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Abstract

In cognitive radio networks, secondary users (SUs) communicate on unused
spectrum slots in the frequency bands assigned to primary users (PUs). Like
any other wireless communication system, cognitive radio networks are ex-
posed to physical layer attacks. In particular, we focus on two common at-
tacks, namely, spectrum sensing data falsification and eavesdropping. Such
attacks can be counteracted by using symmetric key algorithms, which how-
ever require a complex key management scheme. In this paper we propose a
novel algorithm that significantly reduces the complexity of the management
of symmetric link keys by leveraging spectrum sensing data that is available
to all nodes. In our algorithm, it is assumed that a primary secret key is
pre-distributed to the legitimate SUs, which is needed every number of de-
tection cycles. With the aid of the information provided in the primary key,
our algorithm manipulates the collected samples so that a segment of the
estimated sensing statistic at the two legitimate SUs can be used as a seed
to generate a common symmetric link key. The link key is then employed to
encrypt the transmitted data. Our algorithm exhibits very good performance
in terms of bit mismatch rate (BMR) between two link keys generated at the
two legitimate SUs. In addition, our solution is robust against the difference
in the received signal to noise ratio between two legitimate SUs thus making
it suitable for practical scenarios. Furthermore, our algorithm exploits the
decision statistic that SUs use for spectrum sensing, hence, it does require
neither extra processing nor extra time, allowing the SUs to quickly and
securely tab into empty spectrum slots.

Keywords: Spectrum sensing, Key management, Cognitive radio network,
Eavesdropping, Spectrum sensing data falsification.
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1. Introduction

In cognitive radio networks, a secondary user (SU) accesses the spectrum
whenever the spectrum owner, named primary user (PU), is not transmitting,
or both PU and SU can share the spectrum under the PU’s defined terms of
usage. Consequently, reliable spectrum sensing (SS) and decision algorithms
at SUs are paramount for the detection of spectrum holes. One of the main
signal detection techniques is the General Likelihood Ratio Test (GLRT) [1],
which is used when detection is performed in the presence of some unknown
parameters [2]. Once the adopted SS technique detects an empty spectrum
slot, SUs can use it to communicate.

On the other hand, securing the communication between legitimate SUs
is a challenging issue due to the fact that numerous attacks can be launched
against cognitive radio networks. Comprehensive studies on this aspect
[3, 4, 5] show that two of the major physical layer attacks against cognitive
radio networks are spectrum sensing data falsification (SSDF) and eavesdrop-
ping. SSDF is performed on a collaborative sensing setup [6]: an attacker
sends false spectrum sensing data to other SUs, in case of distributed sensing
decision, or to the fusion center [7], resulting in a wrong spectrum access
decision. Eavesdropping attackers instead are adversaries or unauthorized
users that listen to the communication between legitimate users.

Conventional techniques to combat SSDF leverage a two-level defense
mechanism [8]. The first level authenticates all the collected spectrum sensing
results, while the second decides which spectrum sensing result is legitimate.
Depending on whether a fusion center is available or the system is fully
distributed, schemes such as the sequential probability ratio test (SPRT)
[8], or reputation-based schemes can be exploited [8]. Techniques designed
to counteract SSDF, however, require a long processing time for the two
stages to occur. Moreover, either a large number of SUs or many successful
iterations are needed to achieve a good reputation. Clearly, long processing
time might lead to higher probability of missing the opportunity of exploiting
empty spectrum slots for SUs. In addition, authentication techniques such as
the approach in [9], where cyclo-stationary detection is used to classify and
authenticate signals, adds to the complexity and limitations of the system,
while failing to prevent a scenario where a malicious node mimics the SU’s
signal properties.
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Alternatively, physical layer security techniques exploit the randomness
inherent to communication channels, which are common to the two trusted
parties and unknown to a potential eavesdropper, so as to generate secret
keys [10, 11, 12]. Although these algorithms were not developed for cogni-
tive radio network applications, they can be utilized by the SUs. However,
physical-layer solutions, such as channel estimation based on one or two level
defence mechanisms, involve exchange of multiple beacon signals as well as
synchronization between legitimate SUs thus requiring a long time to gener-
ate the link key and, hence an inefficient usage of the spectrum.

