 

probe. The first probe is the one with angular position θa  lower 

than θb in the direction of the disk rotation. 

The two signals have the same maximum amplitude A(ω) at 

each frequency, since they are detected by two different probes, 

but they come from the same blade. 

The Eqn (3) of the two signals where D is set for simplicity 

equal to zero, become: 

𝑥𝑎 = 𝐴(𝜔) 𝑠𝑖𝑛(𝑐 + 𝜑(𝜔)) 

   𝑥𝑏 = 𝐴(𝜔) 𝑠𝑖𝑛(𝑐 + 𝜑(𝜔) + 𝛿)   

where c = EOθa and δ = EOΔθ.  

The plot of xa versus xb is the ellipse of Fig. 2 b). 

Dividing both equation by A(ω) and computing the arcsine, 

the two resulting equations are: 

                 𝑐 + 𝜑(𝜔) = arcsin(𝑥𝑎/𝐴(𝜔))               

                 𝑐 + 𝜑(𝜔) + 𝛿 = arcsin (𝑥𝑏/𝐴(𝜔))  

Calculating b) – a):  

    𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑥𝑏/𝐴(𝜔)) − 𝑎𝑟𝑐𝑠𝑖𝑛(𝑥𝑎/𝐴(𝜔))                   (5) 

Suppose to consider the value of frequency at which the 

vibration xa reaches the maximum value  (A1 in Fig. 3). The 

corresponding value of the vibration xb is from Fig. 3 upper left 

LH that is the vertical distance tangent to the ellipse. 

At that value of frequency Eqn. (5) results: 

        𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐿𝐻/𝐴1) − 𝜋/2                               (6) 

Assuming  𝛿∗ =  arcsin(𝐿𝐻/𝐴1) with  −𝜋/2 < 𝛿∗ < 𝜋/2 

depending on LH value, the possible solution of Eqn. (6) could 

be:       

𝛿 = 𝛿∗ − 𝜋/2   

𝛿 = 2𝜋 + 𝛿∗ − 𝜋/2 = 𝛿∗ + 3𝜋/2    (1)                      (7)  

𝛿 = 𝜋 − 𝛿∗ − 𝜋/2 = 𝜋/2 − 𝛿∗         (2) 

xa
-0.01 -0.005 0 0.005 0.01

x
b

# 10
-3

-2

0

2

4

6

8

10

12

14

16

RPM # 10
4

0.8 1 1.2 1.4 1.6 1.8 2

x
a

,x
b

-0.01

-0.005

0

0.005

0.01

0.015
2PP first sensor

Ω 

𝑥𝑎  
𝑥𝑏 

𝑥𝑎  

  

 

𝑥𝑏 
 (4) 

(3) 

a) 

b) 



4  

The first of the (7) is not acceptable since δ mast have a 

positive sign, from Eqn. (4) the signal xb is detected after xa. 

The possible solutions of δ could be the (1) and (2) of Eqn. (7). 

In order to choose between the two possibilities the method 

adopted in the Lissajous’s figure [9] based on the direction of 

the plot of the ellipse is here adopted. When the direction of the 

ellipse by increasing  is clockwise,the correct phase shift is 

obtained employing the solution (1). When the direction of the 

ellipse is counter-clockwise the correct phase shift is given by 

the solution (2).  

Fig.3 shows the different ellipses for the two possible 

equations (7)  of , for different values of LH,  

Once the value of  is computed the value of EO can be 

easily determined considering the relationship δ = EOΔθ where 

Δθ is known since it is the angular distance of the two probes. 

