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Abstract—The identification of the services that generate traffic
is crucial for ISPs and companies to plan and monitor the
network. The widespread deployment of encryption and the
convergence of the web services towards HTTP/HTTPS challenge
traditional classification techniques. Algorithms to classify traffic
are left with little information, such as server IP addresses, flow
characteristics and queries performed at the DNS. Moreover,
due to the usage of Content Delivery Networks and cloud infra-
structure, it is unclear whether such coarse metadata is sufficient
to differentiate the traffic. This paper studies to what extent
basic information visible at flow-level measurements is useful for
traffic classification on the web. By analyzing a large dataset
of flow measurements, we quantify how often the same server
IP address is used by different services, and how services use
hostnames. Our results show that a very simple classifier that
relies only on server IP addresses and on lists of hostnames
can distinguish up to 55% of the traffic volume. Yet, collisions
of names and addresses are common among popular services,
calling for more ingenuity. This paper is a preliminary step in
the evaluation of classification algorithms that are suitable for
the modern Internet, where only minimal metadata collection
will be possible in the network.

I. INTRODUCTION

Monitoring how web services are used and how they con-
sume network resources is key to Internet Service Providers
(ISP) when operating and planing the network. Similarly,
companies have a vital need of monitoring their enterprise
networks – e.g., to ensure usage of accredited services, or to
control the access to unauthorized ones. Traffic classification
has always taken a key role, and a variety of methods has
been developed throughout the years. Initially focusing on pro-
tocol classification, e.g., HTTP vs FTP vs P2P, classification
goals must now target the identification of “web services”,
e.g., YouTube vs Facebook vs Whatsapp. Indeed, HTTP is
becoming the de-facto application layer protocol over which
people access the large majority of Internet applications. Deep
Packet Inspection (DPI), behavioral techniques [1], [2], have
been used for traffic classification. These methods have been
recognized so far as effective for several monitoring needs [3].

The convergence of web toward proprietary and encrypted
protocols, however, challenges classification algorithms again.
Indeed, we already observe a clear trend towards moving
Internet services to protocols such HTTPS [4], with HTTP 2.0
behind the corner and TLS encryption by default. While
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this trend is well-justified by the urgency in improving end-
users’ privacy, it renders many traffic classification algorithms
useless, since packet payload cannot be accessed anymore.

In addition, a handful of big players [5] is taking a promi-
nent role in the Internet, where content is more and more
being served from shared infrastructure, such as in Content
Delivery Networks (CDNs) and cloud computing platforms.
This further challenges behavioral classifiers [6], which rely on
host profiling to determine the applications running on servers.

This paper revisits the question of whether basic traffic
features can be used to differentiate traffic of major web
services. The ambitious goal is to understand how feasible
would be the classification of web services traffic based only
on server IP addresses and queries to the DNS, i.e., the few
features that are likely going to remain visible. By relying
on a large dataset containing flow-level measurements of user
activity annotated with DNS queries, we first investigate to
what extent server IP addresses provide enough evidences of
the services used by people. We then evaluate the amount of
traffic that can be distinguished by combining server hostname
and addresses to create rules.1 Finally, we discuss how stable
such rules are in time.

Previous works have studied the importance of different
features for traffic classification. In particular, a comprehen-
sive survey on classification methods for encrypted traffic is
presented in [7]. The authors of [8], [9] found that IP addresses
are among the most informative features. We perform similar
analysis to quantify how traffic of modern services can be
classified using only addresses and hostnames. Authors of [10]
are the first to claim the use of DNS to classify traffic. In
contrast to the method proposed by authors of [10], we neglect
well-known protocols (e.g., FTP or P2P). Instead, we focus
on typical services that make the majority of encrypted web
traffic nowadays, and characterize when hostnames are needed,
and when only addresses would be sufficient for classification.
More recently, authors of [11], [12] used Server Name Indica-
tion (SNI) strings found in TLS handshakes and DNS queries
for classification. While authors concluded that hostnames
alone are insufficient, they targeted protocol classification
(e.g., SIP, HTTP, etc.), thus missing fine-grained identification
of single web services. Other authors [13], [14] argue the
usefulness of DNS for classifiers, but mostly focusing on how
to label flows, missing a study of classification accuracy.

