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The paper deals with the conceptual design of a space tug to be used in support to Earth satellites transfer ma-

noeuvres. Usually Earth satellites are released in a non-definitive low orbit, depending on the adopted launcher, and 

they need to be equipped with an adequate propulsion system able to perform the transfer to their final operational 

location. In order to reduce the mass at launch of the satellite system, an element pre-deployed on orbit, i.e. the space 

tug, can be exploited to perform the transfer manoeuvres; this allows simplifying the propulsion requirements for the 

satellite, with a consequent decrease of mass and volume, in favour of larger payloads. The space tug here presented 

is conceived to be used for the transfer of a few satellites from low to high orbits, and vice versa, if needed. To sup-

port these manoeuvres, dedicated refuelling operations are envisaged. The paper starts from on overview of the mis-

sion scenario, the concept of operations and the related architecture elements. Then it focuses on the detailed defini-

tion of the space tug, from the requirements' assessment up to the budgets' development, through an iterative and 

recursive design process. The overall mission scenario has been derived from a set of trade-off analyses that have 

been performed to choose the mission architecture and operations that better satisfy stakeholder expectations: the 

most important features of these analyses and their results are described within the paper. Eventually, in the last part 

of the work main conclusions are drawn on the selected mission scenario and space tug and further utilizations of this 

innovative system in the frame of future space exploration are discussed. Specifically, an enhanced version of the 

space tug that has been described in the paper could be used to support on orbit assembly of large spacecraft for 

distant and long exploration missions. The Space Tug development is an activity carried on in the frame of the SA-

PERE project (Space Advanced Project Excellence in Research and Enterprise), supported by Italian Ministry of 

Research and University (MIUR), and specifically in its STRONG sub-project (Systems Technology and Research 

National Global Operations) and related to the theme of space exploration and access to space. 

 

 

I.  INTRODUCTION 

In recent years, international roadmaps show an in-

creasing interest in a new space system concept: the 

space tug. A space tug is a particular spacecraft that can 

be used to transfer satellites from Low Earth Orbit 

(LEO) to higher operational orbits; this would allow 

reducing the platform mass (mainly due to less perform-

ing propulsion subsystem), in favour of larger payload 

mass. The interest of space agencies and companies in 

this type of system is not only related to orbital payloads 

transfer, but it is also due to several other applications. 

For example, an important aspect to be considered is 

that space is becoming more and more crowded, and in 

this perspective the use of an on-orbit system developed 

for generic applications and adaptable to a specific criti-

cal situation would give the opportunity to face mainte-

nance and refuelling problems without of the need of 

additional dedicated systems. In addition, a similar 

system can be exploited also to retrieve or remove space 

debris. Finally, issues regarding the assembly of large 

spacecraft can be solved using this on-orbit system, 

providing a solution to one of the most challenging 

aspects related to space exploration in the future. In this 

framework, the development of a new element like a 

Space Tug is desirable 
1
. 

Usually, Earth satellites are released in a non-

definitive low orbit, depending on the adopted launcher: 

in this case, the payload has to be designed with a pro-

pulsion system able to perform the final transfer. The 

use of a reusable tug system with an adequate propul-

sion system would be a way to increase the payload 

mass, giving the opportunity to exploit the Italian VE-
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GA launcher at a larger extent. Indeed, relying on the 

support of a pre-deployed system such as a reusable 

space tug in charge of performing the transfer of the 

satellite platform from a lower orbit to the target orbit, 

allows minimizing the propulsion on the satellite and, 

therefore, maximizing the payload mass capability. 

A space tug design is one of the outputs of SAPERE 

project and specifically of its STRONG sub-project. 

STRONG is related to the theme of space exploration 

and access to space and is the frame in which this activi-

ty is performed. This project has the objectives both to 

improve the national space operability in terms of ac-

cess to space and to increase the Italian industrial capa-

bility to realize a Space Tug. In particular, the space tug 

discussed in this paper is an unmanned system with the 

main purpose to support satellites deployment on orbit. 

In addition, another mission scenario to face with is the 

possibility to retrieve on Earth significant payload sam-

ples by means of an operative reusable vehicle, such as 

for example an evolution of IXV (Intermediate eXperi-

mental Vehicle), PRIDE. In order to better describe the 

design activity performed on this kind of system, the 

paper starts with the description of the methodology 

applied in the design of the space tug and the STRONG 

system (section II), before applying it to the case study. 

In section III the space tug conceptual design is de-

scribed. The main outputs of this section are the tug 

configuration, in terms of subsystems composing it, the 

mission scenario and mass budget. Eventually, main 

conclusions are drawn (section IV). 

 

II.  DESIGN METHODOLOGY 

The objective of the space tug presented in this pa-

per is to improve the national space operability in terms 

of access to space by providing a transportation system 

capable to transfer satellites platforms from low orbits, 

where they are released by launcher, to higher opera-

tional orbits and back, if needed. This objective may 

need a particular unmanned pre-deployed system, the 

Space Tug. This system has to be correctly designed in 

order to fulfil all the needs and the objectives of 

STRONG project. In particular, the design process here 

presented is the typical conceptual design process in 

Systems Engineering. In this process the main output to 

be obtained is the definition of the main requirements 

definition, taking into account all main activities that 

such a system has to perform to be compliant with 

stakeholders’ needs, regulations and other imposed 

constraints as, for example, the environment. The core 

element of the design process here proposed is the 

Functional Analysis, used to define activities and prod-

ucts able to perform them, according to a System De-

sign Methodology 
2
 

3
 

4
. In particular, at the end of the 

Functional Analysis the system architecture and the 

main requirements that drive the system design itself are 

fully described and listed 
5
. To this purpose, the basic 

tools of the Functional Analysis can be used to derive 

the requirements that will drive the systems design. The 

requirements that can be derived are many and can be 

grouped in specific categories, as shown in Fig. I. For 

example, the main category of top-level requirements, 

i.e. mission requirements, directly stem out from the 

mission statement and mission objectives and con-

straints, which are a description of the crucial issue of 

this paper study and of the major limitations in the sys-

tems design. In addition, other top-level requirements, 

for example programmatic requirements, or constraints 

are imposed from the analysis of all the actors involved 

in this project (defined as Stakeholder 
6
). However, 

these two first analyses are able only to define data in a 

high level of detail, identifying the main purpose to be 

performed, constraints of the design and impositions. To 

increase the detail of the design and define a list of all 

the activities and the products that are required, the 

Functional Analysis should be introduced. 