The angular distance between the two probes 𝛥𝜃  is not 

arbitrary,  in order to find the right value of the EO from the 

proposed method it should be verified that : 

𝛥𝜃 ∗ 𝐸𝑂 < 360°                                                          (8) 

The meaning of Eqn. (8) is that the probes distance must be 

chosen in order that they see the vibration of the blade inside 

one period of vibration. If only two probes are available the 𝛥𝜃 

should be chosen so that for the maximum possible 𝐸𝑂𝑚𝑎𝑥    

𝛥𝜃 ∗ 𝐸𝑂𝑚𝑎𝑥 < 360°. If more than two probes are available in 

order to apply the method to the different probe pairs it is 

suggested that the location of the probes is chosen according to 

the following rule: the angle between the first and the last 

probe, multiplied by the maximum engine order must be lower 

than 360°.  If the previous suggestion cannot be applied due to 

the probes dimensions, it is necessary that at least the angle 

between two consecutive probes, multiplied by the maximum 

engine order must be lower than 360°.   

 

Clockwise: 𝛿 = 𝛿∗ + 3𝜋/2 

 
            δ

∗ < 0                     δ
∗ = 0                δ

∗ > 0 

Counter clockwise: 𝛿 = 𝜋/2 − 𝛿∗ 

 
            δ

∗ < 0                     δ
∗ = 0                δ

∗ > 0 

Fig. 3. Phase shift computation 

3.2. Maximum amplitude of vibration 

Once the EO is computed the maximum amplitude of vibration 

in resonance can be calculated with different methods. The 

basic one is the Single Parameter method [4] where the 

maximum vibration amplitude is estimated by the peak-to-peak 

value of the curves of Fig. 1. Heath suggests the following 

equation:  

         𝐴𝑚𝑎𝑥 =
(𝑚𝑎𝑥(𝑥𝑎)−𝑚𝑖𝑛(𝑥𝑎))+(𝑚𝑎𝑥(𝑥𝑏)−𝑚𝑖𝑛(𝑥𝑏)) 

2
               (9) 

where the amplitude is estimated as the average of the peak-

to-peak values obtained by the two different probes. 

Starting from the ellipse obtained by the two probe signals 

Dimitriadis et al. [3] proposed from the ellipse axes: 

𝐴𝑚𝑎𝑥 =  𝑎 + 𝑏                                                           (10) 

Where a and b are length of the two ellipse semi-major and 

semi-minor axis. Eqn. (10) is theoretically correct only when 

the (xa , xb) plot  is a circle, i.e. when the minor axis and the 

major axis have the same value, in this case Amax  is equal to the 

diameter of the circle. In the general case the ellipse obtained 

by the two probes is not a circle, but it is always an ellipse 

inscribed in a square that is its axis are always along the square 

bisectors [5]. Consider this particular property of the ellipse 

inscribed in a square a different equation is here proposed to 

compute the maximum vibration amplitude starting from the 

ellise semi axis length a and b : 

 𝐴𝑚𝑎𝑥 =  √2(𝑎2 + 𝑏2)                                              (11) 

The derivation of Eqn. (11) is shown in appendix. Other 

methods can be found in literature to determine the vibration 

amplitude, once the EO is known [3], [4], [6] and [7], based on 

data fitting. These methods are based on Eqn. (2) that are used 

to fit the measured values of more than two probes for a given 

rotation speed Ω. The parameters A, φ and D can be obtained 

by the fitting procedure at each Ω value. The maximum value 

of the amplitude A corresponds to the resonance amplitude at 

the given EO. 

3.3. Natural frequency estimation   

Once the EO is determined the natural frequency (ωn) can 

be deduced by the plot of the two probes “rotational speed vs. 

blade displacement” as shown in Fig. 4. A simple procedure is 

proposed here to determine the rotational speed n at which the 

resonance occurs. The value of the natural frequency is: 

           𝜔𝑛 = 𝐸𝑂 ∙ 𝛺𝑛                                                  (12) 

n can be derived as a weighted average on the peak 

amplitude of the rotational speeds. In detail n can be  

estimated  as the mean of the value from the first probe and the 

value 2 from the second probe. 1 and 2 are calculated 

considering the peak amplitudes A and B, C and D of  Fig. 4 

as:  

                     𝛺1 = 𝛺𝐴 (
𝐴

𝐴+𝐵
) + 𝛺𝐵 (

𝐵

𝐴+𝐵
)   

                   𝛺2 = 𝛺𝐶 (
𝐶

𝐶+𝐷
) + 𝛺𝐷 (

𝐷

𝐶+𝐷
) 

                   𝛺𝑛 = (𝛺1 + 𝛺2)/2 
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Fig. 4. Amplitude and frequency of the peaks in the probe signals. 