1In the remaining of the paper, we omit the word “server” unless necessary.



Our work is a preliminary evaluation of web service clas-
sifiers in the modern Internet. Our analysis provides the
following main findings:
• Up to 65% of the IP addresses are associate to a single
hostname. Those servers however are responsible for less than
15% of web traffic volume.
• Despite the simplicity, classification based solely on (group
of equivalent) IP addresses can discern up to 55% of the web
traffic. This can be achieved by uncovering and aggregating
the various hostnames related to a given service, and then
enumerating corresponding IP addresses.
• Lifetime of classification rules varies strongly, with some
services requiring weekly updates and others showing stable
names and addresses even after a year.
• Even when tagging flows with hostnames on-line using all
DNS queries of each client (e.g., as in [13]), there can be
complex scenarios when facing big cloud computing platforms
(e.g., Amazon AWS)

These results are a first step towards classification algo-
rithms that are able to work with minimal metadata. While
these data will certainly not solve some identification problems
(e.g., for network forensics and intrusion detection), we believe
they represent a set of non-intrusive features to tackle common
monitoring tasks, such as traffic accounting and engineering.

II. DATASETS AND METHODOLOGY

The aim of this work is to investigate whether IP addresses
and DNS traffic provide enough information to design web
service classifiers, targeting in particular those prominent
services which adopt encryption, such as HTTPS, QUIC or
SPDY. We take a data driven approach and look into real
traces to run a feasibility check in this paper, before going
through a complete system design.

A. Datasets

We use two data sources in our analysis. First, we rely
on Tstat [15] to perform passive measurements and collect
data related to users’ activity. Among flow level statistics
exposed by Tstat for IPv4 TCP flows, we consider (i) server
IP addresses contacted by clients; (ii) timestamps of the
first packet in each flow; (iii) SNIs sent by clients in TLS
handshakes; and (iv) the hostname the client resolved via
DNS queries prior to open the flow.2 This mechanism, called
DN-Hunter, is explained in details in [13]. Inconsistencies are
observed between SNI and DNS in the 6% of flows.

Although Tstat exports many other flow-level metrics that
are useful for traffic classifiers, we restrict the analysis to basic
features, since those features are also exported by popular flow
meters such as Netflow [16].

Second, in parallel to Tstat, we deploy Passive DNS3 in one
of the monitored links to get a deeper insight into the associa-
tion between hostnames and server IP addresses. Passive DNS
logs all DNS activity in the network independently from the

2Our vantage points observe all traffic generated by clients, including DNS
traffic directed to local resolvers.

3https://github.com/gamelinux/passivedns

TABLE I: Overview of our datasets.

Name Flows Server IPs Period Sections
PoP 13.25G 49.25M 1 year VI

Campus-Flows 1.12G 2.55M 2 months IV,V,VI,VII
Campus-DNS – 1.13M 2 weeks III,IV,V,VI

resolver the client employs, including queries and responses
with the returned addresses and the time-to-live found.

Table I summarizes our datasets. We have installed Tstat
in two distinct networks: (i) a University campus in Europe
where ≈ 15, 000 users are connected; and (ii) a Point of
Presence (PoP) of a European ISP, where ≈ 10, 000 ADSL
customers are aggregated. The campus dataset includes traffic
generated by wired and WiFi networks during 2 months in
2015. Passive DNS was deployed in the campus for 2 weeks
in Nov 2015. The residential dataset includes traffic of users’
devices connected via Ethernet and/or WiFi at home during a
full year (2015). In total, our datasets include statistics about
more than 14 billion flows, and around 790 million records in
DNS requests/responses.