To counteract eavesdropping, a power allocation approach is proposed in
[13] to increase the secrecy level between authenticated SUs. Alternatively,
conventional wireless security, which relies on cryptographic techniques and
application-layer protocols, can be adopted [14]. Fundamentals of key man-
agement protocols are presented in [15, 16, 17]. One drawback of these tech-
niques however is that a complex key management scheme is required in the
case of symmetric ciphers, while high computational complexity is needed
in the case of asymmetric ciphers. In particular, in the case of symmetric
ciphers, the continuous exchange of encryption keys poses a serious threat to
the secrecy of the whole communication session. Minimizing the security risk
that stems from key exchange mechanisms is the main reason for key reuse
(i.e., using the same key for multiple packet encryptions), which introduces
another secrecy weakness allowing an eavesdropper to have more chances to
guess the encryption key.

In this paper, we propose a novel technique to counteract the two afore-
mentioned cognitive radio attacks and at the same time solve the above
shortcomings of symmetric key management schemes such that it suits the
peculiarity of cognitive radio networks. Our key management technique com-
prises a primary key distribution and a link key generation algorithm. We
exploit the spectrum sensing data available to all nodes (legitimate and ma-
licious) and the secret primary key to generate link keys. We assume that
the secret primary key is pre-distributed to legitimate SUs, which then use
the information provided therein to manipulate the samples collected via SS.
By applying a decision algorithm, which is in our case the GLRT, on the
manipulated samples, a segment of the estimated decision statistic at the
legitimate SUs is used as the seed to generate the secret link key, which is
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employed to encrypt the transmitted data 1. Note that the SS process is
not affected by such operations. In other words, the manipulated collected
samples are used for the purpose of sensing the spectrum and generating a
link key. While the sensing statistics may be available also at the malicious
node, thanks to the secret primary key, the link key is only available at the
legitimate SUs and unknown to the malicious node. A new link key is gener-
ated for each new detection cycle. Also, our algorithm does require neither
any extra extensive processing nor time to secure the link between SUs, both
in the case of distributed collaborative detection and in the case where a
fusion center is available since the centralized processor is usually an SU.
In addition, our algorithm does not require any extensive beacon exchange
as in the case of physical layer techniques [18]. To the best of the authors’
knowledge, the idea of exploiting spectrum sensing data to extract a secret
link key has never been studied in the literature.

The rest of the paper is organized as follows. Section 2 describes the
system model. The adopted decision algorithm, which is based on GLRT, is
introduced in Section 3. Section 4 presents our link key generation algorithm.
Results are then shown in Section 5, while Section 6 concludes the paper.

2. System Model

Consider a radio cognitive network where the SUs sense the spectrum so
as to detect empty spectrum slots that they can exploit for communication,
i.e., the spectrum is already occupied by the PU’s signal and the objective
is to determine the gaps in the PUs communications. While communicating,
SUs periodically sense the spectrum in order to be able to detect the entrance
of a PU and, in case, retreat from using the spectrum slot. The time intervals
corresponding to the two operations are referred to as Phase I and Phase II,
respectively, and they are depicted in Figure 1. A detection cycle is defined
as the time period comprising the two phases. Note that the length of the
detection cycle and of the two phases therein is not constant. Indeed, PUs
exploit their assigned spectrum as desired and, therefore, the length of each
phase may differ from one detection cycle to the next.