The requirements definition process is important, 

considering that requirements represent the basis of the 

whole system design. For this reason, their derivation 

has to be part of a rational and logical process, in order 

not to forget drivers or constraints in the design that 

could eventually lead to unsuccessful choices. Also for 

this reason a requirements categorization is necessary: 

having all the requirements divided into categories can 

reduce possible repetitions and helping their verifica-

tion. For this reason and as already explained, , re-

quirements have been subdivided into many categories 

as shown in Fig. I, 
3
 
6
 
7
. 

In more detail, the first activity to perform, before 

writing down the requirements, is the definition of the 

main objectives of the project. As already explained and 

as suggested in 
6
,they can derived directly from the 

Mission Statement and the stakeholders’ analysis. In 

particular, primary Mission Objectives are directly de-

rived from the Mission Statement. This is an important 

phase in the design of a system, considering that Mis-

sion Statement and Primary Mission Objectives repre-

sent mission foundation and, for this reason, they cannot 

be modified during the definition process. Another 

analysis that can create important constraints and objec-

tives is the Stakeholders’ Analysis. The main purpose of 

Stakeholders’ Analysis is to define needs and expecta-

tions of the main stakeholders. Certainty, the first activi-

ty to be performed before the stakeholders needs deter-

mination is the identification of the stakeholders, i.e. of 

all the actors involved. Consequently, secondary objec-

tives can be derived. A categorization of stakeholders 

that can drive their identification process is proposed in 
7
. Indeed, the stakeholders can be categorized as spon-

sors (i.e. those associations or private who establish 

mission statement and fix bounds on schedule and funds 

availability), operators (i.e. those people in charge of 

controlling and maintaining the main systems analysed), 
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end-users (i.e. those people that receive and use prod-

ucts and capabilities) and customers (i.e. users who pay 

fees to utilize a specific space mission’s product). 

From the objectives and constraints list is based the 

requirement derivation process. For this purpose, the 

typical Functional Analysis tools can be employed. 

Examples of tool that can be involved in this analysis 

are Functional Tree, Functions/Products Matrix, Product 

Tree, Block Diagrams and Functional Flow Block Dia-

gram (FFDB). All these tools are applied in an iterative 

and recursive process: they shall be repeated starting 

from the highest level to lower levels, i.e. segment level, 

system level, sub-system level, device level. The refer-

ence level for this preliminary study will be the system 

level. 

The main tool employed in the Functional Analysis 

is the Functional Tree. Indeed, through this tool it is 

possible to define the basic functions that the system 

shall be able to perform. Also the Functional Tree is 

obtained in an iterative process, in which, in order to 

split the higher level functions into lower level ones, 

designers ask themselves “how” these functions can be 

performed. Also the opposite process is possible, asking 

the question “why”. The functions listed in this way 

have to be mapped onto the elements able to perform 

them. This process can be performed with to the Func-

tions/Products Matrix. Checked cells of the matrix are 

used to identify connections between functions and 

products, drawing the Product Tree.  

Another important aspect to be addressed is how the 

products are organized and interfaced among them. This 

information can be obtained with the Function-

al/Physical Block Diagram that depicts a graphical rep-

resentation of the connections among all the products at 

each level of studied detail . In addition, this tool shows 

also the direction and the type of required interfaces 

between products (e.g. data exchange, mechanical con-

nection …). 

Finally, FFDBs are a particular kind of tool that 

gives further information about the functions listed 

before 
3
. Specifically, the time and the logical sequence 

of functional events are shown with FFDBs. Being 

related to functions and not to products, this kind of tool 

is able to show what has to happen in the system with-

out referring to physical solutions. On the contrary, a 

way to show the physical solutions that can be applied 

to solve the Mission Statement is the Concept of Opera-

tions (ConOps). For this reason, it can be said that 

 

  
 

Fig. I: Requirements definition process and examples. 
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FFBDs are a preliminary study for the definition of the 

ConOps. 

The definition of the ConOps should consider all the 

aspects of the mission to perform, including integration, 

test, launch and disposal. Typical ConOps information 

are 
3
: Mission Phases, Modes of Operation, Mission 

Timeline, Design Reference Mission (DRM) and/or 

Operational Scenarios, End-to-end communication 

strategy and/or Command and data architecture, Opera-

tional facilities (e.g., mission control, science data cen-

ter), Integrated logistic support (resupply, maintenance 

and assembly) and Critical events. 

Usually, in preliminary phases of the design process 

is common to have one or more operational scenarios 

and architectures, but only one is the optimal solution of 

the design. Trade-off analyses have to be performed in 

order to demonstrate which is the optimal solution, 

considering the mission statement, the stakeholders’ 

needs and the requirements. 

The entire process is iterative and recursive and has 

to be repeated until the desired level of detail. In each 

stage of the design process it is possible to define differ-

ent type of requirements with different influences over 

the design. A scheme of the requirement definition and 

the connections between the tools before described is 

provided in Fig. I. 