4. Experimental measurements 

The proposed method of extracting the vibration parameters 

has been applied to the tip timing data detected by five optical 

probes on a rotating bladed disk with 12 blades and with a 

diameter of 440 mm (Fig. 5 a). The disk is in aluminum with 

the simple geometry of a flat plate where each blade has the 

shape of a cantilever beam. The measured vibration is out of 

plane. The probes position during the measurement is shown in 

Fig. 6 a) and b). The details of the measurement technique are 

described in [10]. In order to verify the tip timing 

measurements one of the blades was instrumented by strain 

gauges (Fig. 5 b)), which were attached at the two sides of the 

blade root in order to measure the out-of-plane bending (1F) 

mode belonging to the first modal family. As explained in [10] 

the strain gauges were calibrated by means of calibrated masses 

positioned on the free end of the instrumented blade. A tuned 

FE model was used to derive from the strain gage measurement 

the corresponding displacement at the tip timing measurement 

point on the blade. After this calibration procedure the 

measurement derived from strain gauge was considered as the 

reference measurement to which compare the tip timing data. 

For each blade and in particular for the blade instrumented with 

strain gage a typical plot detected by the tip timing probes is 

shown in Fig. 7. Each signal (each color) is the measurement 

of one probe on the same blade during a spinning test at 

increasing rotating speed. Each peak corresponds to a 

resonance that is to a given EO. The peaks are the typical peaks 

detected by the tip timing probe with a shape similar to that 

shown in Fig. 2a). 

a)                                                

 

bbb) 

      

Fig. 5. a) Rotating disk. b) Blade with strain gage. 

a) 

   

 

b) 

 

 

Fig. 6. a) View of the rotating rig. b) Probes position. 

5. Application of the 2PP method to the tip timing signals 

The proposed method is applied to identify at which EO 

number each peak corresponds. In order to apply the method 

the pairs of probes whose distance satisfy the rule expressed by 

the Eqn. (8) must be selected. The signal from the probes pair 

4 – 5 (54= 29°) can be used to identify the EO from 1 to 11, 

the obtained results can be checked by the probes pairs 2 – 5 

(25= 37°) for EO from 1 to 9, and by the probes 2 – 3 (32= 

41°) for EO 1 to 8. 

 

. 

     
 Fig. 7. Tip timing data signals, for one blade, all sensors 

 

Fig. 8 a) and b) show an enlarged view of the signals coming 

from two sensors at one of the resonance of Fig. 7.  It can be 

seen that the signals are disturbed by the noise and there is a 

distortion in the signal itself. There is a remaining wave after 

the main signal change. For these reason the resulting 2PP 

ellipse representing the plot of one signal against the other of 

Fig. 8 c) is not so regular as in the theoretical case. The 

determination of the length of LH could then be critical in this 

case of real experimental data. It can be observed that for rules 

of geometry of an ellipse inscribed in a square the distance LH 

between the tangent points and the ellipse centre  (LH) must be 

the same for each of the four tangent points. It is than suggested 

to determine the four values of this distance, indicated as LH, 

LH’, LH’’, LH’’’ in Fig. 8 c) and to perform the average value 

of the absolute values of these distances. A careful choice 

among these four values is important; for example in Fig. 8 c) 

it would be better to exclude in the mean the value of the 

distance LH’’’, which is clearly affected by an error due to the 

noise in the signal. An improvement to calculate the LH 

distances could be the fitting of the ellipse of Fig. 8 and the 

calculation of the tangent segments, this should speed up and 

automize the procedure. 