We assume that every N samples, each SU makes its own decision about
the frequency slot status (empty/occupied) and sends it to the other SUs, in

1Note that link key is often derived from a primary key (see for example the Bluetooth
specifications and temporal key integrity protocol in 802.11).
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case of distributed collaborative sensing, or to the SU acting as fusion center.
The first objective is to ensure that the decisions collected from all SUs, which
will be used to produce the overall decision on the presence or absence of PUs,
are validated and false samples generated by malicious nodes are discarded.
To this end, decisions from legitimate SUs are encrypted with a link key only
known to them. A decision maker can then easily decrypt the data and filter
out information injected by malicious nodes. Similarly, in the presence of an
empty spectrum slot, legitimate SUs encrypt their communication through
a link key, so as to avoid eavesdropping by a malicious user.

A link key is generated by SUs at every detection cycle. In order to do
that, we assume that an authorized network entity distributes a secret pri-
mary key to legitimate SUs prior to the spectrum sensing operation, using
any of the conventional cryptographic schemes presented in [19]. The pri-
mary key includes information that is essential to the algorithm we devise
to generate the link key. Note that the primary key is also delivered to any
legitimate SU that joins the network later on. A new primary key is instead
distributed whenever its effect on the link key generation diffuses with time
(e.g., every number of detection cycles as discussed in Sections 4 and 5),
and whenever a legitimate SU leaves the network. The latter is necessary to
secure the network against the scenario when a legitimate SU later becomes
a malicious node.

Finally, our adversary model assumes that a malicious node can listen
to the spectrum used by the PU and can use the same SS technique used
by the legitimate SUs. In other words, the malicious node has access to the
spectrum sensing data. The malicious node’s intention is to launch an SSDF
attack by transmitting false spectrum sensing data to the other SUs, or to
the SU operating as fusion center. It can move freely within the field and
can visit any of the locations where either the PU or the SUs were or will be.
In the case of eavesdropping, the malicious node is assumed to be a passive
adversary.
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Figure 1: Spectrum sensing and link key generation during each detection cycle.

3. Spectrum Sensing and Decision Algorithm

A SU, listening to a specific frequency band, collects samples y[i], i =
1, . . . , N . If the spectrum slot is empty (hypothesis H0), y[i] = w[i], where
w[i] is the additive white gaussian noise (AWGN) with variance σ2

w. σ2
w is

receiver dependant and can be estimated ahead of time. If instead the PU
is transmitting (hypothesis H1), y[i] = x[i] + w[i], where x[i] = hs[i] is the
product of the channel gain h and the PU’s signal s[i]. x[i] is assumed to
be Gaussian distributed with zero mean and variance σ2

x. The value of σ2
x

depends on the channel gain and the power of the PU signal. Thus, in the
presence of the PU’s signal, y[i] follows a Gaussian distribution N (0, σ2

w+σ2
x)

[2, 20, 21], which we denote by F1. Instead, in the case of an empty frequency
band, y[i] follows N (0, σ2

w), which we denote by F0.
In the remainder of this section, we first summarize the GLRT algorithm

presented in [2], which is used for the detection of the entrance of a PU’s
signal. This algorithm is used during Phase II of the detection cycle. Then,
we present our GLRT algorithm for the detection of empty spectrum slot,
which is used during Phase I of the detection cycle.

3.1. Detection of the entrance of the PU’s signal

The authors in [2] presented a GLRT-based algorithm for the detection of
the entrance of the PU’s signal. In the presence of an empty spectrum slot,
the samples collected by the SUs follow distribution F0 with density function
f0, and

y[i] = w[i], for i = 1, · · · , k − 1. (1)

6



where k is the time instant at which the change of the frequency slot status
is detected. As the PU enters the frequency band, the distribution changes
to F1 with density f1, and

y[i] = x[i] + w[i], for i = k, · · · , N (2)

where recall that N is the number of samples corresponding to the periodicity
with which SUs make their SS decisions. The scenario we are interested in
is when σ2

w is known and σ2
x is in the range [σ2

s , σ
2
m]. With l1(y) being the

log-likelihood ratio, note that:

N∑
i=k̂+1

l1(y[i]) = ln


N∏

i=k̂+1

f1,σ2
x
(y[i])

f0(y[i])