 

III. SPACE TUG CONCEPTUAL DESIGN 

III.I Mission And Stakeholders’ Analysis 

According to the typical conceptual design process 

in Systems Engineering, the mission statement and the 

stakeholders’ analysis have been firstly established. In 

this phase of the design, it has to be performed the defi-

nition of the main objectives and constraints that will 

drive the design. Firstly, the stakeholders’ analysis starts 

with the stakeholders’ identification. The main stake-

holders, considering the STRONG project are the fol-

lowing ones 
7
: 

1. Sponsors: MIUR; 

2. Operators: engineers from ELV (Vega), Ground 

Segment operators and engineers (Altec), engi-

neers from TAS-I, CIRA and Selex ES (systems 

design); 

3. End-users: engineers from the operators compa-

nies, researcher from university (PoliTo, PoliMi, 

UniPa, La Sapienza), scientists (specific experi-

ments); 

4. Customers: those people that will pay for the 

services offered by the final System (e.g. space 

agencies, Universities or private users). 

After the stakeholders’ identification, their needs can 

be derived and analysed. In this phase every stakeholder 

has to be analysed in order to detail peculiar needs . In 

particular, these needs can be considered Secondary 

Mission Objectives: 

• To explore new mission concepts for future 

space exploration (MIUR); 

• To validate critical technologies enabling this 

operative scenario (MIUR, universities); 

• To enhance the cooperation between industries 

and universities (MIUR); 

• To enhance reusability (TAS-I); 

• To interface with international space facilities 

(TAS-I); 

• To enhance modularity in interface segments 

(TAS-I); 

• To increase the Vega usage (ELV); 

• To have standardized interfaces (ELV); 

• To receive data and transmit commands from/to 

ground (Altec); 

• To exploit existing Ground facilities (Altec). 

These objectives lead us to some preliminary con-

siderations. As already explained, the main purpose of 

the Space Tug designed for STRONG project is to im-

prove the national space operability in terms of access 

to space. This particular improvement is gained provid-

ing a transportation system capable to transfer satellites 

platforms from a generic LEO (where they are released 

by a small launcher), to higher operational orbit, or back 

(i.e. from the operational orbit to a designed LEO orbit) 

after their operative life cycle, when it is required to 

retrieve payload on Earth. In addition, the use of such a 

system can simplify the platform propulsion system thus 

limiting their overall mass and volume, in favour of 

larger payloads. An important constraint to face with in 

the design of STRONG system Space Tug is to rely as 

much as possible on Italian space assets: according to 

this, VEGA is considered as baseline launcher. This 

consideration will impose remarkable constraints on the 

system design, for example limiting the over volumes, 

mass and dimensions available for platform launch. 

Another important feature required for the Space 

Tug system is reusability. As a matter of fact, a high 

level of reusability is one of the typical features in a 

space tug, since it is designed to perform many orbital 

transfers and servicing operations along its operational 

life. To enhance the tug reusability and perform the 

higher possible number of missions, periodical refuel-

ling operations are foreseen. Indeed, a periodical refuel-

ling can limit the fuel carried on-board the tug system to 

the amount of fuel required to perform a single mission, 

reducing the consumption and the thrust employed to 

reach the final orbit. A refuelling system adaptable to 

the mission scenario and to the stakeholders’ require-

ments has to be considered. 

In order to allow performing multiple satellites de-

livery missions, a survey has been performed to select 

the most promising solution for the propulsive sub-

system In the international space roadmaps the main 

propulsive systems are analysed and the main trends, 

the average fuel consumption and the costs of many 
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kind of propulsion systems available on the market or in 

development are shown. Analysing these data, electrical 

propulsion has been chosen for the space tug. This par-

ticular choice has been driven by the advantages that the 

electrical propulsion shows: indeed, it uses less propel-

lant and it provides a better reliability and simplicity 

than chemical systems. On the other hand, it offers only 

low thrust and, consequently, longer transfers times, but 

this is not an issue considering the particular application 

of this work (i.e. an unmanned spacecraft). 

Having analysed all the stakeholders’ needs and the 

main constraints in the STRONG system design and in 

order to define the main requirements, the mission has 

to be taken into account, firstly specifying the mission 

statement. For the analysed case study and the imposed 

hypothesis and constraints, the Mission Statement is the 

following: 

To improve the national space operability in terms 

of access to space by providing a transportation system 

capable to transfer satellites platforms from Low Earth 

Orbits to operational orbits and back, relying on Italian 

space assets. 

From this statement, a Primary Mission Objective 

(i.e. to perform satellites taxi between LEO and the 

operational orbit) and a Constraint can be derived (i.e.to 

use Italian space assets). Also in the mission concept 

has been underlined the necessity to rely on Italian 

space assets. This particular part of the mission state-

ment is influenced by the stakeholders’ analysis and will 

drive the systems configurations and design. In addition, 

considering stakeholders’ analysis, VEGA launcher is 

considered as baseline and is one of the main constraints 

for the systems design. 

 

III.II Requirements 

Thanks to mission and stakeholders’ analysis, the 

main objectives and constraints of the project have been 

derived. At this point of the STRONG system design, 

the requirement derivation process should start. Indeed, 

in order to proceed with the sizing of the system the top-

level requirements had to be assessed. Starting from 

objectives and constraints different types of require-

ments can be derived: objectives are related to mission 

requirements, while constraints are more connected with 

programmatic requirements. Indeed, while a mission 

requirements is a particular kind of requirement that is 

related to a task, a function or an action performed by a 

product that yields a specified and observable result, a 

programmatic requirement is set by a stakeholder and 

may include strategic scientific and exploration re-

quirements, system performance requirements, and 

schedule, cost, and similar nontechnical constraints. 