Concerning the sign of the final LH value according to the 

scheme of Fig. 3 it has to be chosen looking at the value in the 

right side of the square. In the example of Fig. 8 c) LH has a 

   1 

4 
5 2 

3 
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negative value, the rotation on the ellipse during plotting is 

clockwise and then the formula to determine  according to the 

scheme of Fig. 3 will be 𝛿 = 𝛿∗ + 3𝜋/2. For the determination 

of the value of A1 which is needed for the calculation of  𝛿∗ it 

is suggested to compute the mean of the sides of the square 

computed as tangent to the ellipse, which gives the value of  

2A1. 

 

a) 

 

 

 

b) 

 

 

 

c)  

 

Fig. 8. Signals from tip timing sensors. a) Signal from first sensor. b) Signal from second sensor. c) Ellipse from the two signals. 

 

 The EO computation for the different peaks using the different 
pairs of probes is shown in Table 1. The first row of Table 1 
shows the expected EO values. It can be seen that the proposed 
calculation gives a not integer value for the EO  which rounded 
to the closest integer is the expected value 

     Once the EO is known the resonance frequency can be 

estimated following the procedure explained in section 3.3. 

In Table 2 the values of the mean frequency obtained by the 

different pairs of probes (2-5, 4-5, 2-3 for EO 6 and 7 and 2-5, 

4-5 for EO 9) are listed and they are compared with those 

obtained by the strain gage on the blade. 

The last column of Table 2 is the difference between the 

frequencies values expressed in percentage of the frequency 

measured by the strain gauges. It can be seen that it is obtained 

a good estimation of the resonance frequency values with an 

error lower that 1.1%. 

 

As shown in section 3.2 the vibration amplitude of the blades 

at resonance can be determined independently from the EO 

value. Using the 2PP method with the ellipse it can be 

computed following Eqn. (9) or Eqn. (11). Eqn. (9) requires 

only the estimation of the maximum and minimum value of 

displacement detected by the two probes that is the sides of the 

square in which the ellipse is inscribed,  Eqn. (11) involves all 

the ellipse point since implies the calculation of the two ellipse 

semi-axis. The two Eqn. (9) and (11) lead to the same result in 

case of theoretical signals without any signal noise. 

The results obtained by the experimental data are listed in the 

third and fifth columns of Table 3. The listed results are already 

a mean of the values obtained by the different pairs of probes. 

It can be seen that the value obtained by Eqn. (9) are always 

slightly higher than those obtained by Eqn. (11). The 

comparison with the reference values obtained through the 

strain gauges is given in Table 3 by the error e(11) and e(9) 

expressed as percentage difference with respect to the strain 

gauge value.  It seems from the observation of the e(11) and e(8) 

values that the amplitude values given by Eqn. (11) gives 

values more close to the reference. The case of EO 9 seems to 

be better estimated by Eqn. (9). This difference must be 

evaluated considering the repeatability error of the 

measurement. Repetitions of the measurement in the same 

condition proved that the values of amplitude estimated in 

different measurements gives values of amplitude 3%. In the 

case EO 9 estimation with Eqn. (11) is inside the repeatability 

error and then acceptable 

 

 

 

 

Table 3: Averaging of maximum vibration amplitude computation for Two-Parameter Plot method 

EO Amax strain gages Amax eqn.(11) e(11) Amax eqn.(9) e(9) 

- μm μm % μm % 

6 2364 2485 5.1 2553 8.0 

7 1662 1781 7.1 1822 9.6 

9 960 935 -2.6 956 -0.4 

Table 1 Engine order computation. 