 , (3)

where k̂ is the sampling time at which the SU estimates that the PU has
entered the spectrum slot, and after which l1(y) shows a consistent positive
drift. We denote the decision statistic for the detection of the entrance of
the PU’s signal by BN . The decision statistic is estimated through [2]:

BN = max
k̂≤N

sup
σ2
x

ln


N∏

i=k̂+1

f1,σ2
x
(y[i])

f0(y[i])


= max

k̂≤N

N∑
i=k̂+1

{
1

2
ln

{
σ2
w

σ2
x + σ2

w

}
+

σ2
xy

2[i]

2(σ2
x + σ2

w)σ2
w

}
, (4)

where f1,σ2
x

is the probability density function of the received signal with
the actual variance of the PUs signal being σ2

x. BN is compared against a
threshold, λB, to decide on the presence or absence of the PU’s signal.

3.2. Detection of empty spectrum slots

We develop the GLRT algorithm to detect the transmission opportunities,
i.e. empty spectrum slots, rather than detecting the entrance of the PU’s
signal to be used during Phase I of our system model. Again, at first the
samples collected by the SU follow distribution F1 with density function f1
(hypothesis H1), and

y[i] = x[i] + w[i], for i = 1, · · · , k − 1, (5)
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As the PU leaves the frequency band, the distribution changes to F0 with
density f0 (hypothesis H0) and ∃k ∈ [1, N ]

y[i] = w[i], for i = k, · · · , N. (6)

With l2(y) being the log-likelihood ratio in this case, note that:

N∑
i=k̂+1

l2(y[i]) = ln


N∏

i=k̂+1

f0(y[i])

f1,σ2
x
(y[i])


=

N∑
i=k̂+1

{
1

2
ln

{
σ2
w + σ2

x

σ2
w

}
− σ2

xy
2[i]

2(σ2
x + σ2

w)σ2
w

}
. (7)

Let:

f(σ2
x) = (N − k̂)

1

2
ln

{
σ2
x + σ2

w

σ2
w

}
− σ2

xŷ

2(σ2
x + σ2

w)σ2
w

. (8)

Since σ2
x is unknown, we find its estimate σ2

x
∗

by solving (8) for the value
that maximizes it, which results in:

σ2
x
∗

=


σ2
mx, (N − k̂) ≤ ŷ

σ2
mx+σ

2
w
,

ŷ

N−k̂ − σ
2
w,

ŷ
σ2
mx+σ

2
w
≤ (N − k̂) ≤ ŷ

σ2
sx+σ

2
w
,

σ2
sx, (N − k̂) ≥ ŷ

σ2
sx+σ

2
w
,

(9)

where ŷ =
∑N

i=k̂+1 y
2[i]. Consequently, for a preset N , an iterative k̂ and σ2

x
∗

estimated through (9), the decision statistic, denote by EN , is given by:

EN = max
k̂≤N

sup
σ2
x

ln


N∏

i=k̂+1

f0(y[i])

f1,σ2
x
(y[i])


= max

k̂≤N

N∑
i=k̂+1

{
1

2
ln

{
σ2
w + σ2

x
∗

σ2
w

}
− σ2

x
∗
y2[i]

2(σ2
x
∗ + σ2

w)σ2
w

}
. (10)

The decision statistic EN is again compared to a threshold λE to decide on

the presence or absence of the PU’s signal according to: EN
H0

≷
H1

λE. The
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threshold, λB = − ln{a/b}, is set based on the average delay for false alarm
T0 ≥ 1/a where a is a design parameter and b is given by

b = 3 ln

{
a−1

(
1 +

1

D(f0||f1,σ2
sx

)

)2
}
, (11)

with D(f0||f1,σ2
sx

) being the Kullback-Leibler divergence of f0 from f1 esti-
mated at σ2

sx. The Kullback-Leibler divergence of f0 from f1 is given by:

D (f0||f1) = Ef0 {l2 (y[i])}

=

∫
f0(y) ln

{
f0(y)

f1(y)

}
dy, (12)

where E denotes the expectation operator. Substituting f0 and f1 at σ2
sx

yields

D
(
f0||f1,σ2

sx

)
=

1

2
ln

{
σ2
w + σ2

sx

σ2
w

}
− σ2

sx

2(σ2
sx + σ2

w)
. (13)

4. Secret Key Generation Algorithm

In our proposed link key management algorithm, we will use the estimated
decision statistic introduced before as a common seed for secret link key
generation. We assume that all the legitimate SUs employ the same spectrum
sensing algorithm, hence the decision statistic is already calculated at all the
SUs. Below we first provide an outline of our algorithm and then we detail
the steps on how to generate the secret link key from the decision statistic.

4.1. Algorithm Outline

The flow chart of our algorithm is presented in Figure 2. The algorithm
is initialized at the first detection cycle, during Phase II. It is then repeated
in Phase II of every cycle.

As mentioned, our technique consists of a primary key distribution and a
link key generation algorithm. We assume that a primary secret key is pre-
distributed to the legitimate nodes. Using the information provided in the
primary pre-distributed key, our algorithm manipulates the samples collected
by each legitimate SU during Phase II, i.e., when SUs are sampling white
noise. Doing so, the estimated decision statistic at any two legitimate SUs
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Figure 2: Flow chart of the proposed algorithm.

will be very similar2, providing a common seed. This manipulation process
is performed by applying at the legitimate SUs a mathematical operation
on the collected samples, which can be as simple as a multiplication, or
more complex such as a nonlinear function. For simplicity, here we assume a
multiplication by a constant α, which, in the first cycle, coincides with one
of the pieces of information included in the primary secret key and is then
updated in the following cycles. Based on such samples, the decision statistic
in (4) is computed.

Next, Ns samples are sequentially picked from the estimated decision
statistic and used as seed, S = [s1, . . . , sNs ]. S is shuffled, quantized using
Nq bits and encoded to generate a serial bit stream. An information reconcil-
iation and privacy amplification is applied to the generated serial bit stream
in order to generate the final link key. S is then used to generate the new α
for the following detection cycle through a pseudo-random number generator
[22].

4.1.1. Counteracting SSDF and eavesdropping

The link key generated in one detection cycle is used in the two phases
of the following detection cycle. The aims are twofold.

1. To counteract SSDF: during Phase I of the following detection cycle,
the SS decision statistic estimated through (10) is encrypted with the
generated link key and transmitted to the fusion center. The fusion

2The seed used for link key generation (explained later) is not exactly the same, but
it is similar enough to act for link key generation. We will show that by plotting the bit
mismatch rate between the generated links keys in Section 5.
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center being one of the legitimate SU or another node having access to
the spectrum has also generated the link key. Hence, it decrypts the
transmitted SS decision statistic sent from legitimate nodes and easily
filters out data sent from malicious nodes.

2. To counteract eavesdropping: once availability of an empty spectrum
slot is declared, legitimate SU start communicating. Data is encrypted
using the generated link key available at the legitimate SUs. An eaves-
dropper, which does not have the key, will not be able to decrypt the
transmitted data.

4.2. Primary Key

As mentioned, the pre-distributed primary key is needed only once at the
system set up, or after a number of detection cycles. This primary key is
not the secret link key that will be used to encrypt the transmitted data.
Rather, it contains some pieces of information that will be used in the process
of generating the secret link key at two legitimate SUs. Specifically,

• the initial value of α;

• the set of the shuffled indices of the seed samples;

• the number of the compression function and universal hash function
applied in the information reconciliation and privacy amplification step;

• the constants (β, γ and ρ) used in the process of generating the new
value of α.

The number of quantization bits, Nq and the number of seed sample, NS are
fixed and given beforehand.