Other type of requirements can be directly derived 

from the functional analysis. The typical functional 

analysis tools can be usefully employed in this process 

(Fig. I). The functional analysis starts with the definition 

of the Functional Tree and particularly from top-level 

functions derived from the Mission Statement (i.e. to 

perform satellites/payloads transfer between LEO and 

the operational orbit). Proceeding from this function to 

lower levels of detail in an iterative process, a list of 

activities, that the involved devices have to perform, can 

be obtained. In this iterative process, every high level 

function is analysed and further expanded, up to the 

desired level of detail. At the end of this process, a list 

of functions to be performed is clearly defined and it is 

possible to list the main actors of STRONG system and 

their interfaces. In addition, a final group of require-

ments can be derived from the Concept of Operations 

(ConOps). Indeed, the ConOps analysis allows obtain-

ing requirements more related to the operations and the 

mission environment. Also the definition of the ConOps 

is an iterative process that has to be performed till the 

desired level of detail. The main output of the ConOps 

definition is the final system architecture, determined 

with trade-off studies in order to be the optimal solution 

to meet all the requirements and the constraints. 

For simplicity, all the functional analysis and the 

performed iterations are here only described in theory 

and are not reported in this paper. The next sections will 

report the main results obtained from the Functional 

Analysis and the ConOps. Particularly, see section 

III.III for the main systems derived from the Functional 

Analysis and the Functions/Products Matrix obtained at 

system level. In addition, section III.IV summarizes the 

optimal mission scenario obtained from the analyses, 

describing the ConOps. In Fig. I, some examples of 

requirements are reported. 

 

III.III STRONG System of System configuration 

In the previous sections the main methodology ap-

plied to the design process to explore new concepts and 

define their architectures has been explained. The defi-

nition of the system architecture is mainly based on the 

Functional Analysis and the ConOps. In particular, 

through the Functional Analysis, the main functions and 

the main actors of STRONG system are clearly defined, 

characterizing their interfaces. In particular this analysis 

has been performed not only to define the functional 

requirements, but also to map the system functions to 

the physical components, to guarantee that all necessary 

components are listed and that no unnecessary compo-

nent is considered and, finally, to understand the rela-

tionships among the new products’ components 
4
. The 

main tool applied to obtain the list of useful physical 

components from the list of functions to be performed is 

the so-called Functions/Products Matrix (Fig. II and Fig. 

III). The Functions/Products Matrix has therefore been 

used to map functions to physical components or sys-

tems. 
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The elements of the overall scenario of STRONG 

project to be explored include then the VEGA launcher, 

every launch facility connected with the use of VEGA 

launcher, a payload (P/L) platform, the Space Tug, a 

system for on-orbit refuelling (i.e. an orbital tank), the 

pre-operational vehicle PRIDE (Programme for Reusa-

ble In-orbit Demonstrator for Europe), a Mission Con-

trol Center (MCC) and a Mission Support Center 

(MSC). 

In this mission scenario, the VEGA launcher will 

bring the maximum possible payload mass in a low 

orbit. The payload is then docked to a Space Tug, min-

imizing the propulsion on the platform and maximizing 

the payload mass. In addition, considering this system 

architecture, the STRONG system will also give the 

opportunity to return on Earth significant payload sam-

ples. In this case the PRIDE pre-operative reusable 

vehicle can be exploited: indeed in this case, the two 

systems (i.e. the Space Tug and PRIDE vehicle) would 

rendezvous in a defined orbit in order to move the pay-

load sample from the space tug to the PRIDE vehicle 

and return it back to Earth. At the end of both cases, a 
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Fig. II: Functions/Products Matrix obtained at segment and system level. 
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refuelling method is then required to extend the Space 

Tug reusability. 

The here presented option for refuelling has been 

analysed and set as the optimal solution considering the 

various possibilities available in the international space 

scenario 
8
. As a result of a trade-off analysis among 

different refuelling architectures, the optimal configura-

tion is composed of an Orbital Tank to which the Space 

Tug has to dock for refuelling. In order to reduce the 

Space Tug mass during every performed mission, a 

refuelling is supposed after each mission. Additional 

details about this refuelling configuration will be pro-

vided and explained in the next section. Indeed, even if 

this paper deals with the design of a Space Tug able to 
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To perform MMOD protection x
To perform radiation protection x

To perform ground handling loads x
To perform flight accelerations x

To perform  RvD x
To perform refuelling x

To perform operational loads x
To redound operational loads x
To perform power production x

To perform power storage x
To perform power collection x

To perform power conversion  x
To manage power distribution x

To perform heat collection x
To perform heat transportation x
To manage thermal control x

To perform heat rejection x
To perform local heat sinking x

To perform thermal insulation x
To receive monitoring data x

To validate monitoring data x
To elaborate monitoring data x
To store elaborated monitoring data x

To receive control data x
To validate control data x

To elaborate control data x
To store elaborated control data x

To receive command data x
To validate command data x
To elaborate command data x

To store elaborated command data x
To perform orbital data determination x

To elaborate trajectory data x
To elaborate attitude data x

To perform attitude determination x
To perform accurate attitude control x
To perform orbital manoeuvring x

To perform RvD x
To perform massive attitude control x

To perform station-keeping x
To transmit mission data x

To elaborate data to be transmitted x
To obtain data to be transmitted x
To transmit telemetries x

To elaborate telemetries x
To obtain telemetries x

To receive command from ground x
To elaborated received command from ground x

To receive telemetries from orbit elements x
To elaborate received telemetries from orbit elements x
To perform propellant storage x

To perform fuel distribution x
To perform electric power distribution x

To distribute monitoring data x

To distribute control data x

To distribute command data x

To distribute mission data x

To distribute telemetries x
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Fig. III: Functions/Products Matrix obtained at sub-system and device level. 