B. Methodology

We study the association between IP addresses and host-
names to understand the role of addresses in modern traffic
classification. We first assume hostnames provide sufficient
means to distinguish services – i.e., different services use
different hostnames. We will discuss later to what extent
this assumption holds in practice. Hostnames coming either
from SNIs or from DNS queries are the ground-truth in this
scenario. We characterize how the relation between names
and addresses evolves over time. In particular, we look for
those IP addresses that serve only a single hostname, i.e.,
only one hostname is associated to a given IP address. We
call this singleton IP addresses, or singleton in brief. We then
quantify the percentage of traffic exchanged with singletons,
to obtain an indication of the classification coverage that could
be achieved using only the IP addresses as features.

Motivated by the low volume of traffic that could be
discerned by such an approach, we study how to improve
classification by enumerating the different hostnames (and
addresses) used by services. We call the list of names of a
service its bag of domains. We interactively build the bag
of domains for a list of services by relying on SNIs and
hostnames exported by Tstat. A graphical framework allows
us to inspect names linked to IP addresses. We illustrate
this procedure with examples in the next section. We focus
on popular services running over HTTPS – e.g., Facebook,
Google Video, Dropbox, Apple iCloud, Twitter etc. – since
those services cause the greatest part of the encrypted traffic
in the monitored networks.

III. ENUMERATING NAMES AND ADDRESSES OF SERVICES

We visually explore how hostnames and addresses are
associated. We represent the associations as a graph, in which
nodes are IP addresses and hostnames, and edges exist if a
hostname has been resolved to an address. We initially search
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Fig. 1: IP addresses and hostnames of Whatsapp. Most IP
addresses are exclusively used by the service.
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Fig. 2: Hostnames sharing IP addresses with Facebook.

for hostnames containing terms of interest. For example,
by searching for whatsapp in our data, we discover that
Whatsapp services are offered from at least two second-level
domains – i.e., whatsapp.com and whatsapp.net. We
call those the core domains, and from them we explore linked
IP addresses, and correlated hostnames.4

Fig. 1 and Fig. 2 provide examples. Fig. 1 depicts how
second-level domains are associated with whatsapp.net.
For simplicity, the figure is built using a 5-minute sample of
Campus-DNS trace. The core domain is shown as a central
node; IP addresses are nodes colored either green (singletons,
i.e., edge links them to only one whatsapp.net sub-
domain), or red (not singletons, with multiple edges to multiple
domains); and yellow nodes represent whatsapp.net sub-
domains sharing IP addresses with each others.

We notice that Whatsapp IP addresses are not shared with
other services. Therefore, once all addresses are enumerated,
Whatsapp traffic can be identified without further information.

Fig. 2 shows more complicated scenarios emerging from
facebook.com. To improve visualization, nodes represent-
ing IP addresses are replaced by edges labeled with the
percentage of addresses connected to pairs of hostnames – e.g.,
3.3% of the addresses seen as facebook.com are also seen

4Terms of interested could be obtained by active experimentation with target
services in a testbed such as in [17].
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Fig. 4: Distribution of the traffic related to IP addresses with
different numbers of hostnames. Campus-Flows.

as liverail.com. Besides sharing addresses with Face-
book’s affiliated services (e.g., Instagram), Facebook’s usage
of Akamai CDN results in thousands of hostnames unrelated
to Facebook appearing in the graph as time progresses.

In summary, the association between IP addresses and
hostnames brings information, but the presence of CDNs
create conflicts and ambiguity. Next, we quantify how much
traffic could be classified despite such ambiguities.

IV. CLASSIFICATION USING IP ADDRESSES

We first provide an overview on all IP addresses and
hostnames in our 2-week long dataset of DNS traffic
(i.e., Campus-DNS). We perform this analysis focusing on
DNS A records. For each IP address returned in a DNS
response, we collect all hostnames requested by clients.

Using Campus-DNS dataset, we count how many host-
names are linked to each IP address. Three levels
of granularity are considered: (i) complete hostnames,
e.g., img.www.example.com; (ii) third-level domains,
e.g., www.example.com; (iii) second-level domains, e.g.,
example.com. Fig. 3 reports the empirical Cumulative Dis-
tribution Function (CDF) of the number of names associated
with each IP address.

On the leftmost part, we notice that more than the 65%
of the IP addresses are singletons. This percentage grows
to 70% when considering third-level domains, and to 80%
when considering second-level domains. Those results confirm



TABLE II: Popular services and classification precision.