4.3. Seed Generation

In Phase II, each legitimate SU listens to the spectrum and collects
AWGN samples before the entrance of the PU’s signal. The SU first mul-
tiplies the samples by the initial value of α that is provided in the primary
secret key, thus obtaining yα[i] = αy[i]. Accordingly, distributions F0 and F1

change into N (0, α2(σ2
w + σ2

x)) and N (0, α2σ2
w), respectively. We denote by

Bα the decision statistic in (4) when yα is used as input instead of y. Note
that the likelihood ratio in (3) will also use yα instead of y. Also, in Phase
II, legitimate SUs may use either B or Bα for signal detection; clearly, in the
latter case, the threshold used for SS should be adjusted accordingly.
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Once Bα is available, the seed (S) is given by the Ns samples of Bα

estimated before the entrance of the PU’s signal. We will show that this seed
does not depend on the signal-to-noise ratio (SNR) at the legitimate SUs but
it mainly depends on α. This implies that, regardless of the received SNR,
the generated seed can be considered common to all legitimate SUs making
it suitable for secret link key generation.

4.4. Link Key Generation

The generation of the secret link key at legitimate users consists of the
following four steps.

1) Once estimated the common seed, its indices are shuffled according to
a sequence that is provided in the primary key. The main purpose of shuffling
is to increase the level of randomness of the seed.

2) Next, the shuffled seed has to be converted into a bit stream that is
suitable as link key. To quantize the seed samples, we use uniform quanti-
zation [23]. The number of quantization bits, Nq, determines the number of
quantization levels, L = 2Nq . The quantized decimal value is then converted
into bits.

3) Although uniform quantization is easy to implement, increasing the
quantization bit number dramatically degrades the performance of the algo-
rithm since the Bit Mismatch Rate (BMR) between two communicating SUs
increases. To solve this problem, we adopt the technique presented in [24].
There the authors proposed an encoding algorithm and applied it on a uni-
formly quantized reciprocal link signatures. On link signatures exhibiting a
BMR up to 84.48%, their encoding scheme could reduce the BMR to almost
4% thus leading to an excellent improvement.

4) The final step towards the link key generation is information reconcili-
ation, where the two legitimate SUs use a protocol, such as the one in [25], to
minimize the BMR between bit streams generated at two different SUs. In
this protocol, public communication over the channel must occur to correct
the mismatched bits. Consequently, some of the information will be leaked
to the eavesdropper. Therefore, information reconciliation is usually followed
by data compression and privacy amplification where a universal compres-
sion function and a universal hash function is selected randomly from a saved
set and applied to the bit streams at both the SUs [26]. The generated link
key will then become shorter in length but higher in entropy. In our algo-
rithm, the number of the compression function as well as the hash function
is provided in the primary secret. It is worth noting that for the information
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reconciliation step to be applied efficiently, the BMR after the encoding step
should not exceed a certain value, namely, 15% [26]. After this step, the link
key is generated and ready to be used to encrypt the transmitted data in the
next cycle.

At last, SUs have to compute a new value of α to be used in the next de-
tection cycle. To this end, the following operation is applied to the estimated
seed:

SLGN = lnE [S]. (14)

SLGN is the input to the Linear Congruential Generator (LGN) – a pseudo
random number generator [22] requiring constants β, γ and ρ to compute
the new value of α as:

α = (βSLGN + γ)mod(ρ). (15)

where mod is the modulo operator. The constants β, γ and ρ are included
in the primary secret.

We will use the root mean square error (RMSE) as the metric to eval-
uate the drift in computing α between two legitimate SUs, i.e., RMSE =√

E
[
(α|SU1 − α|SU2)

2].
5. Results

In this section, we present the simulation results for our proposed key
management algorithm. We first present the simulation results for the es-
timated decision statistic in the two phases. We then show the effect of
multiplying the received samples by α on the estimated decision statistic in
Phase II. An example of shuffled seed is then illustrated. The effect of change
in SNR and α on the BMR of the generated link key is then presented. We
compare the bit mismatch and entropy rates of the key generated through
our algorithm to conventional channel based algorithm. The simulated re-
sults for the BMR and entropy rates are presented after step (3) of our link
key generation algorithm and before information reconciliation and privacy
amplification steps. This is to show that the link key generated through
our algorithm exhibits a good performance before these two standard steps.
In addition, we depict how the value of α changes with different detection
cycles.
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Figure 3: B and E for 400 samples with the distribution change occurring at the 200th
sample.