 



 66th International Astronautical Congress, Jerusalem, Israel. Copyright ©2015 by the International Astronautical Federation. All rights reserved. 

 
 

IAC-15-D2.4.3 Page 8 of 13 

answer to the STRONG project needs, a preliminary 

design of the Orbital Tank has to be considered and in 

support of this part of the analysis, some considerations 

have to be done to provide data on the preliminary fig-

ures for the mission elements that are more affected: the 

on-orbit refuelling system and the Space Tug. 

The Space Tug is not only the core element of this 

paper, but also an important element in the STRONG 

system and in the proposed scenario. In the mission 

scenario identified through design analysis performed 

till this step, the Space Tug main function is to transfer 

the P/L Platform into the required operational orbit. 

Considering this eventuality, the Space Tug is supposed 

to actively perform the rendezvous and docking with 

both the P/L platform and the refuelling system. The 

second function to be performed is to bring back from 

the operational orbit a payload or a sample of it, transfer 

it into a LEO where the payload can be moved on 

PRIDE vehicle and be returned on Earth. In this specific 

case, the Space Tug is supposed to actively perform 

rendezvous with PRIDE. PRIDE vehicle after being 

docked to the Space Tug, is supposed to move on-board 

the payload (or some sensitive parts, some samples of it) 

using a robotic arm located in PRIDE vehicle, before 

returning on Earth. In both the presented cases, one of 

the main constraints in the Space Tug configuration is to 

be compatible in mass and volume with VEGA launcher 

capabilities (i.e. maximum diameter 2.6 m and maxi-

mum length 7.8 m). As already explained, this con-

straint will have a significant influence on the choice 

and the design of the Space Tug sub-systems. 

Finally, analysing the functions at system level and 

iterating the process to obtain the sub-system level, it is 

then possible to have a list of sub-system that, compos-

ing the Space Tug system, may allow the tug to fulfil all 

the required functions. In particular, the Space Tug will 

be equipped with a certain number of sub-systems, 

including Propulsion Sub-system, Electrical Power Sub-

system (EPS), Thermal Control Sub-system (TCS), 

Attitude and Orbit Control Sub-system (AOCS), Data 

Management Sub-system (DMS), Telemetry Tracking 

and Control Sub-systems (TT&C), Structures Sub-

system, Harness Sub-system. The Propulsion Sub-

system includes the main thruster (electric) and the 

reaction control system. In addition, the propellants 

tanks are part of the propulsion sub-system, with all the 

interface and feeding systems needed to provide propel-

lant to the thrusters. Another important sub-system is 

the EPS, in charge of providing, storing and distributing 

power to the other sub-systems. In this specific case, 

this is a very impacting sub-system, since electric 

thrusters require high power levels to function. EPS 

mainly includes solar arrays and batteries. The main 

purpose of TCS is to maintain all spacecraft and pay-

load components and subsystems within their required 

temperature limits for each mission phase. The main 

function of AOCS is to stabilize the vehicle and orient it 

in desired directions during the mission despite the 

external disturbance torques acting on it; the attitude 

control is particularly critical for the rendezvous and 

docking manoeuvres with the satellite platform. Moreo-

ver accurate attitude maintenance will be necessary for 

the refuelling operations. Another sub-system consid-

ered is the DMS, which receives, validates, decodes, 

and distributes commands to other spacecraft systems 

and gathers, processes, and formats spacecraft house-

keeping and mission data for downlink. In combination 

to this sub-system, a TT&C sub-system is foreseen, 

which provides the interface between the spacecraft and 

the ground systems, transmitting mission and spacecraft 

housekeeping data. A structure sub-system supports all 

other spacecraft sub-systems and includes the attach-

ment interfaces with the launcher and the ground sup-

port equipment interfaces. Moreover, it includes the 

rendezvous and docking mechanism to dock with the 

P/L platform and the refuelling interface with the nozzle 

tool (which is the tool allowing the transfer of propel-

lant from the refuelling depot attached to ISS to the 

space tug tank). Finally, harness sub-system includes 

satellite wiring, electronics backplane, and electrical 

interface boards. As already explained, an Orbital Tank 

can be exploited for refuelling operations. In the chosen 

configuration, the Orbital Tank is supposed to stay au-

tonomously in orbit for the time required by the Space 

Tug to perform a defined number of missions. The tank 

is supposed to maintain the orbit and its attitude and to 

send information on its status to the space tug and to 

Earth. A Soyuz flight is envisioned in order to maximize 

the fuel stored, considering also a preliminary mission 

scenario dimensioning (see section III.IV below). 

 

III.IV Concept of Operations 

The main outputs obtained from the Functional 

Analysis and the top-level analyses performed are a list 

of top-level requirements and constraints, together with 

a list of activities to be performed and the systems that 

are able to perform them. Finally, all the products inter-

faces and the logics under the activities identified are 

fully known. At this stage of the design, the system 

operations have to be defined. 

The overall reference mission scenario mainly in-

cludes the following phases: Space Tug deployment, 

Satellite platform deployment, Space Tug refuelling 

(Fig. IV). In particular, an Orbital Tank can be exploited 

for refuelling and other logistics and preparatory activi-

ties have been neglected for simplicity. 
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In detail, considering this particular scenario as ref-

erence and the listed system to be used, the first mis-

sions set starts with the launch of the space tug, which 

then remains in its waiting orbit till the launch of the 

first satellite platform. Launch orbit and waiting orbit 

are supposed to be different. Once the tug has docked 

with the satellite platform at the launch orbit, the trans-

fer towards the payload final operational orbit begins. 