Core Domain facebook.com google.com googlevideo.com whatsapp.net twitter.com dropbox.com
Number of Addresses 3,196 7,286 13,133 851 279 2,227

Singletons for the service (%) 29.8 58.7 79.9 99.8 83.9 59.9
Traffic to singletons (%) 85.8 38.5 1.2 100.0 78.7 91.3

Precision (%) 59.1 33.8 77.2 100.0 96.1 99.1

previous observations (e.g., see [13], [18]) and, at first, suggest
that a great part of the traffic could be easily classified by
simply using server IP addresses.

A completely different picture however emerges when tak-
ing traffic volume into account. Although most IP addresses
are singletons, such addresses are responsible for a small
fraction of the traffic. We quantify this effect in Fig. 4 using
the Campus-Flows dataset. For each IP address, we count the
amount of bytes it handles, and compute then the handled
fraction. Fig. 4 shows the resulting CDF. Remind that we
include only HTTP and HTTPS traffic here. Less than 15% of
the traffic is owing to singletons, even if those cases are 65%
of the addresses. The picture does not change considerably
when third- or second-level domains are used: Percentages are
25% and 33%, respectively. In a nutshell, a classifier that takes
only IP addresses as input would identify up to 33% of the
traffic without mistakes. Part of the remaining traffic would
necessarily be misclassified, since many hostnames (and thus
services) possibly run over the same address. We conclude that
server IP addresses alone provide a very poor classification
coverage for the web traffic.

V. CLASSIFICATION USING BAGS OF DOMAINS

We repeat the analysis after creating bags of domains. A
bag represents the set of domains a service uses to handle
its content. We consider 25 coarsely defined groups of ser-
vices, including e.g., Google, Facebook and Dropbox. For
example, Facebook bag of domains includes facebook.com
as well as Facebook’s domains pointing to CDNs, such as
fbcdn.net and fbstatic-a.akamaihd.net. So far,
we manually group domain names that belong to a given
service, since we observe that bags of domains are rather stable
in our datasets.

Given a bag of domains, we extract IP addresses corre-
sponding to any name in the bag. We next check if those
addresses have been resolved also for hostnames not in the
bag. Those IP addresses that create ambiguity are discarded.
Those that correspond to hostnames in the bag only are sin-
gletons for the service and thus provide a good classification,
i.e., traffic is uniquely linked to the targeted service.

Fig. 4 reports the CDF of traffic according to singletons
for the services. The bags of domains substantially increases
the fraction of traffic that can be discerned. Three regions are
visible in the figure. First, close to 55% of the traffic is related
to IP addresses that are connected to a single bag of domains.
Second, up to 10% of the traffic is caused by IP addresses
shared by at most 10 names or bags. Part of these cases seems
to occur because we have created bags only for few popular
services, and thus names could be aggregated further. Third,
about 20% of the traffic volume is caused by IP addresses

shared by hundreds or thousands of names. Those cases are
mostly servers in CDNs, and it is hard to discern services
without full information about hostnames queried by clients.
The intuition suggests that the bag of domains approach
would be ineffective for this latter group. We will investigate
these cases further in coming sections. We perform a similar
calculation accounting flows instead of bytes, obtaining very
similar results, not reported here for lack of space.

We conclude that a very simple classifier that relies on
server IP addresses only could discern up to 55% of the web
traffic. However, this is achievable only if service hostnames
are aggregated, and their addresses are enumerated. Important,
IP addresses in bags of domains can be learned by inspecting
logs in DNS servers, or by actively querying the DNS system.
Finally, the development of a methodology to automatically
create bags of domains and to enumerate IP addresses is
planned to future work.

VI. USE CASES

A. A Deeper Look into Popular Services

We now focus on six popular services and study in details
how hostnames and addresses are used. We further estimate the
precision of different classification approaches when applied
to these services. Tab. II reports statistics about 6 services
over two weeks of observations. We calculate statistics using
the period in which Campus-Flows and Campus-DNS datasets
are coincident. We focus on the most popular web services
categories such as Social Networks, Search Engines and
Cloud Storage. Thus, we take into account Facebook, Google,
Whatsapp, Dropbox and Twitter, considering all traffic to their
bags of domains.