Probes EO = 6 EO = 7 EO = 9 

2 – 5 5.7 6.7 8.9 

4 – 5 5.8 6.8 9.1 

2 – 3 6.1 7.1  

Table 2 Natural frequency computation 

 

 

fn strain gages 

[Hz] 

fn 2PP 

[Hz] 

e(fn) 

% 

6 159.3 159.9 0.4 

7 158.0 157.7 -0.2 

9 148.5 146.9 -1.1 
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6. Conclusions 

The paper presents a method to extract the main parameters 

at the resonance of a synchronous vibration for a rotating 

bladed disk starting from tip timing data and using a minimum 

of two probes. The method presented here is based on the 2PP 

method [1][2] but some modifications to improve the original 

method are here suggested. The 2PP method consists in the 

derivation of the vibration parameters starting from the 

elliptical plot of the signals of the two probes one against the 

other. The main improvement proposed here is in the 

determination of the engine order (EO) associated to the 

different peaks of the tip timing signals. Alternatively to the 

original method which arrived to two values of EO, one to be 

discarded, it was shown that it is possible to determine directly 

the right value of EO by considering the rotation direction 

during the ellipse construction. The method was tested on a real 

measurement data set acquired by optical probes of a BTT 

system on a rotating bladed disk. The disk was instrumented 

with strain gages whose measurements were considered as 

reference. The comparison of the BTT measurements against 

the strain gages ones proved the goodness of the method in the 

estimation of the EO and consequently in the estimation of the 

resonance frequency. It was shown also an alternative 

procedure to the original one to calculate the vibration 

amplitude using the ellipse axis length instead of the length of 

the square inscribing the ellipse. This method gives slightly 

better results than the original one in presence of noise.  

The procedure here presented is mainly suggested to 

determine the EO value and the resonance frequency, which is 

the basis for the application of any other methods. For the 

determination of the vibration amplitude when more than two 

probes are available one direct methods, which uses in a fitting 

procedure the signals coming from all the probes, can probably 

decrease the influence on the results of the signal noise. 
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Appendix 

In order to demonstrate Eqn. (11) consider the ellipse 

inscribed in a square of Fig. 9 where a is the semi major-axis, 

b is the semi minor-axis and μ is the semi diagonal of the 

square, the equation of the tangent line is 

𝑦 = −𝑥 + 𝜇                                                               (14) 

 
 
 
 
 
 
 
 
 
 
    

Fig. 9. Ellipse inscribed in a square 

The equation of the ellipse centered in the origin of the 

reference system is: 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1                                                          (15) 

The tangent point between the two curves can be determined 

by the following system of equations that must satisfy the non 

negative constraints 𝑥 > 0 and 𝑦 > 0: 

xa

-0.01

-0.005

0

0.005

0.01

xb

#
10 -3

-2

0

2

4

6

8
10

12
14

16

y-axis 

x-axis b 

a 

μ 

Tangent 

point 



8  

{
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1

𝑦 = −𝑥 + 𝜇
                                                            (16) 

By substituting equation of the tangent line in equation of 

the ellipse: 

𝑥2(𝑎2 + 𝑏2) − 2𝜇𝑎2𝑥 + 𝑎2(𝜇2 − 𝑏2) = 0             (17) 

This equation is a polynomial of the second order in x. The 

two curves are tangent, so there must be only a single solution 

for polynomial (17) and therefore its determinant must be equal 

to zero. 

𝛥 =  𝜇2𝑎4 − 𝑎2(𝑎2 + 𝑏2)(𝜇2 − 𝑏2) = 0                  (18) 

this leads to: 

𝑎2 + 𝑏2 = 𝜇2                                                            (19) 

where μ is the semi-diagonal of the square and its 

relationship with the side of the square A is the following one: 

𝜇 = 𝐴
√2

2
                                                                   (20) 

Substituting (20) in (19) 

𝐴 =  √2(𝑎2 + 𝑏2)                                                 (21) 

where a and b are respectively the semi minor-axis and the 

semi major-axis.  

 

 

 

 

 