After the satellite release, the tug moves to the refuel-

ling orbit to perform the first refuelling. In this particu-

lar scenario, the refuelling orbit (i.e. the Orbital Tank 

orbit) and the waiting orbit are supposed to be the same. 

After refuelling operations have been completed, a sec-

ond mission can start. In particular, the number of mis-

sions supposed before a new Orbital Tank has to be 

provided, is constrained and will be provided after a 

mission performances analysis. Indeed, this particular 

value is constrained mainly by the launcher dimensions 

and the tank dry mass. 

As already explained, the refuelling is carried out at 

the Space Tug waiting orbit. This particular orbit is 

considered in order to be easily reachable after every 

mission (i.e. at an inclination of 5° and an altitude of 

500 km), minimizing drag effects. The waiting orbit is 

imposed to be different from the launch orbit where the 

VEGA launcher releases every payload. This choice has 

been made to increase the tug reusability, increasing the 

payload mass that the launcher is able to transfer in orbit 

(i.e. at an inclination of 5° and an altitude of 350 km). 

Indeed, VEGA performances have been considered to 

find the maximum payload capability in the scenario 

fixing the reference orbits 
9
. For the reference launch 

orbit 2100 kg payloads capability has been assumed 

having 350 km altitude and 5° inclination. An evalua-

tion of the propellant available for this first mission will 

be performed at the end of this section, considering 

VEGA capabilities and the space tug launch mass. 

In addition to this mission scenario, an objective for 

the space tug can be to support the retrieval of payloads 

to be re-entered on Earth (Fig. V). Being this particular 

scenario complex for the number of elements involved 

and not different from the previous one considering the 

orbits that the tug has to reach in a single mission, the 

payload retrieval scenario is not used for the mission 

and the tug sizing. 

At this point of the design, it is necessary to have a 

clear view of the scenario and the required performance 

to select the best concept of operations 
10

. To evaluate 

the mission scenario a Matlab® script has been built and 

computations have been carried out to estimate the total 

amount of propellant required to accomplish the satel-

lites delivery missions and the transfer for refuelling to 

the waiting orbit. This evaluation has to be performed 

considering the constraint to use electric propulsion (i.e. 

low thrust orbital transfers). Assuming a transfer be-

tween two circular orbits, in a low-thrust orbit transfer 

the total velocity change is given by 
11

: 

 0

00
00

2
tan

sin
cos









i

V
VV  [1] 

Where V0 is the initial orbit velocity, β0 is the initial 

thrust vector yaw angle and Δi is the total desired incli-

nation change. The initial mass in the parking orbit is 

related to the total required velocity through the Tsiol-

kovsky rocket equation: 

f
e m

m
vV 0ln  [2] 

Where ve is the effective exhaust velocity (i.e. 

ve=Isp∙g0, in which Isp is the specific impulse and g0 is 

standard gravity), m0 is the initial total mass, including 

propellant, and mf is the final total mass. Consequently, 

the transfer time is known: 

fVt f   [3] 

Where f indicates the low-thrust acceleration, which 

for this computation is assumed constant during the 

orbit transfer and has been obtained as the ratio between 

thrust (constant thrust is considered) and the average 

between final and initial mass. 

This procedure can be applied to the reference mis-

sion scenario, considering that at the end of each mis-

sion the final mass at the waiting orbit has to be the dry 

mass of the Space Tug, prior to refuelling. In addition, it 

 

 
 

Fig. IV: Nominal electric space tug mission concept, the 

refuelling phase is not reported for simplicity. 

 
 

Fig. V: Nominal electric space tug mission concept. 
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is worth noticing that the STRONG system for the en-

tire operational scenario periodically repeats a single 

mission, from the payload retrieval to the refuelling. 

According to the scenario just described and using 

the developed Matlab® tool, the masses of propellant 

and the transfer times required to accomplish the vari-

ous payload transfers have been evaluated. The compu-

tations have been carried out considering the following 

assumption: 

• parking orbit: 350 km, 5°;  

• waiting orbit: 500 km, 5°;  

• final operational orbit (GEO is considered, i.e. 

the worst condition): 36000 km, 0°; 

• refuelling orbit: 500 km, 5° (same as the waiting 

orbit); 

• propulsion system: constant thrust equal to 480 

mN and a Isp of 2500 s; 

• satellite platform mass: 1000 kg (maximum val-

ue from stakeholders analysis); 

The results are summarized in Table I. In all this 

preliminary analysis, an estimation of the tug dry mass 

is required and it has been assumed equal to 1600 kg. 

This value is very close to the final one: the computa-

tions explained in this section and the space tug mass 

budget evaluation are not two separate processes, but 

are part of an iterative and recursive process set to 

merge to an optimal solution. A more detailed evalua-

tion of the Space Tug dry mass will be provided in the 

next section. Finally, the total propellant mass needed to 

accomplish a single missions set is about 954 kg. 

In addition, some considerations can be made about 

the Orbital Tank. Some additional constraints have to be 

considered, not only in the number of mission set to be 

performed before a change or a refuelling in the tank is 

required, but also considering safety margins and regu-

lations. Indeed, the Orbital Tank is assumed to be 

launched with Soyuz flight to maximize the fuel stored. 

In the Orbital Tank a minimum amount of 954 kg of 

propellant has to be stored (single mission). Considering 

Soyuz launcher for the tank transfer in the waiting orbit, 

the maximum value of propellant to be considered in the 

orbital tank is limited. Indeed, a Soyuz based Orbital 

Tank is supposed to have a maximum mass of about 

6000 kg, considering Soyuz capabilities for a standard 

launch at the waiting orbit 
12

 
13

. Another important con-

straint is to be considered is the tank dry mass. Consid-

ering this value to be really near the space Tug dry mass 

or higher considering facing with a higher amount of 

propellant to be stored and managed, the preliminary 

tank dry mass is assumed at about 2000 kg 
*
. Conse-

quently, a fuel mass of 4000 kg is available on the Or-

bital Tank and 4 missions can be performed before a 

new tank has to be considered (4 missions will require 

3816 kg of propellant). 