Tab. II shows that the number of IP addresses hosting
each service (2nd row) varies considerably,5 as it varies the
percentage of those addresses that are fully dedicated to the
services (3rd row - singletons). For instance, while 99.8% of
the IP addresses serving Whatsapp are singletons, more than
40% of the addresses of Google are observed in DNS queries
related to non-google.com bag of domains. No address has
been seen in more than one of the considered bags, except for
Google and Googlevideo: all non-singletons of Google Video
appear within Google’s bag, and the 89.9% of Google’s are in
Google Video’s, unveiling a shared infrastructure.

Next, we quantify the traffic related to singletons (4th row):
Using the Campus-Flows trace, and using the DN-Hunter or
SNI as ground truth to identify the service associated to a flow,
we sum up all traffic for all hostnames in each bag of domains.
We then compute the fraction of traffic that is associated with

5The total number of addresses serving each service is likely higher since
only contacted addresses are counted.



singletons for the same service. This number gives us an
estimation of the coverage if one relies only on the singletons
to classify – i.e., the coverage when the classification provides
100% precision.

We can see that the percentage of traffic going to singletons
is quite low for some services. Note for instance that only
1.2% of Google Video traffic goes to singletons, despite these
being almost 80% of IP addresses of googlevideo.com.
This happens since the traffic balance among the thousands of
GoogleVideo servers is highly skewed toward a small subset of
them, i.e., the most popular ones. Those addresses are also the
ones for which hostnames of other bags of domains are found,
and thus they are not singletons. For other services, singletons
provide very high coverage: 100% of Whatsapp traffic goes to
singletons (cfr. Fig. 1), whereas percentages are relatively high
also for Facebook (85%), Twitter (78%) and Dropbox (91%).

Finally, we estimate the precision of a classifier that marks
all traffic related to addresses in the bags as belonging to
the given services, being those singletons or not. That is,
we estimate the precision of a classifier that have maximum
coverage for the selected services. Since not all addresses
are singletons (see 2nd row in Tab. II), we expect to make
classification mistakes.

The last row in Tab. II quantifies such mistakes. We can
see that for three examples in the table – Whatsapp (100%),
Twitter (96%) and Dropbox (99%) – the precision would be
indeed very high. This means that only a minor amount of
traffic not belonging to the services is mixed in their bags of
domains. Google Video also presents a very high precision
thanks to high traffic volume of the YouTube video service.
Services that are mixed up with Google Video produce a low
volume, even if they reach addresses in the Google Video
bag. For Facebook, the classification precision is rather low,
and this questions the applicability of the approach for such
cases. This is because Facebook uses Akamai CDN, which
hosts a multitude of alien services, which generate overall a
large amount of traffic.

All in all, the classification based solely on addresses and
bags of domains shows interesting potential. It enables the
classification of a high share of traffic, with high coverage and
precision for many popular services, while requiring minimal
collection of data. Yet, a per-service assessment of precision
and coverage is needed.

B. Names and Addresses over Time

We analyze how the associations between names and ad-
dresses evolve over time. In particular, we are interested in
knowing how stable the rules based on IP addresses and
bags of domains are for popular services. We investigate
such aspects using PoP dataset, which covers a full year
of a residential network. For each month of data, we create
lists with all addresses used by popular services considering
their bags of domains. We then track how the lists change
throughout the year.

Fig. 5 summarizes results by showing the percentage of
addresses that is still on the lists, when compared to the first
month of observation. We can see that all services present
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changes after Jan 2015, which is used as reference in the
figure. Similar shapes emerge if other months are taken as
reference. However, it is interesting to notice differences
among services. Whereas the list of addresses for Google
Video, for instance, is rather stable, as little as 15% of the
Dropbox addresses seen in Jan 2015 remain in the list. Manual
inspection suggests that addresses are passing for migration
from US data-centers to EU data-centers; clients are now
diverted to different data-centers than in previous months 6.