5.1. GLRT algorithm

Figure 3 shows the simulation results for BN and EN for 400 samples
and for σ2

x that lies in the range of [0.5σ2
xavg , 2σ

2
xavg ]. For the detection of

empty spectrum slots, i.e., Phase I, the PU’s signal leaves the spectrum at
the 200th sample. For the detection of the entrance of the PU’s signal, i.e.,
Phase II, the PU’s signal enters the spectrum at the 200th sample. One
can see that once the status of the spectrum changes, i.e., the distribution
of the collected samples changes, B and E rapidly increases in both cases.
The decision statistic is compared to a threshold (λB and λE, respectively)
to decide whether the current status has changed or not.

5.2. Impact of α on seed generation

We start by presenting the impact of α on seed generation. Figure 4
shows the simulation results obtained for Bα at the legitimate SUs, when
α = 2.5 (top) and 5 (bottom), respectively. In both subfigures, the SNR is
set to 15 dB at the first legitimate SU, to 10 dB at the second, and 10 dB at
the malicious node. Since the malicious node does not know the value of α,
it is assumed that it uses α = 1. Although, the malicious node uses the same
spectrum sensing technique, its decision statistic before the entrance of the
PU’s signal is almost zero making it unsuitable for secret key generation. The
change in SNR between the two legitimate SUs leads to different values of
Bα after the entrance of the PU’s signal, exhibiting higher values as the SNR
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increases. Nevertheless, the seed S, which is zoomed-in in both subfigures,
is not affected by the different values of SNR, since it is generated from the
samples collected before the entrance of the PU’s signal. Rather, it is affected
only by the value of α. As α grows, the drift in the first 200 samples of B
increases. Moreover, S at both legitimate SUs is very similar. The samples
used as seed at the malicious node are close to zero, making them unsuitable
for link key generation. Furthermore, one can see that Bα can be used also
to detect the entrance of the PU’s signal instead of B, by properly adjusting
the value of the threshold to account for the effect of α.

5.2.1. Seed shuffling

In Figure 5, we present a shuffled version of the samples of S. The shuffled
indices set is provided in the primary secret to the legitimate SUs. One
can see that S does not follow the continuously increasing pattern anymore.
Rather, it is completely randomized.

5.3. BMR

Next, Figure 6 shows the simulation results for the BMR of the link key
extracted at two legitimate SUs vs. the difference in SNR between the SUs.
The SNR at SU1 varies between 0 and 20 dB, while the SNR at SU2 is fixed
at 10 dB. We set α = 10 and use different numbers of quantization bits,
namely, Nq = 4, 6 and 8. We compare the results of our proposed algorithm
to conventional channel based secret key generation algorithm [27]. Each
BMR value is estimated through extensive Monte Carlo simulation using
10,000 iterations. The results clearly show that the change in SNR between
the two SUs does not affect the performance of our link key generation al-
gorithm. As expected, as Nq increases, the BMR increases, however, the
achieved BMR after encoding is less than 10%. The achieved BMR before
information reconciliation and privacy amplification is well below the value
provided in [26] of 15%, thus leading to very good performance. The BMR
achieved through our algorithm shows comparable results to channel based
physical layer security scheme. However, unlike our proposed algorithm, the
effect of change in SNR is clear in channel based key generation algorithm.
Furthermore, it is important to stress that changing the value of α does not
have much effect on the achieved BMR. BMR results presented in Figure 7
highlight that the achieved BMR for α varying between 5 and 30 is almost
constant and equal to 44% before encoding, and to 11% after encoding.
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the malicious user. Bα and B are plotted as functions of time (400 samples, the seed is
zoomed in).
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5.4. Entropy

Entropy is a measure of the level of randomness of the generated key.
We compare the entropy of the link key generated through our algorithm to
channel based algorithm [27] in Fig. 8 for Nq = 6 bits. The entropy rate
achieved through our proposed algorithm is comparable to that achieved by
conventional channel based technique.