It is worth underlining that this ConOps represents a 

conservative case. Indeed, it could be necessary to de-

liver the satellites in lower and less requiring orbits than 

GEO. In this case, more than two delivery missions 

could be accomplished before refuelling is needed. 

 

III.V Main System Mass Breakdown 

A preliminary mass budget has been performed to 

obtain a mass breakdown for the Space Tug, based on 

the analyses performed in the previous sections. The 

mass budget has been obtained mainly taking as refer-

ence the more common physical system available on the 

                                                           
*
 2000kg has been assumed as a preliminary estima-

tion, further analyses will be carried to refine this as-

sessment. 

Phase  
Initial mass 

[kg] 

Final mass 

[kg] 

Propellant 

mass [kg] 

Transfer time 

[days] 

First 

missions 

set 

(small P/L) 

parking LEO - waiting LEO 2051 2044 7 4 

waiting LEO - parking LEO 2044 2037 7 4 

parking LEO - GEO 2187 1944 243 144 

GEO - waiting LEO 1794 1600 194 115 

Second 

missions 

set 

waiting LEO - parking LEO 2554 2545 9 5 
parking LEO - GEO 3545 2930 616 365 
GEO - waiting LEO 1930 1600 330 195 
waiting LEO - parking LEO 2554 2545 9 5 
parking LEO - GEO 3545 2930 616 365 
GEO - waiting LEO 1930 1600 330 195 
waiting LEO - parking LEO 2554 2545 9 5 
parking LEO - GEO 3545 2930 616 365 
GEO - waiting LEO 1930 1600 330 195 
waiting LEO - parking LEO 2554 2545 9 5 
parking LEO - GEO 3545 2930 616 365 
GEO - waiting LEO 1930 1600 330 195 

Table I: Mission phases’ budgets, in the first missions set is assumed a small payload transfer (150 kg) transferred 

at 10000 km at an inclination of 0°. 
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market or considering the latest technological achieve-

ments. As reference for the analysis, Dawn mission has 

been considered as it is actually relying on electric pro-

pulsion 
14

. In particular this mission is important, con-

sidering that is a real mission implementing an electric 

propulsion system. For this reason this mission has been 

considered as one of the main references. The Space 

Tug dry mass has been computed starting from the siz-

ing of the propulsion and the power sub-systems, which 

are the most impacting subsystems for this type of vehi-

cle 
10

. 

Generally, the propulsion sub-system can be consid-

ered composed of the thrusters (including the power-

conditioning unit) and the propellant (including the 

tanks and propellant management unit). In the analysed 

case, the propulsion sub-system specific mass is sup-

posed to include only the mass of the thruster and power 

processor (i.e. the masses of the propellant subsystem, 

gimbals, and other mission specifics are not included). 

In addition, Hall Effect Thrusters are assumed as refer-

ence. Considering all the assumptions described, the 

following values are imposed: a specific impulse (Isp) of 

2500 s, a power ratio (R) of 50 mN/kW and a specific 

mass (SM) of 5 kg/kW. From these values, assuming a 

certain thrust (T) to be guaranteed, the power (P) re-

quired to obtain it can be computed (i.e. P=T/R). Con-

sequently, also the mass (M) is known (i.e. M=SM·P). 

Particularly, considering a thrust of 480 mN, the re-

quired power is about 9.6 kW and a single thruster mass 

is about 50 kg. Considering Space Tug fuel tanks mass 

and all the supporting equipment for a safe fuel storage 

and assuming to use 3 thrusters of this kind, the total 

mass of the propulsion system is about 520 kg already 

considering a system margin of 10 %. 

Another important sub-system to be sized is the 

EPS. This system includes deployable solar panels for 

power generation and batteries for energy storage. In the 

EPS sizing it is assumed that propulsion is constantly 

guaranteed both in daylight and eclipse condition. The 

reference orbit for the solar arrays sizing is the waiting 

orbit, because it represents the worst case (i.e. having 

the longest eclipse time). Finally, the solar arrays area 

has to be computed according to 
6
: 

EOLSASA PPA   [4] 

In [4] the PSA is the power that solar arrays must 

provide during daylight to power the spacecraft for the 

entire orbit. This value is given by: 

    

d

dddeee
SA

T

xTPxTP
P


  [5] 

Where Pe and Pd are the power requirements during 

eclipse and daylight respectively, Te and Td are the 

length of these periods, xe and xd the efficiencies of the 

paths from the solar arrays through the batteries to the 

individual loads and the path directly from the arrays to 

the loads, respectively. The total solar panels power to 

be provided amounts to about 19.2 kW, including power 

for batteries recharge and other sub-systems required 

power. 

The PEOL, that is the array power per unit area at the 

end of life, is obtained from the power per unit area at 

the beginning of life: 

dBOLEOL LPP   [6] 

  ifeoperativel
d yrndegradatioL  1  [7] 

 cosdSunBOL IP   [8] 

Where φSun is the Sun flux, η is the conversion effi-

ciency, Id is the inherent degradation, which accounts 

for the design and assembly losses and θ is the Sun 

incidence angle. Considering triple junctions cells with 

30% efficiency, the required solar panels area is about 

62 m
2
. Finally, assuming that the blanket mass is 55% 

of the total array mass 
7
, a 15% of safety margin and to 

employ AZUR 3G30 solar cells, the solar arrays mass is 

about 330 kg. 