In several cases, such as for Twitter, almost 50% of the
addresses already disappeared after a single month of obser-
vation.

Overall, we conclude that while the lists of addresses are
stable in short intervals, they radically change in medium
to long periods (Fig. 5). Such intervals strongly depend on
services and location of the monitored network. Classifiers
relying on lists of addresses must deploy a methodology to
constantly check and update their lists.

VII. TRAFFIC IN AMBIGUOUS NAMES

In the previous sections we evaluated the traffic related to IP
addresses using the annotated hostnames as ground-truth. Now
we investigate to what extent annotated traffic is reliable to the
classification problem. We evaluate the case where each flow is
associated to a hostname directly at the vantage point, as done
by DN-Hunter or by extracting the SNI via DPI. Thus, the
question is whether hostnames are unique to bags of domains
of different services. We thus quantify how often hostnames
are used by different services.

We focus on two examples, Amazon Web Services (AWS)
and Akamai, and enumerate all sub-domains of
amazonaws.com and akamaihd.net contacted
by clients in our datasets. Then, we manually try to
identify the services relying on each sub-domain. In
some case, hostnames give a clear hint about services
– e.g., fbcdn-sphotos-c-a.akamaihd.net is
used by Facebook, although generic names of the infra-
structure providers are often observed as well – e.g.,
eu-irl-00001.s3.amazonaws.com is used by many
services outsourcing to AWS.

Fig. 6 highlights the top sub-domains of the providers
according to their traffic share. Sub-domains are split into two
groups: specific and generic. The first contains sub-domains

6See also https://www.dropbox.com/help/9063
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Fig. 6: Top sub-domains hosted by Amazon and Akamai.

that can be definitively associated to a service, whereas all
other sub-domains are marked as generic.

When summing up all bytes related to specific sub-domains,
we notice that 98% of the traffic related to Akamai can be
distinguished. Therefore, classifiers can reach high coverage
and precision when handling Akamai traffic, provided that
information about hostnames requested by clients is available.

The scenario is different for AWS. Only 23% of the traffic
related to Amazon has an informative sub-domain. We can
see in Fig. 6 that only 3 among the top-14 AWS sub-domains
in our datasets provide hints on the service generating the
traffic. Such cases without informative names are indeed hard
to be discerned and will require a much more elaborated
classification methodology. We plan to test in future work
classifiers that correlate names of distinct flows, including both
temporal and spacial correlations among flows.

VIII. CONCLUSIONS

This paper provided a first look into traffic classification for
modern web services. We visually explored how hostnames
and addresses are associated, and studied the role of IP
addresses in classification. Our results show that up to 55% of
web traffic can be identified relying solely on addresses. This
coverage is however achieved only if the several hostnames
used by services are uncovered, and the respective addresses
are enumerated. For some specific services, IP addresses can
classify most of the traffic. Those results call for the devel-
opment of novel classification methods, which will operate
with minimal information collected from the network, thus
respecting users’ privacy.

Nevertheless, we also pointed out that the association
between hostnames and addresses changes frequently. For

instance, for a selection of services, more than half of the
addresses were changed during one year of observations.

This paper identified several directions for future work.
Firstly, we showed that a number of services shares hostnames,
in particular those services hosted at cloud environments.
The identification of services is not possible in such cases,
even when flows are tagged with client-requested hostnames.
Methods to classify this traffic are needed, and we will pursue
that in the future. Secondly, we plan to design and implement
algorithms to automatically retrieve the list of hostnames
associated to services (i.e., the bags of domains) as well as
to detect changes and to update the list over time. Finally, we
plan to integrate these techniques into a complete system to
detect and account traffic of popular services on real-time.
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for Encrypted Traffic Classification and Analysis,” Int. J. Netw. Manag.,
vol. 25, no. 5, pp. 355–374, 2015.

[8] H. Jiang, A. W. Moore, Z. Ge, S. Jin, and J. Wang, “Lightweight
Application Classification for Network Management,” in Proceedings
of the IMC, 2007, pp. 299–304.

[9] D. Tammaro, S. Valenti, D. Rossi, and A. Pescapé, “Exploiting Packet-
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