5.5. α vs. number of detection cycles

The way α evolves over time is depicted in Figure 9 (top), for α = 2,
β = 18, γ = 5, ρ = 200 and the SNRs at the two legitimate equal to 15 dB
and 10 dB, respectively. One can see that using the LGN makes the estimated
α to fluctuate randomly, which is exactly what we want in order to generate
efficient link keys. Also, the results in Figure 9 (bottom) (obtained under
the same settings) confirm that the RMSE of α is very low.

5.6. How often should the primary key be distributed?

As stated earlier, a new primary key may need to be distributed when its
effect on the link key generation, through the parameter α, tends to dissolve.
Then a reasonable concern is about when a new primary key should be gen-
erated. Figure 10 depicts the estimated α versus the number of detection
cycles, for initial α = 2, β = 8, γ = 5 and ρ = 200 (top) and α = 2, β = 30,
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Figure 8: Entropy rate of the generated key for our proposed algorithm and channel based
algorithm.

γ = 10 and ρ = 200 (bottom). From Figure 9 (top) and Figure 10, it can
be inferred that the periodicity and randomness of the newly generated α
depends on the selection of the parameters3 β, γ, ρ and initial α. Therefore,
a new primary key is distributed whenever the value of α follows a periodic
pattern or does not fluctuate randomly from one detection cycle to the next
as desired.

5.7. A qualitative comparison

To counteract SSDF, reputation based techniques such as the ones pre-
sented in [8, 28] require long time, i.e., many detection cycles, to build up a
good reputation. In addition, reputation is built based on the overall decision,
which may be incorrect in case of SSDF attacks launched by many malicious
nodes. Non-reputation based techniques such as [29, 30, 31], are also based
on the assumption that the overall decision is correct. On the other hand,
our algorithm neither requires many detection cycles to efficiently operate,
nor it assumes the correctness of the overall decision.

Typical physical layer security techniques, such as [10], used to counteract
eavesdropping require extensive channel probing to generate a suitable link

3Refer to [22] for more details on the selection and limitations of the LGN parameters.
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key. The frequent channel probing requires multiple beacon exchange, syn-
chronization and employment of a channel estimation technique. In addition,
they may need an initial agreement on some parameters [10] as in our pro-
posed technique. On the contrary, our solution exploits the spectrum sensing
data, which is already available at the two legitimate nodes to extract the
link key to make key exchange less frequent. Thus, our algorithm requires
a shorter time to generate the link key as well as much lower computational
complexity stemming from not deploying channel estimation techniques.

6. Conclusion

We focused on a cognitive radio network where symmetric key encryption
is used to counteract two common physical layer attacks, namely, spectrum
sensing data falsification and eavesdropping. In this context, we proposed a
novel algorithm that greatly reduces the complexity of link key management.
Our algorithm uses the information provided in a pre-distributed primary key
to manipulate the spectrum sensing decision statistic at legitimate SUs so
as to yield a seed that can be exploited for generating a new link key at
each detection cycle. As a result, the solution we propose does require nei-
ther extensive processing nor exchange of beacons or synchronization data.
Furthermore, the manipulated samples do not disrupt the decision statistic,
rather they can be used for signal detection as well. Numerical results show
that the achieved bit mismatch rate is less than 10% right after the quanti-
zation and encoding step, which is an excellent result. Also, the difference
between the SNR at two legitimate SUs does not affect the performance
of link key generation suggesting that our solution is suitable for practical
scenarios.
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