During eclipse, the power has to be provided to the 

Space Tug through batteries, allowing continuous pro-

pulsion. Li-ion secondary batteries are supposed and 

have to be sized. In particular, the following equation 

has been used to compute the total batteries capacity: 

  dischargeself
xDOD

TP
C

e

ee
r   [9] 

The obtained required batteries total capacity is 9 

kWh and the total battery mass is about 50 kg, assuming 

a specific energy of 175 Wh/kg. In addition, the power 

control and distribution unit mass has been obtained as 

the 40% of the overall EPS mass. Therefore, the total 

EPS mass is about 90 kg, considering a safety margin of 

15%. 

Starting from the sizing of the most critical sub-

systems, the total dry mass has been computed referring 

to the more common physical system available on the 

market and considering the latest technological 

achievements. In our computations, the propulsion and 

the electrical power sub-systems constitute about the 

70% of the total dry mass. This value has been obtained 

considering not only the physical systems that our con-

figuration has to use, but also the functional analysis 

results and the imposed requirements. In addition, con-

sidering the complexity of the mission scenarios here 

proposed, a larger percentage has been assumed since 

the power requirement and the quantity of propellant 

needed for the missions are higher. With this particular 

percentage, the Space Tug dry mass is about 1350 kg. 

The obtained mass breakdown is reported in Table II 

with the mass fractions used for the preliminary assess-

ment of the other sub-systems masses. In addition, two 

kinds of system margins have been introduced. Firstly, a 

specific margin is added to every sub-system, taking 

into account local uncertainties in the single sub-

systems sizing. Secondly, a system margin of 20% has 

been included to the final dry mass, to account for the 
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uncertainties typical of this design phase. Accordingly, 

the resulting dry mass is 1620 kg. 

As forecasted, the launch mass of the tug is about 

1620 kg and is lower than the VEGA launcher limit (i.e. 

2100 kg in 350 km, 5° LEO). Therefore additional pro-

pellant can be loaded and then exploited in the follow-

ing missions or for a larger first small payload transfer. 

In particular, the Space Tug would be able to carry 480 

kg of propellant at launch. Considering a first small 

satellite transfer, the first mission can be exploited to 

transfer 150 kg of P/L, for example to about 10000 km 

in about 144 days assuming 0° of inclination or to about 

12000 km in about 153 days assuming 5° of inclination, 

before the first refuelling. In addition, a change in the 

tanks has to be performed after about 6 years, after the 

transfer of 4150 kg of payload. 

Surely, the analysis performed is referred to a pre-

liminary design phase of a space tug system able to 

answer to the mission statement and the stakeholders’ 

needs. All the design has to be repeated iteratively, till 

the definition of an optimized solution after more de-

tailed budgets evaluations also through simulations (Fig. 

VI). 

IV. CONCLUSIONS 

The paper focuses on the description of a reusable 

and versatile electric space tug for Earth satellites ser-

vicing. The interest in the development of this kind of 

system derives from several applications that a space 

tug would have, considering not only satellite servicing, 

but also debris removal or large spacecraft assembly. In 

particular, the main mission scenario in which the here 

presented space tug is employed is to support the trans-

fer of satellites from a generic low orbit, where the 

launchers release them, to their final operational orbits. 

Indeed, one of the main benefits of this particular mis-

sion scenario is to avoid the need of a dedicated propul-

sion system in the satellite, in favour of a larger amount 

of mass available for the payload. 

Generally, tug systems are characterized by a high 

cost-effectiveness and reusability. This features are true 

also in the Space Tug here designed and are improved 

by the forecast of periodic refuelling operations in order 

to perform many missions during its operational life-

time. According to the typical conceptual design process 

in Systems Engineering, a reference scenario has been 

identified also for the refuelling, i.e. exploiting an or-

bital fuel tank. In addition, through a conceptual design 

process applied to the space tug system, a preliminary 

sizing of the space tug has been performed according to 

this reference scenario and to the constraints defined. In 

particular, one of the more compelling constraints in the 

space tug design is in the use of the VEGA launcher. 

Finally, the total amount of propellant needed to ac-

complish the reference set of missions has been derived. 

Considering the designed system architecture and 

mission scenario, it has to be said that the development 

of an orbital fuel tank means to design and create a very 

new system and an additional element permanently 

parked in orbit. This choice will not only increase the 

whole system complexity, but also its final costs. In 

addition, the orbital tank requires a propellant storage 

capability which is not compatible to VEGA dimension 

and a larger launcher has to be foreseeing (e.g. the So-

 Sub-system 
Mass Fraction 

[%] 

Safety margin 

[%] 
Mass [kg]   

 Propulsion 40 10 520  

EPS 30 15 420  

TCS 4 20 50  

AOCS 5 5 60  

 DMS 2 20 30  

 TT&C 1 15 20  

Structures 15 20 200  

Harness 3 20 50  

TOTAL (w/o margin) - - 1350  

System margin - - 20%  

TOTAL (w margin) - - 1620  

 Table II: Space Tug mass breakdown.  

   

 

 
 

Fig. VI: Space Tug depiction in a simulation environ-

ment (AGI STK ®). 



 66th International Astronautical Congress, Jerusalem, Israel. Copyright ©2015 by the International Astronautical Federation. All rights reserved. 

 
 

IAC-15-D2.4.3 Page 13 of 13 

yuz). These constraints will require a more detailed 

analysis of costs and of the influences that these choices 

have on the architecture of the whole system. This anal-

ysis can be a future development of this work. Future 

works will also focus on the space tug detailed design, 

with specific sizing of the subsystems not yet analysed. 
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